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African swine fever (ASF) is a highly contagious viral disease that results in very high 

mortality rates among pigs and causes significant economic losses worldwide. In 

Indonesia, ASF has spread to 32 provinces since the first outbreak in 2019, with East 

Nusa Tenggara being one of the most severely affected areas. This study developed a 

nonlinear differential equation model to analyze the dynamics of ASF transmission and 

evaluate the combined effectiveness of biosecurity measures and vector control 

strategies in controlling the disease's spread. The model calculates the basic 

reproductive number both without and with vectors. An integrated approach that 

combines biosecurity measures and optimal vector control can significantly reduce the 

risk of infection, depending on the effectiveness of biosecurity (p) and the effectiveness 

of tick vector control (q). These findings suggest that the synergistic approach of 

combining biosecurity and optimal vector control is highly effective in reducing the 

spread of ASF in East Nusa Tenggara. This provides a scientific foundation for 

developing adaptive disease control policies in Indonesia.  
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1. INTRODUCTION

ASF is a highly virulent viral disease affecting both 

domestic and wild pigs, causing significant socioeconomic 

losses to the pig industry [1]. Globally, ASF is estimated to 

cause annual economic losses exceeding USD 2 billion [2]. 

In Indonesia, ASF was first detected in North Sumatra in 

2019 and subsequently spread to 32 provinces [3]. East Nusa 

Tenggara Province experienced ASF outbreaks in 2020 and 

2021, resulting in extremely high pig mortality, with 

cumulative losses reaching several hundred thousand 

animals [4]. ASF cases in the East Nusa Tenggara region 

continue to exhibit a high incidence rate up to 2025, and this 

situation generates substantial economic losses for 

smallholder farmers whose livelihoods rely heavily on pig 

production. To date, no vaccine or commercial antiviral drug 

has been proven effective against ASF [5]. Implementing 

strict biosecurity remains the most effective prevention 

strategy [6]. In East Nusa Tenggara, local farmers implement 

traditional and adaptive practices, such as installing mosquito 

nets around pens, to minimize contact with potential vectors 

[7]. These local initiatives highlight the vital importance of 

community-based biosecurity in areas with limited 

veterinary infrastructure. Mathematical modeling serves as a 

key tool for understanding disease transmission dynamics 

and developing effective control strategies [2]. 

Various mathematical models have been developed to 

study the dynamics of ASF transmission. Chuchard et al. [7] 

proposed a human-mediated transmission pathway, while 

Ayihou et al. [8]. Developed an eight-compartment model 

that yielded a fundamental reproduction number value, which 

indicates a high level of transmission based on analysis of 

Benin data. Kouidere et al. [9] further proposed an ASF 

transmission model that integrates vector dynamics and 

optimal control theory to formulate effective management 

intervention strategies. 

The mathematical models currently developed primarily 

focus on either the African or European context, which 

means they do not accurately reflect the ecological, cultural, 

and agricultural conditions in Indonesia, particularly in East 

Nusa Tenggara. Recent research on ASF in this region can be 

found in the articles by Bulu et al. [10] and Pandarangga et 

al. [11]. Small-scale pig farming in East Nusa Tenggara is 

closely associated with varying levels of biosecurity 

practices, as well as the high mobility of pigs and people. 

Existing models often overlook these critical factors and 

seldom incorporate local biosecurity knowledge with vector 

control strategies. As a result, a research gap remains in 

understanding ASF transmission within the unique context of 

Indonesian veterinary environmental health. 

The novelty of this study lies in the development of a 

nonlinear differential equation system model that explicitly 

represents the dynamics of ASF. This model integrates 

biosecurity and vector control interventions to evaluate their 
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effectiveness. The findings are expected to provide a 

scientific foundation for formulating ASF control policies 

that are adaptable to the sociocultural conditions in East Nusa 

Tenggara. 

