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Loan‑approval prediction is typically considered while auditing a single protected 

attribute at a time (race, ethnicity, sex, or age). Fairness‑Aware, Interpretable, Resilient, 

and Equitable (FAIRE) is a multi‑stage pipeline that combines data‑level balancing, 

in‑training debiasing, and post‑processing thresholding, which is complemented by 

global and local explainability and continuous fairness monitoring with a drift trigger. 

The evaluation spans centralized and federated training with privacy‑preserving 

aggregation using Home Mortgage Disclosure Act (HMDA) loan‑level data. At the 

selected operating point, fairness improves substantially: Demographic Parity (DP) 

rises from 0.74 [0.72, 0.76] to 0.92 [0.90, 0.94]; the Equal Opportunity (EO) gap 

declines to 0.05 [0.04, 0.06]; and Equalized Odds (EOdds) decreases to 0.07 [0.06, 

0.09]. The change in Area under the curve—Receiver-operating characteristic curve 

(AUC‑ROC) changes by ≤ 0.5 percentage points relative to the best utility setting. In 

the federated regime (50 clients, Non-Independent and Identically Distributed (non‑IID) 

partitions), AUC‑ROC remains within 1 percentage point of centralized utility, while 

fairness remains close to centralized post‑mitigation levels (e.g., DP ≈ 0.90 [0.88, 0.92], 

EO ≈ 0.06 [0.05, 0.07], EOdds ≈ 0.11 [0.10, 0.12]), with wider intervals for clients with 

small protected‑group support sample sizes. A composite Interpretability Score 

increases through higher surrogate fidelity, sparser reason sets, and more stable 

attributions; SHapley Additive exPlanations (SHAP), Local Interpretable Model-

agnostic Explanations (LIME), and Integrated Gradients produce adverse‑action‑ready 

reason codes consistent with threshold‑style explanations. The resulting pipeline 

delivers measurable fairness gains with minimal utility cost across centralized and 

federated settings while maintaining transparent, monitorable credit decisions. 
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1. INTRODUCTION

Artificial intelligence increasingly influences financial 

decisions, including loan approvals and credit scoring, yet 

historical and structural biases embedded in data and processes 

can propagate through predictive models, creating disparate 

outcomes across demographic groups [1-5]. Regulatory and 

ethical expectations further require decisions to be transparent 

and explainable, with reasoned, auditable narratives for 

adverse actions and with safeguards that balance fairness and 

predictive utility [5-7]. The task considered is loan-approval 

prediction with feature set X, protected attribute A (analyzed 

one at a time: race, ethnicity, sex, or age), and target Y 

(approval vs. denial). Fairness is assessed using Demographic 

Parity (DP), Equal Opportunity (EO), and Equalized Odds 

(EOdds).  

Single-stage debiasing and post-hoc fixes are insufficient to 

ensure durable equity in operational settings because bias can 

re-enter through data shifts, proxy features, or inconsistent 

thresholds; deployment-time monitoring and governance are 

therefore required to maintain fairness without eroding 

predictive performance [2, 8, 9]. Beyond centralized 

modeling, privacy, regulatory, and organizational constraints 

motivate training regimes where data remain local and only 

model updates are aggregated, introducing additional fairness 

considerations under non-IID distributions [10, 11]. These 

needs call for end-to-end frameworks that integrate mitigation 

across the model lifecycle and connect technical interventions 

to compliance-oriented explanations and controls.  

Fairness‑Aware, Interpretable, Resilient, and Equitable 

(FAIRE) addresses these challenges as a multi-stage pipeline. 

At the data level, representation is balanced via reweighing 

and sampling; at the in-training level, adversarial debiasing 

and fairness-regularized objectives reduce dependence on 

sensitive attributes; at the post-processing level, calibrated, 

group-specific thresholds and reject-option rules align 

decisions with policy constraints. Transparency is supported 

by global and local explainability—permutation importance, 

interpretable surrogates, LIME, SHAP, and Integrated 

Gradients to generate reason codes suitable for adverse-action 

notices [6]. To accommodate organizational data boundaries, 

a federated learning (FL) regime enables client-local training 
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with privacy-preserving aggregation while auditing fairness at 

each round [6, 10].  

The contributions of the study are listed below: 

• End-to-end framework with numeric fairness reporting 

using DP, EO, and EOdds. 

• Federated evaluation under non-IID client partitions 

with per-round support-weighted fairness aggregation 

[10]. 

• Composite Interpretability Score that synthesizes 

surrogate fidelity, explanation sparsity, and stability, 

grounded in model-agnostic and model-specific 

Explainable AI (XAI) [6]. 

• Reproducible baselines and statistical testing aligned to 

prior art, enabling credible comparisons under clearly 

specified protocols [5, 8, 11].  

 

 

2. RELATED WORK 

 

Research on algorithmic fairness in credit decisioning spans 

data-level, in-training, and post-processing interventions. 

Data-level methods include reweighing and oversampling to 

rebalance group–label distributions before optimization [1, 2, 

5, 12-14]. In-training approaches commonly employ 

adversarial debiasing and fairness-regularized objectives to 

discourage representations predictive of protected attributes 

while preserving task performance [1, 2, 5, 8]. Post-processing 

techniques calibrate group-specific thresholds or introduce 

reject-option bands to reduce residual disparities after scoring 

[13-17]. Evaluation typically reports DP, EO, and EOdds 

alongside standard classification measures, enabling explicit 

fairness–utility trade-off analysis [1, 2, 5]. This study adopts 

those metrics and mitigation stages within a single pipeline to 

ensure consistency across training and deployment.  

FL enables client-local training with periodic aggregation, 

reducing the need to centralize data while introducing fairness 

considerations under non-IID client distributions [10]. 

Fairness-aware FL variants combine local debiasing (e.g., 

adversarial objectives) with server-side aggregation of 

privacy-preserving statistics, aiming to maintain or improve 

group equity without sharing raw records [10]. Surveys also 

highlight the importance of weighting by client and group 

support to avoid biased global metrics when client cohorts 

differ in size or composition [5, 11]. These insights motivate 

the support-weighted aggregation of group rates used later to 

compute global DP/EO/EOdds and to trigger actions under the 

monitoring logic.  

XAI underpins transparency and accountability in 

high-stakes credit decisions. Global analyses—permutation 

feature importance and interpretable surrogates—summarize 

model-level reliance on drivers of approval risk [6]. Local 

explanations such as LIME, SHAP, and Integrated Gradients 

provide instance-level attributions suitable for reason-code 

generation and adverse-action narratives in regulated settings 

[6, 18, 19]. The combination of global and local tools supports 

both system diagnostics and case-specific justification, 

forming the basis for the Interpretability Score later defined 

from fidelity, sparsity, and stability components.  

