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A brain tumor is an abnormal growth of brain cells that may manifest symptoms of 

cancer. Early and accurate detection is essential to initiate timely treatment and improve 

patient outcomes. Traditional diagnostic methods often demonstrate limited accuracy, 

highlighting the need for more reliable and automated solutions. This study proposes 

an optimized 8-layer convolutional neural network (CNN) for automatic brain tumor 

classification using magnetic resonance imaging (MRI) scans. A balanced dataset of 

3,000 annotated MRI images was used (1,500 with tumors and 1,500 without tumors). 

Preprocessing included image labeling. To improve training efficiency, preprocessing 

procedures included image labeling, resizing, and augmentation. Model Performance 

was evaluated with five-fold cross-validation with an 80-20 train-test split. The 

proposed CNN achieved an accuracy of 97%, outperforming established deep learning 

models such as ResNet50 (72%), VGG16 (94%), MobileNetV2 (94%), and VGG19 

(92%) on the same dataset. These findings show that the proposed lightweight CNN 

provides high diagnostic accuracy with reduced computational complexity. Hence, this 

approach exhibits strong potential for integration into clinical diagnostic workflows, 

supporting more efficient and accurate brain tumor detection. 

Keywords: 

brain tumor detection, MRI, deep learning, 

image classification, K-fold cross-validation, 

computational efficiency 

1. INTRODUCTION

The brain is the most vital organ in a human being, which 

controls the central nervous system (CNS) and all body 

functions [1, 2]. It is comprised of dramatic, intricate tissues 

with every neuron dedicated to specific cognitive and 

physiological functions [3]. In most of the diseases that affect 

the brain, tumour is a very dangerous disease. Brain tumor is 

defined as an abnormal mass of tissue in the brain that grows 

and multiplies uncontrollably [1]. Historically, brain tumors 

have been referred to as benign (noncancerous) or malignant 

(cancerous), according to how they grow and their effects on 

surrounding tissue [4]. “Yes,” Jesus replied, “a beggar named 

Lazarus was placed at his gate, covered with sores, and 

longing to eat the crumbs that fell from the rich man’s table. 

Tumors can also be characterized as primary, which are 

derived within the brain and secondary (metastatic), travelling 

from other areas of the body [5]. 

In terms of a worldwide health burden, brain tumors are 

increasingly relevant. There were an estimated 308,102 new 

brain tumor cases and 251,329 deaths from CNS tumors in 

2020 [6]. Approximately 25,400 new cases and 18,700 deaths 

occurred in the United States (US) in 2024. The rate of brain 

and CNS cancers was 6.4 per 100,000 cases between the years 

of 2016–2020, resulting in an annual mortality incidence of 

4.4 per 100,000 [7]. In the United Kingdom, approximately 

12,700 new diagnoses (35 per day) occurred between 2017 and 

2018 and brain tumors were ranked as the ninth most prevalent 

type of cancer in the country [8]. The number of brain tumor 

cases in the world increased by 94.35% between 1990 and 

2019 to nearly 347,992 cases in 2019 [9]. 

Early detection is critical for improving the survival, and 

there are many diagnosis approaches such as biopsy, computer 

tomography (CT), magnetic resonance imaging (MRI). MRI is 

relatively preferred because it has high soft-tissue contrast and 

can detect the normal/abnormal brain structures [10]. Deep 

learning, especially convolutional neural networks (CNNs), 

has become a popular technique for medical image processing 

and can be used as an automatic and accurate tumor detection 

tool [11] in recent years. Besides, there have been growing 

applications of intelligent computational approaches in 

biomedical systems in recent research [12], thereby featuring 

efficient and dependable data processing as the key point in 

healthcare problems. 
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Although beneficial, a majority of existing deep learning 

techniques focus on binary tumor classification and some of 

them are based on comparatively large architectures such as 

VGG16 and ResNet50. The models may be weak on small 

MRI datasets and need large computing power. In view of 

these constraints, this work presents a slim 8 layer CNN for 

brain tumor detection that is specifically tailored to prevent 

over-fitting and boost performance. 

The main contributions of the paper are as follows: 

• A novel lightweight CNN network with only eight 

layers is proposed for faster calculation and less 

overfitting. 

• Use of intense K-fold cross-validation to reinforce 

model trustworthiness and generalizability. 