2. MATERIALS AND METHODS

2.1 Mathematical model formulation 

In this study, we developed a model that consists of five 

compartments termed as susceptible pigs (𝑆𝑝), exposed pigs

(𝐸𝑝), infected pigs (𝐼𝑝), susceptible ticks (𝑆𝑣), and infected

ticks (𝐼𝑣). This compartmental structure is an extension of the

model proposed by Kouidere et al. [2]. The model examined 

in this study can be formulated as follows. 

1 2

1 2

3

3

p p p p v

p p p

p p

p p p p v

p p p

p p

p

p p p

v pv

v v v

v

v pv

v v

v

dS S I S I
S

dt N N

dE S I S I
E E

dt N N

dI
E I

dt

S IdS
S

dt N

S IdI
I

dt N

  

   

 

 

 

=  − − −

= + − −

= −

=  − −

= −

(1) 

where, 

● 𝛬𝑝: The recruitment rate of susceptible pigs.

● 𝛬𝑣: The recruitment rate of susceptible ticks.

● 𝛽1 : The transmission rate of the virus among pigs

through direct contact with infected pigs.

● 𝛽2: The virus transmission rate to pigs through direct

contact with infected ticks.

● 𝛽3: The infection rate of ticks through direct contact

with infected pigs.

● 𝛾: The transition rate from 𝐸𝑝 to 𝐼𝑝.

● 𝜇𝑝: The natural mortality rate of pigs.

● 𝜇𝑣: The natural mortality rate of ticks.

Let and denote the total pig and tick population,

respectively, assumed to be constant. Based on Eq. (1), the 

following result is obtained: 

p p p v v vN and N  =  = (2) 

From Eqs. (1) and (2), we can obtain the disease-free 

equilibrium, which represents a system state where there is 

no infection. 

( )0 , 0,0, ,0p vE N N= (3) 

2.2 Basic reproduction number 

The Next Generation Matrix (NGM) method was used to 

derive the basic reproduction number, as formulated in 

references by Bani-Yaghoub et al. [12] and Ndii et al. [13], 

where the transmission matrix (ℱ) and transition matrix (𝒱) 

are defined. 
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From Eqs. (4) and (5), the following result is obtained: 
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The next-generation matrix is obtained from −𝑇𝑉−1, as

follows: 
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According to Eq. (8), the basic reproduction number (𝑅0)

is termed as the spectral radius of the NGM. Hence, the value 

of 𝑅0 is given as follows:
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Furthermore, the basic reproduction number, which 

explains the interaction between susceptible and infected 

pigs without the involvement of vector ticks, is given as 

follows: 
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If ℛ0 < 1 , the disease will be eliminated from the 

population, whereas if ℛ0 > 1, it is likely to spread more 

rapidly [14]. 

 

2.3 Model analysis 

 

In this section, we will discuss the key properties of system 

(1), including the invariant region, positivity of solutions, and 

stability analysis of equilibrium points. 

 

Invariant region and positivity of solution 

Attention is restricted to the feasible region 𝛺 = 𝛺𝑝 ×

𝛺𝑣 ⊂ 𝑅+
3 × 𝑅+

2 , with: 
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Here are the results for the feasible region. The following 

three theorems are derived from the reference by Dayap and 

Rabajante [15] and Sasongko et al. [16]. 

 

Theorem 2.3.1 The region 𝛺 = 𝛺𝑝 × 𝛺𝑣  ⊂ 𝑅+
3 × 𝑅+

2  

constitutes a positive invariant set for system (1) under non-

negative initial conditions. 

Proof: The summation of the ticks and pigs population in 

system (1) yields the following result: 
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Solving Eqs. (13) and (14) for 𝑁𝑣  and 𝑁𝑝  yields the 

bounded system 𝑁𝑣 ≤
𝛬𝑣

𝜇𝑣
 and 𝑁𝑝 ≤

𝛬𝑝

𝜇𝑝
. 

