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African swine fever (ASF) is a highly contagious viral disease that results in very high
mortality rates among pigs and causes significant economic losses worldwide. In
Indonesia, ASF has spread to 32 provinces since the first outbreak in 2019, with East
Nusa Tenggara being one of the most severely affected areas. This study developed a
nonlinear differential equation model to analyze the dynamics of ASF transmission and
evaluate the combined effectiveness of biosecurity measures and vector control
strategies in controlling the disease's spread. The model calculates the basic
reproductive number both without and with vectors. An integrated approach that
combines biosecurity measures and optimal vector control can significantly reduce the
risk of infection, depending on the effectiveness of biosecurity (p) and the effectiveness
of tick vector control (g). These findings suggest that the synergistic approach of
combining biosecurity and optimal vector control is highly effective in reducing the
spread of ASF in East Nusa Tenggara. This provides a scientific foundation for
developing adaptive disease control policies in Indonesia.

1. INTRODUCTION

ASF is a highly virulent viral disease affecting both
domestic and wild pigs, causing significant socioeconomic
losses to the pig industry [1]. Globally, ASF is estimated to
cause annual economic losses exceeding USD 2 billion [2].
In Indonesia, ASF was first detected in North Sumatra in
2019 and subsequently spread to 32 provinces [3]. East Nusa
Tenggara Province experienced ASF outbreaks in 2020 and
2021, resulting in extremely high pig mortality, with
cumulative losses reaching several hundred thousand
animals [4]. ASF cases in the East Nusa Tenggara region
continue to exhibit a high incidence rate up to 2025, and this
situation generates substantial economic
smallholder farmers whose livelihoods rely heavily on pig
production. To date, no vaccine or commercial antiviral drug
has been proven effective against ASF [5]. Implementing
strict biosecurity remains the most effective prevention
strategy [6]. In East Nusa Tenggara, local farmers implement
traditional and adaptive practices, such as installing mosquito
nets around pens, to minimize contact with potential vectors
[7]. These local initiatives highlight the vital importance of
with
veterinary infrastructure. Mathematical modeling serves as a
key tool for understanding disease transmission dynamics
and developing effective control strategies [2].

Various mathematical models have been developed to

community-based biosecurity in areas

losses for

study the dynamics of ASF transmission. Chuchard et al. [7]
proposed a human-mediated transmission pathway, while
Ayihou et al. [8]. Developed an eight-compartment model
that yielded a fundamental reproduction number value, which
indicates a high level of transmission based on analysis of
Benin data. Kouidere et al. [9] further proposed an ASF
transmission model that integrates vector dynamics and
optimal control theory to formulate effective management
intervention strategies.

The mathematical models currently developed primarily
focus on either the African or European context, which
means they do not accurately reflect the ecological, cultural,
and agricultural conditions in Indonesia, particularly in East
Nusa Tenggara. Recent research on ASF in this region can be
found in the articles by Bulu et al. [10] and Pandarangga et
al. [11]. Small-scale pig farming in East Nusa Tenggara is
closely associated with varying levels of biosecurity
practices, as well as the high mobility of pigs and people.
Existing models often overlook these critical factors and
seldom incorporate local biosecurity knowledge with vector
control strategies. As a result, a research gap remains in
understanding ASF transmission within the unique context of
Indonesian veterinary environmental health.

The novelty of this study lies in the development of a
nonlinear differential equation system model that explicitly
represents the dynamics of ASF. This model integrates
biosecurity and vector control interventions to evaluate their
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effectiveness. The findings are expected to provide a
scientific foundation for formulating ASF control policies
that are adaptable to the sociocultural conditions in East Nusa
Tenggara.

2. MATERIALS AND METHODS
2.1 Mathematical model formulation

In this study, we developed a model that consists of five
compartments termed as susceptible pigs (S,), exposed pigs
(E,), infected pigs (I,,), susceptible ticks (S,), and infected
ticks (I,,). This compartmental structure is an extension of the
model proposed by Kouidere et al. [2]. The model examined
in this study can be formulated as follows.
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where,

e  /,: The recruitment rate of susceptible pigs.

e /A, The recruitment rate of susceptible ticks.

