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Predicting customer churn is crucial for telecommunications companies, as retaining
existing customers is more cost-effective than acquiring new ones. This work proposes
a novel Stacking ensemble framework integrating five base classifiers: Decision Tree,
Random Forest, Extra Trees, Gradient Boosting, and XGBoost, designed to accurately
predict churn while providing interpretable explanations of model decisions. The
methodology involves comprehensive data preprocessing, including outlier detection,
handling of high-cardinality categorical variables, normalization and application of
Synthetic Minority Over-sampling Technique (SMOTE), a technique to construct the
synthetic samples of the minority group to overcome the class imbalance on a training
set of 3,333 samples. Ensemble methods such as Soft Voting, Hard Voting, and the
proposed Stacking approach are evaluated, with the Stacking ensemble achieving
superior performance 94.75% accuracy, 73.20% recall, 88.75% precision, and an F1-
score of 80.23%. This represents a 3.09% improvement over the best previously
reported accuracy of 91.66% and outperforms individual models, including XGBoost
(F1-score 79.14%). Model interpretability is enhanced through Shapley additive
explanations (SHAP), highlighting total day minutes, international plan subscription,
and account length as key predictors influencing churn. The proposed framework offers
a reliable and transparent tool for churn prediction applicable in business contexts
requiring explainable Al. Future work will explore integrating temporal deep learning
models and real-time updated data to further improve predictive performance across
diverse industries.

1. INTRODUCTION

Today’s digital economy enables consumers to easily

challenges such as feature sparsity, high-cardinality
categorical variables (e.g., region codes, service types), and
imbalanced class distributions [13, 14]. Moreover, many

access product information and compare alternative offers,
primarily due to the rise of e-commerce and data-driven
services [1, 2]. Consequently, purchasing decisions are more
deliberate, posing challenges for companies to retain existing
customers in an increasingly competitive landscape [3, 4].
This issue is particularly pronounced in the
telecommunications sector, which is both a backbone of digital
infrastructure and a key contributor to national economies,
especially in developing regions [5, 6].

In this context, customer churn, the tendency of subscribers
to discontinue their services, poses a significant threat to
telecom providers, impacting profitability, customer lifetime
value, and service continuity [7]. Research shows that
acquiring new customers can cost five to twenty-five times
more than retaining existing ones [8, 9]. Furthermore, high
churn rates complicate revenue forecasting, elevate marketing
costs, and disrupt network planning strategies [10, 11].

To address this, telecom companies increasingly deploy
machine learning (ML) models to anticipate churn and launch
timely, personalized interventions [12]. However, churn
prediction in telecom is complex due to domain-specific data
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accurate ML models, particularly ensemble methods, are often
criticized as “black boxes” due to their lack of transparency.
This explainability gap limits the practical adoption of these
models, especially in telecom environments where decision-
makers need not only accurate forecasts but also clear,
actionable insights into the causes of churn.

While recent advancements in explainable Al (XAI)
techniques such as Shapley additive explanations (SHAP) and
Local Interpretable Model-agnostic Explanations (LIME), a
framework which estimates the performance of complex
models locally by learnable surrogate models to offer
explanations of single predictions, has enhanced transparency,
most prior works focus on individual classifiers (e.g., Random
Forest (RF), LightGBM) [15, 16] and do not fully address the
trade-off between accuracy and interpretability, especially in
ensemble architectures [17]. Additionally, many of these
studies fail to quantify the importance of explainability in
supporting managerial decisions or to empirically validate
performance gains.

This study addresses these gaps by proposing an explainable
churn prediction framework that combines a Stacking
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ensemble model (comprising Decision Tree (DT), RF, Extra
Trees, Gradient Boosting, and XGBoost) with SHAP-based
interpretation. The framework begins with data exploration
and preprocessing (including SMOTE for class imbalance),
trains multiple base models, and integrates them via three
ensemble techniques: Soft Voting, Hard Voting, and Stacking.
SHAP is then applied to visualize feature contributions at both
global and individual levels.

