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Loan-approval prediction is typically considered while auditing a single protected
attribute at a time (race, ethnicity, sex, or age). Fairness-Aware, Interpretable, Resilient,
and Equitable (FAIRE) is a multi-stage pipeline that combines data-level balancing,
in-training debiasing, and post-processing thresholding, which is complemented by
global and local explainability and continuous fairness monitoring with a drift trigger.
The evaluation spans centralized and federated training with privacy-preserving
aggregation using Home Mortgage Disclosure Act (HMDA) loan-level data. At the
selected operating point, fairness improves substantially: Demographic Parity (DP)
rises from 0.74 [0.72, 0.76] to 0.92 [0.90, 0.94]; the Equal Opportunity (EO) gap
declines to 0.05 [0.04, 0.06]; and Equalized Odds (EOdds) decreases to 0.07 [0.06,
0.09]. The change in Area under the curve—Receiver-operating characteristic curve
(AUC-ROC) changes by < 0.5 percentage points relative to the best utility setting. In
the federated regime (50 clients, Non-Independent and Identically Distributed (non-1ID)
partitions), AUC-ROC remains within 1 percentage point of centralized utility, while
fairness remains close to centralized post-mitigation levels (e.g., DP = 0.90 [0.88, 0.92],
EO ~0.06[0.05, 0.07], EOdds ~ 0.11 [0.10, 0.12]), with wider intervals for clients with
small protected-group support sample sizes. A composite Interpretability Score
increases through higher surrogate fidelity, sparser reason sets, and more stable
attributions; SHapley Additive exPlanations (SHAP), Local Interpretable Model-
agnostic Explanations (LIME), and Integrated Gradients produce adverse-action-ready
reason codes consistent with threshold-style explanations. The resulting pipeline
delivers measurable fairness gains with minimal utility cost across centralized and
federated settings while maintaining transparent, monitorable credit decisions.

1. INTRODUCTION

predictive performance [2, 8, 9]. Beyond centralized
modeling, privacy, regulatory, and organizational constraints

Acrtificial intelligence increasingly influences financial
decisions, including loan approvals and credit scoring, yet
historical and structural biases embedded in data and processes
can propagate through predictive models, creating disparate
outcomes across demographic groups [1-5]. Regulatory and
ethical expectations further require decisions to be transparent
and explainable, with reasoned, auditable narratives for
adverse actions and with safeguards that balance fairness and
predictive utility [5-7]. The task considered is loan-approval
prediction with feature set X, protected attribute A (analyzed
one at a time: race, ethnicity, sex, or age), and target Y
(approval vs. denial). Fairness is assessed using Demographic
Parity (DP), Equal Opportunity (EO), and Equalized Odds
(EOdds).

Single-stage debiasing and post-hoc fixes are insufficient to
ensure durable equity in operational settings because bias can
re-enter through data shifts, proxy features, or inconsistent
thresholds; deployment-time monitoring and governance are
therefore required to maintain fairness without eroding
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motivate training regimes where data remain local and only
model updates are aggregated, introducing additional fairness
considerations under non-11D distributions [10, 11]. These
needs call for end-to-end frameworks that integrate mitigation
across the model lifecycle and connect technical interventions
to compliance-oriented explanations and controls.
Fairness-Aware, Interpretable, Resilient, and Equitable
(FAIRE) addresses these challenges as a multi-stage pipeline.
At the data level, representation is balanced via reweighing
and sampling; at the in-training level, adversarial debiasing
and fairness-regularized objectives reduce dependence on
sensitive attributes; at the post-processing level, calibrated,
group-specific thresholds and reject-option rules align
decisions with policy constraints. Transparency is supported
by global and local explainability—permutation importance,
interpretable surrogates, LIME, SHAP, and Integrated
Gradients to generate reason codes suitable for adverse-action
notices [6]. To accommodate organizational data boundaries,
a federated learning (FL) regime enables client-local training
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with privacy-preserving aggregation while auditing fairness at
each round [6, 10].

The contributions of the study are listed below:
End-to-end framework with numeric fairness reporting
using DP, EO, and EOdds.
Federated evaluation under non-IID client partitions
with per-round support-weighted fairness aggregation
[10].
Composite Interpretability Score that synthesizes
surrogate fidelity, explanation sparsity, and stability,
grounded in model-agnostic and model-specific
Explainable Al (XAl) [6].
Reproducible baselines and statistical testing aligned to
prior art, enabling credible comparisons under clearly
specified protocols [5, 8, 11].

2. RELATED WORK

Research on algorithmic fairness in credit decisioning spans
data-level, in-training, and post-processing interventions.
Data-level methods include reweighing and oversampling to
rebalance group—label distributions before optimization [1, 2,
5, 12-14]. In-training approaches commonly employ
adversarial debiasing and fairness-regularized objectives to
discourage representations predictive of protected attributes
while preserving task performance [1, 2, 5, 8]. Post-processing
techniques calibrate group-specific thresholds or introduce
reject-option bands to reduce residual disparities after scoring
[13-17]. Evaluation typically reports DP, EO, and EOdds
alongside standard classification measures, enabling explicit
fairness—utility trade-off analysis [1, 2, 5]. This study adopts
those metrics and mitigation stages within a single pipeline to
ensure consistency across training and deployment.

FL enables client-local training with periodic aggregation,
reducing the need to centralize data while introducing fairness
considerations under non-11D client distributions [10].
Fairness-aware FL variants combine local debiasing (e.g.,
adversarial objectives) with server-side aggregation of
privacy-preserving statistics, aiming to maintain or improve
group equity without sharing raw records [10]. Surveys also
highlight the importance of weighting by client and group
support to avoid biased global metrics when client cohorts
differ in size or composition [5, 11]. These insights motivate
the support-weighted aggregation of group rates used later to
compute global DP/EO/EQdds and to trigger actions under the
monitoring logic.

