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A brain tumor is an abnormal growth of brain cells that may manifest symptoms of
cancer. Early and accurate detection is essential to initiate timely treatment and improve
patient outcomes. Traditional diagnostic methods often demonstrate limited accuracy,
highlighting the need for more reliable and automated solutions. This study proposes
an optimized 8-layer convolutional neural network (CNN) for automatic brain tumor
classification using magnetic resonance imaging (MRI) scans. A balanced dataset of
3,000 annotated MRI images was used (1,500 with tumors and 1,500 without tumors).
Preprocessing included image labeling. To improve training efficiency, preprocessing
procedures included image labeling, resizing, and augmentation. Model Performance
was evaluated with five-fold cross-validation with an 80-20 train-test split. The
proposed CNN achieved an accuracy of 97%, outperforming established deep learning
models such as ResNet50 (72%), VGG16 (94%), MobileNetV2 (94%), and VGG19
(92%) on the same dataset. These findings show that the proposed lightweight CNN
provides high diagnostic accuracy with reduced computational complexity. Hence, this
approach exhibits strong potential for integration into clinical diagnostic workflows,

supporting more efficient and accurate brain tumor detection.

1. INTRODUCTION

The brain is the most vital organ in a human being, which
controls the central nervous system (CNS) and all body
functions [1, 2]. It is comprised of dramatic, intricate tissues
with every neuron dedicated to specific cognitive and
physiological functions [3]. In most of the diseases that affect
the brain, tumour is a very dangerous disease. Brain tumor is
defined as an abnormal mass of tissue in the brain that grows
and multiplies uncontrollably [1]. Historically, brain tumors
have been referred to as benign (noncancerous) or malignant
(cancerous), according to how they grow and their effects on
surrounding tissue [4]. “Yes,” Jesus replied, “a beggar named
Lazarus was placed at his gate, covered with sores, and
longing to eat the crumbs that fell from the rich man’s table.
Tumors can also be characterized as primary, which are
derived within the brain and secondary (metastatic), travelling
from other areas of the body [5].

In terms of a worldwide health burden, brain tumors are
increasingly relevant. There were an estimated 308,102 new
brain tumor cases and 251,329 deaths from CNS tumors in
2020 [6]. Approximately 25,400 new cases and 18,700 deaths
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occurred in the United States (US) in 2024. The rate of brain
and CNS cancers was 6.4 per 100,000 cases between the years
of 20162020, resulting in an annual mortality incidence of
4.4 per 100,000 [7]. In the United Kingdom, approximately
12,700 new diagnoses (35 per day) occurred between 2017 and
2018 and brain tumors were ranked as the ninth most prevalent
type of cancer in the country [8]. The number of brain tumor
cases in the world increased by 94.35% between 1990 and
2019 to nearly 347,992 cases in 2019 [9].

Early detection is critical for improving the survival, and
there are many diagnosis approaches such as biopsy, computer
tomography (CT), magnetic resonance imaging (MRI). MRI is
relatively preferred because it has high soft-tissue contrast and
can detect the normal/abnormal brain structures [10]. Deep
learning, especially convolutional neural networks (CNNs),
has become a popular technique for medical image processing
and can be used as an automatic and accurate tumor detection
tool [11] in recent years. Besides, there have been growing
applications of intelligent computational approaches in
biomedical systems in recent research [12], thereby featuring
efficient and dependable data processing as the key point in
healthcare problems.
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Although beneficial, a majority of existing deep learning
techniques focus on binary tumor classification and some of
them are based on comparatively large architectures such as
VGGI16 and ResNet50. The models may be weak on small
MRI datasets and need large computing power. In view of
these constraints, this work presents a slim 8 layer CNN for
brain tumor detection that is specifically tailored to prevent
over-fitting and boost performance.

The main contributions of the paper are as follows:

A novel lightweight CNN network with only eight
layers is proposed for faster calculation and less
overfitting.

Use of intense K-fold cross-validation to reinforce
model trustworthiness and generalizability.