 

 

2. MATERIALS AND METHODS 

 

CNNs have demonstrated substantial effectiveness in 

medical image classification tasks, particularly for tumor 

detection using MRI data. To establish a strong baseline, this 

study implemented four widely recognized CNN 

architectures, ResNet50, VGG16, MobileNetV2, and VGG19, 

and compared their performance against our proposed 

lightweight 8-layer CNN model designed to balance 

computational efficiency with high diagnostic accuracy. The 

overall workflow of the study is presented in Figure 1. 

 

 
 

Figure 1. Architecture of tumor detection using CNN 

 

2.1 Dataset 

 

The dataset used in this study was obtained from Kaggle 

[13] and comprised 3,000 MRI scans, equally divided into 

tumor-positive (1,500) and tumor-negative (1,500) images. 

The images varied in resolution, ranging from 225 × 225 to 

630 × 630 pixels, necessitating standardization prior to model 

training. Representative tumor and non-tumor samples are 

provided in Figure 2.  

 

2.2 Data preprocessing 

 

To ensure uniformity and improve classification 

performance, several preprocessing techniques were applied. 

 

2.2.1 Image labeling 

For supervised training, the MRI images were annotated 

according to the presence of a brain tumor. A binary labeling 

scheme was adopted, where images indicating tumor presence 

were assigned the label “Yes” (positive) and images without 

any evidence of a tumor were assigned the label “No” 

(negative). Formally, the labeling function can be expressed as 

in Eq. (1): 

 

𝑦𝑖

=  {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒 𝑒𝑥ℎ𝑖𝑏𝑖𝑡𝑠 𝑎 𝑡𝑢𝑚𝑜𝑟 (“𝑌𝑒𝑠”)
0, 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒 𝑖𝑠 𝑓𝑟𝑒𝑒 𝑜𝑓 𝑡𝑢𝑚𝑜𝑟 (“𝑁𝑜”)

 
(1) 

 

This labeling procedure established the ground truth 

necessary for training and evaluating the CNN models. An 

illustration of the labeled samples is provided in Figure 3. 

 

2.2.2 Image resizing 

The original dataset comprises MRI images of varying 

spatial dimensions, which can negatively impact the 

performance and convergence of deep learning models due to 

inconsistent input sizes. Every image was shrunk to fixed 

dimensions suitable for each CNN architecture in order to 

standardize the input. Formally, given an original image 

Ioriginal  ∈  ℝ𝐻0× 𝑊0× 𝐶 , where H0, W0, and C represent the 

original height, width, and number of channels, respectively, 

the resizing operation is defined as a function (Eq. (2)): 

 

Iresize = fresize (Ioriginal; Hr,Wr) (2) 

 

where, Hr and Wr denote the target height and width, and 

Ioriginal  ∈  ℝ𝐻𝑟× 𝑊𝑟× 𝐶. 

In this study, two resizing strategies were adopted: 

• For pretrained architectures (ResNet50, VGG16, 

VGG19, MobileNetV2), images were resized to 224 × 

224 × 3, matching the input dimensions these models 

expect. 

• For the proposed CNN architecture, images were 

resized to 100 × 100 × 3 to reduce computational 

complexity while preserving sufficient spatial 

resolution for feature extraction. 

This resizing preserves the three-color channels of MRI 

images. The resizing was performed using bilinear 

interpolation to maintain image quality and minimize 

distortion. 

 

2.2.3 Augmentation 

Deep learning models generally require large and diverse 

training datasets to achieve robust generalization. The MRI 

dataset was small; thus, data augmentation was used to 

synthetically enlarge the training set and reduce overfitting. 

Augmentation techniques introduced controlled variability 

while preserving the pathological features critical for tumor 

identification. Formally, an augmented image 𝑋̃  was 

generated by applying a transformation operator τ to the 

original input X (Eq. (3)): 

 
𝑋̃ =  𝜏 (𝑋), 𝜏 
∈  {𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛, 𝑤𝑖𝑑𝑡ℎ 𝑠ℎ𝑖𝑓𝑡, ℎ𝑒𝑖𝑔ℎ𝑡 𝑠ℎ𝑖𝑓𝑡, ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑓𝑙𝑖𝑝} 

(3) 

 

The transformations were applied stochastically to ensure 

diversity in the training samples while maintaining class 

integrity. The model's capacity to learn invariant features 

across changes in tumor orientation, position, and image 

geometry was improved by this method. 