XAl underpins transparency and accountability in
high-stakes credit decisions. Global analyses—permutation
feature importance and interpretable surrogates—summarize
model-level reliance on drivers of approval risk [6]. Local
explanations such as LIME, SHAP, and Integrated Gradients
provide instance-level attributions suitable for reason-code
generation and adverse-action narratives in regulated settings
[6, 18, 19]. The combination of global and local tools supports
both system diagnostics and case-specific justification,
forming the basis for the Interpretability Score later defined
from fidelity, sparsity, and stability components.

Lifecycle-oriented frameworks emphasize sociotechnical
governance, continuous  fairness  assessment, and
human-in-the-loop review for model changes, threshold
adjustments, and retraining [9, 20]. These perspectives align
with fairness surveys that catalog bias sources and stress
ongoing monitoring rather than single-shot mitigation [5]. The

4315

operationalization in this work—periodic audits, drift
thresholds, and auditable policy layers—follows such
governance guidance and ties directly to the monitoring
construct formalized later [21, 22].

FAIRE integrates the three mitigation stages with XAl and
monitoring, and is compared against baselines chosen for
methodological coverage and reproducibility. Multiobjective
evolutionary learning (MOEL) corresponds to multi-objective
fairness optimization where predictive utility and fairness are
jointly optimized [8]. Fairness-Aware Federated Learning
(FAFL) reflects fairness-aware federated learning that applies
client-local debiasing with aggregated coordination [10]. In
addition, standard baselines—Ilogistic regression,
gradient-boosted trees, and neural networks with and without
fairness interventions—anchor comparisons and support
statistical testing consistent with survey recommendations on
rigorous evaluation design [5, 11]. This mapping clarifies the
role of each comparator and situates results within established
lines of work.

Prior work demonstrates effective components—
rebalancing data, adversarial objectives, calibrated thresholds;
federated training with privacy-preserving aggregation; and
global/local XAl for transparency—but these elements are
seldom unified with deployment-time governance in a single,
auditable framework [1, 2, 5, 6, 8-10]. FAIRE combines
multi-stage mitigation with FL-aware auditing, explanation
tooling, and lifecycle monitoring, leveraging the fairness
metrics to quantify trade-offs and to guide operational
controls.

3. METHODS AND MATERIALS

Let the dataset be D = {(X;, 4;,Y,)}L;, where X denotes
predictive features, A denotes a single protected attribute
considered per analysis (race, ethnicity, sex, or age), and Y
denotes the loan-approval outcome (originated vs. denied), as
defined in Eq. ().

Two training regimes are employed (detailed in Section
3.1). The centralized track trains a single model on pooled data
with fairness-aware objectives and post-processing as
specified in Section 3.3. The federated track distributes
training across clients that update local models and
periodically aggregate parameters; both regimes feed the same
bias-detection, explainability, and monitoring components
described in Sections 3.2-3.5.

Fairness is evaluated using DP, EO, and EOdds, defined in
Egs. (5)-(7). These metrics are computed pre-training to
characterize historical disparities, during training to guide
mitigation, and post-training to quantify residual bias;
corresponding results are reported in Section 4 alongside
classification and interpretability outcomes.

3.1 Architecture overview

Figure 1 shows the FAIRE pipeline as an integrated
sequence of modules: data ingestion and preprocessing,
bias-mitigation layers (pre-, in-, and post-training),
explainability, deployment and decisioning, and monitoring
and governance. During ingestion, sensitive attributes A are
separated from predictive features X in accordance with Eq.
(1), and feature transformation procedures reduce proxy
leakage while preserving predictive signal. Typical
transformations include coarsening or binning highly



identifying variables, constrained encodings, and leakage
checks to ensure that A does not re-enter the modeling stack
through correlated surrogates.

D = {(Xi, Ay YDNL, ©)

FAIRE Architecture

Bias & Fairness Services

Data & Access
Centralized Trainer

Federated Training
(Clients + Aggregator)

Model Registry T Decision & Scoring [ ‘ Explainabilityj

Monitoring & Governance

Figure 1. FAIRE framework pipeline

Centralized track: A single predictor f, is trained
end-to-end with an adversary g, that attempts to infer A from
the learned representation. The joint objective in formula (2)
balances prediction loss against the adversary’s loss via the
trade-off parameter A, encouraging fp to discard information
predictive of A while retaining signal for Y . Data-level
mitigation (reweighing/oversampling) may be applied before
training, and a fairness regularizer may be included in the loss
as specified later in Section 3.3. After training, group-specific
operating thresholds and a reject-option band can be applied
to the centralized scores following Egs. (12) and (13).

Federated track: Data remain local to each client k. Each
client trains a local predictor fy, with a local adversary g4,
under the same objective as formula (2), using local data
shards and identical preprocessing/mitigation rules. Model
updates are transmitted to a coordinator that aggregates client
parameters using FedAvg; unless otherwise specified, the
protocol uses T = 100 communication rounds with E = 2
local epochs per round. Only model updates or parameters are
shared—no raw records, explanations, or identifiers. After
each aggregation, the coordinator evaluates global fairness
diagnostics using privacy-preserving summaries and, when
needed, recommends calibrated group-specific thresholds
consistent with Eqgs. (12) and (13). This two-track design
enables consistent fairness controls irrespective of training
regime while preserving locality of data.

minE[L(fy(X), V)] =4+ E[Laas (94 (fo(X)), 4)] ©)
¢ = Tsciani) o PERFSUGH - )] ()

Explainability layer: Explanations are produced at global
and local levels for either track. Global diagnostics include
permutation importance and surrogate modeling (Egs. (14)
and (15)), supporting system-level audits of feature influence
and fidelity. Local diagnostics include LIME, SHAP, and
Integrated Gradients (Egs. (16)-(18)), yielding per-applicant
reason codes and ranked contributions suitable for compliance
review and adverse-action communication. The explainability
interface is identical across tracks and attaches to the scoring

output, enabling uniform monitoring and reporting.
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Deployment and decisioning: The scoring service outputs
calibrated approval probabilities with accompanying
explanation artifacts.  Group-specific thresholds and
reject-option rules are implemented as decision-policy layers
on top of the raw scores, following Egs. (12) and (13). Policy
parameters are versioned and auditable, allowing subsequent
monitoring to attribute fairness movements to either model
updates or threshold adjustments.

