International Information and
Engineering Technology Association

Mathematical Modelling of Engineering Problems
Vol. 12, No. 12, December, 2025, pp. 4338-4344

Journal homepage: http://iieta.org/journals/mmep

Underwater Image Enhancement Through Smooth Gridded Adaptive Color Compensation ]

with Green-Tint Removal and Integrated CLAHE

Manasa M"2, Praveen Kulkarni

Check for
updates

Department of Computer Science and Engineering, Dayananda Sagar University, Bangalore 562112, India

Corresponding Author Email: manasa.m-rs-cse@dsu.edu.in

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.121222

ABSTRACT

Received: 14 September 2025
Revised: 13 November 2025
Accepted: 21 November 2025
Available online: 31 December 2025

Keywords:

SGACC, GTR, adaptive CLAHE, haze removal,
contrast enhancement, non-uniform illumination
correction

Underwater images frequently have low contrast, color distortion, and a greenish hue,
due to wavelength-dependent light absorption and scattering. These issues limit the
efficacy of underwater imaging applications and negatively impact visual perception.
This paper presents a unique enhancement framework called Smooth Gridded Adaptive
Color Compensation (SGACC) with Green Tint Removal (GTR) and adaptive Contrast
Limited Adaptive Histogram Equalization (CLAHE) to address these issues. While
GTR adjusts for red-channel attenuation to lessen green dominance, the SGACC
module uses Gaussian-blended grids for smooth and targeted color correction. By
adapting to changes in brightness while maintaining image features, adaptive CLAHE
significantly improves local contrast. The proposed method consistently outperforms
state-of-the-art techniques, according to experimental assessments on Large-Scale
Underwater Image (LSUI) and Underwater Image Enhancement Benchmark (UIEB)
datasets. It offers significant Underwater Image Quality Measure (UIQM) / Underwater
Color Image Quality Evaluation (UCIQE) improvements, 2.0% Structural Similarity
Index (SSIM) gain, and up to 3.6 dB better Peak Signal-to-Noise Ratio (PSNR) on
LSUIL It achieves 21.11 dB PSNR and 0.9631 SSIM on UIEB, indicating exceptional
perceptual quality. The proposed technique, SGACC-GTR, with adaptive CLAHE
architecture, successfully restores natural color balance and enhances underwater image

quality.

1. INTRODUCTION

Natural resources, many of which are running low on land,
are in higher demand because of the rapid growth of human
civilization. With its abundance of essential resources like oil,
gas, minerals, and marine food, as well as renewable energy
sources like tidal and wave power. Sustainable development
depends on accurate monitoring and exploration of these
underwater resources. However, the underwater environment
is hostile and hard to access, so manual observation is not
practical. As a result, underwater imaging is essential for
collecting visual data for underwater robotics, marine biology,
archaeology, and oceanographic study.

Applications in  marine  biology, archeological
documentation, underwater robotics, and environmental
monitoring all depend on underwater imaging. However, light
absorption and scattering in water often cause images taken in
aquatic environments to deteriorate significantly. Severe color
distortions and reduced vision occur due to the rapid loss of
red wavelengths and the dominance of green and blue
channels. Suspended particles create haze and backscatter,
which also lowers visual clarity and contrast even more.

To address these issues, a number of conventional and
learning-based strategies have been put forth. Although the
Dark Channel Prior (DCP) [1, 2] has been widely employed to
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remove haze, its effectiveness is largely dependent on
atmospheric assumptions that are not always true in
underwater settings, which frequently leads to color bias and
halo distortions. Although it issues with uneven lighting and
over-compensation of colors, the Underwater Dark Channel
Prior (UDCP) [3] makes an effort to handle channel-specific
attenuation. Brightness and color constancy are improved by
enhancement-based techniques such as the Unsupervised
Color Correction Method (UCM) [4] and Extended Multi-
Scale Retinex (EMSR) [5], but they may result in overly
saturated or artificial appearances.

Hybrid methods, such as Gray World with Enhanced DCP
[6] or CLAHE with percentile-based contrast adjustment [7],
offer limited flexibility and often do not perform well in
various underwater situations. Moreover, while deep learning-
based methods show potential, they depend heavily on large
annotated datasets and may not adapt well to different types of
water, lighting, and camera settings. When used in different
lighting and water conditions, many approaches often lead to
over-enhancement and color distortion. This creates artificial
visual effects. Additionally, most methods have difficulty
handling various underwater conditions, where light scattering
and absorption change across regions. This is due to their low
ability to manage uneven degradation.