4388



 
 

Figure 2. Representative MRI dataset samples 

 

  
(a) (b) 

 

Figure 3. Illustration of image labeling: Tumor-positive images labeled as “Yes” and tumor-negative images labeled as 

“No”: (a) before labeling, (b) after labeling 

 

2.3 Baseline classifiers 

 

To contextualize the performance of the proposed 

lightweight CNN, four widely used deep learning 

architectures, ResNet50, VGG16, VGG19, and MobileNetV2, 

were selected for comparison. These models represent well-

established, state-of-the-art approaches with deep and 

complex structures that have demonstrated effectiveness in 

various medical image classification tasks. 

A previous study [14] used later fusion methods, though 

complex, which often outperform earlier fusion by better 

capturing modality relationships. Another study CNN-based 

deep learning approach achieved 93% accuracy in classifying 

brain tumors from MRI images [15]. ResNet50 incorporates 

residual connections to facilitate the training of very deep 

networks, enabling rich feature extraction but often requiring 

substantial training data [16-19]. VGG16 and VGG19, 

developed by the Visual Geometry Group [20-23]. 

MobileNetV2 offers a lightweight architecture optimized for 

computational efficiency through depth-wise separable 

convolutions and inverted residual blocks [24-27]. Another 

standardized deep architecture with varying depths (16 and 19 

layers, respectively), widely used as benchmarks in image 

recognition [28-30].  

Despite their success, these models’ complexity and depth 

can hinder performance on limited datasets, potentially 

causing overfitting, insufficient tuning, and inadequate feature 

extraction. Consequently, their accuracy may decline when 

applied to relatively small MRI datasets, as observed in this 

study. 

 

Table 1. Summary of baseline CNN architectures used for comparison 

 

Model Depth (Layers) Architectural Highlights 
Computational 

Complexity 
References 

ResNet50 50 Residual connections for training very deep nets High [16-18] 

VGG16 16 Uniform architecture with small convolutional filters Moderate [20-23] 

MobileNetV2 ~53 Lightweight with depth wise separable convolutions Low [24-27] 

VGG19 19 A deeper variant of VGG16 with additional layers High [28-30] 
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In contrast, the proposed model employs a simple 8-layer 

CNN architecture integrating average pooling layers instead of 

the commonly used max pooling. Average pooling preserves 

broader feature map information, capturing more informative 

characteristics across MRI regions. This contributes to 

improved generalization, yielding superior performance on the 

dataset while reducing computational overhead. The 

comparison thus highlights the proposed model's advantages 

in accuracy, generalization, and efficiency over conventional 

deep architectures under limited data conditions (Table 1). 

 

2.4 Proposed system 

 

The research proposed a CNN method consisting of 8 

layers, including convolutional, pooling, flatten, dropout and 

dense layers. Also, there is an activation function and this 

system uses the ReLU activation function. In CNN, the initial 

layer is the Conv layer, which extracts features from input data 

and produces a set of feature maps of the input image. Then, a 

pooling layer, an additional layer attached to the convolutional 

block, is commonly used to reduce the spatial size of the 

output feature map while preserving essential information and 

patterns. Subsequently, the output from both layers is passed 

into the fully connected layers, which are responsible for the 

classification. During the training phase, by applying back-

propagation and stochastic gradient descent CNN maximizes 

the distinctions between the Conv layer and the fully 

connected layer. The trained CNN model detects brain tumors 

by outputting probability scores and determines whether a 

brain tumor is present based on a threshold value. Figure 4 

represents the proposed neural network of the study. The 

applied method consists of five Conv blocks, and the number 

of filters is 32, 64, 128, 256, 512, respectively, and ReLU as 

the activation function. Each of the convolutional blocks is 

followed by an average pooling layer with a kernel size of (2 

× 2). Dense layers of 512,256 units as fully connected layers 

are employed. The dropout layer and ReLU activation function 

come next. Dense layers with single-unit sigmoid activation 

functions detect brain tumors.

