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 Underwater images frequently have low contrast, color distortion, and a greenish hue, 

due to wavelength-dependent light absorption and scattering. These issues limit the 

efficacy of underwater imaging applications and negatively impact visual perception. 

This paper presents a unique enhancement framework called Smooth Gridded Adaptive 

Color Compensation (SGACC) with Green Tint Removal (GTR) and adaptive Contrast 

Limited Adaptive Histogram Equalization (CLAHE) to address these issues. While 

GTR adjusts for red-channel attenuation to lessen green dominance, the SGACC 

module uses Gaussian-blended grids for smooth and targeted color correction. By 

adapting to changes in brightness while maintaining image features, adaptive CLAHE 

significantly improves local contrast. The proposed method consistently outperforms 

state-of-the-art techniques, according to experimental assessments on Large-Scale 

Underwater Image (LSUI) and Underwater Image Enhancement Benchmark (UIEB) 

datasets. It offers significant Underwater Image Quality Measure (UIQM) / Underwater 

Color Image Quality Evaluation (UCIQE) improvements, 2.0% Structural Similarity 

Index (SSIM) gain, and up to 3.6 dB better Peak Signal-to-Noise Ratio (PSNR) on 

LSUI. It achieves 21.11 dB PSNR and 0.9631 SSIM on UIEB, indicating exceptional 

perceptual quality. The proposed technique, SGACC-GTR, with adaptive CLAHE 

architecture, successfully restores natural color balance and enhances underwater image 

quality. 
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1. INTRODUCTION 

 

Natural resources, many of which are running low on land, 

are in higher demand because of the rapid growth of human 

civilization. With its abundance of essential resources like oil, 

gas, minerals, and marine food, as well as renewable energy 

sources like tidal and wave power. Sustainable development 

depends on accurate monitoring and exploration of these 

underwater resources. However, the underwater environment 

is hostile and hard to access, so manual observation is not 

practical. As a result, underwater imaging is essential for 

collecting visual data for underwater robotics, marine biology, 

archaeology, and oceanographic study. 

Applications in marine biology, archeological 

documentation, underwater robotics, and environmental 

monitoring all depend on underwater imaging. However, light 

absorption and scattering in water often cause images taken in 

aquatic environments to deteriorate significantly. Severe color 

distortions and reduced vision occur due to the rapid loss of 

red wavelengths and the dominance of green and blue 

channels. Suspended particles create haze and backscatter, 

which also lowers visual clarity and contrast even more. 

To address these issues, a number of conventional and 

learning-based strategies have been put forth. Although the 

Dark Channel Prior (DCP) [1, 2] has been widely employed to 

remove haze, its effectiveness is largely dependent on 

atmospheric assumptions that are not always true in 

underwater settings, which frequently leads to color bias and 

halo distortions. Although it issues with uneven lighting and 

over-compensation of colors, the Underwater Dark Channel 

Prior (UDCP) [3] makes an effort to handle channel-specific 

attenuation. Brightness and color constancy are improved by 

enhancement-based techniques such as the Unsupervised 

Color Correction Method (UCM) [4] and Extended Multi-

Scale Retinex (EMSR) [5], but they may result in overly 

saturated or artificial appearances. 

Hybrid methods, such as Gray World with Enhanced DCP 

[6] or CLAHE with percentile-based contrast adjustment [7], 

offer limited flexibility and often do not perform well in 

various underwater situations. Moreover, while deep learning-

based methods show potential, they depend heavily on large 

annotated datasets and may not adapt well to different types of 

water, lighting, and camera settings. When used in different 

lighting and water conditions, many approaches often lead to 

over-enhancement and color distortion. This creates artificial 

visual effects. Additionally, most methods have difficulty 

handling various underwater conditions, where light scattering 

and absorption change across regions. This is due to their low 

ability to manage uneven degradation. 

Conventional image improvement methods, like histogram 
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equalization and white balance correction, often fall short. 

They struggle to adjust to the uneven quality across a picture. 

Removing green dominance and compensating for missing red 

tones are also important steps in restoring natural colors in 

underwater images. 

The proposed technique, SGACC, uses the mean channel to 

conduct color balancing per block after dividing the image into 

overlapping grid blocks. By avoiding block artifacts, Gaussian 

blending guarantees seamless transitions between 

neighbouring blocks. In order to combat wavelength-

dependent attenuation, the GTR module adaptively decreases 

excessive green dominance while enhancing the red channel. 