Conventional image improvement methods, like histogram
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equalization and white balance correction, often fall short.
They struggle to adjust to the uneven quality across a picture.
Removing green dominance and compensating for missing red
tones are also important steps in restoring natural colors in
underwater images.

The proposed technique, SGACC, uses the mean channel to
conduct color balancing per block after dividing the image into
overlapping grid blocks. By avoiding block artifacts, Gaussian
blending  guarantees seamless transitions  between
neighbouring blocks. In order to combat wavelength-
dependent attenuation, the GTR module adaptively decreases
excessive green dominance while enhancing the red channel.
When the dynamic range of the image is inadequate, contrast
is selectively improved using an adaptive CLAHE step that is
based on luminance variation. This prevents over-
enhancement in areas that are already well-enhanced.

2. RELATED WORK

The exploration of underwater resources began during the
1970s. The earlier techniques focused on basic image
processing to address the issues related to light scattering and
absorption in underwater environment. Many techniques that
are used for underwater image enhancement and restoration do
not overcome all the challenges, issues and limited for real

world applicability [8]. This is a perception-aware
decomposition and fusion framework that simultaneously
takes structural and perceptual priors into account in order to
improve the underwater photos.

Constructed wetland systems can successfully support more
comprehensive water-reuse strategies in areas experiencing
water shortages. The study evaluated the reuse potential of the
treated wastewater and found it suitable for various non-
potable applications [9]. An EMSR technique designed for
underwater enhancement was presented in this paper. This
technique successfully enhances visibility and dynamic range
in deteriorated photos. However, it frequently creates artificial
color tones and generates halo aberrations, especially in scenes
with significant illumination change.

Zhang et al. [10] proposed a method that greatly increases
image contrast and restores visual clarity by combining color
correction and bi-interval contrast enhancement. The
technique, however, suffers in badly deteriorated underwater
images where color casts and haze are still noticeable. Zhu
[11] proposed an improved DCP that enhances contrast and
reduces haze in underwater images. However, the method's
robustness is limited because it frequently results in over-
saturated colors and obvious artifacts in bright or uniform
regions. Table 1 shows the methods of various techniques and
their advantages and limitations.

Generates
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Figure 1. Underwater image enhancement process diagram

Table 1. Comparative summary of underwater image enhancement methods

Ref. Method Strengths Limitations
Attenuated color channel correction + . .
[12] . Enhances natural color tones. Intensify noise overenhancement edges.
detail-preserved contrast enhancement
[13] Color balance and fusion framework Uses multi-image fusion to restore natural ~ Heavily rellar}t on input weight and result in
color. an imbalance of colors.
[14] Auto color correction using depth Successfully restore accurate color tones. Sensitive to inaccurate depth estimation;
information fails in murky water.
. Imprp ves enhancement quality by . Requires a lot of training data and has little
[15]  Dual color space and contrast learning combining RGB and perceptual domain e . L
Jearning, ability to generalize to new situations.
[16] Piecewise color correction + dual prior Effectively increases contrast and Computationally demanding and
optimized contrast enhancement maintains color balance. inappropriate for use in real time.
[17] Preprocessing-based contrast and color Easy to use and efficient for improving Incapable of adapting to a variety of
correction basic visibility. underwater circumstances.
[18] Wavelength compensation method Compensates for spectral aFtenuatlon to Not adaptable to dyparmc underwater
restore color fidelity. conditions.
* ' : : _
[19] Gradient and CLAHE-based smoothing Enhances LAB* color space's local May result in color }mba}ance and over
contrast and clarity. enhancement in bright areas.
[20] Polarization-based multi-image Uses several polarization states to Not appropriate for real-time use of a single
enhancement effectively decrease haze and scattering. image.
L Enh hil i 1ti- S .
[21]  Wavelet-based variational enhancement nhances contr:s;l\;v dlefaﬁreservmg mult Fails significant wavelength attenuation.
[22] Fuine-gan (fast underwater image Deep learning-based algorithm effectively Struggles to capture underwater images in

enhancement gan)

enhances visibility, color, and contrast.

poor light or with significant degradation.
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Deep learning survey on UIE metrics

23] and methods

Provides detailed analysis of new
datasets, loss functions, and metrics.

A new enhancement algorithm is not
suggested.

3. PROPOSED METHODOLOGY

This section outlines the proposed underwater image
enhancement pipeline. It uses flexible methods to restore color
balance and contrast. Underwater images often have color
distortion and low visibility because of light scattering and
absorption. The method, shown in Figure 1, combines Smooth
Gridded Adaptive Color Compensation with Green Tint
Removal (SGACC-GTR) and adaptive CLAHE to improve
image quality. The technique is tested on two datasets:
Underwater Image Enhancement Benchmark (UIEB), which
includes 950 real underwater images and is commonly used
for performance comparison, and Large-Scale Underwater
Image (LSUI), a large dataset with over 4,000 paired
underwater and reference images that allows for a solid
evaluation of enhancement methods.