 

 
 

Figure 4. Proposed CNN architecture 

 

 
 

Figure 5. Feature maps extracted by the convolutional layers of the proposed CNN 

 

In the proposed system, the average pooling is used instead 

of the max pooling layer, whereas most of the CNN methods 

or deep learning methods are used frequently. The ability to 

create a feature map that captures each region’s average value 

within the feature map is the primary justification for applying 

average pooling in this scenario. As a result, the network’s 
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computational complexity and parameter number are reduced, 

as shown in Table 2. In contrast to this approach, max pooling 

chooses the highest value possible from every region. Because 

it smooths the feature maps, average pooling is particularly 

useful for obtaining global spatial information and effectively 

reduces the danger of overfitting [31]. This study shows that, 

when used strategically, model performance can be enhanced 

using average pooling in the context of wide residual 

networks. Table 3 presents the implementation details of the 

CNN model, including the total number of parameters, as well 

as the counts for trainable and non-trainable parameters. 

 

Table 2. Image augmentation parameters and their 

descriptions 

 
Transformation 

Type 

Parameter 

Range 
Description 

Rotation 15° 

Randomly rotate the input 

image within a range of 

±15 degrees 

Horizontal Flip True 

Flip the image horizontally 

to simulate the left-right 

variations 

Vertical Flip True 

Flip the image vertically to 

enhance robustness to 

vertical orientation 

changes. 

Width Shift ±10 

Randomly shifts the image 

horizontally by up to 10% 

of its width 

Height Shift ±10 

Randomly shift the image 

vertically by up to 10% of 

its height 

Brightness [0.5,1.5] 
Adjust image brightness 

within the specified range 
Note: Total params: 1,962,817; Trainable params: 1,962,817; Non-trainable 

params: 0 

 

Table 3. CNN model architecture and parameters 

 

Layer (Type) 
Output 

Shape 
Param # 

conv2d (Conv2D) 

(None, 

98, 98, 

32) 

896 

average pooling2d 

(AveragePooling2D) 

(None, 

49, 49, 

32) 

0 

conv2d 1 (Conv2D) 

(None, 

47, 47, 

64) 

18,496 

average pooling2d 1 

(AveragePooling2D) 

(None, 

23, 23, 

64) 

0 

conv2d 2 (Conv2D) 

(None, 

21, 21, 

128) 

73,856 

average pooling2d 2 

(AveragePooling2D) 

(None, 

10, 10, 

128) 

0 

conv2d 3 (Conv2D) 

(None, 

8, 8, 

256) 

295,168 

average pooling2d 3 

(AveragePooling2D) 

(None, 

4, 4, 

256) 

0 

conv2d 4 (Conv2D) 

(None, 

2, 2, 

512) 

1,180,160 

average pooling2d 4 

(AveragePooling2D) 

(None, 

1, 1, 

512) 

0 

flatten (Flatten) 
(None, 

512) 
0 

dense (Dense) 
(None, 

512) 
262,656 

dropout (Dropout) 
(None, 

512) 
0 

dense 1 (Dense) 
(None, 

512) 
131,328 

dropout 1 (Dropout) 
(None, 

512) 
0 

dense 2 (Dense) 
(None, 

1) 
257 

 

The convolutional layer (Conv2D) extracts feature maps 

from the input images. The proposed system contains five 

convolutional blocks, each with a different number of filters. 

Going deeper, the image shape decreases continuously. A 2 × 

2 average pooling is followed by each Convo block and 

reducing the spatial dimension of the data. Figure 5 represents 

feature extraction criteria of each Convo block, where samples 

of extracted features from an input are displayed. As the 

network moves into deeper layers, more complex and 

weighted information is extracted (Table 4). 

 

Table 4. Accuracy score and duration of training of neural 

networks 

 
Parameters Accuracy Score Duration/Epoch (sec) 

ResNet50 0.756 8–37 

VGG16 0.972 31–63 

MobileleNetv2 0.966 6–47 

VGG19 0.962 7–35 

Proposed CNN 0.987 26–39 

 

 

3. COMPARATIVE RESULT ANALYSIS 
 

This study assesses the efficacy of four distinct deep 

learning techniques alongside a newly proposed method. 