Monitoring: Fairness and performance drift are tracked
during validation and post-deployment. The trigger in formula
(4) detects stepwise changes in DP across evaluation windows,
summarizes alert states, recommended actions, and
intervention history. Selection of the drift tolerance &, alert
routing, and human-in-the-loop review are specified in Section
3.5, ensuring consistent governance across centralized and
federated operating modes.

IDP, = DP,_4| > & 4)

Data ingestion separates A from X per Eq. (1); mitigation
spans pre-training reweighing/oversampling, in-training
adversarial debiasing (formula (2)), and post-processing
thresholds (Egs. (12) and (13)); explainability and deployment
produce decisions with reason codes; monitoring applies drift
checks (formula (4)). The federated branch depicts client k
local training with adversary g4, , rounds t = 1...100 with
local epochs E =2, and server-side aggregation A =
FedAvg.

3.2 Bias detection

Metrics: DP, EO, and EOdds are adopted as in Egs. (5)-(7).
DP assesses parity of approval rates across groups in Eg. (5):

_P(P=1]4=0)

PP =14=1) ©)

EO measures parity of true-positive rates among qualified
applicants in Eq. (6):

Eo=P(Y =1y =1,4=0)

-P(Y=1Yy=1,A=1) ©

EOdds aggregates disparities in both true-positive and
false-positive behavior in Eq. (7):

EOdds = |P(Y =1|Y =1,4A=0)
-P(Y=1r=14=1)]
+|P(¥ =1y =0,4A=0)—P(¥
=1y =0,4=1)|

(7

Federated fairness metrics: In the federated track, each
client k computes group-wise confusion matrices and derives
local approval rates and error rates. Only privacy-preserving
summaries are shared: per-group supports and rate estimates
(e.9., approval sy ; = TP, + FP, ., and total sp ; = P, +
Nyiq ). Server-side aggregation forms global metrics from
support-weighted counts rather than averaging ratios. For
example:

TPy ¢,FPy ¢, TNy 4, FN 4.

K
PF(Y —14 = a) _ Yk=1 approvals g q

.
Zlk(=1 totals g,q

)



K
— Zk=1 TPk,a
Zf:l Pk,a

K
— Zk=1FPia

° =
Zlk(=1 Nk,a ’

TPR, ,FPR,

where, TPR refers to True Positive Rate, and FPR indicates
False Positive Rate.

Which are then combined into DP, EO, and EOdds using
the definitions above. Logging stores only aggregated counts
and rates to maintain privacy.

Algorithm 1: Federated Fairness Audit
communication round)
Inputs: target DP band [0.80,1.25]; drift tolerance o;
definitions in Egs. (5)-(7).
For eachround t=1...T:
1. Local computation on each client k
e Compute TPy 4,FPy 4, TNy o, FN,, for each
group a. Derive local rates and local fairness
metrics DP,,EO,,EQOdds, . Transmit only
{TPeaFPeo TN, o, FN o} (or  equivalent
counts).
2. Server-side aggregation
Form Pr(Y =1|A=a), TPR,, and FPR,
using support-weighted sums; compute global
DP, EO, and EOdds.
3. Compliance checks and actions
Compare DP to the target band [0.80,1.25]
(80% rule) and EO, and EOdds to near-zero
targets (with uncertainty bands). Log results; if
drift per formula (4)/Eq. (20) exceeds o, trigger
one of: no-op; threshold adjustment AT per Eq.
(12); retraining; or reject-option handling per
Eq. (13).

(per

Evaluation process: Metrics are computed pre-training to
characterize baseline disparities, during training per epoch
(centralized) or per round (federated) to guide mitigation, and
post-training to quantify residual bias. After deployment, the
same metrics are monitored on rolling windows; drift
detection follows Eq. (4) and thresholding logic in Section 3.5,
with alerts routed to governance for review and action.

3.3 Bias mitigation techniques

Data-level (pre-training): Reweighing adjusts the
empirical loss by assigning each instance a weight based on
the joint distribution of the protected attribute and the label, as

in Eq. (8). Define the group-label weight w, , = %
and minimize a weighted loss in Eq. (8):

L =Yw; - LX), Yi) ®)
Oversampling complements reweighing by increasing
minority-group support until approximate parity is achieved,
targeting as in formula (9):
Ng = Ny )
Synthetic sampling may be applied when raw counts remain
insufficient, with guardrails: generate only within the convex
hull of observed minority-group feature vectors; preserve
label-conditional distributions; prohibit direct use of A or
near-deterministic proxies during synthesis; perform synthesis
on training folds only; and validate that downstream
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calibration and ranking are not distorted by synthetic artifacts.
Model-level (in-training): Adversarial debiasing follows
formula (10):

minE[#(fo(X),Y)]-1 - E[%aas (94 (fe(X)). )] (10)
Optimizing a predictor f0 for the approval task while an
adversary g¢ attempts to infer A from intermediate
representations. The training objective balances prediction
loss and adversarial loss via a trade-off parameter 1. A fairness
regularizer augments the objective as in Eq. (11):
¥ =E[Xf(X),Y)] +aR (11)
where, a = 0.01. The adversary g, is a 2-layer MLP (64-32)
with ReLU activations, gradient-reversal for signal inversion,
and dropout 0.1. A A-sweep {0, 0.1, 0.2, ..., 1.0} traces the
accuracy—fairness frontier and supplies operating points later
selected under explicit constraints. Centralized optimization
uses batch size 1024, learning rate 1 <1073, and early-stopping
patience 5; the federated track mirrors these settings locally
and aggregates with FedAvg for T = 100 rounds with E = 2
local epochs per round. These choices keep optimization stable
while exposing a broad fairness-regularization envelope
suitable for post-hoc selection under policy constraints.

