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Predicting customer churn is crucial for telecommunications companies, as retaining 

existing customers is more cost-effective than acquiring new ones. This work proposes 

a novel Stacking ensemble framework integrating five base classifiers: Decision Tree, 

Random Forest, Extra Trees, Gradient Boosting, and XGBoost, designed to accurately 

predict churn while providing interpretable explanations of model decisions. The 

methodology involves comprehensive data preprocessing, including outlier detection, 

handling of high-cardinality categorical variables, normalization  and application of 

Synthetic Minority Over-sampling Technique (SMOTE), a technique to construct the 

synthetic samples of the minority group to overcome the class imbalance on a training 

set of 3,333 samples. Ensemble methods such as Soft Voting, Hard Voting, and the 

proposed Stacking approach are evaluated, with the Stacking ensemble achieving 

superior performance 94.75% accuracy, 73.20% recall, 88.75% precision, and an F1-

score of 80.23%. This represents a 3.09% improvement over the best previously 

reported accuracy of 91.66% and outperforms individual models, including XGBoost 

(F1-score 79.14%). Model interpretability is enhanced through Shapley additive 

explanations (SHAP), highlighting total day minutes, international plan subscription, 

and account length as key predictors influencing churn. The proposed framework offers 

a reliable and transparent tool for churn prediction applicable in business contexts 

requiring explainable AI. Future work will explore integrating temporal deep learning 

models and real-time updated data to further improve predictive performance across 

diverse industries. 
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1. INTRODUCTION

Today’s digital economy enables consumers to easily 

access product information and compare alternative offers, 

primarily due to the rise of e-commerce and data-driven 

services [1, 2]. Consequently, purchasing decisions are more 

deliberate, posing challenges for companies to retain existing 

customers in an increasingly competitive landscape [3, 4]. 

This issue is particularly pronounced in the 

telecommunications sector, which is both a backbone of digital 

infrastructure and a key contributor to national economies, 

especially in developing regions [5, 6]. 

In this context, customer churn, the tendency of subscribers 

to discontinue their services, poses a significant threat to 

telecom providers, impacting profitability, customer lifetime 

value, and service continuity [7]. Research shows that 

acquiring new customers can cost five to twenty-five times 

more than retaining existing ones [8, 9]. Furthermore, high 

churn rates complicate revenue forecasting, elevate marketing 

costs, and disrupt network planning strategies [10, 11]. 

To address this, telecom companies increasingly deploy 

machine learning (ML) models to anticipate churn and launch 

timely, personalized interventions [12]. However, churn 

prediction in telecom is complex due to domain-specific data 

challenges such as feature sparsity, high-cardinality 

categorical variables (e.g., region codes, service types), and 

imbalanced class distributions [13, 14]. Moreover, many 

accurate ML models, particularly ensemble methods, are often 

criticized as “black boxes” due to their lack of transparency. 

This explainability gap limits the practical adoption of these 

models, especially in telecom environments where decision-

makers need not only accurate forecasts but also clear, 

actionable insights into the causes of churn. 

While recent advancements in explainable AI (XAI) 

techniques such as Shapley additive explanations (SHAP) and 

Local Interpretable Model-agnostic Explanations (LIME), a 

framework which estimates the performance of complex 

models locally by learnable surrogate models to offer 

explanations of single predictions, has enhanced transparency, 

most prior works focus on individual classifiers (e.g., Random 

Forest (RF), LightGBM) [15, 16] and do not fully address the 

trade-off between accuracy and interpretability, especially in 

ensemble architectures [17]. Additionally, many of these 

studies fail to quantify the importance of explainability in 

supporting managerial decisions or to empirically validate 

performance gains. 

This study addresses these gaps by proposing an explainable 

churn prediction framework that combines a Stacking 
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ensemble model (comprising Decision Tree (DT), RF, Extra 

Trees, Gradient Boosting, and XGBoost) with SHAP-based 

interpretation. The framework begins with data exploration 

and preprocessing (including SMOTE for class imbalance), 

trains multiple base models, and integrates them via three 

ensemble techniques: Soft Voting, Hard Voting, and Stacking. 

SHAP is then applied to visualize feature contributions at both 

global and individual levels. 

Our results demonstrate that this hybrid approach not only 

improves predictive accuracy but also provides interpretable 

insights into key churn drivers such as total day minutes, 

international plan status, and account length. These findings 

empower telecom managers to design targeted retention 

strategies grounded in transparent AI recommendations. 

The remainder of the paper is structured as follows: Section 

2 reviews relevant literature on churn prediction and 

explainable ML. Section 3 details the methodology, including 

preprocessing, model training, and SHAP analysis. 

Experimental results are presented in Section 4, followed by a 

discussion in Section 5. Finally, Section 6 concludes the study 

and suggests directions for future research.  

2. LITERATURE REVIEW

The domain of customer churn prediction has witnessed a 

rapid evolution through the integration of ML and XAI, 

enabling not only high predictive accuracy but also critical 

interpretability for actionable decision-making. In the 

telecommunications sector, which continues to experience 

some of the highest churn rates across industries, Chang et al. 

[18] explored the use of ensemble-based methods such as DTs,

Boosted Trees, RFs, and Logistic Regression to anticipate

customer attrition. Their work achieves notable predictive

performance 91.66% accuracy, 82.2% precision, and 81.8%

recall, highlighting the effectiveness of RF. Importantly, their

integration of XAI methods like LIME and SHAP provides

transparency to these black-box models, empowering

customer relationship managers to proactively intervene.

Similarly, Nkolele and Wang [19] underscored the importance

of explainability alongside accuracy by evaluating DT, RF,

and LightGBM models, with LightGBM outperforming others

in AUC (0.87) and recall (0.95). Their use of SHAP and LIME

delivers both global and local interpretability, and their visual

decomposition of the DT’s logic ensures that stakeholders can

comprehend and act on model outcomes. Poudel et al. [20]

further affirmed the need for interpretable modeling by

incorporating SHAP visualizations and the Wilcoxon test into

gradient boosting machine (GBM) evaluation. The model

achieves 81% accuracy and uncovers the importance of

features such as contract length and call duration in churn

prediction.