2. MATERIALS AND METHODS

CNNs have demonstrated substantial effectiveness in
medical image classification tasks, particularly for tumor
detection using MRI data. To establish a strong baseline, this
study implemented four widely recognized CNN
architectures, ResNet50, VGG16, MobileNetV2, and VGG19,
and compared their performance against our proposed
lightweight 8-layer CNN model designed to balance
computational efficiency with high diagnostic accuracy. The
overall workflow of the study is presented in Figure 1.

Test
- Dataset
Dataset Data Preprocessing
(Kaggle) (Le., image labeling)
Training
Dataset
Test Imaze Proposed CNN Model
¢ (8LayerModel)  ©
Tumor/ No Tumor Result

Figure 1. Architecture of tumor detection using CNN
2.1 Dataset

The dataset used in this study was obtained from Kaggle
[13] and comprised 3,000 MRI scans, equally divided into
tumor-positive (1,500) and tumor-negative (1,500) images.
The images varied in resolution, ranging from 225 x 225 to
630 x 630 pixels, necessitating standardization prior to model
training. Representative tumor and non-tumor samples are
provided in Figure 2.

2.2 Data preprocessing

To ensure uniformity and improve classification
performance, several preprocessing techniques were applied.

2.2.1 Image labeling
For supervised training, the MRI images were annotated
according to the presence of a brain tumor. A binary labeling
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scheme was adopted, where images indicating tumor presence
were assigned the label “Yes” (positive) and images without
any evidence of a tumor were assigned the label ‘“No”
(negative). Formally, the labeling function can be expressed as
in Eq. (1):

Yi
This labeling procedure established the ground truth

necessary for training and evaluating the CNN models. An
illustration of the labeled samples is provided in Figure 3.

1’
0:

if the image exhibits a tumor (“Yes”)
if the image is free of tumor (“No”)

(1)

2.2.2 Image resizing

The original dataset comprises MRI images of varying
spatial dimensions, which can negatively impact the
performance and convergence of deep learning models due to
inconsistent input sizes. Every image was shrunk to fixed
dimensions suitable for each CNN architecture in order to
standardize the input. Formally, given an original image
Loriginal € RYo*WoX ¢ “wwhere Hy, Wy, and C represent the
original height, width, and number of channels, respectively,
the resizing operation is defined as a function (Eq. (2)):

Lresize = fresize (Ioriginal; Hr,Wr) (2)
where, H, and W, denote the target height and width, and
Ioriginal € RFXWrxc,

In this study, two resizing strategies were adopted:

For pretrained architectures (ResNet50, VGG16,
VGG19, MobileNetV2), images were resized to 224 x
224 x 3, matching the input dimensions these models
expect.

For the proposed CNN architecture, images were
resized to 100 x 100 x 3 to reduce computational
complexity while preserving sufficient spatial
resolution for feature extraction.

This resizing preserves the three-color channels of MRI
images. The resizing was performed wusing bilinear
interpolation to maintain image quality and minimize
distortion.

2.2.3 Augmentation

Deep learning models generally require large and diverse
training datasets to achieve robust generalization. The MRI
dataset was small; thus, data augmentation was used to
synthetically enlarge the training set and reduce overfitting.
Augmentation techniques introduced controlled variability
while preserving the pathological features critical for tumor
identification. Formally, an augmented image X was
generated by applying a transformation operator t to the
original input X (Eq. (3)):

X=1),1 3)
€ {rotation, width shift, height shift, horizontal flip}

The transformations were applied stochastically to ensure
diversity in the training samples while maintaining class
integrity. The model's capacity to learn invariant features
across changes in tumor orientation, position, and image
geometry was improved by this method.
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Figure 3. Illlustration of image labeling: Tumor-positive images labeled as “Yes” and tumor-negative images labeled as
“No”: (a) before labeling, (b) after labeling

2.3 Baseline classifiers

To contextualize the performance of the proposed
lightweight CNN, four widely wused deep learning
architectures, ResNet50, VGG16, VGG19, and MobileNetV2,
were selected for comparison. These models represent well-
established, state-of-the-art approaches with deep and
complex structures that have demonstrated effectiveness in
various medical image classification tasks.