Lifecycle-oriented frameworks emphasize sociotechnical 

governance, continuous fairness assessment, and 

human-in-the-loop review for model changes, threshold 

adjustments, and retraining [9, 20]. These perspectives align 

with fairness surveys that catalog bias sources and stress 

ongoing monitoring rather than single-shot mitigation [5]. The 

operationalization in this work—periodic audits, drift 

thresholds, and auditable policy layers—follows such 

governance guidance and ties directly to the monitoring 

construct formalized later [21, 22].  

FAIRE integrates the three mitigation stages with XAI and 

monitoring, and is compared against baselines chosen for 

methodological coverage and reproducibility. Multiobjective 

evolutionary learning (MOEL) corresponds to multi-objective 

fairness optimization where predictive utility and fairness are 

jointly optimized [8]. Fairness-Aware Federated Learning 

(FAFL) reflects fairness-aware federated learning that applies 

client-local debiasing with aggregated coordination [10]. In 

addition, standard baselines—logistic regression, 

gradient-boosted trees, and neural networks with and without 

fairness interventions—anchor comparisons and support 

statistical testing consistent with survey recommendations on 

rigorous evaluation design [5, 11]. This mapping clarifies the 

role of each comparator and situates results within established 

lines of work.  

Prior work demonstrates effective components—

rebalancing data, adversarial objectives, calibrated thresholds; 

federated training with privacy-preserving aggregation; and 

global/local XAI for transparency—but these elements are 

seldom unified with deployment-time governance in a single, 

auditable framework [1, 2, 5, 6, 8-10]. FAIRE combines 

multi-stage mitigation with FL-aware auditing, explanation 

tooling, and lifecycle monitoring, leveraging the fairness 

metrics to quantify trade-offs and to guide operational 

controls.  

 

 

3. METHODS AND MATERIALS 

 

Let the dataset be 𝐷 = {(𝑋𝑖 , 𝐴𝑖, 𝑌𝑖)}𝑖=1
𝑁 , where 𝑋  denotes 

predictive features, 𝐴 denotes a single protected attribute 

considered per analysis (race, ethnicity, sex, or age), and 𝑌 

denotes the loan-approval outcome (originated vs. denied), as 

defined in Eq. (1).  

Two training regimes are employed (detailed in Section 

3.1). The centralized track trains a single model on pooled data 

with fairness-aware objectives and post-processing as 

specified in Section 3.3. The federated track distributes 

training across clients that update local models and 

periodically aggregate parameters; both regimes feed the same 

bias-detection, explainability, and monitoring components 

described in Sections 3.2–3.5. 

Fairness is evaluated using DP, EO, and EOdds, defined in 

Eqs. (5)-(7). These metrics are computed pre-training to 

characterize historical disparities, during training to guide 

mitigation, and post-training to quantify residual bias; 

corresponding results are reported in Section 4 alongside 

classification and interpretability outcomes. 

 

3.1 Architecture overview 

 

Figure 1 shows the FAIRE pipeline as an integrated 

sequence of modules: data ingestion and preprocessing, 

bias-mitigation layers (pre-, in-, and post-training), 

explainability, deployment and decisioning, and monitoring 

and governance. During ingestion, sensitive attributes A are 

separated from predictive features X in accordance with Eq. 

(1), and feature transformation procedures reduce proxy 

leakage while preserving predictive signal. Typical 

transformations include coarsening or binning highly 
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identifying variables, constrained encodings, and leakage 

checks to ensure that A does not re-enter the modeling stack 

through correlated surrogates.  

 

𝐷 = {(𝑋𝑖 , 𝐴𝑖, 𝑌𝑖)}𝑖=1
𝑁  (1) 

 

 
 

Figure 1. FAIRE framework pipeline 

 

Centralized track: A single predictor 𝑓𝜃  is trained 

end-to-end with an adversary 𝑔𝜙 that attempts to infer 𝐴 from 

the learned representation. The joint objective in formula (2) 

balances prediction loss against the adversary’s loss via the 

trade-off parameter 𝜆, encouraging 𝑓𝜃 to discard information 

predictive of 𝐴  while retaining signal for 𝑌 . Data-level 

mitigation (reweighing/oversampling) may be applied before 

training, and a fairness regularizer may be included in the loss 

as specified later in Section 3.3. After training, group-specific 

operating thresholds and a reject-option band can be applied 

to the centralized scores following Eqs. (12) and (13).  

Federated track: Data remain local to each client 𝑘. Each 

client trains a local predictor 𝑓𝜃𝑘
 with a local adversary 𝑔𝜙𝑘

 

under the same objective as formula (2), using local data 

shards and identical preprocessing/mitigation rules. Model 

updates are transmitted to a coordinator that aggregates client 

parameters using FedAvg; unless otherwise specified, the 

protocol uses 𝑇 = 100  communication rounds with 𝐸 = 2 

local epochs per round. Only model updates or parameters are 

shared—no raw records, explanations, or identifiers. After 

each aggregation, the coordinator evaluates global fairness 

diagnostics using privacy-preserving summaries and, when 

needed, recommends calibrated group-specific thresholds 

consistent with Eqs. (12) and (13). This two-track design 

enables consistent fairness controls irrespective of training 

regime while preserving locality of data.  

 

𝑚𝑖𝑛
𝜃

𝔼[ℒ(𝑓𝜃(𝑋), 𝑌)]−𝜆 ⋅ 𝔼[ℒ𝑎𝑑𝑣(𝑔𝜙(𝑓𝜃(𝑋)), 𝐴)] (2) 

 

𝜙𝑗 = ∑  𝑆⊆{1,…,𝑑}∖{𝑗}
|𝑆|!(𝑑−|𝑆|−1)!

𝑑!
[𝑓(𝑆 ∪ {𝑗}) − 𝑓(𝑆)]  (3) 

 

Explainability layer: Explanations are produced at global 

and local levels for either track. Global diagnostics include 

permutation importance and surrogate modeling (Eqs. (14) 

and (15)), supporting system-level audits of feature influence 

and fidelity. Local diagnostics include LIME, SHAP, and 

Integrated Gradients (Eqs. (16)-(18)), yielding per-applicant 

reason codes and ranked contributions suitable for compliance 

review and adverse-action communication. The explainability 

interface is identical across tracks and attaches to the scoring 

output, enabling uniform monitoring and reporting.  

Deployment and decisioning: The scoring service outputs 

calibrated approval probabilities with accompanying 

explanation artifacts. Group-specific thresholds and 

reject-option rules are implemented as decision-policy layers 

on top of the raw scores, following Eqs. (12) and (13). Policy 

parameters are versioned and auditable, allowing subsequent 

monitoring to attribute fairness movements to either model 

updates or threshold adjustments.  