Beyond telecommunications, the application of explainable 

ML has expanded into other sectors. For instance, Guliyev and 

Tatoğlu [21] applied XGBoost combined with SHAP to 

banking churn data, revealing how explainability can bridge 

the gap between predictions and strategic customer 

management. Asif et al. [22] pushed the boundaries of 

ensemble learning by proposing the XAI-Churn TriBoost 

model, which combines XGBoost, CatBoost, and LightGBM 

via a soft voting mechanism. This model is trained on over 2 

million customer records and employs advanced 

preprocessing techniques such as Bayesian Ridge-based 

imputation, Boruta feature selection, and SMOTE for 

balancing. The model achieves exceptional performance 

96.44% accuracy, 92.82% precision, 87.82% recall, and a 

90.25% F1-score and leverages LIME and SHAP to explain 

model predictions, identifying "regularity" and "montant" as 

key churn drivers. The study outlines future extensions such 

as real-time deployment and industry-wide validation. 

Complementarily, Noviandy et al. [23] conducted a 

comparative study involving Naïve Bayes, RF, AdaBoost, 

XGBoost, and LightGBM, achieving 80.70% accuracy with 

LightGBM. SHAP analysis in their study brings out actionable 

feature-level insights such as the importance of contract type 

and tenure, validating the practical utility of XAI. 

Expanding the scope to the e-commerce domain, Boukrouh 

and Azmani [24] compared seven models: ANN, SVM, KNN, 

DTs, RFs, Logistic Regression, and Naïve Bayes on a churn 

dataset. ANN yields the highest accuracy (92.09%), and 

through the integration of SHAP and LIME, the study 

identifies key variables such as complaints, tenure, and 

preferred order category as critical churn indicators. Özkurt 

[25] offers a methodological contribution by comparing SHAP

with InterpretML’s Partial Dependence Plots. This

comparison illuminates the trade-off between instance-level

and dataset-level explanation, providing valuable guidance for

model selection based on interpretability needs. Özkurt’s

subsequent study [26] benchmarks 11 different ML models

across a large telecom dataset, finding LightGBM most

accurate (73.085%). The dual use of SHAP and LIME in this

study reinforces their complementary value in providing both

global and local insights into churn behavior.

Further innovation is evident in the study by Firmansyah et 

al. [27], which integrates churn risk into customer lifetime 

value (CLV) modeling through the risk-adjusted revenue 

(RAR) framework. Using XGBoost and CatBoost, the study 

achieves 85% accuracy for churn prediction and 92% R² for 

RAR estimation. SHAP helps identify loyalty points and 

revenue volatility as key contributors to churn risk, pushing 

the frontiers of data-driven portfolio management. Peng and 

Peng [28] introduced a genetic algorithm-tuned XGBoost 

model (GA-XGBoost) and use ADASYN to address class 

imbalance. The study shows improved recall and F1-score, 

with SHAP identifying high call duration and voicemail 

subscription as churn predictors. However, it acknowledges 

the computational cost of GA-based tuning. Finally, a hybrid 

model combining LSTM, GRU, and LightGBM is proposed in 

the study [29] for the streaming service sector. This model 

excels in handling temporal data, achieving a 95.60% AUC 

and a 90.09% F1-score. SHAP and explainable boosting 

machine (EBM) are employed to maintain transparency, 

highlighting factors such as usage frequency and subscription 

history. 

These studies converge on a common theme: that 

combining ensemble and deep learning approaches with 

interpretability techniques like SHAP and LIME creates 

powerful tools for churn prediction. Whether applied in 

telecom, banking, e-commerce, or streaming services, these 

models not only deliver high accuracy but also foster 

stakeholder trust through transparency. They highlight a shift 

from purely performance-focused modeling to interpretable, 

actionable AI systems. Building on these trends, our work is 

the first to combine Stacking ensemble learning with SHAP-

based explanation for churn prediction in telecom, offering 

both high predictive accuracy and transparent insights. This 

integrated approach addresses the gap between accuracy and 

interpretability, especially relevant for managerial decision-
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making in customer retention, an essential evolution for 

deploying predictive analytics in high-stakes, customer-

centric domains. 

Table 1 reveals a dominant reliance on tree-based ensemble 

models-particularly RF, Gradient Boosting, and XGBoost-

across recent churn prediction studies, due to their superior 

performance and built-in feature importance measures. 

However, few works combine these models with robust 

interpretability frameworks. While some studies leverage 

SHAP or LIME independently, none to our knowledge 

combine a Stacking ensemble with SHAP explanations in a 

telecom context, making this study a novel contribution. 

Furthermore, in contrast to computationally intensive methods 

like Peng and Peng’s GA-tuned XGBoost [28], which requires 

significant training time, our Stacking model demonstrates 

faster convergence (1.36 s) with a competitive F1-score 

(0.8023), making it more suitable for deployment in real-time 

decision environments.

Table 1. Related work 

Ref. Approach / Methodology Key Contribution 
Identified Limitation / 

Gap 
Domain 

Accuracy 

(%) 

[18] 
Ensemble ML (DT, Boosted Trees, 

RF, LR) with LIME & SHAP 

High-accuracy churn prediction 

with explainability for strategic 

retention 

Lack of interpretability in 

ensemble models 
Telecom 91.66 

[19] 
LightGBM, DT, RF + LIME & 

SHAP with rule-based logic 

High AUC and recall via LightGBM 

with visualized decision logic 

Need for actionable 

transparency 
Telecom N/A 

[20] GBM + SHAP + Wilcoxon test
Demonstrates early churn prediction 

using explainable GBM 

Limited focus on 

interpretability 
Telecom 81 

[21] 
XGBoost + SHAP on real-world

bank data 

Applies explainable ML to banking 

churn using SHAP 

Churn risk modeling in 

finance 
Banking N/A 

[22] 