® [5,: The transmission rate of the virus among pigs

through direct contact with infected pigs.

e f3,: The virus transmission rate to pigs through direct

contact with infected ticks.

e f3;: The infection rate of ticks through direct contact

with infected pigs.

e y: The transition rate from E, to I,.

®  u,: The natural mortality rate of pigs.

e 4, The natural mortality rate of ticks.

Let and denote the total pig and tick population,
respectively, assumed to be constant. Based on Eq. (1), the
following result is obtained:

A, =p,NandA, =N, )

From Egs. (1) and (2), we can obtain the disease-free
equilibrium, which represents a system state where there is
no infection.

E, =(N,.,0,0,N,.,0) 3)

2.2 Basic reproduction number

The Next Generation Matrix (NGM) method was used to
derive the basic reproduction number, as formulated in
references by Bani-Yaghoub et al. [12] and Ndii et al. [13],
where the transmission matrix (F) and transition matrix (V)
are defined.
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The next-generation matrix is obtained from —TV ™1, as
follows:

K:
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According to Eq. (8), the basic reproduction number (R)
is termed as the spectral radius of the NGM. Hence, the value
of R, is given as follows:

_ 75, " 78,55

ty (v +m) o, (7+u2,)

)

Furthermore, the basic reproduction number, which
explains the interaction between susceptible and infected
pigs without the involvement of vector ticks, is given as
follows:

75

7’ A
o ()

(10)



If Ry <1, the disease will be eliminated from the
population, whereas if R, > 1, it is likely to spread more
rapidly [14].

2.3 Model analysis

In this section, we will discuss the key properties of system
(1), including the invariant region, positivity of solutions, and
stability analysis of equilibrium points.

Invariant region and positivity of solution
Attention is restricted to the feasible region 2 = 2, X
0, c R3 x R?, with:

A
sz{(SP,EP,Ip)eRfZNpS—p} (11)
Hy
Q, ={(SV, l,)e R?:N, sﬁ} (12)
Ly

Here are the results for the feasible region. The following
three theorems are derived from the reference by Dayap and
Rabajante [15] and Sasongko et al. [16].

Theorem 2.3.1 The region 2 =, X, c R} xR}
constitutes a positive invariant set for system (1) under non-
negative initial conditions.

Proof: The summation of the ticks and pigs population in
system (1) yields the following result:

dN

dtv =Av _:quv (13)
N,
=N N, (14)

Solving Egs. (13) and (14) for N, and N, yields the
bounded system N,, < L and N, < 2
Hy Hp
Consequently, all feasible solutions of system (1) lie
within the region.

Theorem 2.3.2 Let the system (1) have non-negative
initial conditions. Then, its solution set is given by

(Sp(8), (), 1,(6),5,(6), I,(£)) and ~ solution is non-

negative for all ¢ > 0.

Proof: To prove that system (1) has non-negative
solutions for all t > 0, we first establish the positivity of
E,(t), while the positivity of the remaining state variables
follows by analogous arguments.

Assume the system is subject to non-negative initial
conditions. From system (1), the following inequality holds:

dE,
TZ—(j/'FIUP)Ep (15)
Eq. (15) takes the following form:
E,(t) = E,(0)e~r+#p)t (16)
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Since the initial condition E,(0) is non-negative and

e~r+mp)t i5 also non-negative, it follows that E},(t) remains
non-negative for all t > 0.

Theorems 2.3.1 and 2.3.2 establish that system (1) well-
posed and biologically meaningful.

Theorem 2.3.3 The disease-free equilibrium (DEF) E;, of
the system (1) is locally asymptotically stable when Ry < 1;
otherwise, it becomes unstable.