Monitoring: Fairness and performance drift are tracked 

during validation and post-deployment. The trigger in formula 

(4) detects stepwise changes in DP across evaluation windows, 

summarizes alert states, recommended actions, and 

intervention history. Selection of the drift tolerance 𝛿 , alert 

routing, and human-in-the-loop review are specified in Section 

3.5, ensuring consistent governance across centralized and 

federated operating modes.  

 
|𝐷𝑃𝑡 − 𝐷𝑃𝑡−1| > 𝛿 (4) 

 

Data ingestion separates 𝐴 from 𝑋 per Eq. (1); mitigation 

spans pre-training reweighing/oversampling, in-training 

adversarial debiasing (formula (2)), and post-processing 

thresholds (Eqs. (12) and (13)); explainability and deployment 

produce decisions with reason codes; monitoring applies drift 

checks (formula (4)). The federated branch depicts client 𝑘 

local training with adversary 𝑔𝜙𝑘
, rounds 𝑡 = 1 … 100 with 

local epochs 𝐸 = 2 , and server-side aggregation 𝒜 = 

FedAvg.  

 

3.2 Bias detection 

 

Metrics: DP, EO, and EOdds are adopted as in Eqs. (5)-(7). 

DP assesses parity of approval rates across groups in Eq. (5): 

 

𝐷𝑃 =
𝑃(𝑌̂ = 1|𝐴 = 0)

𝑃(𝑌̂ = 1|𝐴 = 1)
 (5) 

 

EO measures parity of true-positive rates among qualified 

applicants in Eq. (6): 

 

𝐸𝑂 = 𝑃(𝑌̂ = 1|𝑌 = 1, 𝐴 = 0) 

    −𝑃(𝑌̂ = 1|𝑌 = 1, 𝐴 = 1) 
(6) 

 

EOdds aggregates disparities in both true-positive and 

false-positive behavior in Eq. (7): 

 

𝐸𝑂𝑑𝑑𝑠 = |𝑃(𝑌̂ = 1|𝑌 = 1, 𝐴 = 0)

− 𝑃(𝑌̂ = 1|𝑌 = 1, 𝐴 = 1)|

+ |𝑃(𝑌̂ = 1|𝑌 = 0, 𝐴 = 0) − 𝑃(𝑌̂

= 1|𝑌 = 0, 𝐴 = 1)| 

(7) 

 

Federated fairness metrics: In the federated track, each 

client k computes group-wise confusion matrices and derives 

local approval rates and error rates. Only privacy-preserving 

summaries are shared: per-group supports and rate estimates 

(e.g., approval s𝑘,𝑎 = TP𝑘,𝑎 + FP𝑘,𝑎 , and total s𝑘,𝑎 = 𝑃𝑘,𝑎 +

𝑁𝑘,𝑎 ). Server-side aggregation forms global metrics from 

support-weighted counts rather than averaging ratios. For 

example: 
 

• TP𝑘,𝑎 ,FP𝑘,𝑎 ,TN𝑘,𝑎,FN𝑘,𝑎. 

• Pr(𝑌̂ = 1𝐴 = 𝑎) =
∑  𝐾

𝑘=1  approvals 𝑘,𝑎

∑  𝐾
𝑘=1  totals 𝑘,𝑎

, 
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• TPR𝑎 =
∑  𝐾

𝑘=1 TP𝑘,𝑎

∑  𝐾
𝑘=1 P𝑘,𝑎

, FPR𝑎 =
∑  𝐾

𝑘=1 FP𝑘,𝑎

∑  𝐾
𝑘=1 N𝑘,𝑎

, 

 

where, TPR refers to True Positive Rate, and FPR indicates 

False Positive Rate. 

Which are then combined into DP, EO, and EOdds using 

the definitions above. Logging stores only aggregated counts 

and rates to maintain privacy.  

 

Algorithm 1: Federated Fairness Audit (per 

communication round) 

Inputs: target DP band [0.80,1.25]; drift tolerance δ; 

definitions in Eqs. (5)-(7). 

For each round t = 1…T: 

1. Local computation on each client k 

• Compute TP𝑘,𝑎,FP𝑘,𝑎 ,TN𝑘,𝑎,FN𝑘,𝑎  for each 

group 𝑎. Derive local rates and local fairness 

metrics DP𝑘 ,EO𝑘 ,EOdds𝑘 . Transmit only 

{TP𝑘,𝑎,FP𝑘,𝑎,TN𝑘,𝑎,FN𝑘,𝑎}  (or equivalent 

counts). 

2. Server-side aggregation 

• Form Pr(𝑌̂ = 1 ∣ 𝐴 = 𝑎) , TPR𝑎 , and FPR𝑎 

using support-weighted sums; compute global 

DP, EO, and EOdds. 

3. Compliance checks and actions 

• Compare DP to the target band [0.80,1.25] 

(80% rule) and EO, and EOdds to near-zero 

targets (with uncertainty bands). Log results; if 

drift per formula (4)/Eq. (20) exceeds δ, trigger 

one of: no-op; threshold adjustment 𝛥𝑇 per Eq. 

(12); retraining; or reject-option handling per 

Eq. (13). 

 

Evaluation process: Metrics are computed pre-training to 

characterize baseline disparities, during training per epoch 

(centralized) or per round (federated) to guide mitigation, and 

post-training to quantify residual bias. After deployment, the 

same metrics are monitored on rolling windows; drift 

detection follows Eq. (4) and thresholding logic in Section 3.5, 

with alerts routed to governance for review and action.  

 

3.3 Bias mitigation techniques 

 

Data-level (pre-training): Reweighing adjusts the 

empirical loss by assigning each instance a weight based on 

the joint distribution of the protected attribute and the label, as 

in Eq. (8). Define the group-label weight 𝑤𝑎,𝑦 =
Pr(𝐴=𝑎)Pr(𝑌=𝑦)

Pr(𝐴=𝑎,𝑌=𝑦)
 

and minimize a weighted loss in Eq. (8): 

 

ℒ = ∑wi ⋅ ℒ(f(Xi), Yi) (8) 

 

Oversampling complements reweighing by increasing 

minority-group support until approximate parity is achieved, 

targeting as in formula (9): 
 

𝑛0 ≈ 𝑛1 (9) 
 

Synthetic sampling may be applied when raw counts remain 

insufficient, with guardrails: generate only within the convex 

hull of observed minority-group feature vectors; preserve 

label-conditional distributions; prohibit direct use of A or 

near-deterministic proxies during synthesis; perform synthesis 

on training folds only; and validate that downstream 

calibration and ranking are not distorted by synthetic artifacts.  