Our results demonstrate that this hybrid approach not only
improves predictive accuracy but also provides interpretable
insights into key churn drivers such as total day minutes,
international plan status, and account length. These findings
empower telecom managers to design targeted retention
strategies grounded in transparent Al recommendations.

The remainder of the paper is structured as follows: Section
2 reviews relevant literature on churn prediction and
explainable ML. Section 3 details the methodology, including
preprocessing, model training, and SHAP analysis.
Experimental results are presented in Section 4, followed by a
discussion in Section 5. Finally, Section 6 concludes the study
and suggests directions for future research.

2. LITERATURE REVIEW

The domain of customer churn prediction has witnessed a
rapid evolution through the integration of ML and XAlI,
enabling not only high predictive accuracy but also critical
interpretability for actionable decision-making. In the
telecommunications sector, which continues to experience
some of the highest churn rates across industries, Chang et al.
[18] explored the use of ensemble-based methods such as DTs,
Boosted Trees, RFs, and Logistic Regression to anticipate
customer attrition. Their work achieves notable predictive
performance 91.66% accuracy, 82.2% precision, and 81.8%
recall, highlighting the effectiveness of RF. Importantly, their
integration of XAl methods like LIME and SHAP provides
transparency to these black-box models, empowering
customer relationship managers to proactively intervene.
Similarly, Nkolele and Wang [19] underscored the importance
of explainability alongside accuracy by evaluating DT, RF,
and LightGBM models, with LightGBM outperforming others
in AUC (0.87) and recall (0.95). Their use of SHAP and LIME
delivers both global and local interpretability, and their visual
decomposition of the DT’s logic ensures that stakeholders can
comprehend and act on model outcomes. Poudel et al. [20]
further affirmed the need for interpretable modeling by
incorporating SHAP visualizations and the Wilcoxon test into
gradient boosting machine (GBM) evaluation. The model
achieves 81% accuracy and uncovers the importance of
features such as contract length and call duration in churn
prediction.

Beyond telecommunications, the application of explainable
ML has expanded into other sectors. For instance, Guliyev and
Tatoglu [21] applied XGBoost combined with SHAP to
banking churn data, revealing how explainability can bridge
the gap between predictions and strategic customer
management. Asif et al. [22] pushed the boundaries of
ensemble learning by proposing the XAI-Churn TriBoost
model, which combines XGBoost, CatBoost, and LightGBM
via a soft voting mechanism. This model is trained on over 2
million customer records and employs advanced
preprocessing techniques such as Bayesian Ridge-based
imputation, Boruta feature selection, and SMOTE for
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balancing. The model achieves exceptional performance
96.44% accuracy, 92.82% precision, 87.82% recall, and a
90.25% F1-score and leverages LIME and SHAP to explain
model predictions, identifying "regularity" and "montant" as
key churn drivers. The study outlines future extensions such
as real-time deployment and industry-wide validation.
Complementarily, Noviandy et al. [23] conducted a
comparative study involving Naive Bayes, RF, AdaBoost,
XGBoost, and LightGBM, achieving 80.70% accuracy with
LightGBM. SHAP analysis in their study brings out actionable
feature-level insights such as the importance of contract type
and tenure, validating the practical utility of XAl

Expanding the scope to the e-commerce domain, Boukrouh
and Azmani [24] compared seven models: ANN, SVM, KNN,
DTs, RFs, Logistic Regression, and Naive Bayes on a churn
dataset. ANN yields the highest accuracy (92.09%), and
through the integration of SHAP and LIME, the study
identifies key variables such as complaints, tenure, and
preferred order category as critical churn indicators. Ozkurt
[25] offers a methodological contribution by comparing SHAP
with InterpretML’s Partial Dependence Plots. This
comparison illuminates the trade-off between instance-level
and dataset-level explanation, providing valuable guidance for
model selection based on interpretability needs. Ozkurt’s
subsequent study [26] benchmarks 11 different ML models
across a large telecom dataset, finding LightGBM most
accurate (73.085%). The dual use of SHAP and LIME in this
study reinforces their complementary value in providing both
global and local insights into churn behavior.