Proof: To find the local stability of the DFE at E,, the
Jacobian matrix of system (1) will be derived as follows:

—H, 0 -4 0 -5
0 —y-u, B 0 5
JE)=| O ¥y -u, O 0 (17)
0 0 B -, O
0 0 B 0 -u

From the Jacobian matrix J(E,) above, the following
characteristic polynomial is obtained:

p() = (1 + )y + ) (B + a2 + azAd +a3) = 0
with

a; =2y +uy, +y
az = (v + 1p) + tptty + 1y (¥ + 1,) (1 — Ry)
YB2B5(y + wy)

(v + 1)
as = pptty(¥ + 1) (1 — Ry)

The characteristic equation p(A1) of J(E,) yields the
eigenvalues A; = —p,, A, = =, and 2> + a;4* + a4 +
a; = 0. By the Routh-Hurwitz, all roots are negative provide
that a; >0, a; >0 and a;a, > a; whenever Ry < 1.
Hence, the equilibrium point E, is stable if Ry < 1.
Conversely, if Ry > 1, the equilibrium point E, becomes
unstable.

3. RESULTS

3.1 The constructed estimation of R, according to the
interaction between susceptible and infected pigs without
vector ticks involved

First, we construct the estimation of Ry, from Eq. (10).
This estimation at E, is based on the assumption that the
number of infected pigs, I,,, grows exponentially at the same
rate over a short period of time [17].

E, (t) = E, (O)e" (18)

Lo=1, (0)e" (19)
with E,(0) and I,(0) denoting the initial numbers of
exposed and infectious pigs, respectively, and let r represent
the take-off rate of the early epidemic growth. Next, by
substituting (18) and (19) into (1) and assuming E,, ~ S, and



I, = S, at the early stage of the epidemic, we obtain:

r r
lest — 1+— |1 20
o {+“pj( +7+”PJ 20
with
ﬂlz(r+7/+yp)(r+yp) on
Y

The values of the model parameters and their
corresponding sources are presented in Table 1.

The data of ASF cases in East Nusa Tenggara Province,
Indonesia, are displayed in Figure 1.

Figure 1 displays the monthly incidence of ASF in East
Nusa Tenggara, Indonesia, which reached its highest peak in
January 2021. This will be used as the basis for estimating
the R, value.

Table 1. Parameter value and references

Parameter Value Source
Up 0.16667 month™! [18]
y 2.73 month™! [19]
Wy, 0.017 month! [20]

w10t ASF incidents over a 56-month period
T T T T

25

ASF incident

o, i
0 40 50 =il
tirne(manth)

Figure 1. ASF cases incidence in East Nusa Tenggara from
2020 to 2025

Figure 1 presents the monthly ASF incidence in East Nusa
Tenggara, Indonesia, with the highest peak observed in
January 2021. This dataset forms the basis for estimating the
early epidemic growth rate and the basic reproduction
number R,,.

Figure 2 displays the fitted model curve together with the
observed ASF incidence. The close visual agreement
between the model output and the reported data supports the
reliability of the estimated take-off rate and the basic
reproduction number R,. The analysis yields a take-off rate
r=10.2 (95% CI : 0.1854 — 0.2566) with a coefficient of
determination R? =0.7763 , indicating a strong
correspondence between the model and the observed data, as
well as stable estimate with minimal uncertainty. Using the
parameter values provided in Table 1, together with r = 0.2
and Egs. (20) and (21), the basic reproduction number is
estimated as Ry, = 2.35 for ; = 0.4. The transmission
potential of ASF pigs is higher than through ticks, as the virus
spreads more readily via direct contact with bodily fluids [20].
Given the limited field data on ASF-infected ticks, this study

assumes that f3, is 32% of f;, and S5 is 22% of f3,, yielding
B,= 0.128, and B5= 0.0282. Thus, based on Eq. (9) and the
parameter values in Table 1, including £, and f35, the basic
reproduction number involving transmission through
infected ticks vectors is obtained R, = 3.5. Several R,
values from different countries are presented for comparison
with the R, value in East Nusa Tenggara.