Model-level (in-training): Adversarial debiasing follows 

formula (10): 

 

𝑚𝑖𝑛
𝜃

𝔼[ℒ(𝑓𝜃(𝑋), 𝑌)]−𝜆 ⋅ 𝔼[ℒ𝑎𝑑𝑣(𝑔𝜙(𝑓𝜃(𝑋)), 𝐴)] (10) 

 

Optimizing a predictor 𝑓𝜃 for the approval task while an 

adversary 𝑔𝜙  attempts to infer A from intermediate 

representations. The training objective balances prediction 

loss and adversarial loss via a trade-off parameter λ. A fairness 

regularizer augments the objective as in Eq. (11): 

 

ℒ = 𝔼[ℒ(𝑓(𝑋), 𝑌)] + 𝛼𝑅 (11) 

 

where, α = 0.01. The adversary 𝑔𝜙 is a 2-layer MLP (64–32) 

with ReLU activations, gradient-reversal for signal inversion, 

and dropout 0.1. A λ-sweep {0, 0.1, 0.2, …, 1.0} traces the 

accuracy–fairness frontier and supplies operating points later 

selected under explicit constraints. Centralized optimization 

uses batch size 1024, learning rate 1 × 10⁻³, and early-stopping 

patience 5; the federated track mirrors these settings locally 

and aggregates with FedAvg for T = 100 rounds with E = 2 

local epochs per round. These choices keep optimization stable 

while exposing a broad fairness-regularization envelope 

suitable for post-hoc selection under policy constraints.  

Post-processing: Decision-policy adjustments refine 

deployed behavior after score production. Group-specific 

thresholds implement Eq. (12): 

 

𝑇0 = 𝑇1 + 𝛥𝑇 (12) 

 

where, ΔT is tuned on validation data to minimize the EO gap 

subject to an AUC decrease ≤ 0.01 (one percentage point). 

When borderline uncertainty dominates disparities, a 

reject-option band per Eq. (13) introduces a small margin γ = 

0.02 around the decision boundary: classify and defer or route 

to manual review otherwise. 

 

𝑌̂ = 1, if 𝑃(𝑌 = 1|𝑋) ≥ 𝑇 + 𝛾 (13) 

 

Thresholds and margins are versioned for auditability and 

are applied consistently across centralized and federated 

tracks.  

Hyper-parameters and schedule (centralized and 

federated): Unless stated otherwise, training uses batch size 

1024, learning rate 1 × 10⁻³, and early-stopping patience 5. The 

federated protocol applies FedAvg with T = 100 

communication rounds and E = 2 local epochs per round; 

clients adopt the same optimizer and batch size as the 

centralized track. These settings interact with the λ-grid and α 

to produce a family of models spanning differing fairness–

utility trade-offs, enabling principled operating-point selection 

under the evaluation protocol.  

 

3.4 Explainable AI component 
 

Global interpretability: Global analysis combines 

permutation feature importance and an interpretable surrogate. 

Permutation importance measures the loss increase when a 

single feature is randomly shuffled, yielding an importance 

score 𝐼(𝑥𝑗) as formalized in Eq. (14): 

 

𝐼(𝑋𝑗) = 𝔼 [ℒ(𝑓(𝑋)) − ℒ (𝑓(𝑋−𝑗))] (14) 

4317



 

A surrogate model g is then trained to approximate the 

scoring function 𝑓  by minimizing the discrepancy between 

𝑔(𝑋) and 𝑓(𝑋) as in formula (15): 
 

𝑚𝑖𝑛∑(𝑓(𝑋𝑖) − 𝑔(𝑋𝑖))2 (15) 

 

Fidelity is summarized by R2 or an equivalent bounded error 

metric. Together, these tools characterize system-level 

reliance on features and provide a stable global view that 

complements fairness diagnostics.  

Local interpretability: Instance-level explanations are 

produced using three complementary methods. LIME fits a 

simple, locally weighted model g around a perturbed 

neighborhood of the instance, optimizing the locality-aware 

objective: 

 

∑𝜋(𝑋′)(𝑓(𝑋′) − 𝑔(𝑋′))2 + 𝛺(𝑔) (16) 

 

This offers piecewise-linear insight near the decision point. 

SHAP attributes a Shapley value 𝜙𝑗  to each feature using the 

cooperative-game formulation in Eq. (17): 

 

𝜙𝑗 = ∑  𝑆⊆{1,…,𝑑}∖{𝑗}
|𝑆|!(𝑑−|𝑆|−1)!

𝑑!
[𝑓(𝑆 ∪ {𝑗}) − 𝑓(𝑆)]  (17) 

 

The method provides additivity and consistency, enabling 

faithful “reason codes.” Integrated Gradients accumulates 

path-integrated gradients from a baseline x′ to the instance x as 

in Eq. (18): 
 

𝐼𝐺𝑗(𝑥) = (𝑥𝑗 − 𝑥 ′
𝑗) ∫  

1

𝛼=0

𝜕𝑓(𝑥 ′ + 𝛼(𝑥 − 𝑥 ′))

𝜕𝑥𝑗

𝑑𝛼 (18) 

 

This is preferred for differentiable deep models where 

gradient information is available. Operational guidance: LIME 

for quick, human-readable local approximations; SHAP for 

axiomatic attributions and ranked reasons; Integrated 

Gradients for deep networks requiring gradient-path 

attributions.  

Composite Interpretability Score: A bounded, composite 

score aggregates complementary qualities of explanations, 

tied to Eqs. (14)-(18): IS = 𝑤1 ⋅ Fidelity(𝑔, 𝑓) + 𝑤2 ⋅
Sparsity𝜏 + 𝑤3 ⋅ Stability𝑘,𝐵 ,  with 𝑤1 = 0.50 , 𝑤2 = 0.25 , 

𝑤3 = 0.25 ; threshold 𝜏 = 0.01  on ∣ 𝜙𝑗(𝑥) ∣  (SHAP 

magnitude); top-𝑘 = 5 ; bootstraps 𝐵 = 1000 . Components 

are computed as follows: 
 

• Fidelity (𝑔, 𝑓) ∈ [0,1], e.g., 𝑅2 = −
∑  𝑖 (𝑓(𝑋𝑖)−𝑔(𝑋𝑖))

2

∑  𝑖 (𝑓(𝑋𝑖)−𝑓)2  

• Sparsity𝜏 = 1 − 𝔼𝑥 [
1

𝑑
∑  𝑑

𝑗=1 1{|𝜙𝑗(𝑥)| > 𝜏}] ∈ [0,1] 

• Stability
𝑘,𝐵

= 𝔼𝑥 [
2

𝐵(𝐵−1)
∑𝑏<𝑏′

∣𝑇𝑘
(𝑏)

(𝑥)∩𝑇𝑘

(𝑏′)
(𝑥)∣

∣𝑇𝑘
(𝑏)

(𝑥)∪𝑇𝑘

(𝑏′)
(𝑥)∣

]∈[0,1] 

 

where, 𝑇𝑘
(𝑏)(𝑥) is the set of top-𝑘 features by ∣ 𝜙𝑗(𝑥) ∣ under 

bootstrap 𝑏 . The Interpretability Score increases with 

surrogate faithfulness, succinct reason sets, and 

bootstrap-stable attributions. 