Further innovation is evident in the study by Firmansyah et
al. [27], which integrates churn risk into customer lifetime
value (CLV) modeling through the risk-adjusted revenue
(RAR) framework. Using XGBoost and CatBoost, the study
achieves 85% accuracy for churn prediction and 92% R? for
RAR estimation. SHAP helps identify loyalty points and
revenue volatility as key contributors to churn risk, pushing
the frontiers of data-driven portfolio management. Peng and
Peng [28] introduced a genetic algorithm-tuned XGBoost
model (GA-XGBoost) and use ADASYN to address class
imbalance. The study shows improved recall and F1-score,
with SHAP identifying high call duration and voicemail
subscription as churn predictors. However, it acknowledges
the computational cost of GA-based tuning. Finally, a hybrid
model combining LSTM, GRU, and LightGBM is proposed in
the study [29] for the streaming service sector. This model
excels in handling temporal data, achieving a 95.60% AUC
and a 90.09% Fl-score. SHAP and explainable boosting
machine (EBM) are employed to maintain transparency,
highlighting factors such as usage frequency and subscription
history.

These studies converge on a common theme: that
combining ensemble and deep learning approaches with
interpretability techniques like SHAP and LIME creates
powerful tools for churn prediction. Whether applied in
telecom, banking, e-commerce, or streaming services, these
models not only deliver high accuracy but also foster
stakeholder trust through transparency. They highlight a shift
from purely performance-focused modeling to interpretable,
actionable Al systems. Building on these trends, our work is
the first to combine Stacking ensemble learning with SHAP-
based explanation for churn prediction in telecom, offering
both high predictive accuracy and transparent insights. This
integrated approach addresses the gap between accuracy and
interpretability, especially relevant for managerial decision-



making in customer retention, an essential evolution for
deploying predictive analytics in high-stakes, customer-
centric domains.

Table 1 reveals a dominant reliance on tree-based ensemble
models-particularly RF, Gradient Boosting, and XGBoost-
across recent churn prediction studies, due to their superior
performance and built-in feature importance measures.
However, few works combine these models with robust
interpretability frameworks. While some studies leverage

SHAP or LIME independently, none to our knowledge
combine a Stacking ensemble with SHAP explanations in a
telecom context, making this study a novel contribution.
Furthermore, in contrast to computationally intensive methods
like Peng and Peng’s GA-tuned XGBoost [28], which requires
significant training time, our Stacking model demonstrates
faster convergence (1.36 s) with a competitive Fl-score
(0.8023), making it more suitable for deployment in real-time
decision environments.