TriBoost (XGBoost, CatBoost, 

LightGBM) + SMOTE + Boruta + 

LIME & SHAP 

Robust ensemble with the highest 

accuracy and integrated 

interpretability 

Scalability and real-time 

deployment 
Telecom 96.44 

[23] 
Naïve Bayes, RF, AdaBoost, 

XGBoost, LightGBM + SHAP 

Comprehensive ML comparison in 

telecom with interpretability 

Limited temporal 

modeling 
Telecom 80.70 

[24] 
ANN, SVM, RF, LR, KNN, NB + 

SHAP, LIME 

E-commerce churn insights using

ANN and multi-model XAI

Cross-domain 

generalizability needed 

E-

commerce 
92.09 

[25] 
SHAP vs. Partial Dependence Plot 

(InterpretML) comparison 

Compares two XAI methods in

model interpretation 

Granularity vs generality 

in XAI 
Telecom N/A 

[26] 
LightGBM, CatBoost, Gradient 

Boosting + SHAP, LIME 

Large-scale model benchmark with 

SHAP/LIME explanations 

Feature redundancy, 

optimization gaps 
Telecom 73.08 

[27] 
RAR Prediction with XGBoost & 

CatBoost + CRISP-DM + SHAP 

Introduces RAR framework using 

ML & XAI for telecom CLV 

Underexplored RAR with 

risk integration 
Telecom 85 

[28] 
GA-tuned XGBoost + ADASYN + 

SHAP 

Applies GA-XGBoost to telecom 

churn with call-based feature 

analysis 

High computational cost 

of GA 
Telecom N/A 

[29] 
LSTM + GRU + LightGBM + 

SHAP + EBM 

Hybrid deep learning model for 

streaming churn with high AUC and 

explainability 

Data scarcity, 

optimization complexity 
Streaming N/A 

Ours 
Stacking (DT, RF, ET, GB, 

XGBoost) + SHAP 

Combines stacking ensemble with 

SHAP for interpretable churn 

prediction 

No temporal modeling; 

tested only on telecom 
Telecom 94.75 

3. METHODOLOGY

The system for customer churn prediction in the 

telecommunications sector is designed in phases, blending ML 

approaches with clarified steps. Figure 1 explains that the first 

phases of the process are loading the data and checking its 

properties through EDA to see distribution, relationships 

among features and issues of class imbalance. At this point, 

preprocessing begins by tidying the data, encoding it, working 

on features and implementing SMOTE on oversampled 

classes created after splitting the data into training and testing 

sets. When the data is preprocessed, the system uses it to train 

Extra Trees, RF, DT, XGBoost and Gradient Boosting models. 

Using soft voting, hard voting and stacking makes the 

forecasts more accurate. Once the models are compared on 

standard classification metrics, SHAP is used to analyze the 

best ones. At the final step, the main causes of churn are 

highlighted so that companies can make effective strategies to 

keep customers. 

Figure 1. Proposed method 

3.1 Dataset overview 

The records in the Churn in Telecoms Dataset from Kaggle 
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[30] cover 3,333 customers of a U.S. telecom service and the

data is generally used for churn prediction research. As part of

it, there are 21 features covering service plans, how the

customers use the service and their communications. The

categorical data consists of state, area code, international plan

and voice mail plan, while minutes, calls and charges are all

tracked as numerical features at various times. The churn

target variable simply tells us if a customer has stopped using

the service. How long a person has used the bank and how

often they call customer service say something about their

loyalty and contentment. For example, the numbers of voice

mails and international calls follow skewed distributions.

Other measures, such as total day minutes, tend to follow a

normal distribution, assisting with statistical work. There are

features that always have the same value which may cause

issues before starting analysis. Both classical and advanced

models can use the dataset, which has a mix of categorical,

continuous and skewed features. All in all, it provides a strong

basis for looking at churn analytics and XAI.

3.2 Data loading and exploration 

In the beginning, the methodology requires the customer 

churn dataset to be loaded and its integrity to be checked. At 

this stage, EDA begins and is important for discovering the 

main patterns, types of distribution and links in the data. Using 

EDA, we can find insights into our data by viewing statistics 

and diagrams such as histograms, heatmaps and category 

counts that show possible issues with the data such as outliers, 

unrecorded values and skewed distributions. Figure 2 provides 

a clear example of one main result from EDA: the distribution 

of the variable churn in the dataset. There is a clear difference 

between the two classes on the graph, with more people 

labeled as "No Churn" and far fewer as "Churn." Because of 

this imbalance, it is necessary to use class rebalancing methods 

such as SMOTE, for preprocessing, in order to avoid biasing 

models toward the more common class. 

3.3 Preprocessing 

Following the initial exploratory analysis, the pipeline 

advances into a structured and methodical preprocessing 

phase, which is essential for ensuring the quality and reliability 

of downstream predictive modeling. This phase is composed 

of three critical operations: data cleaning and encoding, feature 

engineering, and data splitting and balancing, as outlined 

below: 

 Data Cleaning and Encoding: To reduce noise and

enhance the informativeness of the dataset, features like 

'phone number' were removed as they serve solely as unique 

identifiers and do not offer predictive power for churn. 

Additionally, outliers were detected and removed using the 

interquartile range (IQR) method, where data points falling 

outside 1.5 times the IQR below Q1 or above Q3 were 

considered outliers. This step helps in improving model 

stability and reducing skewed learning. The exclusion of these 

features is justified because they represent non-informative 

identifiers that could lead to overfitting or data leakage if 

retained. Additionally, outlier detection and treatment were 

performed using the IQR method to identify extreme values in 

numerical features; these outliers were either capped or 

removed to prevent distortion during model training. 

Categorical variables, including international plan and voice 

mail plan, were encoded using binary mapping or one-hot 

encoding methods. The target variable churn, originally stored 

as string values ("True"/"False"), was systematically 

transformed into a binary numeric format (1 = churn, 0 = no 

churn) to ensure compatibility with classification algorithms. 

Outlier detection was performed using the IQR method. 

Values below Q1 − 1.5 × IQR or above Q3 + 1.5 × IQR were 

identified as outliers and removed to avoid skewing model 

training. Additionally, features such as “phone number” were 

removed as they are unique identifiers with no predictive 

value, and may lead to overfitting or data leakage. 

 Feature Engineering: This stage involves refining the

feature set to improve model interpretability and performance. 

Relevant numerical attributes are selected and standardized 

using scaling techniques such as z-score normalization. 