Post-processing:  Decision-policy adjustments refine
deployed behavior after score production. Group-specific
thresholds implement Eq. (12):

Ty =T, + AT (12)
where, AT is tuned on validation data to minimize the EO gap
subject to an AUC decrease < 0.01 (one percentage point).
When borderline uncertainty dominates disparities, a
reject-option band per Eq. (13) introduces a small margin y =
0.02 around the decision boundary: classify and defer or route
to manual review otherwise.

Y=1  ifPY=1X)=2T+y (13)

Thresholds and margins are versioned for auditability and
are applied consistently across centralized and federated
tracks.

Hyper-parameters and schedule (centralized and
federated): Unless stated otherwise, training uses batch size
1024, learning rate 1 <102, and early-stopping patience 5. The
federated protocol applies FedAvg with T 100
communication rounds and E = 2 local epochs per round;
clients adopt the same optimizer and batch size as the
centralized track. These settings interact with the A-grid and o
to produce a family of models spanning differing fairness—
utility trade-offs, enabling principled operating-point selection
under the evaluation protocol.

3.4 Explainable Al component

Global interpretability: Global analysis combines
permutation feature importance and an interpretable surrogate.
Permutation importance measures the loss increase when a
single feature is randomly shuffled, yielding an importance
score I(x;) as formalized in Eq. (14):

105) = E[2(r0) - 2(£(x))] (14)



A surrogate model g is then trained to approximate the
scoring function f by minimizing the discrepancy between
g(X) and f(X) as in formula (15):

miny, (f (X;) — g(X))? 15)

Fidelity is summarized by R? or an equivalent bounded error
metric. Together, these tools characterize system-level
reliance on features and provide a stable global view that
complements fairness diagnostics.

Local interpretability: Instance-level explanations are
produced using three complementary methods. LIME fits a
simple, locally weighted model g around a perturbed
neighborhood of the instance, optimizing the locality-aware
objective:

YrX)(fX) — g(X))? + 2(g) (16)

This offers piecewise-linear insight near the decision point.
SHAP attributes a Shapley value ¢; to each feature using the
cooperative-game formulation in Eq. (17):

[S|t(d=|S|=1)!
b =Zsciangy — 5 U SUED -] A7)
The method provides additivity and consistency, enabling
faithful “reason codes.” Integrated Gradients accumulates
path-integrated gradients from a baseline x’ to the instance X as

in Eq. (18):

af x +a(x—x)) (18)

da

1669 = (5 -x,) |

This is preferred for differentiable deep models where
gradient information is available. Operational guidance: LIME
for quick, human-readable local approximations; SHAP for
axiomatic attributions and ranked reasons; Integrated
Gradients for deep networks requiring gradient-path
attributions.

Composite Interpretability Score: A bounded, composite
score aggregates complementary qualities of explanations,
tied to Egs. (14)-(18): IS = w, - Fidelity(g, f) + w, -
Sparsity,; + wj; - Stability, 5, with w; = 0.50, w, = 0.25,
wz =0.25 ; threshold 7=0.01 on |¢;(x)| (SHAP
magnitude); top-k = 5; bootstraps B = 1000. Components
are computed as follows:

0x;

Y (f(Xi)—g(Xi))z
Y (FX—=)?

Fidelity (g, f) € [0,1], e.g., R? =

. 1
e Sparsity, =1 —E, [E 2 1|0 > T}] [0,1]
(b) ()
- 2 P conr® ool
o  Stabilit =E, |[——— —, 0,1
yk;B x [B(B—l) Zb b’ Ika)(x)UT(b )(X)I] [ ]

where, Tk(b)(x) is the set of top-k features by | ¢;(x) | under
bootstrap b . The Interpretability Score increases with

surrogate  faithfulness, succinct reason sets, and
bootstrap-stable attributions.

Regulatory explanations: Adverse-action narratives
combine SHAP-ranked drivers with threshold logic
formalized as below. A de-identified template is:

I<T=> (19)

Application Denied(Insuf ficient Income)
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3.5 Monitoring and governance

Automated scanner and cadence: Fairness metrics—DP,
EO, and EOdds—are recomputed on a weekly cadence using
rolling windows. Evaluations occur at two granularities: (i)
global aggregates over the full scoring stream and (ii)
per-client aggregates in the federated regime to surface
localized drift. For each evaluation window, prediction
outputs, per-group confusion matrices, and derived rates are
generated; corresponding SHAP attribution vectors and
summary statistics are persisted to an immutable artifact store
alongside model version, data slice identifiers, decision
thresholds, and federated aggregation metadata. This schedule
aligns post-deployment monitoring with the training-time
fairness checks and supports traceability to formula (4) and the
operational monitoring formulation (20):

|IDP, — DP,_4| > & (20)

Drift thresholds and decision rules: The drift rule in
formula (20) is retained with 6 = 0.05 for demographic-parity
movements. DP values within [0.80,1.25] are treated as
in-band (80% rule). For each window and group, bootstrap
confidence intervals (Cls) are computed for DP, EO, and
EOdds using the stored counts; an alert is triggered when the
Cl for DP lies entirely outside [0.80,1.25] or when EO/EOdds
Cls exclude zero. Alert payloads include: metric name,
affected group(s), point estimates with Cls, window
identifiers, current thresholds, and suggested actions (AT
adjustment per Eq. (12), reject-option margin tuning per Eq.
(13), or retraining). All computations rely on
privacy-preserving aggregates produced by the scoring service
and federated clients.

Alert routing and service levels: Alerts are routed
programmatically to model risk management and compliance
queues. An escalation service-level agreement of 5 business
days governs review and sign-off. Each alert results in a case
record with: evidence artifacts (metrics, Cls, SHAP
summaries), proposed remediation, reviewer determination,
and effective-date timestamps. Overrides and deferrals are
logged with rationale and risk classification; follow-up
evaluations verify remediation efficacy at the next scheduled
window. Human review and policy alignment are integral
steps of the governance loop described for deployed systems.