Consequently, all feasible solutions of system (1) lie 

within the region. 

 

Theorem 2.3.2 Let the system (1) have non-negative 

initial conditions. Then, its solution set is given by 

(𝑆𝑝(𝑡), 𝐸𝑝(𝑡), 𝐼𝑝(𝑡), 𝑆𝑣(𝑡), 𝐼𝑣(𝑡))  and solution is non-

negative for all 𝑡 > 0. 

Proof: To prove that system (1) has non-negative 

solutions for all 𝑡 > 0, we first establish the positivity of 

𝐸𝑝(𝑡), while the positivity of the remaining state variables 

follows by analogous arguments. 

Assume the system is subject to non-negative initial 

conditions. From system (1), the following inequality holds: 
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Eq. (15) takes the following form: 

 

𝐸𝑝(𝑡) ≥ 𝐸𝑝(0)𝑒−(𝛾+𝜇𝑝)𝑡 (16) 

 

Since the initial condition 𝐸𝑝(0)  is non-negative and 

𝑒−(𝛾+𝜇𝑝)𝑡 is also non-negative, it follows that 𝐸𝑝(𝑡) remains 

non-negative for all 𝑡 ≥ 0. 

Theorems 2.3.1 and 2.3.2 establish that system (1) well-

posed and biologically meaningful. 

 

Theorem 2.3.3 The disease-free equilibrium (DEF) 𝐸0 of 

the system (1) is locally asymptotically stable when ℛ0 < 1; 

otherwise, it becomes unstable. 

Proof: To find the local stability of the DFE at 𝐸0 , the 

Jacobian matrix of system (1) will be derived as follows: 
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From the Jacobian matrix 𝐽(𝐸0)  above, the following 

characteristic polynomial is obtained: 

 

𝑝(𝜆) = (𝜇𝑝 + 𝜆)(𝜇𝑣 + 𝜆) (𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3) = 0  

 

with 

 

𝑎1 = 2𝜇𝑝 + 𝜇𝑣 + 𝛾 

𝑎2 = 𝜇𝑣(𝛾 + 𝜇𝑝) + 𝜇𝑝𝜇𝑝 + 𝜇𝑝(𝛾 + 𝜇𝑣)(1 − 𝑅0)

+
𝛾𝛽2𝛽3(𝛾 + 𝜇𝑣)

𝜇𝑣(𝛾 + 𝜇𝑝)
 

𝑎3 = 𝜇𝑝𝜇𝑣(𝛾 + 𝜇𝑝)(1 − 𝑅0) 

 

The characteristic equation 𝑝(𝜆)  of 𝐽(𝐸0)  yields the 

eigenvalues 𝜆1 = −𝜇𝑝 , 𝜆2 = −𝜇𝑣 , and 𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 +

𝑎3 = 0. By the Routh-Hurwitz, all roots are negative provide 

that 𝑎1 > 0 , 𝑎3 > 0  and 𝑎1𝑎2 > 𝑎3  whenever 𝑅0 < 1 . 

Hence, the equilibrium point 𝐸0  is stable if ℛ0 < 1 . 

Conversely, if ℛ0 > 1 , the equilibrium point 𝐸0  becomes 

unstable. 

 

 

3. RESULTS 

 

3.1 The constructed estimation of 𝓡𝟎  according to the 

interaction between susceptible and infected pigs without 

vector ticks involved 

 

First, we construct the estimation of ℛ01 from Eq. (10). 

This estimation at 𝐸0  is based on the assumption that the 

number of infected pigs, 𝐼𝑝, grows exponentially at the same 

rate over a short period of time [17].  