3.1 Smooth gridded adaptive color correction

The process starts by reading the input image and finding its
dimensions (h, w). Using a set grid size and overlap ratio, the
image is split into overlapping blocks. This helps reduce local
color bias and lighting changes. Two arrays, weight map (for
collecting blending weights) and corrected _img (to hold the
improved output), are set up. To ensure smooth transitions
between blocks, the matching picture region and its
precomputed Gaussian blending weights are pulled for each
block location (y start, x start). A Gaussian blending mask is
precomputed and applied to each block to provide smooth
transitions between nearby areas.

H
R

w
;Bw=_

B, =
h C

(1

The above equation defines the block dimensions, where B},
is the height of each block and B, is the width of each block.

Sy, = B,. (1 — overlap), S,, = B,,. (1 — overlap) (2)

Sy and S, are the step sizes in vertical and horizontal
directions. This equation controls the overlap between
neighbouring blocks and ensures smooth, enhanced natural
images.

The mean intensity values of the blue, green, and red
channels (mean b, mean g, and mean r) are computed for each
block. After that, the gray mean value of the block is
calculated, which is used as a guide for intensity balance.

In order to properly correct for color imbalances and
improve visual uniformity throughout the image, each channel
is then normalized proportionately to this gray mean.

Mgt tug
Hgray _f

€)

Through the above equation, each block is processed
individually to maintain color balance and equalize
illumination across all the channels.

3.2 Green Tint Removal

The GTR stage identifies excessive green by calculating the
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ratio of the green channel mean to the average of the red and
blue channel means. If this ratio goes above a certain threshold
(Tg), a suppression factor is applied to the green channel.
Additionally, a red boost factor is introduced to restore warmer
tones. This adjustment improves color intensity and results in
a more natural look. The corrected blocks are then combined
into corrected img using Gaussian weighting. Finally, the
image is normalized by dividing by weight map, and pixel
values are clipped to the valid intensity range of [0, 255].

Hg

Ye =,
HR-Zl'”B_I_E

4)

The above equation calculates the green dominance ratio is
estimated and suppression factor and red boost factor are
applied to reduce excessive green dominance and restore
natural green color in the image.

3.3 Adaptive CLAHE

Finally, the corrected image is converted into the LAB color
space for adaptive CLAHE enhancement. The luminance
standard deviation (or) of the L-channel is measured to assess
contrast variation. If o7 falls below a defined threshold (75),
the CLAHE clip limit is dynamically increased using a scaling
factor to enhance low-contrast regions without over-
amplifying bright areas. The adjusted L-channel is then
recombined with the original A and B channels, and the image
is converted back to BGR space to produce the final enhanced
output.

If g, < Ty, the clip limit is increased dynamically.

Ciimit = 1.5 + 5(Cpax — 1.5) (5)

The above equation controls and enhances the contrast in
low contrast regions and also prevents over-enhancement in
bright areas.

Algorithm 1. SGACC-GTR Balanced with Adaptive
CLAHE
Input: BGR underwater image I, € R"*">3
Output: Enhanced Image I,

Step 1. Block partitioning
Divide [ into overlapping blocks of sizes.

Hp W

Bh_Ra Bw c
The above formula defines the block dimensions.
Ap=Bp(1-a),A,=B,(1—a) (6)

The Eq. (6) controls the overlap between neighbouring
blocks.

Step 2. For each block, generate Gaussian blending mask

We(u,v) = e~ 4w +v?) 4y e [-1,1]




Step 3. For each block b, compute channel means

Up = EB!.“G = EG!.“R = ER

Up + UG t UR
HUgray = - 3 (7
The Eq. (7) balances the color in each block.
Compensate channels: b. = by Zr:: ,ke{B,G,R}.
Step 4. Green tint detection and removal
. W
Green ratio: y; = HR;W—C;%.
-
E; = min (YGO—SQ, 1)
1 T,: |
776> T 50 = (1= (1 = Sma)Ey ®)
Ry = (1 - (Rmax - 1)Eg
Apply correction: bg = b * S¢,bp = by * R),.
Step 5. Apply weighted block fusion
Leorr (6, ) = b'(x,y) - W (x,¥) ©)
Mw(x'}’)"‘: Wng:y)( )
X,y
N l. — I — corr
ormalize = I, 7Mw @)
Step 6. Apply adaptive CLAHE
Convert to LAB: I, = (L, 4, B).
Luminance std. dev: g, = std (L)
255
Ifo, < T,: s=TaT_J.
Ciimit = 1.5+ s(Cpgr — 1.5) (10)