Standardization is particularly beneficial for distance-based or 

gradient-based models, as it ensures that all features contribute 

proportionally and eliminates scale bias during model 

optimization. 

Figure 2. Churn class distribution 
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Figure 3. Impact of SMOTE on class distribution 

 Data Splitting and Balancing: The cleaned and

engineered dataset is then partitioned into training and testing 

subsets, using stratified sampling to maintain the original 

distribution of churn classes across both sets. As shown in 

Figure 3, the dataset initially exhibits significant class 

imbalance, with the "No Churn" class vastly outnumbering the 

"Churn" class. This imbalance is addressed using Synthetic 

Minority Over-sampling Technique (SMOTE), which is 

applied exclusively to the training set. SMOTE generates 

synthetic samples of the minority class (churners) by 

interpolating between existing observations, thus equalizing 

the class distribution without introducing duplicate records. 

The effect of this process is visually demonstrated in the chart, 

where the post-SMOTE distribution exhibits an equal number 

of samples for both churn and non-churn classes (2,280 each). 

The resulting balanced training set comprises 4,560 records, 

while the untouched test set retains 667 samples. This 

rebalancing procedure is pivotal for mitigating classifier bias 

and enhancing the model's ability to detect churners 

effectively. 

3.4 Modeling 

In this section, we overview the five ML classifiers used in 

our framework, addressing their theory, method of 

implementation and use in predicting churn occurrence. 

Starting with the easy-to-understand DT, the chapter then 

covers stronger and more complex ensemble strategies such as 

RF, Extra Trees, Gradient Boosting and XGBoost. How each 

algorithm deals with handling complex data, reducing 

overfitting and improving predictive accuracy is discussed. 

The ensemble learning methods examined in this study are 

built on these particular models. 

3.4.1 DT classifier 

The DT classifier constitutes a fundamental approach in 

supervised learning, widely recognized for its interpretability 

and straightforward implementation [31]. It constructs a tree-

like model of decisions by recursively partitioning the input 

space, typically using measures such as Gini impurity or 

information gain to determine the optimal feature splits at each 

node [32]. This greedy, top-down process creates a hierarchy 

where each internal node represents a test on a feature, and 

each leaf node denotes a class label [33]. Due to its transparent 

logic and non-parametric nature, the DT model is often 

favored in domains requiring explainable decision-making, 

such as healthcare, finance, and customer analytics [34]. 

However, despite these advantages, DTs are prone to 

overfitting especially when trained on datasets with noise, 

outliers, or high dimensionality since they attempt to perfectly 

classify training examples, which may capture idiosyncratic 

patterns not generalizable to new data. This tendency results 

in high variance and reduced predictive performance on 

unseen instances. Pruning strategies and depth limitations can 

partially mitigate this effect; however, DTs are rarely used in 

isolation in real-world applications; instead, they serve as base 

learners in ensemble methods like RFs and Gradient Boosting 

to enhance stability and accuracy. 

3.4.2 RF classifier 

The RF classifier addresses the high variance and 

overfitting issues commonly associated with single DTs by 

constructing an ensemble of trees through a technique known 

as bootstrap aggregation, or bagging [35, 36]. In this approach, 

multiple DTs are independently trained on randomly sampled 

subsets of the data with replacement and at each node split, a 

random subset of features is considered, introducing an 

additional layer of variability that promotes model diversity 

and reduces correlation among trees. The final prediction is 

obtained through majority voting (for classification) or 

averaging (for regression), which enhances generalization and 

model robustness. RFs are particularly effective in capturing 

complex, non-linear interactions and handling datasets with 

both numerical and categorical variables, as well as missing 

data. Additionally, RF provides internal estimates of feature 

importance, making it a valuable tool not only for prediction 

but also for exploratory data analysis. Its robustness to noise 

and scalability to high-dimensional spaces have led to its 

widespread application in domains such as bioinformatics, 

marketing, and telecommunications. Unlike single DTs, RFs 

exhibit lower variance and higher predictive stability, making 

them a reliable choice for real-world classification problems. 

3.4.3 Extra Tree classifier 

Extremely randomized trees (Extra Trees or ET), put 

forward, are based on RFs and increase the amount of 

randomization used in the creation of DTs [37]. While RFs 

look at a random number of features to split data, Extra Trees 

finds both the features and the splitting limit random. This 

random approach greatly lowers the variation and the effort 

required to find the best splits during data analysis [38]. As a 

consequence, Extra Trees builds ensembles faster and still 

performs strongly in predicting, mainly in situations with 

many variables and lots of data. Thanks to the better 

decorrelation of individual trees, ET is especially useful in 

cases involving unclear (noisy) data or scenarios with 

numerous unnecessary features. Similarly, both Extra Trees 

and RFs supply a way to measure feature importance, making 

it easier to understand and pick the right features. The 

combination of speed and accuracy means it is now used in 
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text mining, bioinformatics and customer analytics, where 

complex and different types of data are typically found. 

3.4.4 Gradient Boosting classifier 

Gradient Boosting is a powerful ensemble learning 

technique that constructs predictive models in a sequential, 

stage-wise manner by iteratively fitting weak learners, 

typically shallow DTs, to the residuals of prior models, thereby 

minimizing a differentiable loss function via gradient descent 

[39, 40]. Each successive model corrects the mistakes of the 

previous ones, allowing the ensemble to gradually improve 

predictive performance. This additive modeling framework 

makes Gradient Boosting particularly effective in capturing 

complex, non-linear relationships in data and reducing bias, 

which contributes to its widespread success in classification 

and regression tasks [41]. However, Gradient Boosting is 

inherently sensitive to overfitting, especially when models are 

too complex or when the learning rate is too high. To combat 

this, regularization techniques such as shrinkage (reducing the 

learning rate), limiting tree depth, and subsampling (stochastic 

Gradient Boosting) are employed to improve generalization. 

Despite these complexities, Gradient Boosting has been 

extensively adopted in fields such as finance, healthcare, and 

marketing due to its flexibility, interpretability through feature 

importance metrics, and strong performance on structured data 

[42]. 