Regulatory explanations: Adverse-action narratives 

combine SHAP-ranked drivers with threshold logic 

formalized as below. A de-identified template is: 

 

𝐼 < 𝑇 ⇒
𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑛𝑖𝑒𝑑(𝐼𝑛𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐼𝑛𝑐𝑜𝑚𝑒)  

(19) 

3.5 Monitoring and governance 
 

Automated scanner and cadence: Fairness metrics—DP, 

EO, and EOdds—are recomputed on a weekly cadence using 

rolling windows. Evaluations occur at two granularities: (i) 

global aggregates over the full scoring stream and (ii) 

per-client aggregates in the federated regime to surface 

localized drift. For each evaluation window, prediction 

outputs, per-group confusion matrices, and derived rates are 

generated; corresponding SHAP attribution vectors and 

summary statistics are persisted to an immutable artifact store 

alongside model version, data slice identifiers, decision 

thresholds, and federated aggregation metadata. This schedule 

aligns post-deployment monitoring with the training-time 

fairness checks and supports traceability to formula (4) and the 

operational monitoring formulation (20): 
 

|𝐷𝑃𝑡 − 𝐷𝑃𝑡−1| > 𝛿 (20) 
 

Drift thresholds and decision rules: The drift rule in 

formula (20) is retained with δ = 0.05 for demographic-parity 

movements. DP values within [0.80,1.25] are treated as 

in-band (80% rule). For each window and group, bootstrap 

confidence intervals (CIs) are computed for DP, EO, and 

EOdds using the stored counts; an alert is triggered when the 

CI for DP lies entirely outside [0.80,1.25] or when EO/EOdds 

CIs exclude zero. Alert payloads include: metric name, 

affected group(s), point estimates with CIs, window 

identifiers, current thresholds, and suggested actions (ΔT 

adjustment per Eq. (12), reject-option margin tuning per Eq. 

(13), or retraining). All computations rely on 

privacy-preserving aggregates produced by the scoring service 

and federated clients.  

Alert routing and service levels: Alerts are routed 

programmatically to model risk management and compliance 

queues. An escalation service-level agreement of 5 business 

days governs review and sign-off. Each alert results in a case 

record with: evidence artifacts (metrics, CIs, SHAP 

summaries), proposed remediation, reviewer determination, 

and effective-date timestamps. Overrides and deferrals are 

logged with rationale and risk classification; follow-up 

evaluations verify remediation efficacy at the next scheduled 

window. Human review and policy alignment are integral 

steps of the governance loop described for deployed systems.  

Runbook of remediations: When alerts are confirmed, 

actions follow a minimal-impact sequence: (1) threshold 

recalibration via ΔT to restore DP/EO toward target bands 

while constraining AUC change; (2) reject-option activation 

with a small margin γ to reduce boundary-region disparities; 

(3) scheduled retraining with the selected λ operating point 

from Section 3.3 and refreshed data; (4) federated-specific 

measures, such as client-level thresholding or reweighting, 

when drift localizes to a subset of clients. Post-action 

monitoring verifies resolution using the same CI-based 

decision rules.  

Dashboard and reporting: The monitoring dashboard 

presents three synchronized panels backed by the audit store: 

• Panel A: approval-rate trends by protected group with a 

shaded DP target band [0.80,1.25]. 

• Panel B: drift alerts derived from formula (20), 

visualizing δ = 0.05 bands, recent violations, and 

time-to-resolution. 

• Panel C: an action log enumerating threshold changes 

(ΔT), reject-option activations, retraining events, and 

reviewer outcomes. 
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Artifacts refresh weekly; data sources are scoring outputs 

(predictions, per-group counts) and fairness audit logs 

(metrics, CIs, actions).  

Panel A: approval-rate trends by protected group with DP 

target band [0.80,1.25]. Panel B: fairness-drift alerts from 

formula (20) with δ = 0.05 bands and current alert states. Panel 

C: action log summarizing applied mitigations (ΔT thresholds, 

reject-option), retraining events, and reviewer dispositions; 

weekly refresh; data from model-scoring outputs and fairness 

audit logs. 

4. EXPERIMENTAL STUDY

The study examines how the FAIRE framework detects and 

corrects bias in financial decision-making. The Financial 

Transactions Dataset is used for evaluation. A 4-fold cross-

validation method ensures each model is tested on different 

data splits. The study compares FAIRE with MOEL [8] and 

FAFL [10], analyzing fairness adjustments, classification 

accuracy, and processing stability under different dataset sizes. 

Performance metrics, including AUC-ROC, precision, recall, 

and F1-score, are measured. The results highlight variations in 

bias mitigation and decision transparency across the models. 

4.1 Dataset 

The evaluation relies on a loan-application cohort 

composed of conventional, first-lien, 1–4 family, 

owner-occupied, home-purchase applications. The target Y 

encodes originated → 1 and denied → 0; applications with 

withdrawn, incomplete, or approved-not-accepted outcomes 

are excluded. A single protected attribute 𝐴 is analyzed per 

experiment (race, ethnicity, sex, or age). Feature families 

include loan_amount, applicant/co-applicant income, 

debt-to-income (DTI) ratio, loan-to-value (LTV), 

interest_rate, property and geography indicators, lender 

identifier (LEI), and credit score (with missingness 

documented). Preprocessing applies: (i) imputation for key 

numerics with missing-indicator flags; (ii) one-hot or ordinal 

encoding for categoricals; (iii) scaling of continuous variables; 

and (iv) de-proxying transformations (e.g., coarsened 

geography) to reduce leakage of A. Train/validation/test splits 

(70%/10%/20%) are stratified by A and Y. Table 1 dataset 

fairness surveys inform attribute selection and potential bias 

sources [5, 11].  

4.2 Evaluation protocol 

Metrics: Performance is measured using AUC-ROC, F1, 

precision, recall, and accuracy. Fairness is assessed with DP, 

EO, and EOdds as defined in Eqs. (5)-(7); results are reported 

both at the model level and by protected group. Interpretability 

is summarized with the Interpretability Score that aggregates 

surrogate fidelity, sparsity, and stability as formalized in 

Section 3.4 (Eqs. (14)-(19)).  

Statistical procedures: Uncertainty is quantified with 95% 

bootstrap confidence intervals (B ≥ 1000 resamples) for 

AUC-ROC, F1, and fairness metrics. McNemar’s test 

evaluates paired accuracy differences. DeLong’s test (or a 

permutation alternative where applicable) evaluates 

AUC-ROC differences. Permutation/bootstrap tests evaluate 

differences in DP, EO, and EOdds between operating points 

and models. Multiple comparisons are handled by reporting 

CIs and exact p-values; claims rely on intervals and paired 

tests rather than unadjusted point estimates.  

Model selection: For mitigation strength, the trade-off 

parameter λ is swept over {0, 0.1, 0.2, …, 1.0}. Operating 

points are chosen via constrained optimization: maximize 

AUC-ROC subject to a DP band target of [0.80,1.25] and 

stability constraints derived from validation CIs. 

Threshold-based post-processing candidates (ΔT, γ) follow the 

procedure defined in Section 3.3 (Eqs. (12) and (13)); 

selections must satisfy the same DP band while limiting 

AUC-ROC change.  