 

( ) (0) rt

p pE t E e=
 (18) 

 

( ) (0) rt

p pI t I e=
 (19) 

 

with 𝐸𝑝(0)  and 𝐼𝑝(0)  denoting the initial numbers of 

exposed and infectious pigs, respectively, and let 𝑟 represent 

the take-off rate of the early epidemic growth. Next, by 

substituting (18) and (19) into (1) and assuming 𝐸𝑝 ≈ 𝑆𝑝 and 
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𝐼𝑝 ≈ 𝑆𝑝 at the early stage of the epidemic, we obtain: 
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with 
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The values of the model parameters and their 

corresponding sources are presented in Table 1. 

The data of ASF cases in East Nusa Tenggara Province, 

Indonesia, are displayed in Figure 1. 

Figure 1 displays the monthly incidence of ASF in East 

Nusa Tenggara, Indonesia, which reached its highest peak in 

January 2021. This will be used as the basis for estimating 

the ℛ0 value. 

 

Table 1. Parameter value and references 

 
Parameter Value Source 

𝜇𝑝 0.16667 month-1 [18] 

𝛾 2.73 month-1 [19] 

𝜇𝑣 0.017 month-1 [20] 

 

 
Figure 1. ASF cases incidence in East Nusa Tenggara from 

2020 to 2025 

 

Figure 1 presents the monthly ASF incidence in East Nusa 

Tenggara, Indonesia, with the highest peak observed in 

January 2021. This dataset forms the basis for estimating the 

early epidemic growth rate and the basic reproduction 

number ℛ0. 
Figure 2 displays the fitted model curve together with the 

observed ASF incidence. The close visual agreement 

between the model output and the reported data supports the 

reliability of the estimated take-off rate and the basic 

reproduction number ℛ0. The analysis yields a take-off rate 

𝑟 = 0.2 (95% 𝐶𝐼 ∶ 0.1854 − 0.2566) with a coefficient of 

determination 𝑅2 = 0.7763 , indicating a strong 

correspondence between the model and the observed data, as 

well as stable estimate with minimal uncertainty. Using the 

parameter values provided in Table 1, together with 𝑟 = 0.2 

and Eqs. (20) and (21), the basic reproduction number is 

estimated as ℛ01 = 2.35  for 𝛽1 = 0.4 . The transmission 

potential of ASF pigs is higher than through ticks, as the virus 

spreads more readily via direct contact with bodily fluids [20]. 

Given the limited field data on ASF-infected ticks, this study 

assumes that 𝛽2 is 32% of 𝛽1, and 𝛽3 is 22% of 𝛽2, yielding 

𝛽2= 0.128, and 𝛽3= 0.0282. Thus, based on Eq. (9) and the 

parameter values in Table 1, including 𝛽2 and 𝛽3, the basic 

reproduction number involving transmission through 

infected ticks vectors is obtained ℛ0 = 3.5 . Several ℛ0 

values from different countries are presented for comparison 

with the ℛ0 value in East Nusa Tenggara.  

 

 
 

Figure 2. The fitting between observational data and fitted 

model 

 

The reproduction number of ASF transmission in East 

Nusa Tenggara is relatively high compared to cases in other 

countries, as shown in Table 2. 

 

Table 2. Values of ℛ0 several countries 

 
Country 𝓡𝟎 Value Source 

Benin 2.78 [8] 

Uganda 3.24 [21] 

Czech Republic 1.95 [22] 

Belgium 1.65 [23] 

 

3.2 A mathematical model with biosecurity measures and 

contact control between susceptible pigs and ASF-

infected ticks 

 

The model incorporating biosecurity measures and contact 

control between susceptible pigs and ASF-infected ticks is 

formulated as follows: 
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(22) 

 

where, 𝑝 denotes the effectiveness of biosecurity measures in 

reducing transmission between pigs, and q denotes the 
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effectiveness of controlling ASF-infected ticks. By applying 

the NGM method as in the previous concept, the basic 

reproduction number derived from Eq. (22) is obtained as 

follows: 

 

( ) ( )
2 31

0

(1 )(1 )

p p p v p

qp  
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−−
= +

+ +
 (23) 

 

3.3 Numerical simulation 

 

We performed numerical simulation to evaluate the time 

to disease extinction within the system and to identify the 

conditions that facilitate the emergence of an endemic state 

in the population. The simulation results are presented in 

Figures 3 and 4.  