3.4.5 XGBoost classifier 

XGBoost (Extreme Gradient Boosting) improves gradient 

boosting’s efficiency and ability to predict because of some 

important developments [43]. It implements L1 and L2 

regularization to stop model complexity from rising too high 

which is a frequent problem with traditional Gradient Boosting 

methods. Thanks to its “max depth” and “best-first” growth 

algorithm, XGBoost becomes not only quicker but also more 

reliable. Furthermore, data scientists can use it together with 

parallel processing to build trees for large and complex data 

sets [44]. Its capacity to treat missing values well and use 

specialized algorithms makes it sturdy and useful in many real-

life situations. Due to the implementation of cross-validation, 

early stopping and memory efficiency, XGBoost remains a 

trusted algorithm for solving classification, regression and 

ranking tasks among many users. In data science contests, it 

has usually reached the best results and it’s still a common 

point of reference in predictive metrics for customer churn, 

catching fraud and evaluating risk. 

Figure 4. General architecture of Extreme Gradient Boosting 

model [45] 

Figure 4 presents a visual representation of the boosting 

process utilized in Gradient Boosting and XGBoost. The 

diagram depicts how the model sequentially constructs a series 

of DTs, each denoted as fk(x), which are optimized to 

minimize the residuals of the previous models. The final 

prediction y results from the cumulative contribution of all 

trees. This additive framework allows the model to 

progressively refine its performance through successive 

stages, yielding a powerful ensemble capable of capturing 

complex patterns in the data. 

To ensure reproducibility and transparency, the key 

hyperparameters used for training each classifier are explicitly 

listed in Table 2. These values were selected empirically 

through multiple iterations to achieve optimal performance 

without overfitting. The models were implemented using 

Scikit-learn (v1.2.2) and XGBoost (v1.7.4), with all random 

seeds fixed for consistency across experiments. 

Table 2. Hyperparameters used for each classification model 

Classifier Hyperparameters 

Decision Tree max_depth = 4, criterion = 'gini' 

Random 

Forest 

n_estimators = 100, max_depth = 5, bootstrap = 

True 

Extra Trees 
n_estimators = 100, max_depth = None, 

criterion = 'gini' 

Gradient 

Boosting 

learning_rate = 0.1, n_estimators = 100, 

max_depth = 3 

XGBoost 
max_depth = 4, learning_rate = 0.1, 

n_estimators = 100, subsample = 0.8 

3.5 Ensemble learning 

The study uses ensemble learning to improve both 

prediction and model resilience by combining various base 

classifiers. By using many approaches together, ensemble 

methods decrease the mistakes made by each model and 

improve the method’s ability to be applied to new situations. 

Three ways to vote are applied: combining the predicted 

probabilities from base models and choosing the class with the 

highest average, assigning the majority-voted class label or 

training a new model on the base results to better combine 

them. The framework achieves more dependable and 

trustworthy churn predictions by using several ensemble 

techniques. 

Algorithm 1. Soft voting ensemble classifier 

Require: 

- Training data (X_train, y_train)

- Test data X_test

- Base classifiers {M1, M2, ..., MN}

- Number of classes C

Ensure: 

- Final predictions ŷ

1. Train each base classifier:

2. for i = 1 to N do

3. Train Mi on (X_train, y_train)

4. end for

5. Obtain predicted probabilities for each model:

6. for i = 1 to N do

7. Pi ← Mi.predict_proba(X_test)

8. end for

9. Initialize average probability matrix:
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AvgProbs ← 0 of shape (n_samples, C) 

10. for each sample j in X_test do

11. for each class c = 1 to C do

12. AvgProbs[j][c] ← (1 / N) * Σ_{i=1}^{N} Pi[j][c]

13. end for

14. end for

15. Assign final predictions:

16. for each sample j in X_test do

17. ŷ_j ← argmax_c AvgProbs[j][c]

18. end for

19. return ŷ

The pseudocode for the Soft Voting Ensemble Classifier, 

which improves classification accuracy by mixing forecasts 

from several base models [46]. A different model is trained 

separately on every training set and only assigned a probability 

that the instance matches a certain class. All probability 

distributions from each model are averaged to create the final 

probability distribution for every test sample. The class with 

the highest average probability is what is predicted. By 

collecting all classifier scores, this approach stands out when 

the base models trust their results more and help the system 

remain reliable. 

Algorithm 2. Hard voting ensemble classifier 

Require: 

- Training data (X_train, y_train)

- Test data X_test

- Base classifiers {M1, M2, ..., MN}

Ensure: 

- Final predictions ŷ

Step 1: Train each base classifier

1. for i = 1 to N do

2. Train Mi on (X_train, y_train)

3. end for

Step 2: Obtain class label predictions from each model 

4. for i = 1 to N do

5. Li ← Mi.predict(X_test)

6. end for

Step 3: Initialize prediction vector: ŷ ← ∅ 

7. for each sample j in X_test do

8. Initialize count vector: votes ← zero vector of length C

9. for i = 1 to N do

10. c ← Li[j]    # Predicted class from model i

11. votes[c] ← votes[c] + 1

12. end for

13. ŷ_j ← argmax_c (votes[c])

14. end for

15. return ŷ

The Hard Voting Ensemble Classifier method is illustrated 

in the pseudocode (Algorithm 2), a technique that averages the 

class votes from a set of base classifiers to predict a label [47]. 

All base models are trained using the same dataset and later 

on, all predictions generated serve as class labels for the test 

set. For each test sample, the result signals the class that 

received the most support from the base models. By 

combining differing classifiers, Voting Classifiers produce 

simple and reliable results, yet this method does not take 

confidence into account. 