When the dynamic range of the image is inadequate, contrast 

is selectively improved using an adaptive CLAHE step that is 

based on luminance variation. This prevents over-

enhancement in areas that are already well-enhanced. 

2. RELATED WORK

The exploration of underwater resources began during the 

1970s. The earlier techniques focused on basic image 

processing to address the issues related to light scattering and 

absorption in underwater environment. Many techniques that 

are used for underwater image enhancement and restoration do 

not overcome all the challenges, issues and limited for real 

world applicability [8]. This is a perception-aware 

decomposition and fusion framework that simultaneously 

takes structural and perceptual priors into account in order to 

improve the underwater photos.  

Constructed wetland systems can successfully support more 

comprehensive water-reuse strategies in areas experiencing 

water shortages. The study evaluated the reuse potential of the 

treated wastewater and found it suitable for various non-

potable applications [9]. An EMSR technique designed for 

underwater enhancement was presented in this paper. This 

technique successfully enhances visibility and dynamic range 

in deteriorated photos. However, it frequently creates artificial 

color tones and generates halo aberrations, especially in scenes 

with significant illumination change.  

Zhang et al. [10] proposed a method that greatly increases 

image contrast and restores visual clarity by combining color 

correction and bi-interval contrast enhancement. The 

technique, however, suffers in badly deteriorated underwater 

images where color casts and haze are still noticeable. Zhu 

[11] proposed an improved DCP that enhances contrast and

reduces haze in underwater images. However, the method's

robustness is limited because it frequently results in over-

saturated colors and obvious artifacts in bright or uniform

regions. Table 1 shows the methods of various techniques and

their advantages and limitations.

Figure 1. Underwater image enhancement process diagram 

Table 1. Comparative summary of underwater image enhancement methods 

Ref. Method Strengths Limitations 

[12] 
Attenuated color channel correction + 

detail-preserved contrast enhancement 
Enhances natural color tones. Intensify noise overenhancement edges. 

[13] Color balance and fusion framework
Uses multi-image fusion to restore natural 

color. 

Heavily reliant on input weight and result in 

an imbalance of colors. 

[14] 
Auto color correction using depth

information 
Successfully restore accurate color tones. 

Sensitive to inaccurate depth estimation; 

fails in murky water. 

[15] Dual color space and contrast learning

Improves enhancement quality by 

combining RGB and perceptual domain 

learning. 

Requires a lot of training data and has little 

ability to generalize to new situations. 

[16] 
Piecewise color correction + dual prior 

optimized contrast enhancement 

Effectively increases contrast and 

maintains color balance. 

Computationally demanding and 

inappropriate for use in real time. 

[17] 
Preprocessing-based contrast and color 

correction 

Easy to use and efficient for improving 

basic visibility. 

Incapable of adapting to a variety of 

underwater circumstances. 

[18] Wavelength compensation method
Compensates for spectral attenuation to 

restore color fidelity. 

Not adaptable to dynamic underwater 

conditions. 

[19] Gradient and CLAHE-based smoothing
Enhances LAB* color space's local 

contrast and clarity. 

May result in color imbalance and over-

enhancement in bright areas. 

[20] 
Polarization-based multi-image 

enhancement 

Uses several polarization states to 

effectively decrease haze and scattering. 

Not appropriate for real-time use of a single 

image. 

[21] Wavelet-based variational enhancement
Enhances contrast while preserving multi-

scale detail. 
Fails significant wavelength attenuation. 

[22] 
Fuine-gan (fast underwater image 

enhancement gan) 

Deep learning-based algorithm effectively 

enhances visibility, color, and contrast. 

Struggles to capture underwater images in 

poor light or with significant degradation. 
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[23] 
Deep learning survey on UIE metrics 

and methods 

Provides detailed analysis of new 

datasets, loss functions, and metrics. 

A new enhancement algorithm is not 

suggested. 