Runbook of remediations: When alerts are confirmed,
actions follow a minimal-impact sequence: (1) threshold
recalibration via AT to restore DP/EO toward target bands
while constraining AUC change; (2) reject-option activation
with a small margin y to reduce boundary-region disparities;
(3) scheduled retraining with the selected A operating point
from Section 3.3 and refreshed data; (4) federated-specific
measures, such as client-level thresholding or reweighting,
when drift localizes to a subset of clients. Post-action
monitoring verifies resolution using the same Cl-based
decision rules.

Dashboard and reporting: The monitoring dashboard
presents three synchronized panels backed by the audit store:
Panel A: approval-rate trends by protected group with a
shaded DP target band [0.80,1.25].

Panel B: drift alerts derived from formula (20),
visualizing 6 = 0.05 bands, recent violations, and
time-to-resolution.
Panel C: an action log enumerating threshold changes
(AT), reject-option activations, retraining events, and
reviewer outcomes.



Artifacts refresh weekly; data sources are scoring outputs
(predictions, per-group counts) and fairness audit logs
(metrics, Cls, actions).

Panel A: approval-rate trends by protected group with DP
target band [0.80,1.25]. Panel B: fairness-drift alerts from
formula (20) with 6 = 0.05 bands and current alert states. Panel
C: action log summarizing applied mitigations (AT thresholds,
reject-option), retraining events, and reviewer dispositions;
weekly refresh; data from model-scoring outputs and fairness
audit logs.

4. EXPERIMENTAL STUDY

The study examines how the FAIRE framework detects and
corrects bias in financial decision-making. The Financial
Transactions Dataset is used for evaluation. A 4-fold cross-
validation method ensures each model is tested on different
data splits. The study compares FAIRE with MOEL [8] and
FAFL [10], analyzing fairness adjustments, classification
accuracy, and processing stability under different dataset sizes.
Performance metrics, including AUC-ROC, precision, recall,
and F1-score, are measured. The results highlight variations in
bias mitigation and decision transparency across the models.

4.1 Dataset

The evaluation relies on a loan-application cohort
composed of conventional, first-lien, 1-4 family,
owner-occupied, home-purchase applications. The target Y
encodes originated — 1 and denied — 0; applications with
withdrawn, incomplete, or approved-not-accepted outcomes
are excluded. A single protected attribute A is analyzed per
experiment (race, ethnicity, sex, or age). Feature families

include loan_amount, applicant/co-applicant  income,
debt-to-income  (DTI) ratio, loan-to-value (LTV),
interest_rate, property and geography indicators, lender

identifier (LEI), and credit score (with missingness
documented). Preprocessing applies: (i) imputation for key
numerics with missing-indicator flags; (ii) one-hot or ordinal
encoding for categoricals; (iii) scaling of continuous variables;
and (iv) de-proxying transformations (e.g., coarsened
geography) to reduce leakage of A. Train/validation/test splits
(70%/10%/20%) are stratified by A and Y. Table 1 dataset
fairness surveys inform attribute selection and potential bias
sources [5, 11].

4.2 Evaluation protocol

Metrics: Performance is measured using AUC-ROC, F1,
precision, recall, and accuracy. Fairness is assessed with DP,
EO, and EOdds as defined in Egs. (5)-(7); results are reported
both at the model level and by protected group. Interpretability
is summarized with the Interpretability Score that aggregates
surrogate fidelity, sparsity, and stability as formalized in
Section 3.4 (Egs. (14)-(19)).

Statistical procedures: Uncertainty is quantified with 95%
bootstrap confidence intervals (B > 1000 resamples) for
AUC-ROC, FI1, and fairness metrics. McNemar’s test
evaluates paired accuracy differences. DeLong’s test (or a
permutation alternative where applicable) evaluates
AUC-ROC differences. Permutation/bootstrap tests evaluate
differences in DP, EO, and EOdds between operating points
and models. Multiple comparisons are handled by reporting
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Cls and exact p-values; claims rely on intervals and paired
tests rather than unadjusted point estimates.

Model selection: For mitigation strength, the trade-off
parameter A is swept over {0, 0.1, 0.2, ..., 1.0}. Operating
points are chosen via constrained optimization: maximize
AUC-ROC subject to a DP band target of [0.80,1.25] and
stability —constraints derived from validation CIs.
Threshold-based post-processing candidates (AT, y) follow the
procedure defined in Section 3.3 (Egs. (12) and (13));
selections must satisfy the same DP band while limiting
AUC-ROC change.

Baselines: The comparison set comprises FAIRE, MOEL
(multiobjective  fairness  optimization) [8], FAFL
(fairness-aware federated learning) [10], and standard
classifiers—Ilogistic regression (LR), gradient-boosted trees
(GBT), and a Feed Forward Neural Network/Deep Neural
Network (FFNN/DNN)—each evaluated with and without
reweighing and adversarial debiasing. Methods are specified
in Section 4.2.1 with hyper-parameters, early-stopping, and
seeds to ensure reproducibility consistent with evaluation
guidance [5, 11].

A complete description of baseline configurations appears
in Section 4 (Table 2).

Baselines specification: MOEL jointly optimizes
predictive utility and fairness by augmenting the objective
with an explicit fairness term and tuning A over the specified
grid [8]. FAFL implements client-local debiasing with
server-side aggregation in a federated regime, auditing
fairness at each round using privacy-preserving counts [10].
Standard baselines (LR, GBT, FFNN) are evaluated in plain
form and with data-level reweighing and in-training
adversarial debiasing, following the mitigation stages in
Section 3.3.

All mitigation constructs, thresholds, and fairness
definitions referenced here follow Section 3 (Egs. (1)-(20));
empirical results for the above baselines are reported in
Section 4 using the metrics and statistical tests specified in this
protocol.

4.3 Results and discussion

Classification performance: Table 3 summarizes
centralized performance for principal models and standard
baselines. FAIRE attains the highest AUC-ROC with balanced
precision and recall; MOEL performs competitively; FAFL
trails modestly. These outcomes establish a utility reference
for subsequent fairness comparisons and trade-off analysis
grounded in multi-stage mitigation and statistical testing [1, 2,
5, 8] (see Figures 2 to 9).