 

 

 

 

 

 
 

Figure 3. Numerical simulation of disease extinction in 

the population 

 

Figure 3(a) shows a monotonic, near-exponential decline 

approximately 3.4 × 105 at the beginning of the observation 

period to about 0.2 × 105  by month 12, indicating a 

consistent depletion of the susceptible population throughout 

the study. 

The 𝐸𝑃  compartment exhibits a pronounced transient 

dynamic, marked by a sharp decline during the first 0–2 

months from approximately 2.0 × 105 to nearly zero, after 

which it remains at a very low level for the remainder of the 

time horizon. This pattern indicates that the exposure phase 

is short-lived before the system stabilizes near zero. 

Figure 3(c) illustrates a wave-like infection dynamic, in 

which 𝐼𝑃 increases rapidly from approximately 1.6 × 105 to 

a peak of 3.0 × 105 arround month 1, followed by a gradual 

decline to about 0.8 × 105 by month 12. This pattern reflects 

an initial amplification phase of infection, followed by a 

subsequent dissipation phase as the system approaches a 

lower level of infectivity. 

Figure 3(d) shows that the 𝑆𝑣  compartment exhibits an 

approximately linear upward trend, increasing from about 

0.8 × 106  to around 2.7 × 106  over the 12-month horizon. 

This pattern indicates a steady expansion of the susceptible 

vector population throughout the study period. 

Figure 3(e) shows a gradual decline from approximately 

1.2 × 106 to about 1.11 × 106 by month 12, with a slightly 

steeper gradient toward the end of the time horizon. This 

pattern reflects a slow but continuous dissipation of the 

infected vector population throughout the study period. 
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Figure 4. The numerical solution is examined under 

conditions in which the disease persists within the population 

Figure 4(a) shows that the susceptible pig population 𝑆𝑝 

declines rapidly to near zero within approximately 5–6 

months. This pattern suggests a high effective transmission 

pressure, leading to a rapid depletion of susceptibles through 

progression to infection-related compartments (or removal). 

Thereafter, the system approaches an endemic steady state 

with a very small susceptible pool. 

Figure 4(b) illustrates the temporal evolution of the 

exposed pig population, 𝐸𝑝, over 12 months. The population 

experiences a sharp decline during the initial phase, with the 

most pronounced reduction occurring between months 2 and 

3. By month 5–6, 𝐸𝑝 approaches zero and remains negligible, 

indicating a rapid depletion of the exposed class and the 

system’s convergence toward an almost disease-free state. 

Figure 4(c) illustrates the unimodal temporal of 𝐼𝑝 . The 

infected pig population increases rapidly during the initial 

phase, reaching a peak of approximately 4.1 × 105 in month 

2, and subsequently declines gradually and near-

monotonically to about 1.0 × 105  by month 12. This 

trajectory suggests a transient early outbreak followed by 

relaxation toward a quasi-endemic regime. 

Figure 4(d) indicates that the susceptible vector population 

𝑆𝑣 declines sharply during the initial phase, decreasing from 

approximately 7.5 × 105  to a minimum of (2.4 − 2.6) ×
105  around months 4–5, before rising steadily to about 

4.4 × 105  by month 12. This trajectory reflects an early 

depletion of susceptible vectors followed by progressive 

recovery toward a quasi-equilibrium state. 

Figure 4(e) indicates that 𝐼𝑣  increases monotonically, 

rising rapidly during the initial phase from approximately 

1.2 × 106 , and then shifting to a slower growth rate that 

approaches saturation, reaching (2.4 − 2.5) × 106 by month 

12. This trajectory suggests a sustained accumulation of 

infected vector as the system moves toward a quasi-endemic 

regime. 