Baselines: The comparison set comprises FAIRE, MOEL 

(multiobjective fairness optimization) [8], FAFL 

(fairness-aware federated learning) [10], and standard 

classifiers—logistic regression (LR), gradient-boosted trees 

(GBT), and a Feed Forward Neural Network/Deep Neural 

Network (FFNN/DNN)—each evaluated with and without 

reweighing and adversarial debiasing. Methods are specified 

in Section 4.2.1 with hyper-parameters, early-stopping, and 

seeds to ensure reproducibility consistent with evaluation 

guidance [5, 11].  

A complete description of baseline configurations appears 

in Section 4 (Table 2).  

Baselines specification: MOEL jointly optimizes 

predictive utility and fairness by augmenting the objective 

with an explicit fairness term and tuning λ over the specified 

grid [8]. FAFL implements client-local debiasing with 

server-side aggregation in a federated regime, auditing 

fairness at each round using privacy-preserving counts [10]. 

Standard baselines (LR, GBT, FFNN) are evaluated in plain 

form and with data-level reweighing and in-training 

adversarial debiasing, following the mitigation stages in 

Section 3.3. 

All mitigation constructs, thresholds, and fairness 

definitions referenced here follow Section 3 (Eqs. (1)-(20)); 

empirical results for the above baselines are reported in 

Section 4 using the metrics and statistical tests specified in this 

protocol.  

4.3 Results and discussion 

Classification performance: Table 3 summarizes 

centralized performance for principal models and standard 

baselines. FAIRE attains the highest AUC-ROC with balanced 

precision and recall; MOEL performs competitively; FAFL 

trails modestly. These outcomes establish a utility reference 

for subsequent fairness comparisons and trade-off analysis 

grounded in multi-stage mitigation and statistical testing [1, 2, 

5, 8] (see Figures 2 to 9). 

Fairness outcomes: Table 4 reports DP, EO; TPR gap, and 

EOdds before and after mitigation for each model. FAIRE 

reduces DP disparity from 0.74 to 0.92 and lowers EO/EOdds 

to 0.05/0.07 with ≤ 1 pp AUC change relative to competitive 

baselines; MOEL and FAFL achieve smaller, yet material, 

improvements. Confidence intervals derive from bootstrap 

with B ≥ 1000, consistent with the protocol in Section 4.2 [1, 

2, 5].  

Table 5 provides group-wise TPR/FPR and supports for the 

FAIRE operating point used in Table 4 (race attribute). EO 

equals the absolute TPR difference; EOdds equals |ΔTPR| + 

|ΔFPR|. The protected-group FPR remains slightly higher, 

indicating residual disparity concentrated near the decision 

boundary, a case where threshold calibration and reject-option 

tuning (Section 3.3) are most effective [1, 2]. 
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Table 1. Dataset characteristics 

Field Value Notes 

Applications (N) 800 000 post-filter cohort 

# features (after encoding) 110 
includes one-hot categorical 

expansions 

Approval rate P(Y = 1) 0.62 originated / (originated + denied) 

Protected attribute (A) Race, ethnicity, Sex, age analyzed one at a time 

Race supports White: 480 000; Black: 120 000; Asian: 70 000; Other: 130 000 sums to N 

Ethnicity supports Not-Hispanic: 600 000; Hispanic: 160 000; Other/Unspecified: 40 000 sums to N 

Sex supports Male: 420 000; Female: 380 000 sums to N 

Age-band supports 18–34: 120 000; 35–64: 600 000; 65+: 80 000 sums to N 

Missingness (key fields) Credit score: 18%; DTI: 12%; Interest rate: 9% impute + indicator flags 

Splits Train: 560 000; Valid: 80 000; Test: 160 000 stratified by A, Y 

Table 2. Baseline configurations (re implementable) 

Model 

Family 

Mitigation 

Setting 
Key Hyper-Parameters Early-Stopping Seeds Notes 

LR None ℓ₂ penalty; C tuned on validation 
patience = 5 

(val-loss) 
{42, 43, 44} 

Class weights enabled if 

imbalance > 1.5 times 

LR Reweighing 
weights wₐ,ᵧ per Eq. (8); same LR 

settings 
patience = 5 {42, 43, 44} Stratified by A, Y 

LR Adversarial 
2-layer adversary (64–32), dropout 0.1;

λ∈{0…1.0} 
patience = 5 {42, 43, 44} 

Gradient-reversal; α = 0.01 

(Eq. (11)) 

GBT None 
500 trees; depth ≤ 6; η = 0.05; subsample 

= 0.8 

early-stopping 

rounds = 50 
{7, 8, 9} 

Learning-rate schedule on 

plateau 

GBT Reweighing sample-weight = wₐ,ᵧ (Eq. (8)) 
early-stopping 

rounds = 50 
{7, 8, 9} Same tree budget 

GBT Adversarial 
post-hoc adversary on learned scores; 

λ-sweep 
patience = 5 {7, 8, 9} 

Adversary as 2-layer MLP 

(64–32) 

FFNN None 
3 × [256,128,64], ReLU, dropout 0.2; 

batch = 1024; lr = 1e-3 
patience = 5 {21, 22, 23} 

Adam optimizer; norm 

clipping 

FFNN Reweighing as above + weights wₐ,ᵧ patience = 5 {21, 22, 23} — 

FFNN Adversarial 
as above + adversary (64–32), dropout 

0.1; λ-sweep 
patience = 5 {21, 22, 23} 

α = 0.01 regularizer  

(Eq. (11)) 

MOEL 

[8] 
multiobjective 

utility–fairness scalarization; 

λ∈{0…1.0}; same batch/lr 
patience = 5 {101, 102, 103} 

Exact fairness surrogate 

matches Eqs. (5)-(7) 

FAFL 

[10] 

Federated + 

Adversarial 

K = 50 clients; FedAvg; T = 100 rounds; 

E = 2 local epochs; client batch = 1024; 

lr = 1e-3; local adversary (64–32), 

dropout 0.1; λ-sweep 

round-wise val; 

stop if ΔAUC < 

1e-3 over 10 

rounds 

{11, 12, 13} 

Support-weighted fairness 

aggregation; 

privacy-preserving counts 

Table 3. Centralized classification metrics (test set) 

Model AUC-ROC (95% CI) Accuracy Precision Recall F1 

LR 0.82 [0.81, 0.83] 0.79 0.78 0.74 0.76 

GBT 0.86 [0.85, 0.87] 0.83 0.82 0.80 0.81 

FFNN 0.85 [0.84, 0.86] 0.82 0.81 0.79 0.80 

MOEL [8] 0.87 [0.86, 0.88] 0.84 0.83 0.81 0.82 

FAFL [10] 0.85 [0.84, 0.86] 0.82 0.81 0.78 0.79 

FAIRE 0.88 [0.87, 0.89] 0.85 0.84 0.83 0.83 

Table 4. Fairness metrics before/after mitigation (centralized) 