Fairness outcomes: Table 4 reports DP, EO; TPR gap, and
EOdds before and after mitigation for each model. FAIRE
reduces DP disparity from 0.74 to 0.92 and lowers EO/EOdds
to 0.05/0.07 with <1 pp AUC change relative to competitive
baselines; MOEL and FAFL achieve smaller, yet material,
improvements. Confidence intervals derive from bootstrap
with B > 1000, consistent with the protocol in Section 4.2 [1,
2, 5].

Table 5 provides group-wise TPR/FPR and supports for the
FAIRE operating point used in Table 4 (race attribute). EO
equals the absolute TPR difference; EOdds equals |[ATPR| +
|AFPR|. The protected-group FPR remains slightly higher,
indicating residual disparity concentrated near the decision
boundary, a case where threshold calibration and reject-option
tuning (Section 3.3) are most effective [1, 2].



Table 1. Dataset characteristics

Field Value Notes
Applications (N) 800 000 post-filter cohort
# features (after encoding) 110 includes one-ho_t categorical
expansions
Approval rate P(Y = 1) 0.62 originated / (originated + denied)

Protected attribute (A)

Race supports
Ethnicity supports
Sex supports
Age-band supports

Missingness (key fields)

Race, ethnicity, Sex, age

White: 480 000; Black: 120 000; Asian: 70 000; Other: 130 000
Not-Hispanic: 600 000; Hispanic: 160 000; Other/Unspecified: 40 000
Male: 420 000; Female: 380 000
18-34: 120 000; 35-64: 600 000; 65+: 80 000
Credit score: 18%; DTI: 12%; Interest rate: 9%

analyzed one at a time
sumsto N
sumsto N
sumsto N
sumsto N

impute + indicator flags

Splits Train: 560 000; Valid: 80 000; Test: 160 000 stratified by A, Y
Table 2. Baseline configurations (re implementable)
Model Mitigation .
Family Setting Key Hyper-Parameters Early-Stopping Seeds Notes
. — patience =5 Class weights enabled if
LR None £2 penalty; C tuned on validation (val-loss) {42, 43, 44} imbalance > 1.5 times
LR Reweighing WeIghts wa, Fs)ZtrtiEn%'s(S); same LR patience = 5 {42, 43, 44} Stratified by A, Y
- 2-layer adversary (64-32), dropout 0.1; . _ Gradient-reversal; o= 0.01
LR Adversarial 2€10...1.0} patience =5 {42, 43, 44} (Eq. (11))
GBT None 500 trees; depth 5_6; 1 = 0.05; subsample early-stoEplng £7.8, 9} Learning-rate schedule on
=038 rounds =50 plateau
GBT Reweighing sample-weight = w.,, (Eq. (8)) ef;l(r)lliﬁ?gpégg {7, 8,9} Same tree budget
. post-hoc adversary on learned scores; . _ Adversary as 2-layer MLP
GBT Adversarial A-sweep patience =5 {7,8,9} (64-32)
3 %[256,128,64], ReL U, dropout 0.2; . _ Adam optimizer; norm
FFNN None batch = 1024: Ir = 1e3 patience =5 {21, 22, 23} clipping
FFNN Reweighing as above + weights w,,, patience =5 {21, 22, 23} —
. as above + adversary (64-32), dropout . _ o =0.01 regularizer
FFNN Adversarial 0.1; A-sweep patience =5 {21, 22, 23} (Eq. (11)
MOEL S utility—fairness scalarization; . _ Exact fairness surrogate
[8] multiobjective A€{0...1.0}; same batch/Ir patience =5 {101, 102, 103} matches Eqgs. (5)-(7)
K =50 clients; FedAvg; T = 100 rounds; round-wise val; Support-weighted fairness
FAFL Federated + E =2 local epochs; client batch = 1024; stop if AAUC < PP ghte )
- a3 3 {11, 12, 13} aggregation;
[10] Adversarial Ir = 1e73; local adversary (64-32), le* over 10 . -
dropout 0.1; A-sweep rounds privacy-preserving counts
Table 3. Centralized classification metrics (test set)
Model AUC-ROC (95% CI) Accuracy Precision Recall F1
LR 0.82[0.81, 0.83] 0.79 0.78 0.74 0.76
GBT 0.86 [0.85, 0.87] 0.83 0.82 0.80 0.81
FFNN 0.85 [0.84, 0.86] 0.82 0.81 0.79 0.80
MOEL [8] 0.87 [0.86, 0.88] 0.84 0.83 0.81 0.82
FAFL [10] 0.85 [0.84, 0.86] 0.82 0.81 0.78 0.79
FAIRE 0.88 [0.87, 0.89] 0.85 0.84 0.83 0.83
Table 4. Fairness metrics before/after mitigation (centralized)
Model Stage DP 1 EO (TPR Gap) | EOdds | 95% CI Method
FAIRE Pre 0.74 [0.72, 0.76] 0.16 [0.15, 0.17] 0.23[0.21, 0.25] Bootstrap
Post 0.92 [0.90, 0.94] 0.05 [0.04, 0.06] 0.07 [0.06, 0.09] Bootstrap
MOEL Pre 0.76 [0.74, 0.78] 0.15[0.14, 0.16] 0.24 [0.22, 0.26] Bootstrap
Post 0.88 [0.86, 0.90] 0.07 [0.06, 0.08] 0.12 [0.10, 0.13] Bootstrap
EAFL Pre 0.72 [0.70, 0.74] 0.18 [0.17, 0.19] 0.26 [0.24, 0.28] Bootstrap
Post 0.87 [0.85, 0.89] 0.08 [0.07, 0.09] 0.14 [0.12, 0.15] Bootstrap
Table 5. Per group rates (race; centralized FAIRE, post mitigation)
Group (A) Support TPR (95% CI) FPR (95% Cl) Notes
0 (reference) 480 000 0.78 [0.77, 0.79] 0.16 [0.15, 0.17] White
1 (protected) 120 000 0.73[0.72,0.74] 0.18[0.17,0.19] Black
**EQ ATPR — 0.05
**EQdds ATPR AFPR
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Figure 4. Global SHAP importance

Trade-off visualization: Figure 2 charts AUC versus DP
across the A-sweep, with EO/EOdds shown as insets. The
selected operating point satisfies the DP band [0.80,1.25] with
minimal utility loss, illustrating the fairness—utility frontier
central to multi-objective mitigation [5, 8]. Figure 3 presents
group-wise calibration; calibration alignment improves
post-mitigation, reducing over-prediction for the protected
group at mid-scores.