 

 

3. PROPOSED METHODOLOGY  

 

This section outlines the proposed underwater image 

enhancement pipeline. It uses flexible methods to restore color 

balance and contrast. Underwater images often have color 

distortion and low visibility because of light scattering and 

absorption. The method, shown in Figure 1, combines Smooth 

Gridded Adaptive Color Compensation with Green Tint 

Removal (SGACC-GTR) and adaptive CLAHE to improve 

image quality. The technique is tested on two datasets: 

Underwater Image Enhancement Benchmark (UIEB), which 

includes 950 real underwater images and is commonly used 

for performance comparison, and Large-Scale Underwater 

Image (LSUI), a large dataset with over 4,000 paired 

underwater and reference images that allows for a solid 

evaluation of enhancement methods. 

 

3.1 Smooth gridded adaptive color correction 

 

The process starts by reading the input image and finding its 

dimensions (h, w). Using a set grid size and overlap ratio, the 

image is split into overlapping blocks. This helps reduce local 

color bias and lighting changes. Two arrays, weight_map (for 

collecting blending weights) and corrected_img (to hold the 

improved output), are set up. To ensure smooth transitions 

between blocks, the matching picture region and its 

precomputed Gaussian blending weights are pulled for each 

block location (y start, x start). A Gaussian blending mask is 

precomputed and applied to each block to provide smooth 

transitions between nearby areas. 

 

𝐵ℎ =
𝐻

𝑅
, 𝐵𝑤 =

𝑊

𝐶
 (1) 

 

The above equation defines the block dimensions, where 𝐵ℎ 

is the height of each block and 𝐵𝑤 is the width of each block. 

 

𝑆ℎ = 𝐵ℎ . (1 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝), 𝑆𝑤 = 𝐵𝑤 . (1 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝) (2) 

 

𝑆ℎ  and 𝑆𝑤  are the step sizes in vertical and horizontal 

directions. This equation controls the overlap between 

neighbouring blocks and ensures smooth, enhanced natural 

images. 

The mean intensity values of the blue, green, and red 

channels (mean b, mean g, and mean r) are computed for each 

block. After that, the gray mean value of the block is 

calculated, which is used as a guide for intensity balance.  

In order to properly correct for color imbalances and 

improve visual uniformity throughout the image, each channel 

is then normalized proportionately to this gray mean. 

 

𝜇𝑔𝑟𝑎𝑦 =
𝜇𝐵 + 𝜇𝐺 + 𝜇𝑅

3
 (3) 

 

Through the above equation, each block is processed 

individually to maintain color balance and equalize 

illumination across all the channels. 

 

3.2 Green Tint Removal 

 

The GTR stage identifies excessive green by calculating the 

ratio of the green channel mean to the average of the red and 

blue channel means. If this ratio goes above a certain threshold 

(Tg), a suppression factor is applied to the green channel. 

Additionally, a red boost factor is introduced to restore warmer 

tones. This adjustment improves color intensity and results in 

a more natural look. The corrected blocks are then combined 

into corrected_img using Gaussian weighting. Finally, the 

image is normalized by dividing by weight_map, and pixel 

values are clipped to the valid intensity range of [0, 255]. 

 

𝛾𝐺 =
𝜇𝐺

𝜇𝑅 + 𝜇𝐵
2

+∈
 

(4) 

 

The above equation calculates the green dominance ratio is 

estimated and suppression factor and red boost factor are 

applied to reduce excessive green dominance and restore 

natural green color in the image.  

 

3.3 Adaptive CLAHE 

 

Finally, the corrected image is converted into the LAB color 

space for adaptive CLAHE enhancement. The luminance 

standard deviation (σL) of the L-channel is measured to assess 

contrast variation. If σL falls below a defined threshold (Tσ), 

the CLAHE clip limit is dynamically increased using a scaling 

factor to enhance low-contrast regions without over-

amplifying bright areas. The adjusted L-channel is then 

recombined with the original A and B channels, and the image 

is converted back to BGR space to produce the final enhanced 

output. 

If 𝜎𝐿 < 𝑇𝜎 , the clip limit is increased dynamically. 

 

𝐶𝑙𝑖𝑚𝑖𝑡 = 1.5 + 𝑠(𝐶𝑚𝑎𝑥 − 1.5) (5) 

 

The above equation controls and enhances the contrast in 

low contrast regions and also prevents over-enhancement in 

bright areas.  

 

Algorithm 1. SGACC–GTR Balanced with Adaptive 

CLAHE 

Input: BGR underwater image 𝐼(𝑥,𝑦) ∈ 𝑅
ℎ×𝑤×3  

Output: Enhanced Image 𝐼𝑒𝑛ℎ 

 

Step 1. Block partitioning 

Divide I into overlapping blocks of sizes. 