X 105 ASF Curnulative Cases Model Fitting
25 T T

® Observed Data [ ;

— Fitted Madel

Curnulative ASF Cases

Time (months)

Figure 2. The fitting between observational data and fitted
model

The reproduction number of ASF transmission in East
Nusa Tenggara is relatively high compared to cases in other

countries, as shown in Table 2.

Table 2. Values of R several countries

Country Ry Value Source
Benin 2.78 [8]
Uganda 3.24 [21]
Czech Republic 1.95 [22]
Belgium 1.65 [23]

3.2 A mathematical model with biosecurity measures and
contact control between susceptible pigs and ASF-
infected ticks

The model incorporating biosecurity measures and contact
control between susceptible pigs and ASF-infected ticks is
formulated as follows:

Sy e S s
— =7~ (A-pB - B A-A) - u
a N, N, "

dE, s, 1, s, 1,
T:(l_ p)ﬂl N +(l_q)ﬁ2 N__yEp _lupEp
p p
dl
d—tp:;/Ep—ypl|D (22)
ds s,
dtv :Av _ﬂs N - _:uvsv
d, Sl
a N,

v

where, p denotes the effectiveness of biosecurity measures in
reducing transmission between pigs, and ¢ denotes the



effectiveness of controlling ASF-infected ticks. By applying
the NGM method as in the previous concept, the basic
reproduction number derived from Eq. (22) is obtained as
follows:

_ (=-ps N A-a)yB,5;

o ) ot (7,

(23)

3.3 Numerical simulation

We performed numerical simulation to evaluate the time
to disease extinction within the system and to identify the
conditions that facilitate the emergence of an endemic state
in the population. The simulation results are presented in
Figures 3 and 4.

5 Figure 3(a): Susceptible pigs (Sp)

Time (months)
Figure 3(b): Exposed pigs (Ep)

4 3] g 10 12
Time (rnonths)
Figure 3(c): Infected pigs (Ip)

0s : ; ; ; ‘
0

Time (months)
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Figure 3. Numerical simulation of disease extinction in
the population

Figure 3(a) shows a monotonic, near-exponential decline
approximately 3.4 x 10° at the beginning of the observation
period to about 0.2 x 105 by month 12, indicating a
consistent depletion of the susceptible population throughout
the study.

The Ep compartment exhibits a pronounced transient
dynamic, marked by a sharp decline during the first 0-2
months from approximately 2.0 x 10° to nearly zero, after
which it remains at a very low level for the remainder of the
time horizon. This pattern indicates that the exposure phase
is short-lived before the system stabilizes near zero.

Figure 3(c) illustrates a wave-like infection dynamic, in
which I, increases rapidly from approximately 1.6 x 10° to
a peak of 3.0 x 10° arround month 1, followed by a gradual
decline to about 0.8 x 10> by month 12. This pattern reflects
an initial amplification phase of infection, followed by a
subsequent dissipation phase as the system approaches a
lower level of infectivity.

Figure 3(d) shows that the S, compartment exhibits an
approximately linear upward trend, increasing from about
0.8 x 106 to around 2.7 x 10° over the 12-month horizon.
This pattern indicates a steady expansion of the susceptible
vector population throughout the study period.

Figure 3(e) shows a gradual decline from approximately
1.2 x 10° to about 1.11 x 10° by month 12, with a slightly
steeper gradient toward the end of the time horizon. This
pattern reflects a slow but continuous dissipation of the
infected vector population throughout the study period.



5 Figure 4(a): Susceptible pigs (SP)
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Figure 4(c): Infected pigs (IP)
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Figure 4. The numerical solution is examined under
conditions in which the disease persists within the population

Figure 4(a) shows that the susceptible pig population S,
declines rapidly to near zero within approximately 5-6
months. This pattern suggests a high effective transmission
pressure, leading to a rapid depletion of susceptibles through
progression to infection-related compartments (or removal).
Thereafter, the system approaches an endemic steady state
with a very small susceptible pool.