Model Stage DP ↑ EO (TPR Gap) ↓ EOdds ↓ 95% CI Method 

FAIRE 
Pre 0.74 [0.72, 0.76] 0.16 [0.15, 0.17] 0.23 [0.21, 0.25] Bootstrap 

Post 0.92 [0.90, 0.94] 0.05 [0.04, 0.06] 0.07 [0.06, 0.09] Bootstrap 

MOEL 
Pre 0.76 [0.74, 0.78] 0.15 [0.14, 0.16] 0.24 [0.22, 0.26] Bootstrap 

Post 0.88 [0.86, 0.90] 0.07 [0.06, 0.08] 0.12 [0.10, 0.13] Bootstrap 

FAFL 
Pre 0.72 [0.70, 0.74] 0.18 [0.17, 0.19] 0.26 [0.24, 0.28] Bootstrap 

Post 0.87 [0.85, 0.89] 0.08 [0.07, 0.09] 0.14 [0.12, 0.15] Bootstrap 

Table 5. Per group rates (race; centralized FAIRE, post mitigation) 

Group (A) Support TPR (95% CI) FPR (95% CI) Notes 

0 (reference) 480 000 0.78 [0.77, 0.79] 0.16 [0.15, 0.17] White 

1 (protected) 120 000 0.73 [0.72, 0.74] 0.18 [0.17, 0.19] Black 

**EO ΔTPR — 0.05 

**EOdds ΔTPR ΔFPR 
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Figure 2. Fairness–utility pareto frontier 

Figure 3. Group wise calibration 

Figure 4. Global SHAP importance 

Trade-off visualization: Figure 2 charts AUC versus DP 

across the λ-sweep, with EO/EOdds shown as insets. The 

selected operating point satisfies the DP band [0.80,1.25] with 

minimal utility loss, illustrating the fairness–utility frontier 

central to multi-objective mitigation [5, 8]. Figure 3 presents 

group-wise calibration; calibration alignment improves 

post-mitigation, reducing over-prediction for the protected 

group at mid-scores.  

Figure 2 presents AUC versus DP across λ ∈ {0, 0.1, …, 

1.0}; EO/EOdds insets; operating point highlighted that meets 

the DP band with minimal AUC change. 

Figure 3 shows reliability curves by protected group with 

Brier summaries and 95% bands. 

Global explanations: The updated SHAP analysis (Figure 

4) identifies debt-to-income ratio, credit score, loan-to-value,

and income as primary drivers. These drivers align with

adverse-action narratives; for example, if income I falls below

threshold T, the explanation follows the threshold form in

formula (19) (e.g., I < T ⇒ Application Denied (Insufficient

Income)). The combination of global importance and local

attributions (SHAP/LIME/IG) supports system-level audits

and case-level reason codes [5, 6].

Figure 4 shows top features by mean |SHAP| with brief 

economic rationale (e.g., higher DTI and LTV increase denial 

risk; higher credit score and income decrease it). 

Synthesis and comparison: Relative to MOEL and FAFL, 

FAIRE offers larger improvements in DP, EO, and EOdds 

while maintaining competitive AUC-ROC and F1. MOEL 

closes gaps effectively but at a higher utility cost near stricter 

λ; FAFL shows smaller fairness gains and wider uncertainty 

under non-IID-like partitions, consistent with centralized–

federated differences analyzed later. Figure 2 highlights the 

operating regions where FAIRE dominates the Pareto frontier, 

providing actionable choices for deployment within the target 

DP band [1, 2, 5, 8].  

Federated setting: A federated configuration partitions the 

cohort into 𝐾 = 50 clients by Legal Entity Identifier (LEI) or 

state/ Metropolitan Statistical Area (MSA). Client sample 

sizes satisfy 𝑛𝑘 ∈ [3.0 × 103, 4.5 × 104] with a median near

1.5 × 104 . Protected-group prevalence varies across clients

from 10% to 45%, inducing non-IID label and attribute 

distributions. Local training applies adversarial debiasing 

under the same objective as in centralized experiments; 

aggregation uses FedAvg with 𝑇 = 100  communication 

rounds and 𝐸 = 2 local epochs per round. Global fairness is 

computed from privacy-preserving client summaries via 

support-weighted aggregation of counts, and fairness drift is 

monitored per formula (20) with 𝛿 = 0.05 [5, 10, 11] (see 

Table 6).  

Table 6. Federated outcomes (global and client snapshots; post mitigation) 

Metric Global (95% CI) Client (Min Support) Client (Median) Client (Max Support) 

AUC-ROC 0.87 [0.86, 0.88] 0.83 0.86 0.88 

DP (approval-rate ratio) 0.90 [0.88, 0.92] 0.83 0.89 0.93 

EO (TPR gap) 0.06 [0.05, 0.07] 0.10 0.07 0.05 

Eodds 0.11 [0.10, 0.12] 0.18 0.12 0.09 

Figure 5 shows global DP, EO, and EOdds per round with 

shaded 𝛿 = 0.05 drift bands from formula (20); AUC-ROC 

overlaid; stabilization of fairness and utility by rounds 60–80; 

annotations mark transient excursions for low-support clients. 

Convergence behavior: Training converges smoothly 

under FedAvg, with global AUC-ROC within 0–2 pp of 

centralized utility and fairness metrics approaching centralized 

post-mitigation values by late rounds. Early-round variance in 

DP and EO reduces as support-weighted aggregation dampens 

client-level noise. Residual oscillations occur when client 

updates originate from small protected-group supports; 

bootstrap intervals widen accordingly, but drift alerts remain 
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within 𝛿 bands after stabilization [5, 10]. 

Figure 6 summarizes how predictive accuracy varies with 

dataset size across the evaluated methods. Figure 7 further 

decomposes performance by applicant subtype (credit score 

tier × income band), illustrating heterogeneity in accuracy 

across subpopulations. Figure 8 provides a consolidated radar-

style comparison across key utility/fairness/interpretability 

criteria to support trade-off selection. 

Figure 5. Round wise fairness and utility in FL 

Figure 6. Accuracy vs. dataset size 

Figure 7. Accuracy by applicate subtype 

Non-IID effects: Variability in group prevalence and 

feature distributions across clients introduces heterogeneity in 

local TPR/FPR. Clients with 10–15% protected-group share 

exhibit larger EO and EOdds fluctuations until sufficient 

rounds accumulate. Support-weighted aggregation mitigates 

bias in global estimates relative to naive averaging and yields 

consistent DP ratios across communication rounds [10, 11].  

Centralized–federated gap: Compared to centralized 

post-mitigation results, the federated configuration attains 

slightly lower utility (AUC-ROC ≈ 0.87 vs. 0.88) and 

modestly wider fairness intervals (e.g., DP 0.90 [0.88,0.92] vs. 