 

𝐵ℎ=
𝐻

𝑅
, 𝐵𝑤=

𝑊

𝐶
 

 

The above formula defines the block dimensions. 

 

∆ℎ= 𝐵ℎ(1 − 𝛼), ∆𝑤= 𝐵𝑤(1 − 𝛼) (6) 

 

The Eq. (6) controls the overlap between neighbouring 

blocks.  

 

Step 2. For each block, generate Gaussian blending mask 

 

𝑊𝐺(𝑢, 𝑣) = 𝑒−4(𝜇
2+𝑣2), 𝑢, 𝑣 ∈ [−1,1] 
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Step 3. For each block b, compute channel means 

 

𝜇𝐵 = 𝑏𝐵 , 𝜇𝐺 = 𝑏𝐺 , 𝜇𝑅 = 𝑏𝑅 

 

𝜇𝑔𝑟𝑎𝑦 =
𝜇𝐵 + 𝜇𝐺 + 𝜇𝑅

3
 (7) 

 

The Eq. (7) balances the color in each block. 

Compensate channels: 𝑏𝑘
𝑖 = 𝑏𝑘 ∙

𝜇𝑔𝑟𝑎𝑦

𝜇𝑘+𝜖
, 𝑘𝜖{𝐵, 𝐺, 𝑅}. 

 

Step 4. Green tint detection and removal 

Green ratio: 𝛾𝐺 =
𝜇𝐺

𝜇𝑅+𝜇𝐵
2

+∈
. 

 

𝐼𝑓 𝛾𝐺 > 𝑇𝑔:

{
 

 𝐸𝑔 = 𝑚𝑖𝑛 (
𝛾𝐺 − 𝑇𝑔

0.5
, 1) 

𝑆𝑓 = (1 − (1 − 𝑆max)𝐸𝑔 

𝑅𝑏 = (1 − (𝑅max − 1)𝐸𝑔

 (8) 

 

Apply correction: 𝑏𝐺
′ = 𝑏𝐺

′ ∙ 𝑆𝑓 , 𝑏𝑅
′ = 𝑏𝑅

′ ∙ 𝑅𝑏. 

 

Step 5. Apply weighted block fusion 

 

𝐼𝑐𝑜𝑟𝑟(𝑥, 𝑦) = 𝑏
′(𝑥, 𝑦) ∙ 𝑊𝐺(𝑥, 𝑦) (9) 

 

𝑀𝑤(𝑥, 𝑦)+= 𝑊𝐺(𝑥, 𝑦) 

Normalize = 𝐼𝑐𝑜𝑟𝑟 =
𝐼𝑐𝑜𝑟𝑟(𝑥, 𝑦)

𝑀𝑤(𝑥, 𝑦)
 

 

Step 6. Apply adaptive CLAHE  

 

Convert to LAB: 𝐼𝑐𝑜𝑟𝑟 = (𝐿, 𝐴, 𝐵). 

Luminance std. dev: 𝜎𝐿 = 𝑠𝑡𝑑 (
𝐿

255
). 

If 𝜎𝐿 < 𝑇𝜎: s=
𝑇𝜎−𝜎𝐿

𝑇𝜎
. 

 

𝐶𝑙𝑖𝑚𝑖𝑡 = 1.5 + 𝑠(𝐶𝑚𝑎𝑥 − 1.5) (10) 

 

Step 7. Output enhanced image 𝐼𝑒𝑛ℎ 

 

 

4. EXPERIMENTAL RESULTS 

 

4.1 Dataset 

 

Experiments were conducted using two datasets, the LSUI 

dataset and UIEB (950 real-world underwater photos from 

various aquatic environments; Li et al., IEEE TIP 2019), to 

evaluate the strength of the proposed method. Some of the raw 

images and their histograms are shown in Figures 2 and 3, 

respectively. The UIEB is a well-known dataset for testing 

underwater image enhancement techniques. It includes 950 

real-world underwater photos taken in different environments. 

This dataset is suitable for a thorough evaluation of 

enhancement methods because it covers a variety of 

underwater conditions, including different lighting levels, 

depths, water types, and color distortions. UIEB has become a 

standard for testing image quality improvement in terms of 

both how images are perceived visually and using metrics like 

Underwater Image Quality Measure (UIQM) and Underwater 

Color Image Quality Evaluation (UCIQE). The LSUI dataset 

includes over 4,000 high-quality underwater photos and 

matching reference photos.  