Figure 2 presents AUC versus DP across A € {0, 0.1, ...,
1.0}; EO/EOQdds insets; operating point highlighted that meets
the DP band with minimal AUC change.

Figure 3 shows reliability curves by protected group with
Brier summaries and 95% bands.

Global explanations: The updated SHAP analysis (Figure
4) identifies debt-to-income ratio, credit score, loan-to-value,
and income as primary drivers. These drivers align with
adverse-action narratives; for example, if income I falls below
threshold T, the explanation follows the threshold form in
formula (19) (e.g., | < T = Application Denied (Insufficient
Income)). The combination of global importance and local
attributions (SHAP/LIME/IG) supports system-level audits
and case-level reason codes [5, 6].

Figure 4 shows top features by mean |SHAP| with brief
economic rationale (e.g., higher DTI and LTV increase denial
risk; higher credit score and income decrease it).

Synthesis and comparison: Relative to MOEL and FAFL,
FAIRE offers larger improvements in DP, EO, and EOdds
while maintaining competitive AUC-ROC and F1. MOEL
closes gaps effectively but at a higher utility cost near stricter
A; FAFL shows smaller fairness gains and wider uncertainty
under non-11D-like partitions, consistent with centralized—
federated differences analyzed later. Figure 2 highlights the
operating regions where FAIRE dominates the Pareto frontier,
providing actionable choices for deployment within the target
DP band [1, 2, 5, 8].

Federated setting: A federated configuration partitions the
cohort into K = 50 clients by Legal Entity Identifier (LEI) or
state/ Metropolitan Statistical Area (MSA). Client sample
sizes satisfy n, € [3.0 x 103,4.5 x 10*] with a median near
1.5 x 10*. Protected-group prevalence varies across clients
from 10% to 45%, inducing non-1ID label and attribute
distributions. Local training applies adversarial debiasing
under the same objective as in centralized experiments;
aggregation uses FedAvg with T =100 communication
rounds and E = 2 local epochs per round. Global fairness is
computed from privacy-preserving client summaries via
support-weighted aggregation of counts, and fairness drift is
monitored per formula (20) with § = 0.05 [5, 10, 11] (see
Table 6).

Table 6. Federated outcomes (global and client snapshots; post mitigation)

Metric Global (95% CI) Client (Min Support) Client (Median) Client (Max Support)
AUC-ROC 0.87 [0.86, 0.88] 0.83 0.86 0.88
DP (approval-rate ratio) 0.90 [0.88, 0.92] 0.83 0.89 0.93
EO (TPR gap) 0.06 [0.05, 0.07] 0.10 0.07 0.05
Eodds 0.11[0.10, 0.12] 0.18 0.12 0.09

Figure 5 shows global DP, EO, and EOdds per round with
shaded & = 0.05 drift bands from formula (20); AUC-ROC
overlaid; stabilization of fairness and utility by rounds 60-80;
annotations mark transient excursions for low-support clients.

Convergence behavior: Training converges smoothly
under FedAvg, with global AUC-ROC within 0-2 pp of
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centralized utility and fairness metrics approaching centralized
post-mitigation values by late rounds. Early-round variance in
DP and EO reduces as support-weighted aggregation dampens
client-level noise. Residual oscillations occur when client
updates originate from small protected-group supports;
bootstrap intervals widen accordingly, but drift alerts remain



within § bands after stabilization [5, 10].

Figure 6 summarizes how predictive accuracy varies with
dataset size across the evaluated methods. Figure 7 further
decomposes performance by applicant subtype (credit score
tier < income band), illustrating heterogeneity in accuracy
across subpopulations. Figure 8 provides a consolidated radar-
style comparison across key utility/fairness/interpretability
criteria to support trade-off selection.

ROC curves
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Figure 6. Accuracy vs. dataset size
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Figure 7. Accuracy by applicate subtype

Non-11D effects: Variability in group prevalence and
feature distributions across clients introduces heterogeneity in
local TPR/FPR. Clients with 10-15% protected-group share
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exhibit larger EO and EOdds fluctuations until sufficient
rounds accumulate. Support-weighted aggregation mitigates
bias in global estimates relative to naive averaging and yields
consistent DP ratios across communication rounds [10, 11].

Centralized—federated gap: Compared to centralized
post-mitigation results, the federated configuration attains
slightly lower utility (AUC-ROC =~ 0.87 vs. 0.88) and
modestly wider fairness intervals (e.g., DP 0.90 [0.88,0.92] vs.
0.92 [0.90,0.94]) as shown in Figure 9. EOdds remains close
to centralized levels, with most divergence attributable to
higher FPR variance in low-support clients. The gap aligns
with expectations under non-1ID partitions and restricted
communication, and remains within tolerance for deployment
when monitored with formula (20) and governed by threshold
policies in Section 3.3 [5, 10, 11].

Comparative radar
Fairness

— FARE
~—— MOEL
— FARL

{'(

Ulvk;ml‘on
\
A
Sy —
Interpretability
Figure 8. Comparative radar
Federated round-wise fairness and utility
1.0
==
0.8 4
" — AUC-ROC
T=u 0.6 —— DP ratio
° —— EO(TPR gap)
,E —— EOdds
0.4
= DP target band [0.80, 1.25]
0.2
0.0 : : ; T T
0 20 40 60 80 100

Communication round

Figure 9. Federated round wise fairness and utility

Ablations and sensitivity: Ablations isolate the
contribution of each mitigation stage—reweighing,
adversarial debiasing, and post-processing—and quantify
robustness to  missing-value  handling, de-proxying
granularity, and explanation stability. Variants comprise
reweighing only, adversarial only, post-processing only, and
full FAIRE. Metrics follow Egs. (5)-(7) for DP, EO, and
EOdds; interpretability is summarized by Interpretability
Score components (fidelity, sparsity, stability) from Section
3.4. Methodological anchors include data-, in-, and
post-training mitigation and multiobjective optimization for
fairness [1, 2, 8, 13, 14] (see Table 7).