Step 7. Output enhanced image I,

4. EXPERIMENTAL RESULTS
4.1 Dataset

Experiments were conducted using two datasets, the LSUI
dataset and UIEB (950 real-world underwater photos from
various aquatic environments; Li et al., IEEE TIP 2019), to
evaluate the strength of the proposed method. Some of the raw
images and their histograms are shown in Figures 2 and 3,
respectively. The UIEB is a well-known dataset for testing
underwater image enhancement techniques. It includes 950
real-world underwater photos taken in different environments.
This dataset is suitable for a thorough evaluation of
enhancement methods because it covers a variety of
underwater conditions, including different lighting levels,
depths, water types, and color distortions. UIEB has become a
standard for testing image quality improvement in terms of
both how images are perceived visually and using metrics like
Underwater Image Quality Measure (UIQM) and Underwater
Color Image Quality Evaluation (UCIQE). The LSUI dataset
includes over 4,000 high-quality underwater photos and
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matching reference photos.

Figure 2. Images before enhancement
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Figure 3. Histogram of the raw images

Deep learning improvement models can be trained and
assessed in many underwater environments. LSUI includes
various visibility conditions, light levels, and water quality.
Due to its size and paired structure, LSUI is helpful for data-
driven methods that require substantial training data. It can
also be used to fairly compare learning-based and traditional
augmentation techniques. Both full-reference (Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index (SSIM)) and
no-reference (UIQM, UCIQE) measures are commonly
employed in UIEB testing, which captures typical underwater
issues such as color distortion, poor visibility, and uneven
lighting. Some of the raw images and their histogram are
shown in Figures 2 and 3.

4.2 Comparative results

The suggested SGACC-GTR Balanced framework was
quantitatively evaluated utilizing PSNR, SSIM, UIQM, and
UCIQE measures to evaluate the enhanced underwater images'
structural fidelity and perceptual quality. In comparison to
current enhancement algorithms, the suggested method
successfully preserves small features, as seen by a higher
PSNR value that represents decreased noise and distortion.

MAX?

In a similar vein, the improvement in SSIM shows improved
structural similarity and contrast preservation, indicating that
edges and spatial information are preserved following
augmentation. The efficacy of color and contrast restoration is
further confirmed by the perceptual quality measures UIQM
and UCIQE. In particular, better sharpness, colorfulness, and
contrast are shown by higher UIQM values, whilst balanced
chromatic and brightness enhancement throughout underwater
scenes is highlighted by higher UCIQE scores.
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(2upny + Cy) + (204, + Cy)

SSIM(x,y) = 12
N =lerg ey ragrey Y
UCIQE = c¢; X Chroma + c, X Saturation (13)

+ ¢3 X Contrast
UIQM = ¢; X UICM + ¢, X UIConM + ¢; X UISM  (14)

4.2.1 Qualitative results

Qualitatively, the improved images showed a noticeable
decrease in the usual green-blue tinge and haze that occurs
underwater. With reds fully returned and green's dominance
diminished, color tones seemed more realistic and more in line
with reality. Block-wise contrast stretching and LAB color
correction improved the image's illumination balance and
brought out features in previously washed-out or dark areas.
The feeling of depth in the image and underwater items was
enhanced by the sharpening and definition of edges and
textures. The subfigures (a)-(f) illustrated in Figure 4 show the
visual quality of the underwater images with the proposed
technique and other techniques. Each row highlights how
different algorithms affect visibility, color balance, and
contrast restoration under diverse underwater conditions.

-
el ‘ M E !
- 4

Img2

[mg3

mg4

Img5

Figure 4. Original images processed by various techniques:
(a) Original image, (b) UDCP, (c) EMSR, (d) CLAHE &
percentile, () FUNIE-GAN, (f) proposed

4.2.2 Quantitative results

Using both quantitative measurements and qualitative
visual evaluation, the effectiveness of the suggested Smooth
GACC-based underwater image enhancing technique was
assessed. The improved image quantitatively demonstrated a
significant improvement in objective image quality. In
comparison to the original image, the PSNR rose, suggesting
less distortion and better pixel accuracy [24]. The visual
quality of the images with various techniques can be viewed
in Figure 4. In a similar vein, a higher score on the SSIM
indicated better structural detail preservation. The UCIQE and
UIQM scores also showed a considerable improvement in
terms of perceptual no-reference metrics, as shown in Tables
2 and 3.