A previous study [14] used later fusion methods, though
complex, which often outperform earlier fusion by better
capturing modality relationships. Another study CNN-based
deep learning approach achieved 93% accuracy in classifying
brain tumors from MRI images [15]. ResNet50 incorporates
residual connections to facilitate the training of very deep

networks, enabling rich feature extraction but often requiring
substantial training data [16-19]. VGG16 and VGGI19,
developed by the Visual Geometry Group [20-23].
MobileNetV2 offers a lightweight architecture optimized for
computational efficiency through depth-wise separable
convolutions and inverted residual blocks [24-27]. Another
standardized deep architecture with varying depths (16 and 19
layers, respectively), widely used as benchmarks in image
recognition [28-30].

Despite their success, these models’ complexity and depth
can hinder performance on limited datasets, potentially
causing overfitting, insufficient tuning, and inadequate feature
extraction. Consequently, their accuracy may decline when
applied to relatively small MRI datasets, as observed in this
study.

Table 1. Summary of baseline CNN architectures used for comparison

Model Depth (Layers) Architectural Highlights C%T&‘;:lit;?t;al References
ResNet50 50 Residual connections for training very deep nets High [16-18]
VGG16 16 Uniform architecture with small convolutional filters Moderate [20-23]
MobileNetV2 ~53 Lightweight with depth wise separable convolutions Low [24-27]
VGG19 19 A deeper variant of VGG16 with additional layers High [28-30]
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In contrast, the proposed model employs a simple 8-layer
CNN architecture integrating average pooling layers instead of
the commonly used max pooling. Average pooling preserves
broader feature map information, capturing more informative
characteristics across MRI regions. This contributes to
improved generalization, yielding superior performance on the
dataset while reducing computational overhead. The
comparison thus highlights the proposed model's advantages
in accuracy, generalization, and efficiency over conventional
deep architectures under limited data conditions (Table 1).

2.4 Proposed system

The research proposed a CNN method consisting of 8
layers, including convolutional, pooling, flatten, dropout and
dense layers. Also, there is an activation function and this
system uses the ReLU activation function. In CNN, the initial
layer is the Conv layer, which extracts features from input data
and produces a set of feature maps of the input image. Then, a
pooling layer, an additional layer attached to the convolutional

block, is commonly used to reduce the spatial size of the
output feature map while preserving essential information and
patterns. Subsequently, the output from both layers is passed
into the fully connected layers, which are responsible for the
classification. During the training phase, by applying back-
propagation and stochastic gradient descent CNN maximizes
the distinctions between the Conv layer and the fully
connected layer. The trained CNN model detects brain tumors
by outputting probability scores and determines whether a
brain tumor is present based on a threshold value. Figure 4
represents the proposed neural network of the study. The
applied method consists of five Conv blocks, and the number
of filters is 32, 64, 128, 256, 512, respectively, and ReLU as
the activation function. Each of the convolutional blocks is
followed by an average pooling layer with a kernel size of (2
x 2). Dense layers of 512,256 units as fully connected layers
are employed. The dropout layer and ReL U activation function
come next. Dense layers with single-unit sigmoid activation
functions detect brain tumors.

Conv 1

Conv 2
Conv 3

Conv4

Convolution

Avg. Pooling

' Fully-Connected
&

Figure 4. Proposed CNN architecture

a. Feature maps after convl

b. Feature maps after conv2

d. Feature maps after conv4

e. Feature maps after conv5

c. Feature maps after conv3

Figure 5. Feature maps extracted by the convolutional layers of the proposed CNN

In the proposed system, the average pooling is used instead
of the max pooling layer, whereas most of the CNN methods
or deep learning methods are used frequently. The ability to
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create a feature map that captures each region’s average value
within the feature map is the primary justification for applying
average pooling in this scenario. As a result, the network’s



computational complexity and parameter number are reduced,
as shown in Table 2. In contrast to this approach, max pooling
chooses the highest value possible from every region. Because
it smooths the feature maps, average pooling is particularly
useful for obtaining global spatial information and effectively
reduces the danger of overfitting [31]. This study shows that,
when used strategically, model performance can be enhanced
using average pooling in the context of wide residual
networks. Table 3 presents the implementation details of the
CNN model, including the total number of parameters, as well
as the counts for trainable and non-trainable parameters.