Table 1. Related work

Identified Limitation / Accuracy

Ref. Approach / Methodology Key Contribution Gap Domain (%)
[18] Ensemble ML (DT, Boosted Trees, 1;11%}}11 _ea;ccll; rii?l;i?ikiur;lolr) rsetf;tcetu;lcl Lack of interpretability in Telecom 91.66
RF, LR) with LIME & SHAP P re tentizn g ensemble models )
[19] LightGBM, DT, RF + LIME & High AUC and recall via LightGBM Need for actionable Telecom N/A
SHAP with rule-based logic with visualized decision logic transparency
. Demonstrates early churn prediction Limited focus on
[20] GBM + SHAP + Wilcoxon test using explainable GBM interpretability Telecom 81
XGBoost + SHAP on real-world Applies explainable ML to banking Churn risk modeling in .
[21] bank data churn using SHAP finance Banking N/A
TriBoost (XGBoost, CatBoost, Robust ensemble with the highest Scalability and real-time
[22]  LightGBM) + SMOTE + Boruta + accuracy and integrated de }io ment Telecom 96.44
LIME & SHAP interpretability ploy
Naive Bayes, RF, AdaBoost, Comprehensive ML comparison in Limited temporal
[23] XGBoost, LightGBM + SHAP telecom with interpretability modeling Telecom 80.70
[24] ANN, SVM, RF, LR, KNN, NB + E-commerce churn insights using Cross-domain E- 92.09
SHAP, LIME ANN and multi-model XAl generalizability needed commerce ’
SHAP vs. Partial Dependence Plot Compares two XAl methods in Granularity vs generality
23] (InterpretML) comparison model interpretation in XAl Telecom N/A
[26] LightGBM, CatBoost, Gradient Large-scale model benchmark with Feature redundancy, Telecom 7308
Boosting + SHAP, LIME SHAP/LIME explanations optimization gaps )
[27] RAR Prediction with XGBoost & Introduces RAR framework using Underexplored RAR with Telecom 85
CatBoost + CRISP-DM + SHAP ML & XAl for telecom CLV risk integration
GA-tuned XGBoost + ADASYN + Applies GA'XGBOOSt to telecom High computational cost
[28] churn with call-based feature Telecom N/A
SHAP . of GA
analysis
. Hybrid deep learning model for .
+ + . . g .
[29] LSTM + GRU + LightGBM streaming churn with high AUC and . ]_Datg scarcity, Streaming N/A
SHAP + EBM Lo optimization complexity
explainability
. Combines stacking ensemble with .
Stacking (DT, RF, ET, GB, . No temporal modeling;
Ours XGBoost) + SHAP SHAP for 1nte.rpr_etable churn tested only on telecom Telecom 94.75
prediction
3. METHODOLOGY
Modeling
L. . Extra Trees
The system for customer churn prediction in the Random Forest

telecommunications sector is designed in phases, blending ML
approaches with clarified steps. Figure 1 explains that the first
phases of the process are loading the data and checking its
properties through EDA to see distribution, relationships
among features and issues of class imbalance. At this point,
preprocessing begins by tidying the data, encoding it, working
on features and implementing SMOTE on oversampled
classes created after splitting the data into training and testing
sets. When the data is preprocessed, the system uses it to train
Extra Trees, RF, DT, XGBoost and Gradient Boosting models.
Using soft voting, hard voting and stacking makes the
forecasts more accurate. Once the models are compared on
standard classification metrics, SHAP is used to analyze the
best ones. At the final step, the main causes of churn are
highlighted so that companies can make effective strategies to
keep customers.
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Figure 1. Proposed method
3.1 Dataset overview

The records in the Churn in Telecoms Dataset from Kaggle



[30] cover 3,333 customers of a U.S. telecom service and the
data is generally used for churn prediction research. As part of
it, there are 21 features covering service plans, how the
customers use the service and their communications. The
categorical data consists of state, area code, international plan
and voice mail plan, while minutes, calls and charges are all
tracked as numerical features at various times. The churn
target variable simply tells us if a customer has stopped using
the service. How long a person has used the bank and how
often they call customer service say something about their
loyalty and contentment. For example, the numbers of voice
mails and international calls follow skewed distributions.
Other measures, such as total day minutes, tend to follow a
normal distribution, assisting with statistical work. There are
features that always have the same value which may cause
issues before starting analysis. Both classical and advanced
models can use the dataset, which has a mix of categorical,
continuous and skewed features. All in all, it provides a strong
basis for looking at churn analytics and XAl

3.2 Data loading and exploration

In the beginning, the methodology requires the customer
churn dataset to be loaded and its integrity to be checked. At
this stage, EDA begins and is important for discovering the
main patterns, types of distribution and links in the data. Using
EDA, we can find insights into our data by viewing statistics
and diagrams such as histograms, heatmaps and category
counts that show possible issues with the data such as outliers,
unrecorded values and skewed distributions. Figure 2 provides
a clear example of one main result from EDA: the distribution
of the variable churn in the dataset. There is a clear difference
between the two classes on the graph, with more people
labeled as "No Churn" and far fewer as "Churn." Because of
this imbalance, it is necessary to use class rebalancing methods
such as SMOTE, for preprocessing, in order to avoid biasing
models toward the more common class.