Table 7. Ablation summary (centralized, test set)

AUC-ROC

Variant (95% Cl)

DP 1 (95% Cl)

EO (TPR Gap) |
(95% CI)

EOdds |
(95% ClI)

Interpretability Score
(Fidelity / Sparsity / Stability)

Reweighing only
Adversarial only
Post-processing only
Full FAIRE

0.86 [0.85,0.87]
0.87 [0.86,0.88]
0.86 [0.85,0.87]
0.88 [0.87,0.89]

0.89 [0.87,0.91]
0.90 [0.88,0.92]
0.91[0.89,0.93]
0.92 [0.90,0.94]

0.08 [0.07,0.09]
0.06 [0.05,0.07]
0.07 [0.06,0.08]
0.05 [0.04,0.06]

0.14 [0.13,0.15] 0.81/0.62/0.68
0.12 [0.11,0.13] 0.83/0.58/0.74
0.12 [0.11,0.13] 0.82/0.70/0.61
0.07 [0.06,0.09] 0.86/0.72/0.80

Findings from ablations: Monotone improvement in
fairness is observed from single-stage variants to full FAIRE:
DP rises from 0.89-0.91 to 0.92, EO declines from 0.08-0.06
to 0.05, and EOdds declines from 0.14-0.12 to 0.07, while
AUC-ROC remains within 0.01-0.02 of the strongest baseline.
Reweighing yields the largest DP gain per unit utility cost,
matching expectations for distributional balancing at the data
layer [1, 13]. Adversarial debiasing delivers the strongest EO
and EOdds reductions, reflecting its focus on representation
independence from the protected attribute [2, 8].
Post-processing effectively trims residual disparities near the
decision boundary with minimal AUC movement, consistent
with threshold-adjustment theory [13, 14]. The full pipeline
achieves the best combined parity with modest AUC change
and the most stable explanations (Interpretability Score
stability = 0.80).

Missing-value handling: Removing missing-indicator
flags (impute-only) reduces explanation stability by =
0.04 and slightly worsens EO by +0.01, with negligible
AUC change (< 0.002). Restoring indicators recovers
stability and EO, indicating that explicit missingness
signals support both interpretability and fairness
control [1, 5].
De-proxying (geography granularity): Coarsening
geography from fine-grained to regional units improves
DP by = +0.03 and reduces EOdds by = 0.02, with an
AUC movement < 0.003. Effects align with
proxy-leakage  expectations;  reweighing  and
adversarial training compensate for minor utility loss
[2, 13].
Explanation stability: Top-k SHAP Jaccard (k =5, B
1000) vyields stability values consistent with
Interpretability Score: 0.68 (reweighing only), 0.74
(adversarial only), 0.61 (post-processing only), 0.80
(full FAIRE). Higher stability under the full pipeline
indicates more reproducible local rationales alongside
improved parity.

Synthesis: Per-unit AUC cost, adversarial debiasing drives
the largest EO/EOdds reduction; reweighing most efficiently
improves DP; post-processing addresses boundary-region
disparities. Joint application in FAIRE produces superior
parity across DP/EO/EQdds with minimal utility change and
the most stable explanations, establishing the preferred
operating configuration for subsequent deployment and
monitoring [1, 2, 8, 13, 14].

5. CONCLUSIONS

At the selected operating point, the study demonstrates
measurable improvements in group equity with minimal utility
cost. DP rises from 0.74 [0.72,0.76] to 0.92 [0.90,0.94], the
EO (TPR) gap declines from 0.16 [0.15,0.17] to 0.05
[0.04,0.06], and Equalized Odds decreases from 0.23
[0.21,0.25] to 0.07 [0.06,0.09]. AUC-ROC remains high at
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0.88 [0.87,0.89], within 0.5 percentage points of the
high-utility setting. The fairness—utility frontier indicates
feasible operating regions that satisfy a demographic-parity
target band of [0.80,1.25] without material loss of predictive
accuracy. Federated training with 50 clients achieves
performance and fairness close to centralized post-mitigation
while accommodating non-1ID client distributions. Final
global outcomes reach AUC-ROC 0.87 [0.86,0.88], DP 0.90
[0.88,0.92], EO 0.06 [0.05,0.07], and EOdds 0.11 [0.10,0.12];
confidence intervals widen for clients with limited
protected-group support. Support-weighted aggregation of
client summaries mitigates small-sample volatility and yields
stable global metrics, consistent with observations in
federated-fairness and dataset-bias surveys. Interpretability
outcomes indicate improvements in a composite
Interpretability Score through higher surrogate fidelity,
sparser reason sets, and more stable attributions. Global
drivers—such as debt-to-income ratio, credit score, and
loan-to-value—align  with domain expectations, and
threshold-style explanations supply adverse-action reasons
derived from the leading local contributors. Continuous
fairness monitoring with a fixed drift tolerance of 0.05
maintains in-band behavior over rolling evaluation windows,
supporting governance and auditability. Limitations include
potential proxy leakage and missingness in key variables, the
focus on single-attribute fairness rather than intersections,
temporal and lender heterogeneity that may affect
transportability, and communication/compute overheads in
federated settings. Future work includes adaptive thresholding
and A-selection under explicit constraints, integration of
differential privacy in federated pipelines, intersectional and
causal analyses of disparities, automated remediation policies
triggered by monitoring alerts, and longitudinal deployments
with regulatory audits. To sum up, FAIRE achieves in-band
fairness with minimal utility change across centralized and
federated regimes while producing audit-ready explanations
and sustaining an operational monitoring loop suitable for
real-world credit decisioning.
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