 

 

 

 
 

Figure 2. Images before enhancement 
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Figure 3. Histogram of the raw images 

 

Deep learning improvement models can be trained and 

assessed in many underwater environments. LSUI includes 

various visibility conditions, light levels, and water quality. 

Due to its size and paired structure, LSUI is helpful for data-

driven methods that require substantial training data. It can 

also be used to fairly compare learning-based and traditional 

augmentation techniques. Both full-reference (Peak Signal-to-

Noise Ratio (PSNR), Structural Similarity Index (SSIM)) and 

no-reference (UIQM, UCIQE) measures are commonly 

employed in UIEB testing, which captures typical underwater 

issues such as color distortion, poor visibility, and uneven 

lighting. Some of the raw images and their histogram are 

shown in Figures 2 and 3. 

 

4.2 Comparative results 

 

The suggested SGACC–GTR Balanced framework was 

quantitatively evaluated utilizing PSNR, SSIM, UIQM, and 

UCIQE measures to evaluate the enhanced underwater images' 

structural fidelity and perceptual quality. In comparison to 

current enhancement algorithms, the suggested method 

successfully preserves small features, as seen by a higher 

PSNR value that represents decreased noise and distortion. 

 

PSNR = 10. log10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
) (11) 

 

In a similar vein, the improvement in SSIM shows improved 

structural similarity and contrast preservation, indicating that 

edges and spatial information are preserved following 

augmentation. The efficacy of color and contrast restoration is 

further confirmed by the perceptual quality measures UIQM 

and UCIQE. In particular, better sharpness, colorfulness, and 

contrast are shown by higher UIQM values, whilst balanced 

chromatic and brightness enhancement throughout underwater 

scenes is highlighted by higher UCIQE scores. 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝑢𝑥𝜇𝑦 + 𝐶1) + (2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 (12) 

 

𝑈𝐶𝐼𝑄𝐸 = 𝑐1 × 𝐶ℎ𝑟𝑜𝑚𝑎 + 𝑐2 × 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛
+ 𝑐3 × 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 

(13) 

 

𝑈𝐼𝑄𝑀 = 𝑐1 × 𝑈𝐼𝐶𝑀 + 𝑐2 × 𝑈𝐼𝐶𝑜𝑛𝑀 + 𝑐3 × 𝑈𝐼𝑆𝑀 (14) 

 

4.2.1 Qualitative results 

Qualitatively, the improved images showed a noticeable 

decrease in the usual green-blue tinge and haze that occurs 

underwater. With reds fully returned and green's dominance 

diminished, color tones seemed more realistic and more in line 

with reality. Block-wise contrast stretching and LAB color 

correction improved the image's illumination balance and 

brought out features in previously washed-out or dark areas. 

The feeling of depth in the image and underwater items was 

enhanced by the sharpening and definition of edges and 

textures. The subfigures (a)-(f) illustrated in Figure 4 show the 

visual quality of the underwater images with the proposed 

technique and other techniques. Each row highlights how 

different algorithms affect visibility, color balance, and 

contrast restoration under diverse underwater conditions. 

 

 
 

Figure 4. Original images processed by various techniques: 

(a) Original image, (b) UDCP, (c) EMSR, (d) CLAHE & 

percentile, (e) FUNIE-GAN, (f) proposed 

 

4.2.2 Quantitative results 

Using both quantitative measurements and qualitative 

visual evaluation, the effectiveness of the suggested Smooth 

GACC-based underwater image enhancing technique was 

assessed. The improved image quantitatively demonstrated a 

significant improvement in objective image quality. In 

comparison to the original image, the PSNR rose, suggesting 

less distortion and better pixel accuracy [24]. The visual 

quality of the images with various techniques can be viewed 

in Figure 4. In a similar vein, a higher score on the SSIM 

indicated better structural detail preservation. The UCIQE and 

UIQM scores also showed a considerable improvement in 

terms of perceptual no-reference metrics, as shown in Tables 

2 and 3. 