Table 2. Image augmentation parameters and their

average pooling2d 4

(None,

(AveragePooling2D) 51)1%) 0
flatten (Flatten) (I;li)g)e ' 0
dense (Dense) (I;lfg)e ' 262,656
dropout (Dropout) (ngl)g)e ' 0
dense 1 (Dense) (ngl)g)e ' 131,328
dropout 1 (Dropout) (I;lfg)e ' 0
dense 2 (Dense) (N%n €, 257

The convolutional layer (Conv2D) extracts feature maps

descriptions
Transformation Parameter Lo
Description
Type Range
Randomly rotate the input
Rotation 15° image within a range of
+5 degrees
Flip the image horizontally
Horizontal Flip True to simulate the left-right
variations
Flip the image vertically to
. . enhance robustness to
Vertical Flip True vertical orientation
changes.
Randomly shifts the image
Width Shift +0 horizontally by up to 10%
of its width
Randomly shift the image
Height Shift +0 vertically by up to 10% of
its height
Brightness [0.5,1.5] Adjust image brightness

within the specified range

Note: Total params: 1,962,817; Trainable params: 1,962,817; Non-trainable

params: 0

Table 3. CNN model architecture and parameters

Output

Layer (Type) Shape Param #
(None,
conv2d (Conv2D) 98, 98, 896
32)
average pooling2d g’;ozg‘ 0
(AveragePooling2D) 3‘2) '
(None,
conv2d 1 (Conv2D) 47,47, 18,496
64)
average pooling2d 1 (None,
. 23,23, 0
(AveragePooling2D) 64)
(None,
conv2d 2 (Conv2D) 21,21, 73,856
128)
average pooling2d 2 (1’(\31028’ 0
(AveragePooling2D) 128)
(None,
conv2d 3 (Conv2D) 8,8, 295,168
256)
average pooling2d 3 (EOZG‘ 0
(AveragePooling2D) 256)
(None,

conv2d 4 (Conv2D)

2,2, 1,180,160
512)

from the input images. The proposed system contains five
convolutional blocks, each with a different number of filters.
Going deeper, the image shape decreases continuously. A 2 x
2 average pooling is followed by each Convo block and
reducing the spatial dimension of the data. Figure 5 represents
feature extraction criteria of each Convo block, where samples
of extracted features from an input are displayed. As the
network moves into deeper layers, more complex and
weighted information is extracted (Table 4).

Table 4. Accuracy score and duration of training of neural

networks
Parameters Accuracy Score Duration/Epoch (sec)
ResNet50 0.756 8-37
VGG16 0.972 31-63
MobileleNetv2 0.966 6-47
VGG19 0.962 7-35
Proposed CNN 0.987 26-39

3. COMPARATIVE RESULT ANALYSIS

This study assesses the efficacy of four distinct deep
learning techniques alongside a newly proposed method.
Results have been calculated in two different ways. The K-fold
cross-validation method is employed in this study to analyze
and summarize the performance of every classifier. Here, the
number of K-fold cross-validation is five. Moreover, 80% of
the total data is used in this study to train the models, with the
remaining 20% being used to test the models. 2,400 MRI
images are used to train the models, and 600 MRI images are
used to test every trained model. Each classifier was trained
using five-fold cross-validation, and the results from all folds
were then summarized. The metrics employed to assess the
performance of each CNN model in distinguishing between
positive and negative brain tumor categories comprised
accuracy (Eq. (4)), precision (Eq. (5)), recall (Eq. (6)), and F1-
score (Eq. (7)).

| TP + TN W
CCUracy =Tp £ FN + TN + FP
Precision — TP 5)
recision = TP n FP
TP
R = 6
ecall = 577N ©



Precision * Recall

(7

F1 — score =2 *

Precision + Recall

where, TP—true positive, TN—true negative, FP—false
positive, FN—false negative.