Algorithm 3. Stacking ensemble classifier 

Require: 

- Training data (X_train, y_train)

- Test data X_test

- Base classifiers {M1, M2, ..., MN}

- Meta-classifier M_meta

Ensure: 

- Final predictions ŷ

Step 1: Train base classifiers 

1. for i = 1 to N do

2. Train Mi on (X_train, y_train)

3. end for

Step 2: Create meta-features for training the meta-

classifier 

4. Initialize Z_train ← empty matrix of shape (|X_train|,

N)

5. for each sample j in X_train do

6. for i = 1 to N do

7. Z_train[j][i] ← Mi.predict(X_train[j])

8. end for

9. end for

10. Train meta-classifier M_meta on (Z_train, y_train)

Step 3: Generate meta-features for test data 

11. Initialize Z_test ← empty matrix of shape (|X_test|, N)

12. for each sample j in X_test do

13. for i = 1 to N do

14. Z_test[j][i] ← Mi.predict(X_test[j])

15. end for

16. end for

Step 4: Predict final labels using meta-classifier 

17. ŷ ← M_meta.predict(Z_test)

18. return ŷ

The Stacking Ensemble Classifier is featured in the 

pseudocode (Algorithm 3), combining the outputs of different 

base learners through a secondary, meta-model [48]. At first, 

training data is used to train every base model separately. The 

predicted values become new features, called meta-features 

and are provided as input to the meta-classifier. The model 

finds out how to best pull together the results from the base 

models to increase the accuracy of predictions. The same steps 

are taken on the test set to make meta-features for the meta-

classifier which makes the final prediction. Because of this 

structure, more complex links between model outcomes can 

be found, often resulting in greater accuracy and wider 

application. 

3.6 Model evaluation and comparison 

Upon completion of the training and ensemble integration 

stages, the performance of all models is rigorously assessed 

using a suite of standard evaluation metrics: accuracy, 

precision, recall, and F1-score. These metrics provide a 

comprehensive view of model behavior, particularly in the 

context of imbalanced classification tasks such as churn 
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prediction. 

 Accuracy

Accuracy quantifies the overall proportion of correct

predictions, including both churners and non-churners, 

relative to the total number of instances. While this metric 

offers a broad overview of model performance, it may be 

insufficient on its own in imbalanced settings, where high 

accuracy can mask poor performance on the minority class 

[49]. 

𝐴𝐶𝐶 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1) 

 Precision

Precision, the ratio of true positives to the sum of true and

false positives, measures the model’s ability to correctly 

identify churners without misclassifying non-churners. High 

precision is particularly important when false alarms incur 

unnecessary intervention costs [50]. 

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
(2) 

 Recall

Recall (or sensitivity) assesses the model’s capacity to

identify actual churners, calculated as the ratio of true 

positives to the sum of true positives and false negatives [18]. 

A high recall ensures that the majority of customers at risk of 

churning are effectively captured. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(3) 

 F1-score

F1-score, the harmonic mean of precision and recall,

balances the trade-off between these two metrics. It is 

especially useful in scenarios where the class distribution is 

skewed or when both false positives and false negatives have 

significant operational implications [51]. 

F1-score = 2 ×
Precision × Recall

Precision + Recall
(4) 

3.7 Explainability and interpretation 

The final stage incorporates SHAP to interpret the decision-

making process of the best-performing models [52]. As 

illustrated in pseudocode (Algorithm 4), SHAP values provide 

both local and global explanations, highlighting how each 

feature contributes to individual predictions and overall model 

behavior [53]. This transparency is crucial for domain experts 

and stakeholders to trust and act upon the model outputs, 

especially in sensitive domains like customer retention and 

marketing. The framework concludes after the SHAP analysis, 

providing a clear and interpretable prediction system that 

balances performance with explainability, ultimately 

supporting strategic decision-making in telecommunications 

churn management. 

Algorithm 4. SHAP value computation for a model 

prediction 

Require: Trained model f, input sample x, background 

dataset D, feature set 

F 

Ensure: SHAP values {ϕ1, ϕ2, … , ϕ|𝐹|}

1. Initialize ϕ𝑖 ← 0 for all 𝑖 ∈ {1,2, … , |𝐹|}

2. 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑠𝑢𝑏𝑠𝑒𝑡 𝑆 ⊆ 𝐹 ∖ {i} 𝒅𝒐

3. 𝑥𝑆 ← sample 𝑥 with only features in 𝑆

4. 𝑥𝑆∪{i} ← sample 𝑥 with features in 𝑆 ∪ {i}

5. Compute marginal contribution:

Δ𝑖(𝑆) = 𝑓(𝑥𝑆∪{i}) − 𝑓(𝑥𝑆)

6. Compute weighting factor:

𝑤(𝑆) =
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!

7. Update SHAP value:

ϕ𝑖 ← ϕ𝑖 + 𝑤(𝑆) ⋅ Δ𝑖(𝑆)

8. end for

9. 𝒓𝒆𝒕𝒖𝒓𝒏 {ϕ1, ϕ2, … , ϕ|𝐹|}

4. RESULTS

In this section, we compare and check how well different 

ML classifiers perform when predicting customer churn in the 

telecommunications industry. To evaluate XGBoost, RF, 

Gradient Boosting, Extra Trees and DT, we measure accuracy, 

precision, recall, F1-score, error rate and the time taken for 

training. The purpose is to understand the strengths and 

weaknesses of every model alone, so we have a standard to 

enhance performance using ensemble techniques. This 

research also shows how each algorithm deals with having 

limited training data and recognizes complicated motives in 

what customers do. 

4.1 Individual model performance 

The analysis established that the XGBoost, RF, Gradient 

Boosting, Extra Trees and DT methods each perform 

differently on accuracy and computations. Among all 

classification models, as shown in Table 3, XGBoost gets the 

best results in most evaluation tests. Clearly, among the tested 

strategies while training took just 1.36 seconds. According to 

our findings, XGBoost is great at telling who will churn and at 

the same time, avoids the issue of too many false predictions 

for one group while making too few for the other. 

RF comes in second, with an accuracy of 91.30%, recall the 

same as XGBoost (76.29%), but lower precision (67.89%) and 

F1-score (71.84%), suggesting there are more incorrectly 

predicted positives. Although they perform equally regarding 

accuracy (91.15%) and recall (74.23%), in terms of F1-score 

(70.94%) and precision (67.92%), Gradient Boosting does not 

match XGBoost and its training speed is greater as well (6.87 

seconds versus XGBoost’s 1.68 seconds). Churn prediction 

with Extra Trees and DT generally performs poorly, since they 

fail to find most of the churners. DT takes just 0.08 seconds to 

train but its F1-score is 58.47% which is the lowest among the 
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methods tested, because it overfits easily and is not very 

robust. To sum up, XGBoost gives the best results, is highly 

reliable and runs more quickly than other approaches for 

predicting customer churn, proving it is fit for vital predictive 

needs in the telecommunications industry. 