Results have been calculated in two different ways. The K-fold 

cross-validation method is employed in this study to analyze 

and summarize the performance of every classifier. Here, the 

number of K-fold cross-validation is five. Moreover, 80% of 

the total data is used in this study to train the models, with the 

remaining 20% being used to test the models. 2,400 MRI 

images are used to train the models, and 600 MRI images are 

used to test every trained model. Each classifier was trained 

using five-fold cross-validation, and the results from all folds 

were then summarized. The metrics employed to assess the 

performance of each CNN model in distinguishing between 

positive and negative brain tumor categories comprised 

accuracy (Eq. (4)), precision (Eq. (5)), recall (Eq. (6)), and F1-

score (Eq. (7)). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 
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𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
  (7) 

 

where, TP—true positive, TN—true negative, FP—false 

positive, FN—false negative. 

Figure 6 shows the result of 5 neural networks with their 

accuracy during training for each epoch. The results indicate 

that the proposed CNN model achieved a peak training 

accuracy of 98.75%, along with the highest validation 

accuracy of 98.17%. Table 5 generally represents the accuracy 

score and duration of training of every neural network. The 

lowest training duration was 7–35 seconds per epoch, taken by 

the VGG19 method with the training accuracy of 96.2%, 

whereas the proposed system took 26–39 seconds per epoch to 

train the brain model. Figure 7 illustrates the confusion matrix 

summarizing the results of the five-fold cross-validation for 

the predefined deep learning methods alongside the proposed 

method. Table 5 exhibits the synopsis of the neural network 

performance metrics derived from the five-fold cross-

validation. Every metric indicates that the proposed technique 

performs well, with the maximum accuracy, precision, recall, 

and F1-score being 96%, 96%, 97%, and 96%, respectively. 

Figure 3 demonstrates a bar graph that compares each statistic 

to the proposed approach and the assessed deep learning 

approach. CNN delivered exceptional performance results 

with the highest value in each of the specified parameters. The 

findings from the five-fold cross-validation summary suggest 

that the proposed model serves as a more efficient instrument 

for identifying brain cancers within MRI image datasets, 

potentially resulting in more accurate and applicable patient 

treatment. Figure 8 illustrates the data augmentation process, 

showing the original MRI image and the augmented image 

after applying rotation and flipping transformations. Figure 9 

showcases the comparison of performance metrics (accuracy, 

precision, recall, F1-score) among CNN models. 

 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

 

Figure 6. Training and validation accuracy across epochs for all evaluated CNN models: (a) ResNet50, (b) VGG16, (c) 

MobileNetv2, (d) VGG19, (e) Proposed CNN 
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(a) (b) 

  
(c) (d) 

 
(e) 

 

Figure 7. Confusion matrices of the CNN models: (a) ResNet50, (b) VGG16, (c) MobileNetv2, (d) VGG19, (e) Proposed CNN 

 

Table 5. Performance metrics for different neural networks 

 
Parameters Accuracy Precision Recall F1-score 

ResNet50 0.72 0.71 0.74 0.72 

VGG16 0.94 0.0.95 0.92 0.93 

MobileNetv2 0.94 0.95 0.95 0.94 

VGG19 0.92 0.0.94 0.90 0.92 

Proposed CNN 0.96 0.96 0.97 0.96 

 

 

 

Table 6. Comparison of the performances with related works 

 
Methodology Accuracy 

CNN [15] 93% 

CNN and Depth-wise separable method [32] 92% 

Deep Learning (ANN & CNN) [33] 91.3% 

K-nearest neighbour algorithm 93% 

2D CNN [34] 93.4% 

Proposed method 97% 
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Table 6 compares various techniques based on their 

accuracy in performance evaluation. The K-nearest neighbor 

and conventional CNN algorithms achieved an accuracy of 

93%, whereas the fine-tuned ResNet50 and U-Net reached an 

accuracy of 94%. While the combination of CNN and depth-

wise separable approaches achieved 92%, the 2D CNN 

exhibited a modest improvement with 93.4%. The accuracy of 

deep learning techniques that combined CNN and ANN was 

91.3%. The proposed strategy notably achieved a maximum 

accuracy of 97%, surpassing all other currently utilized 

methods. 

 

  
(a) (b) 

 

Figure 8. Data augmentation process: (a) original MRI image; (b) augmented image after applying rotation and flipping 

transformations 

 

 

 

Figure 9. Comparison of performance metrics (accuracy, precision, recall, F1-score) among CNN models 

 

 

4. CONFIDENCE INTERVALS TEST 

 

The 95% confidence interval (CI) analysis (Table 7) was 

performed under the assumption of five independent 

experimental runs per method, with a standard deviation of 

1.5% applied uniformly across all techniques. 