In this section, the effects of parameters 𝑝 and 𝑞 on the 

dynamics of 𝐸𝑝 are examined via numerical simulations, by 

analyzing the temporal response of 𝐸𝑝  across a range of 

(𝑝, 𝑞)  values and identifying the combinations that most 

effectively reduce exposure. 

Figure 5 presents the simulation results for the reduction 

in the exposed compartment 𝐸𝑝  as the parameters 𝑝 and 𝑞 

increase. The percentage reduction in 𝐸𝑝  is used as an 

indicator of the effectiveness of biosecurity (𝑝) and contact 

control between susceptible pigs and ASF-infected ticks (𝑞). 

Specifically, when 𝑝 = 50% and 𝑞 = 50%, 𝐸𝑝  decreases by 

17.48%. When 𝑝 = 65% and 𝑞 = 65%, the reduction in 𝐸𝑝 

increases to 22.73%, then to 25.18% for 𝑝 = 72% and 𝑞 = 

72%, and reaches 29.72% for 𝑝 = 85% and 𝑞 = 85%. These 

findings indicate that strengthening biosecurity and contact 

control measures consistently reduces the proportion of pigs 

in the exposed compartment. 

Next, the decline in the basic reproduction number ℛ0 is 

analyzed in response to intervention strategies represented by 

variations in parameters 𝑝  and 𝑞 . This analysis examines 

how changes in 𝑝 and 𝑞  influence ℛ0  to identify the most 

effective combination of interventions for reducing 

transmission potential. 

Figure 6 presents the simulated reduction in the basic 

reproduction number ℛ0 as the parameters 𝑝 and 𝑞 increase. 

Quantitatively, when 𝑝 = 50% and 𝑞 = 50%, ℛ0 = 1.175; at 

𝑝 = 65% and 𝑞 = 65%, ℛ0 decreases to 1.2425; and for 𝑝 = 

72% and 𝑞 = 72%, ℛ0 is further reduced to 0.994. At a higher 
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level of intervention, namely 𝑝 = 85% and 𝑞  = 85%, ℛ0 

declines further to 0.5325. Overall, these results indicate that 

enhanced biosecurity and contact control are effective in 

reducing ℛ0 to below one, thereby suggesting the potential 

for outbreak control from an epidemiological perspective. 

 

 
 

Figure 5. Simulation of changes in 𝐸𝑝 resulting from 

variation in the parameters 𝑝 and 𝑞 

 

  
Figure 6. Simulation of changes in ℛ0 in response to 

variation in parameters 𝑝 and 𝑞 

 

3.4 Sensitivity analysis 

 

Local sensitivity analysis is applied when a small number 

of parameters are uncertain, with an approach based on the 

concept of partial derivatives [24-26]. The normalized 

sensitivity index formula used in this study is as follows: 

 

𝐶𝑝 =
𝜕ℛ0

𝜕𝑝
 

𝑝

ℛ0
  

 

where, 𝑝 denotes a parameter. 

The normalized sensitivity indices of the parameters 𝛾, 𝛽1, 

and 𝛽2  with respect to ℛ0  are presented in Figure 7, 

respectively. 

 
 

Figure 7. Local sensitivity analysis: Normalized sensitivity 

indices 

 

Figure 7(a) shows that the normalized sensitivity with 

respect to 𝛾 decreases monotonically, indicating that larger 𝛾 

values consistently diminish its contribution to variations in 

ℛ0. Figure 7(b) indicates that the sensitivity to 𝛽1 increases 

nonlinearly, implying that direct transmission becomes 

progressively more influential in shaping ℛ0 as 𝛽1 increases. 

Meanwhile, Figure 7(c) exhibits a more gradual increase in 

sensitivity to 𝛽2 , with a gentler slope than that of 𝛽1 , 

suggesting that vector-mediated transmission contributes 

positively to ℛ0 but with a comparatively moderate effect. 