From Tables 2 and 3, it is evident that the proposed method
consistently achieves higher PSNR, SSIM, UIQM, and
UCIQE values compared to other techniques, indicating
superior visual quality and color fidelity. The bar chart in
Figures 5 and 6 further confirms this trend, where the proposed



method outperforms existing approaches across all metrics.
Overall, the results clearly demonstrate that the proposed
approach provides more effective underwater image
enhancement. Because the Gaussian-weighted gamma
correction adjusts for uneven loss across RGB channels, the
green-tint suppression in the suggested method works well.
The method improves visual realism and restores spectral
balance by reducing the excessive green intensity caused by
the shallow penetration of red wavelengths.

However, the adaptive CLAHE module may over-amplify
noise and edges in some situations with very low illumination

or high particle density, particularly in dark areas. This occurs
because when input histograms are sparse, CLAHE's local
contrast enhancement may amplify intensity changes.
Although the framework uses smooth block transition
averaging and a clip limit tuning factor to lessen this, moderate
over-enhancement may still happen in severe circumstances.
However, by combining both global tone correction and
localized adaptive contrast adjustment, reducing halo artifacts,
and maintaining color naturalness, the suggested SGACC-
GTR method delivers a more balanced enhancement than
conventional CLAHE or Retinex-based procedures.

Table 2. Comparison of different methods on LSUI dataset in terms of PSNR, SSIM, UIQM and UCIQE

Dataset Images Metrics [3] [5] [6] [22] Proposed
PSNR 22.098 14.7899 23.247 22.799 23.321
Imgl SSIM 0.9589 0.8531 0.8975 0.9621 0.9753
UIQM 3.3052 1.8070 3.9995 4.6562 4.7326
LSUI UCIQE 0.5578 0.4038 0.5514 0.4943 0.6503
PSNR 16.544 10.7342 13.7073 13.517 19.141
Img?2 SSIM 0.9223 0.8566 0.8566 0.9371 0.9649
UiQM 4.8280 3.4790 4.3381 5.1494 5.0848
UCIQE 0.5656 0.5241 0.5435 0.4799 0.5889

Table 3. Comparison of different methods on UIEB dataset in terms of PSNR, SSIM, UIQM and UCIQE

Dataset Images Metrics [3] [5] [6] [22] Proposed

PSNR 16.5440 10.7342 13.7073 13.5175 20.2312

Tmg3 SSIM 0.9223 0.8566 0.8566 0.9371 0.9622

UIQM 4.8280 3.4790 4.3381 5.1494 5.2596

UCIQE 0.5656 0.5241 0.5435 0.4799 0.5862

PSNR 19.3282 4.3373 12.3490 17.5074 21.1114

UIEB Tmed SSIM 0.9182 0.9594 0.8972 0.9783 0.9789
UIQM 2.9824 2.5684 3.6874 4.2443 3.9503

UCIQE 0.5219 0.5370 0.5370 0.5079 0.6023

PSNR 14.1854 4.9634 22.7752 16.8332 14.5671

Img5 SSIM 0.8873 0.8613 0.8184 0.9248 0.9380

UIQM -0.6203 3.6282 2.5716 1.8615 3.8183

UCIQE 0.4189 0.5255 0.5035 0.4018 0.5683

Comparison of the proposed technique with others
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u

Img1 Img2
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(3] m[5] m([6] m([22] mProposed

Figure 5. Chart of the various techniques metric results on
LSUI dataset

5. CONCLUSION

The proposed SGACC-GTR Balanced framework
integrated with adaptive CLAHE effectively enhances
underwater images by correcting color distortion, reducing
green dominance, and improving contrast while maintaining
natural visual balance. Quantitative evaluations using PSNR,
SSIM, UIQM, and UCIQE show consistent improvements in

Comparison of metric values of proposed technique with other

25
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o
w«
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5 PSNR SSIM UIQMUCIQEPSNR SSIM UIQMUCIQEPSNR SSIM UIQMUCIQE
Img3 Img4 Img5
UIEB
Metrics
m(3] m([5] w[6] m[22] mProposed

Figure 6. Chart of the various techniques metric results on
UIEB dataset

perception and structure compared to existing methods. These
results highlight strong potential for practical use in
underwater robotics, marine exploration, and environmental
monitoring. Clear, color-accurate images are essential for
reliable perception and analysis in these fields. However,
performance drops in highly turbid or low-light conditions,
and the complexity of the computations limits real-time use.
Future research will concentrate on tuning parameters,
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optimizing for depth, and developing lighter implementation
strategies to improve robustness, efficiency, and scalability in
various underwater environments.
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