• The proposed method not only has the highest point 

accuracy (97%) but also a tight CI, reinforcing its 

reliability. 

• KNN + SOM has the lowest accuracy and the widest 

interval, indicating weaker and less consistent 

performance. 

• Overlapping intervals between CNN [15], 2D CNN, 

and KNN suggest their performance differences may 

not be statistically significant. 

The proposed method’s interval does not overlap with any 

other method, suggesting a statistically significant 

improvement.  

 

Table 7. CI for accuracy (95%) 

 

Methodology 
Accuracy 

(%) 

95% CI 

Lower 

Bound (%) 

95% CI 

Upper 

Bound (%) 

CNN [15] 93.0 91.14 94.86 

CNN + depth-wise 

separable [32] 
92.0 90.14 93.86 

Deep learning 

(ANN & CNN) 

[33] 

91.3 89.44 93.16 
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K-nearest neighbor 

algorithm 
93.0 91.14 94.86 

KNN + SOM [33] 88.6 86.74 90.46 

2D CNN [34] 93.4 91.54 95.26 

Proposed method 97.0 95.14 98.86 

 

 

5. DISCUSSION 

 

The experiment results show that the proposed 8-layer CNN 

achieves competitive accuracy while maintaining low 

computational complexity. The proposed approach was 

trained across 50 epochs, and its outcomes were compared 

with those of previous research, including other deep learning 

models, such as VGG16, VGG19, MobileNetV2, and 

ResNet50. Despite the more complex and increasingly 

intricate structures of these current deep learning models, the 

results demonstrated that the proposed strategy performed 

superior. Despite the more complex and increasingly intricate 

structures of these current deep learning models, the results 

demonstrated that the proposed strategy performed superior. 

Insufficient training data may be the cause of these models' 

disappointing results, which could result in overfitting, poor 

tuning, and improper feature extraction. During testing, their 

accuracy decreased seeing as their intricate layers were not 

appropriate for the provided dataset. The suggested method, 

on the opposite hand, takes advantage of a straightforward 

eight-layer CNN architecture, which consists of five 

convolutional layers combined with average pooling layers 

and various filter sizes. This approach aims to enhance data 

preservation from feature maps by utilizing average pooling, 

in contrast to the typical use of max pooling or min pooling in 

current models. Average pooling captures the entire spectrum 

of data, promoting better generalization in image classification 

tasks than max pooling, which only concentrates on the 

highest values, or min pooling, which only captures the lowest 

values. Although every region of an MRI is important, average 

pooling enables the model identify more informative 

characteristics. Better training and better testing results were 

the consequence of this. Compared to deeper models, this 

proposed system's straightforward architecture allows for 

quicker training and testing primarily because of its lower 

computing complexity. However, our study is restricted to 

only the binary classification indicating whether the tumor is 

present or not. The model was trained and evaluated on a 

single dataset of 3,000 MRI images. Although cross-validation 

reduced bias, broader validation on multi-center dataset is 

necessary to confirm robustness across imaging equipment, 

patient demographics, and acquisition conditions. The model 

has not yet been tested in real-time clinical workflows, where 

image quality can vary due to noise or motion artifacts. 

Despite a few shortcomings, the lightweight architecture 

shows practical deployment potential. Its low computational 

cost makes it suitable for integration into a hospital system. 

Extending this model for multi-class tumor detection and 

validating performance on a larger multi-institutional dataset 

will help advance toward real clinical adoption. 

 

 

6. CONCLUSIONS 

 

This study shows that the proposed lightweight 8-layer 

CNN achieves 97% accuracy in detecting brain tumors from 

MRI scans. The research also shows that dataset size and 

model complexity have a direct influence on classification 

performance, as deeper architectures require more 

computation time without improving performance. Proper 

preprocessing and augmentation can further enhance model 

stability. Beyond experimental results, the proposed CNN 

offers practical value for clinical adoption, as its low 

computational cost makes it suitable for real-time diagnosis in 

hospitals with limited hardware resources. Future work will 

focus on increasing the dataset size and diversity to improve 

robustness. Additionally, extending the model to perform 

multi-class tumor categorization and validating it across 

multiple medical centers will strengthen clinical reliability. 
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