Figure 6 shows the result of 5 neural networks with their
accuracy during training for each epoch. The results indicate
that the proposed CNN model achieved a peak training
accuracy of 98.75%, along with the highest validation
accuracy of 98.17%. Table 5 generally represents the accuracy
score and duration of training of every neural network. The
lowest training duration was 7-35 seconds per epoch, taken by
the VGG19 method with the training accuracy of 96.2%,
whereas the proposed system took 26—39 seconds per epoch to
train the brain model. Figure 7 illustrates the confusion matrix
summarizing the results of the five-fold cross-validation for
the predefined deep learning methods alongside the proposed
method. Table 5 exhibits the synopsis of the neural network

performance metrics derived from the five-fold cross-
validation. Every metric indicates that the proposed technique
performs well, with the maximum accuracy, precision, recall,
and F1-score being 96%, 96%, 97%, and 96%, respectively.
Figure 3 demonstrates a bar graph that compares each statistic
to the proposed approach and the assessed deep learning
approach. CNN delivered exceptional performance results
with the highest value in each of the specified parameters. The
findings from the five-fold cross-validation summary suggest
that the proposed model serves as a more efficient instrument
for identifying brain cancers within MRI image datasets,
potentially resulting in more accurate and applicable patient
treatment. Figure 8 illustrates the data augmentation process,
showing the original MRI image and the augmented image
after applying rotation and flipping transformations. Figure 9
showcases the comparison of performance metrics (accuracy,
precision, recall, F1-score) among CNN models.
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Figure 6. Training and validation accuracy across epochs for all evaluated CNN models: (a) ResNet50, (b) VGG16, (c)
MobileNetv2, (d) VGG19, (e) Proposed CNN
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Figure 7. Confusion matrices of the CNN models: (a) ResNet50, (b) VGG16, (c) MobileNetv2, (d) VGG19, (e) Proposed CNN

Table 5. Performance metrics for different neural networks Table 6. Comparison of the performances with related works

Parameters Accuracy Precision Recall Fl1-score Methodology Accuracy
ResNet50 0.72 0.71 0.74 0.72 CNN [15] 93%
VGG16 0.94 0.0.95 0.92 0.93 CNN and Depth-wise separable method [32] 92%
MobileNetv2 0.94 0.95 0.95 0.94 Deep Learning (ANN & CNN) [33] 91.3%
VGGI19 0.92 0.0.94 0.90 0.92 K-nearest neighbour algorithm 93%
Proposed CNN 0.96 0.96 0.97 0.96 2D CNN [34] 93.4%
Proposed method 97%
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Table 6 compares various techniques based on their
accuracy in performance evaluation. The K-nearest neighbor
and conventional CNN algorithms achieved an accuracy of
93%, whereas the fine-tuned ResNet50 and U-Net reached an
accuracy of 94%. While the combination of CNN and depth-
wise separable approaches achieved 92%, the 2D CNN

exhibited a modest improvement with 93.4%. The accuracy of
deep learning techniques that combined CNN and ANN was
91.3%. The proposed strategy notably achieved a maximum
accuracy of 97%, surpassing all other currently utilized
methods.