Figure 4(b) illustrates the temporal evolution of the
exposed pig population, E,, over 12 months. The population
experiences a sharp decline during the initial phase, with the
most pronounced reduction occurring between months 2 and
3. By month 5-6, E, approaches zero and remains negligible,
indicating a rapid depletion of the exposed class and the
system’s convergence toward an almost disease-free state.

Figure 4(c) illustrates the unimodal temporal of I,,. The
infected pig population increases rapidly during the initial
phase, reaching a peak of approximately 4.1 x 10° in month
2, and subsequently declines gradually and near-
monotonically to about 1.0 X 10° by month 12. This
trajectory suggests a transient early outbreak followed by
relaxation toward a quasi-endemic regime.

Figure 4(d) indicates that the susceptible vector population
S,, declines sharply during the initial phase, decreasing from
approximately 7.5 x 105 to a minimum of (2.4 — 2.6) x
10° around months 4-5, before rising steadily to about
4.4 x 10° by month 12. This trajectory reflects an early
depletion of susceptible vectors followed by progressive
recovery toward a quasi-equilibrium state.

Figure 4(e) indicates that I, increases monotonically,
rising rapidly during the initial phase from approximately
1.2 x 108, and then shifting to a slower growth rate that
approaches saturation, reaching (2.4 — 2.5) x 10° by month
12. This trajectory suggests a sustained accumulation of
infected vector as the system moves toward a quasi-endemic
regime.

In this section, the effects of parameters p and g on the
dynamics of E;, are examined via numerical simulations, by
analyzing the temporal response of E, across a range of
(p,q) values and identifying the combinations that most
effectively reduce exposure.

Figure 5 presents the simulation results for the reduction
in the exposed compartment £, as the parameters p and q
increase. The percentage reduction in E, is used as an
indicator of the effectiveness of biosecurity (p) and contact
control between susceptible pigs and ASF-infected ticks (q).
Specifically, when p = 50% and q = 50%, E,, decreases by
17.48%. When p = 65% and g = 65%, the reduction in E,
increases to 22.73%, then to 25.18% for p = 72% and q =
72%, and reaches 29.72% for p = 85% and q = 85%. These
findings indicate that strengthening biosecurity and contact
control measures consistently reduces the proportion of pigs
in the exposed compartment.

Next, the decline in the basic reproduction number R, is
analyzed in response to intervention strategies represented by
variations in parameters p and q. This analysis examines
how changes in p and g influence R, to identify the most
effective combination of interventions for reducing
transmission potential.

Figure 6 presents the simulated reduction in the basic
reproduction number R, as the parameters p and q increase.
Quantitatively, when p = 50% and q = 50%, R, = 1.175; at
p = 65% and g = 65%, R, decreases to 1.2425; and for p =
72% and q = 72%, R, is further reduced to 0.994. At a higher



level of intervention, namely p = 85% and q = 85%, R,
declines further to 0.5325. Overall, these results indicate that
enhanced biosecurity and contact control are effective in
reducing R, to below one, thereby suggesting the potential
for outbreak control from an epidemiological perspective.

5 Simulation of the decline in Ep
| |

p=05, q=05)

p=064, g=0.65)
p=0.72,g=0.72)
p=0.85, g=0.85)

MNumber of individuals
i

7 T 7 T
0 20 40 G0 ] 100 120 140 160 180
Time (months)
Proportional distance between Ep variants
14 \ , , . . \ \

Ratioto E

0 20 40 60 a0 100 120 140 160 180
Time {months}

Figure 5. Simulation of changes in E,, resulting from
variation in the parameters p and g

Contour of Ry with respect to p and g
1

0s

08

07

06

o 0.5

0.4

0.3

0z

01

0
o 02 0.4 06 0.8 1

p

Figure 6. Simulation of changes in R, in response to
variation in parameters p and q

3.4 Sensitivity analysis

Local sensitivity analysis is applied when a small number
of parameters are uncertain, with an approach based on the
concept of partial derivatives [24-26]. The normalized
sensitivity index formula used in this study is as follows:

_O0Ro p

p ap Ro

where, p denotes a parameter.