0.92 [0.90,0.94]) as shown in Figure 9. EOdds remains close 

to centralized levels, with most divergence attributable to 

higher FPR variance in low-support clients. The gap aligns 

with expectations under non-IID partitions and restricted 

communication, and remains within tolerance for deployment 

when monitored with formula (20) and governed by threshold 

policies in Section 3.3 [5, 10, 11]. 

Figure 8. Comparative radar 

Figure 9. Federated round wise fairness and utility 

Ablations and sensitivity: Ablations isolate the 

contribution of each mitigation stage—reweighing, 

adversarial debiasing, and post-processing—and quantify 

robustness to missing-value handling, de-proxying 

granularity, and explanation stability. Variants comprise 

reweighing only, adversarial only, post-processing only, and 

full FAIRE. Metrics follow Eqs. (5)-(7) for DP, EO, and 

EOdds; interpretability is summarized by Interpretability 

Score components (fidelity, sparsity, stability) from Section 

3.4. Methodological anchors include data-, in-, and 

post-training mitigation and multiobjective optimization for 

fairness [1, 2, 8, 13, 14] (see Table 7).  
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Table 7. Ablation summary (centralized, test set) 

Variant 
AUC-ROC 

(95% CI) 
DP ↑ (95% CI) 

EO (TPR Gap) ↓ 

(95% CI) 

EOdds ↓ 

(95% CI) 

Interpretability Score  

(Fidelity / Sparsity / Stability) 

Reweighing only 0.86 [0.85,0.87] 0.89 [0.87,0.91] 0.08 [0.07,0.09] 0.14 [0.13,0.15] 0.81 / 0.62 / 0.68 

Adversarial only 0.87 [0.86,0.88] 0.90 [0.88,0.92] 0.06 [0.05,0.07] 0.12 [0.11,0.13] 0.83 / 0.58 / 0.74 

Post-processing only 0.86 [0.85,0.87] 0.91 [0.89,0.93] 0.07 [0.06,0.08] 0.12 [0.11,0.13] 0.82 / 0.70 / 0.61 

Full FAIRE 0.88 [0.87,0.89] 0.92 [0.90,0.94] 0.05 [0.04,0.06] 0.07 [0.06,0.09] 0.86 / 0.72 / 0.80 

Findings from ablations: Monotone improvement in 

fairness is observed from single-stage variants to full FAIRE: 

DP rises from 0.89–0.91 to 0.92, EO declines from 0.08–0.06 

to 0.05, and EOdds declines from 0.14–0.12 to 0.07, while 

AUC-ROC remains within 0.01–0.02 of the strongest baseline. 

Reweighing yields the largest DP gain per unit utility cost, 

matching expectations for distributional balancing at the data 

layer [1, 13]. Adversarial debiasing delivers the strongest EO 

and EOdds reductions, reflecting its focus on representation 

independence from the protected attribute [2, 8]. 

Post-processing effectively trims residual disparities near the 

decision boundary with minimal AUC movement, consistent 

with threshold-adjustment theory [13, 14]. The full pipeline 

achieves the best combined parity with modest AUC change 

and the most stable explanations (Interpretability Score 

stability = 0.80). 

• Missing-value handling: Removing missing-indicator

flags (impute-only) reduces explanation stability by ≈

0.04 and slightly worsens EO by +0.01, with negligible

AUC change (< 0.002). Restoring indicators recovers

stability and EO, indicating that explicit missingness

signals support both interpretability and fairness

control [1, 5].

• De-proxying (geography granularity): Coarsening

geography from fine-grained to regional units improves

DP by ≈ +0.03 and reduces EOdds by ≈ 0.02, with an

AUC movement ≤ 0.003. Effects align with

proxy-leakage expectations; reweighing and

adversarial training compensate for minor utility loss

[2, 13].

• Explanation stability: Top-k SHAP Jaccard (k = 5, B

= 1000) yields stability values consistent with

Interpretability Score: 0.68 (reweighing only), 0.74

(adversarial only), 0.61 (post-processing only), 0.80

(full FAIRE). Higher stability under the full pipeline

indicates more reproducible local rationales alongside

improved parity.

Synthesis: Per-unit AUC cost, adversarial debiasing drives 

the largest EO/EOdds reduction; reweighing most efficiently 

improves DP; post-processing addresses boundary-region 

disparities. Joint application in FAIRE produces superior 

parity across DP/EO/EOdds with minimal utility change and 

the most stable explanations, establishing the preferred 

operating configuration for subsequent deployment and 

monitoring [1, 2, 8, 13, 14]. 

5. CONCLUSIONS

At the selected operating point, the study demonstrates 

measurable improvements in group equity with minimal utility 

cost. DP rises from 0.74 [0.72,0.76] to 0.92 [0.90,0.94], the 

EO (TPR) gap declines from 0.16 [0.15,0.17] to 0.05 

[0.04,0.06], and Equalized Odds decreases from 0.23 

[0.21,0.25] to 0.07 [0.06,0.09]. AUC-ROC remains high at 

0.88 [0.87,0.89], within 0.5 percentage points of the 

high-utility setting. The fairness–utility frontier indicates 

feasible operating regions that satisfy a demographic-parity 

target band of [0.80,1.25] without material loss of predictive 

accuracy. Federated training with 50 clients achieves 

performance and fairness close to centralized post-mitigation 

while accommodating non-IID client distributions. Final 

global outcomes reach AUC-ROC 0.87 [0.86,0.88], DP 0.90 

[0.88,0.92], EO 0.06 [0.05,0.07], and EOdds 0.11 [0.10,0.12]; 

confidence intervals widen for clients with limited 

protected-group support. Support-weighted aggregation of 

client summaries mitigates small-sample volatility and yields 

stable global metrics, consistent with observations in 

federated-fairness and dataset-bias surveys. Interpretability 

outcomes indicate improvements in a composite 

Interpretability Score through higher surrogate fidelity, 

sparser reason sets, and more stable attributions. Global 

drivers—such as debt-to-income ratio, credit score, and 

loan-to-value—align with domain expectations, and 

threshold-style explanations supply adverse-action reasons 

derived from the leading local contributors. Continuous 

fairness monitoring with a fixed drift tolerance of 0.05 

maintains in-band behavior over rolling evaluation windows, 

supporting governance and auditability. Limitations include 

potential proxy leakage and missingness in key variables, the 

focus on single-attribute fairness rather than intersections, 

temporal and lender heterogeneity that may affect 

transportability, and communication/compute overheads in 

federated settings. Future work includes adaptive thresholding 

and λ-selection under explicit constraints, integration of 

differential privacy in federated pipelines, intersectional and 

causal analyses of disparities, automated remediation policies 

triggered by monitoring alerts, and longitudinal deployments 

with regulatory audits. To sum up, FAIRE achieves in-band 

fairness with minimal utility change across centralized and 

federated regimes while producing audit-ready explanations 

and sustaining an operational monitoring loop suitable for 

real-world credit decisioning. 
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