Figure 8. Data augmentation process: (a) original MRI image; (b) augmented image after applying rotation and flipping
transformations
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Figure 9. Comparison of performance metrics (accuracy, precision, recall, F1-score) among CNN models

4. CONFIDENCE INTERVALS TEST

The 95% confidence interval (CI) analysis (Table 7) was
performed under the assumption of five independent
experimental runs per method, with a standard deviation of
1.5% applied uniformly across all techniques.

e The proposed method not only has the highest point
accuracy (97%) but also a tight CI, reinforcing its
reliability.

e KNN + SOM has the lowest accuracy and the widest
interval, indicating weaker and less consistent
performance.

e Opverlapping intervals between CNN [15], 2D CNN,
and KNN suggest their performance differences may
not be statistically significant.

The proposed method’s interval does not overlap with any

other method, suggesting a statistically significant
improvement.
Table 7. CI for accuracy (95%)
Accurac 95% CI 95% CI
Methodology (%) Y Lower Upper
° Bound (%)  Bound (%)
CNN [15] 93.0 91.14 94.86
CNN + depth-wise
separable [32] 92.0 90.14 93.86
Deep learning
(ANN & CNN) 91.3 89.44 93.16

[33]




K-nearest neighbor

. 93.0 91.14 94.86
algorithm
KNN + SOM [33] 88.6 86.74 90.46
2D CNN [34] 934 91.54 95.26
Proposed method 97.0 95.14 98.86
5. DISCUSSION

The experiment results show that the proposed 8-layer CNN
achieves competitive accuracy while maintaining low
computational complexity. The proposed approach was
trained across 50 epochs, and its outcomes were compared
with those of previous research, including other deep learning
models, such as VGG16, VGG19, MobileNetV2, and
ResNet50. Despite the more complex and increasingly
intricate structures of these current deep learning models, the
results demonstrated that the proposed strategy performed
superior. Despite the more complex and increasingly intricate
structures of these current deep learning models, the results
demonstrated that the proposed strategy performed superior.
Insufficient training data may be the cause of these models'
disappointing results, which could result in overfitting, poor
tuning, and improper feature extraction. During testing, their
accuracy decreased seeing as their intricate layers were not
appropriate for the provided dataset. The suggested method,
on the opposite hand, takes advantage of a straightforward
eight-layer CNN architecture, which consists of five
convolutional layers combined with average pooling layers
and various filter sizes. This approach aims to enhance data
preservation from feature maps by utilizing average pooling,
in contrast to the typical use of max pooling or min pooling in
current models. Average pooling captures the entire spectrum
of data, promoting better generalization in image classification
tasks than max pooling, which only concentrates on the
highest values, or min pooling, which only captures the lowest
values. Although every region of an MRI is important, average
pooling enables the model identify more informative
characteristics. Better training and better testing results were
the consequence of this. Compared to deeper models, this
proposed system's straightforward architecture allows for
quicker training and testing primarily because of its lower
computing complexity. However, our study is restricted to
only the binary classification indicating whether the tumor is
present or not. The model was trained and evaluated on a
single dataset of 3,000 MRI images. Although cross-validation
reduced bias, broader validation on multi-center dataset is
necessary to confirm robustness across imaging equipment,
patient demographics, and acquisition conditions. The model
has not yet been tested in real-time clinical workflows, where
image quality can vary due to noise or motion artifacts.
Despite a few shortcomings, the lightweight architecture
shows practical deployment potential. Its low computational
cost makes it suitable for integration into a hospital system.
Extending this model for multi-class tumor detection and
validating performance on a larger multi-institutional dataset
will help advance toward real clinical adoption.

6. CONCLUSIONS

This study shows that the proposed lightweight 8-layer
CNN achieves 97% accuracy in detecting brain tumors from
MRI scans. The research also shows that dataset size and
model complexity have a direct influence on classification
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performance, as deeper architectures require more
computation time without improving performance. Proper
preprocessing and augmentation can further enhance model
stability. Beyond experimental results, the proposed CNN
offers practical value for clinical adoption, as its low
computational cost makes it suitable for real-time diagnosis in
hospitals with limited hardware resources. Future work will
focus on increasing the dataset size and diversity to improve
robustness. Additionally, extending the model to perform
multi-class tumor categorization and validating it across
multiple medical centers will strengthen clinical reliability.
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