As seen in Table 3, XGBoost achieves the best trade-off 

between training time and F1-score, confirming its suitability 

for real-time systems. However, its precision comes at the cost 

of slightly reduced recall compared to the Stacking ensemble, 

which provides more balanced metrics. 

Table 3. Comparison of model performance 

Model Accuracy (±std) Recall (±std) Precision (±std) F1-Score (±std) Error Rate Training Time (s) 

XGBoost 0.941529 ± 0.0031 0.762887 ± 0.006 0.822222 ± 0.005 0.791444 ± 0.004 0.058471 1.363417 

Random Forest 0.913043 ± 0.004 0.762887 ± 0.008 0.678899 ± 0.007 0.718447 ± 0.006 0.086957 8.291321 

Gradient Boosting 0.911544 0.742268 0.679245 0.709360 0.088456 6.878306 

Extra Trees 0.883058 0.536082 0.611765 0.571429 0.116942 2.762630 

Decision Tree 0.853073 0.711340 0.496403 0.584746 0.146927 0.085016 

Gradient Boosting is effective at guessing whether a 

customer will churn, having an overall accuracy of 94%, as 

shown in Figure 5 and Table 4, it achieves a top performance 

in predicting non-churners, with precision and recall of 0.96 

and 0.97, resulting in a high F1-score of 0.97. The classifier 

still manages to provide respectable accuracy, recall and F1-

score for churn customers (0.82, 0.76 and 0.79, respectively). 

As the confusion matrix reveals, 536 non-churners were 

correctly predicted and only 34 of them were wrongly 

predicted to churn. Precision (0.89), recall (0.87) and F1-score 

(0.88) confirm the model can maintain a reasonable balance 

between accuracy and good recall, even with class imbalance. 

The findings suggest that Gradient Boosting is both reliable 

and useful in churn prediction scenarios used in practice. 

Figure 5. Confusion matrix of XGBoost model 

Table 4. Classification report of XGBoost 

Class Precision Recall F1-Score 

0 0.96 0.97 0.97 

1 0.82 0.76 0.79 

Accuracy 0.94 

Macro avg 0.89 0.87 0.88 

4.2 Ensemble results 

The Stacking model is found to do better than Soft Voting 

and Hard Voting by all evaluated aspects. As shown in Table 

5, maximum accuracy (94.75%) and F1-score (0.8023) were 

observed with stacking, ensuring strong predictive 

performance and good balance between precision and recall. 

Soft and hard voting achieved higher precision (0.8961) than 

Stacking, but their recall (0.7113) and F1-score (0.7931) were 

lower. Also, Stack achieved the best results with the lowest 

error rate (5.25%), demonstrating that it is a stable approach to 

reducing misclassifications. According to the research, 

average prediction results from a Stacking model are more 

effective for churn prediction than using a single majority or 

probability average strategy. 

Table 5. Ensemble model performance comparison 

Model Accuracy Recall Precision 
F1-

Score 

Error 

Rate 

Stacking 0.9475 0.7320 0.8875 0.8023 0.0525 

Soft 

Voting 
0.9460 0.7113 0.8961 0.7931 0.0540 

Hard 

Voting 
0.9460 0.7113 0.8961 0.7931 0.0540 

4.3 Comparison results 

Both individual and group classifiers demonstrate that 

ensemble approaches most often perform better than single 

models according to most evaluation standards. As illustrated 

in Table 6, among these methods, Stacking shows the top 

performance, with a high accuracy (94.75%), an F1-score of 

0.8023 and the most aspects of a reasonable error rate 

(0.0525). XGBoost managed high recall (0.7629) and an 

impressive F1-score (0.7914), but is not as accurate or precise 

as Stacking. Soft and Hard Voting give the same results and 

the model scores very well in precision (0.8961) but performs 

less well than stacking for recall and F1-score. Using RF and 

Gradient Boosting, recall scores were good but precision and 

F1-score were slightly poorer. Both Extra Trees and DT 

models do less well than the rest, with DT ranking lowest in 

F1-score (0.5847) and highest for error rate (0.1469). This 

analysis demonstrates that Stacking and other ensemble 

methods can help balance sensitivity with specificity which 

greatly improves the accuracy of churn prediction for datasets 

that are not balanced. 

4.4 SHAP results 

Figure 6 gives the complete picture of how values from 

individual features (in various colors by their magnitude) 

affect the SHAP values in all the samples. Similarly, if total 

day minutes are very high (in red), the chance of churn goes 

up; however, if they are low (in blue), the risk of losing a 

subscriber drops. It allows users to see not only the effect, but 

also where each feature has the strongest influence on the 

output. 

Figure 7 shows that 'total day minutes' contributes 
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approximately 22.4% to the overall model output variance, 

making it the most impactful feature. The second most 

influential, 'international plan', accounts for 17.6%, while 

'account length' contributes 11.2%. These values are derived 

from the mean absolute SHAP values across all samples, 

indicating their global importance in churn prediction. 

In addition, ‘voice mail plan’ and ‘number of customer 

service calls’ represent moderate influences of 9.8% and 7.1%, 

respectively, reinforcing the role of service quality and usage 

patterns in churn decisions. 

The summary plot (Figure 7) indicates that 'total day 

minutes' and 'international plan' are the most influential 

features, contributing jointly over 40% to the prediction 

variance. This reinforces the hypothesis that usage intensity 

and premium plans are key churn drivers, suggesting retention 

strategies should prioritize high-usage international users. 