From Tables 2 and 3, it is evident that the proposed method 

consistently achieves higher PSNR, SSIM, UIQM, and 

UCIQE values compared to other techniques, indicating 

superior visual quality and color fidelity. The bar chart in 

Figures 5 and 6 further confirms this trend, where the proposed 
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method outperforms existing approaches across all metrics. 

Overall, the results clearly demonstrate that the proposed 

approach provides more effective underwater image 

enhancement. Because the Gaussian-weighted gamma 

correction adjusts for uneven loss across RGB channels, the 

green-tint suppression in the suggested method works well. 

The method improves visual realism and restores spectral 

balance by reducing the excessive green intensity caused by 

the shallow penetration of red wavelengths. 

However, the adaptive CLAHE module may over-amplify 

noise and edges in some situations with very low illumination 

or high particle density, particularly in dark areas. This occurs 

because when input histograms are sparse, CLAHE's local 

contrast enhancement may amplify intensity changes. 

Although the framework uses smooth block transition 

averaging and a clip limit tuning factor to lessen this, moderate 

over-enhancement may still happen in severe circumstances. 

However, by combining both global tone correction and 

localized adaptive contrast adjustment, reducing halo artifacts, 

and maintaining color naturalness, the suggested SGACC–

GTR method delivers a more balanced enhancement than 

conventional CLAHE or Retinex-based procedures. 

 

Table 2. Comparison of different methods on LSUI dataset in terms of PSNR, SSIM, UIQM and UCIQE 

 
Dataset Images Metrics [3] [5] [6] [22] Proposed 

LSUI 

Img1 

PSNR 22.098 14.7899 23.247 22.799 23.321 

SSIM 0.9589 0.8531 0.8975 0.9621 0.9753 

UIQM 3.3052 1.8070 3.9995 4.6562 4.7326 

UCIQE 0.5578 0.4038 0.5514 0.4943 0.6503 

Img2 

PSNR 16.544 10.7342 13.7073 13.517 19.141 

SSIM 0.9223 0.8566 0.8566 0.9371 0.9649 

UIQM 4.8280 3.4790 4.3381 5.1494 5.0848 

UCIQE 0.5656 0.5241 0.5435 0.4799 0.5889 

 

Table 3. Comparison of different methods on UIEB dataset in terms of PSNR, SSIM, UIQM and UCIQE 

 
Dataset Images Metrics [3] [5] [6] [22] Proposed 

UIEB 

Img3 

PSNR 16.5440 10.7342 13.7073 13.5175 20.2312 

SSIM 0.9223 0.8566 0.8566 0.9371 0.9622 

UIQM 4.8280 3.4790 4.3381 5.1494 5.2596 

UCIQE 0.5656 0.5241 0.5435 0.4799 0.5862 

Img4 

PSNR 19.3282 4.3373 12.3490 17.5074 21.1114 

SSIM 0.9182 0.9594 0.8972 0.9783 0.9789 

UIQM 2.9824 2.5684 3.6874 4.2443 3.9503 

UCIQE 0.5219 0.5370 0.5370 0.5079 0.6023 

Img5 

PSNR 14.1854 4.9634 22.7752 16.8332 14.5671 

SSIM 0.8873 0.8613 0.8184 0.9248 0.9380 

UIQM -0.6203 3.6282 2.5716 1.8615 3.8183 

UCIQE 0.4189 0.5255 0.5035 0.4018 0.5683 

 

  
  

Figure 5. Chart of the various techniques metric results on 

LSUI dataset 

Figure 6. Chart of the various techniques metric results on 

UIEB dataset 

 

 

5. CONCLUSION 

 

The proposed SGACC–GTR Balanced framework 

integrated with adaptive CLAHE effectively enhances 

underwater images by correcting color distortion, reducing 

green dominance, and improving contrast while maintaining 

natural visual balance. Quantitative evaluations using PSNR, 

SSIM, UIQM, and UCIQE show consistent improvements in 

perception and structure compared to existing methods. These 

results highlight strong potential for practical use in 

underwater robotics, marine exploration, and environmental 

monitoring. Clear, color-accurate images are essential for 

reliable perception and analysis in these fields. However, 

performance drops in highly turbid or low-light conditions, 

and the complexity of the computations limits real-time use. 

Future research will concentrate on tuning parameters, 
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optimizing for depth, and developing lighter implementation 

strategies to improve robustness, efficiency, and scalability in 

various underwater environments. 
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