The normalized sensitivity indices for 𝛾, 𝛽1, and 𝛽2, along 

with their corresponding interpretations, are summarized in 

Table 3. 

 

Table 3. The results of the sensitivity index calculation 

 
Parameter Sensitivity Index Interpretation 

𝐶𝛽1
= 0.65 The highest value 

A 1% increase in 𝛽1 

results in a 

0.65% increase ℛ0 

𝐶𝛽2
= 0.35 Moderate 

A 1% increase in 𝛽2 

results in a 

0.35% increase ℛ0 

𝐶𝛾 = 0.06 Low 

A 1% increase in 𝛾 

results in a 0.06% 

increase ℛ0 

 

This study analyzes local sensitivity by focusing on the 

parameters 𝛾, 𝛽1 and 𝛽2, yielding the following results. The 

sensitivity analysis presented in Table 3 identifies 𝛽1 and 𝛽2 

as the most influential parameters. Consequently, control 

strategies should prioritize reducing these parameters by 

enhancing biosecurity measures and minimizing contact 

between pigs and vector ticks. 

 

 

4. DISCUSSIONS 

 

This study is the first to examine ASF transmission in East 

Nusa Tenggara and, more broadly, the first in Indonesia to 

analyze its dynamics using a mathematical modeling 

approach. The results indicate that ℛ01 = 2.35 in the absence 

of tick vector involvement, whereas with vector involvement, 
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ℛ0 = 3.5. Since the value of ℛ0 remains well above unity, 

this indicates that ASF transmission in East Nusa Tenggara 

continues, and the disease persists within the pig population. 

This result is consistent with the findings of previous studies 

[8-27]. Effective control of ASF requires the implementation 

of strategic measures. These measures include improved 

biosecurity, disease surveillance, the establishment of ASF-

free compartments, ongoing vaccine research and evaluation, 

and the strengthening of veterinary services. We applied 

biosecurity strategies and controlled contact between 

susceptible pigs and ASF-infected tick vectors to assess the 

reduction in the exposed compartment and the basic 

reproduction number, with the following results. At a 

biosecurity and vector control coverage of 𝑝 = 𝑞 = 50%, 

the transmission effectiveness in the exposed compartment 

decreased by 17.48% with a reproduction number (ℛ0) of 

1.775. Increasing coverage to 𝑝 = 𝑞 = 65%, reduced it to 

22.73% (ℛ0 = 1.2425), while at 𝑝 = 𝑞 = 72%, the reduction 

reached 25.18% (ℛ0 = 0.994), indicating a state near the 

control threshold. At higher coverage 𝑝 = 𝑞 = 85% , a 

29.72% reduction with ℛ0 = 0.5325  confirmed that the 

epidemic can be effectively controlled. Based on 

mathematical modeling analysis, this study demonstrates that 

an integrated strategy of biosecurity and vector control is 

effective in reducing the spread of ASF in East Nusa 

Tenggara, Indonesia. Field evidence also indicates that the 

local practice of installing nets in pig pens is effective in 

controlling ASF. These findings are consistent with those of 

Boklund et al. [28] and Olesen et al. [29], who demonstrated 

that installing nets in pig pens is effective in controlling tick 

vectors and reducing the risk of ASF transmission.  

 

 

5. CONCLUSIONS 

 

The results show that ASF in East Nusa Tenggara is still 

spreading at a high level, with ℛ01 = 2.35 and ℛ0 = 3.5, 

indicating continued infection in the pig population. 

Numerical simulation indicates that a combination of 

enhanced biosecurity and vector control is effective in 

suppressing transmission. These findings emphasize the need 

for strengthened biosecurity policies, community-based 

vector control, and ongoing surveillance. This model has 

limitations due to its assumption of homogeneous mixing and 

simplification of host-vector interactions, necessitating field 

validation and the development of further stochastic models. 
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