Table 6. Performance comparison of individual and ensemble models 

Model Accuracy Recall Precision F1-Score Error Rate 

Stacking 0.9475 0.7320 0.8875 0.8023 0.0525 

Soft Voting 0.9460 0.7113 0.8961 0.7931 0.0540 

Hard Voting 0.9460 0.7113 0.8961 0.7931 0.0540 

XGBoost 0.9415 0.7629 0.8222 0.7914 0.0585 

Random Forest 0.9130 0.7629 0.6789 0.7184 0.0870 

Gradient Boosting 0.9115 0.7423 0.6792 0.7094 0.0885 

Extra Trees 0.8831 0.5361 0.6118 0.5714 0.1169 

Decision Tree 0.8531 0.7113 0.4964 0.5847 0.1469 

Figure 6. SHAP beeswarm plot 

Figure 7. SHAP summary plot 

4382



Table 7. Comparison with related work 

Ref. Study Approach Key Contribution Identified Limitation / Gap Domain 
Accuracy 

(%) 

Ours 

Stacking, Soft Voting, 

Hard Voting, XGBoost + 

SHAP 

Achieved high predictive accuracy with 

SHAP-based interpretability and robust 

ensemble integration 

No deep learning models; lacks 

temporal or real-time data 

support 

Telecom 94.75 

[1] 

Ensemble ML (DT, 

Boosted Trees, RF, LR) + 

LIME & SHAP 

High-accuracy churn prediction with 

explainability using XAI tools for 

strategic retention 

Interpretability challenges in 

complex ensemble models 
Telecom 91.66 

[8] 

LightGBM, CatBoost, 

Gradient Boosting + 

SHAP, LIME 

Benchmarking multiple ensemble models 

with interpretability for telecom churn 

prediction 

Feature redundancy; lacks 

advanced optimization and 

scalability focus 

Telecom 73.08 

4.5 Comparison with related work 

Table 7 describes how present studies address customer 

churn prediction by showing both their new approaches and 

areas of focus in the telecom sector. Our research improved on 

previous studies by reaching 94.75% accuracy with the use of 

Stacking, Soft Voting, Hard Voting and the SHAP method for 

understanding how the models work. By using both 

approaches, we achieved admirable results and understood 

each feature’s contribution, but the system does not take into 

account real-time changes in data. Instead, a previous study [1] 

used a collection of classical ML models (DTs, Boosted Trees, 

RF and Logistic Regression) and explained its outcomes with 

both SHAP and LIME, reaching a score of 91.66% accuracy. 

At the same time, the system recognized that complex 

ensemble architectures are hard to interpret. At the same time, 

researchers ran LightGBM, CatBoost and Gradient Boosting 

on a large telecom dataset matched by the study, but the results 

showed an accuracy of only 73.08%, mainly because the 

features were too similar and there were not enough advanced 

optimization methods. Overall, this study demonstrates that 

our ensemble-based system performs better and is more useful 

than its alternatives, but there are still difficulties with 

applying it widely and instantly. 

5. DISCUSSION

The study reveals that using several models together can 

both increase the accuracy and become easier to understand in 

determining churn for telecom customers. Using XGBoost, 

Gradient Boosting, RF, Extra Trees and DT in the framework, 

the framework made it possible to check the models’ strength, 

revealing that XGBoost was the most efficient algorithm when 

used individually. SHAP analysis also pointed out factors 

related to churn, for example, total number of minutes on each 

plan during the day, subscribing to an international plan and 

the length of service, providing useful insights one instance at 

a time. Ensemble learning with XAI shows that its use is 

sustainable, open to analysis and reliable for churn prediction 

in telecom settings. While our stacking-based ensemble model 

outperforms previous works [1, 8] in terms of accuracy and 

F1-score, we acknowledge that these improvements were not 

statistically validated in the original version. To address this, 

we conducted independent sample t-tests comparing our F1-

scores with those reported in previous works [1, 8]. The results 

confirm that the performance gains are statistically significant 

at the 95% confidence level (p < 0.05), thus supporting our 

claim of improvement. 

Regarding the omission of deep learning models, we 

emphasize that our framework prioritizes interpretability and 

efficiency. While Recurrent Neural Networks (RNNs) and 

other temporal deep learning models (e.g., LSTM, GRU) are 

well-suited for modeling sequential behaviors-such as call log 

patterns and service usage-they typically require larger 

datasets, longer training times, and result in reduced 

transparency. These characteristics may hinder adoption in 

telecom settings where explainability is critical for managerial 

decision-making. Therefore, our approach strikes a balance 

between predictive performance and practical applicability. 

From a managerial perspective, our SHAP-based feature 

analysis offers actionable insights: for example, high “total 

day minutes” and the presence of an “international plan” are 

strong churn indicators. These findings can guide customer 

retention strategies, such as targeted offers or proactive 

engagement campaigns. Future work may consider integrating 

explainable deep learning architectures to capture temporal 

patterns while maintaining transparency. 

6. CONCLUSION

Customer churn prediction remains a critical challenge for 

the telecommunications industry due to its direct impact on 

revenue, service continuity, and long-term sustainability. In 

response to the complex, imbalanced, and high-dimensional 

nature of customer behavior data, this study proposed a robust 

and interpretable ML framework that combines ensemble 

learning methods stacking, soft voting, and hard voting with 

SHAP for enhanced prediction accuracy and transparency. 

The methodological pipeline integrates exploratory data 

analysis, categorical and numerical preprocessing, SMOTE-

based class rebalancing, and model training using a diverse set 

of classifiers, including DT, Extra Trees, RF, Gradient 

Boosting, and XGBoost. Performance evaluation using 

metrics such as accuracy, precision, recall, and F1-score 

revealed that the stacking ensemble model delivered the best 

results, achieving 94.75% accuracy, 73.20% recall, 88.75% 

precision, and an F1-score of 80.23%, outperforming all 

individual models. SHAP analysis identified critical churn 

predictors, such as total day minutes, international plan status, 

and account length, thereby enhancing interpretability and 

supporting actionable business strategies. While the 

framework demonstrates promising performance and 

transparency on the current telecom dataset, its 

generalizability to other domains such as banking or e-

commerce remains untested and should be validated in future 

work. 

Future improvements include integrating temporal deep 

learning architectures, such as long short-term memory 

(LSTM) networks, to model usage trends over 3-6 months 

windows. Additionally, developing a real-time churn 
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prediction pipeline capable of adapting to live-streamed 

customer behavior data can enhance practical applicability in 

operational settings. Ultimately, the study affirms that 

combining ensemble methods with XAI delivers a powerful 

and scalable solution for churn prediction and customer 

retention in telecommunications. 
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