The normalized sensitivity indices of the parameters y, ;,
and B, with respect to R, are presented in Figure 7,
respectively.
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Figure 7. Local sensitivity analysis: Normalized sensitivity
indices

Figure 7(a) shows that the normalized sensitivity with
respect to y decreases monotonically, indicating that larger y
values consistently diminish its contribution to variations in
R,. Figure 7(b) indicates that the sensitivity to 3, increases
nonlinearly, implying that direct transmission becomes
progressively more influential in shaping R, as 3; increases.
Meanwhile, Figure 7(c) exhibits a more gradual increase in
sensitivity to S, , with a gentler slope than that of g,
suggesting that vector-mediated transmission contributes
positively to R, but with a comparatively moderate effect.

The normalized sensitivity indices for y, ;, and 5,, along
with their corresponding interpretations, are summarized in
Table 3.

Table 3. The results of the sensitivity index calculation

Parameter Sensitivity Index Interpretation

A 1% increase in 3;
resultsin a
0.65% increase R
A 1% increase in 3,
resultsin a
0.35% increase R
A 1% increase in y
results in a 0.06%
increase Rg

Cp, = 0.65 The highest value

Cp, = 035 Moderate

C, = 0.06 Low

This study analyzes local sensitivity by focusing on the
parameters y, 5; and f3,, yielding the following results. The
sensitivity analysis presented in Table 3 identifies §; and £,
as the most influential parameters. Consequently, control
strategies should prioritize reducing these parameters by
enhancing biosecurity measures and minimizing contact
between pigs and vector ticks.

4. DISCUSSIONS

This study is the first to examine ASF transmission in East
Nusa Tenggara and, more broadly, the first in Indonesia to
analyze its dynamics using a mathematical modeling
approach. The results indicate that R,; = 2.35 in the absence
of tick vector involvement, whereas with vector involvement,



Ry = 3.5. Since the value of R, remains well above unity,
this indicates that ASF transmission in East Nusa Tenggara
continues, and the disease persists within the pig population.
This result is consistent with the findings of previous studies
[8-27]. Effective control of ASF requires the implementation
of strategic measures. These measures include improved
biosecurity, disease surveillance, the establishment of ASF-
free compartments, ongoing vaccine research and evaluation,
and the strengthening of veterinary services. We applied
biosecurity strategies and controlled contact between
susceptible pigs and ASF-infected tick vectors to assess the
reduction in the exposed compartment and the basic
reproduction number, with the following results. At a
biosecurity and vector control coverage of p = g = 50%,
the transmission effectiveness in the exposed compartment
decreased by 17.48% with a reproduction number (R,) of
1.775. Increasing coverage to p = q = 65%, reduced it to
22.73% (R = 1.2425), while at p = q = 72%, the reduction
reached 25.18% (R, = 0.994), indicating a state near the
control threshold. At higher coverage p =q =85%, a
29.72% reduction with Ry = 0.5325 confirmed that the
epidemic can be effectively controlled. Based on
mathematical modeling analysis, this study demonstrates that
an integrated strategy of biosecurity and vector control is
effective in reducing the spread of ASF in East Nusa
Tenggara, Indonesia. Field evidence also indicates that the
local practice of installing nets in pig pens is effective in
controlling ASF. These findings are consistent with those of
Boklund et al. [28] and Olesen et al. [29], who demonstrated
that installing nets in pig pens is effective in controlling tick
vectors and reducing the risk of ASF transmission.

5. CONCLUSIONS

The results show that ASF in East Nusa Tenggara is still
spreading at a high level, with Ry; = 2.35 and R, = 3.5,
indicating continued infection in the pig population.
Numerical simulation indicates that a combination of
enhanced biosecurity and vector control is effective in
suppressing transmission. These findings emphasize the need
for strengthened biosecurity policies, community-based
vector control, and ongoing surveillance. This model has
limitations due to its assumption of homogeneous mixing and
simplification of host-vector interactions, necessitating field
validation and the development of further stochastic models.
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