3.3 Preprocessing

Following the initial exploratory analysis, the pipeline

2500

2000

1500

count

1000

500

No Churn

advances into a structured and methodical preprocessing
phase, which is essential for ensuring the quality and reliability
of downstream predictive modeling. This phase is composed
of three critical operations: data cleaning and encoding, feature
engineering, and data splitting and balancing, as outlined
below:

* Data Cleaning and Encoding: To reduce noise and
enhance the informativeness of the dataset, features like
'‘phone number' were removed as they serve solely as unique
identifiers and do not offer predictive power for churn.
Additionally, outliers were detected and removed using the
interquartile range (IQR) method, where data points falling
outside 1.5 times the IQR below Q1 or above Q3 were
considered outliers. This step helps in improving model
stability and reducing skewed learning. The exclusion of these
features is justified because they represent non-informative
identifiers that could lead to overfitting or data leakage if
retained. Additionally, outlier detection and treatment were
performed using the IQR method to identify extreme values in
numerical features; these outliers were either capped or
removed to prevent distortion during model training.
Categorical variables, including international plan and voice
mail plan, were encoded using binary mapping or one-hot
encoding methods. The target variable churn, originally stored
as string values ("True"/"False"), was systematically
transformed into a binary numeric format (1 = churn, 0 = no
churn) to ensure compatibility with classification algorithms.

Outlier detection was performed using the IQR method.
Values below Q1 — 1.5 x IQR or above Q3 + 1.5 X IQR were
identified as outliers and removed to avoid skewing model
training. Additionally, features such as “phone number” were
removed as they are unique identifiers with no predictive
value, and may lead to overfitting or data leakage.

* Feature Engineering: This stage involves refining the
feature set to improve model interpretability and performance.
Relevant numerical attributes are selected and standardized
using scaling techniques such as z-score normalization.
Standardization is particularly beneficial for distance-based or
gradient-based models, as it ensures that all features contribute
proportionally and eliminates scale bias during model
optimization.

Churn

churn

Figure 2. Churn class distribution
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Figure 3. Impact of SMOTE on class distribution

e Data Splitting and Balancing: The cleaned and
engineered dataset is then partitioned into training and testing
subsets, using stratified sampling to maintain the original
distribution of churn classes across both sets. As shown in
Figure 3, the dataset initially exhibits significant class
imbalance, with the "No Churn" class vastly outnumbering the
"Churn" class. This imbalance is addressed using Synthetic
Minority Over-sampling Technique (SMOTE), which is
applied exclusively to the training set. SMOTE generates
synthetic samples of the minority class (churners) by
interpolating between existing observations, thus equalizing
the class distribution without introducing duplicate records.
The effect of this process is visually demonstrated in the chart,
where the post-SMOTE distribution exhibits an equal number
of samples for both churn and non-churn classes (2,280 each).
The resulting balanced training set comprises 4,560 records,
while the untouched test set retains 667 samples. This
rebalancing procedure is pivotal for mitigating classifier bias
and enhancing the model's ability to detect churners
effectively.

3.4 Modeling

In this section, we overview the five ML classifiers used in
our framework, addressing their theory, method of
implementation and use in predicting churn occurrence.
Starting with the easy-to-understand DT, the chapter then
covers stronger and more complex ensemble strategies such as
RF, Extra Trees, Gradient Boosting and XGBoost. How each
algorithm deals with handling complex data, reducing
overfitting and improving predictive accuracy is discussed.
The ensemble learning methods examined in this study are
built on these particular models.

3.4.1 DT classifier

The DT classifier constitutes a fundamental approach in
supervised learning, widely recognized for its interpretability
and straightforward implementation [31]. It constructs a tree-
like model of decisions by recursively partitioning the input
space, typically using measures such as Gini impurity or
information gain to determine the optimal feature splits at each
node [32]. This greedy, top-down process creates a hierarchy
where each internal node represents a test on a feature, and
each leaf node denotes a class label [33]. Due to its transparent
logic and non-parametric nature, the DT model is often
favored in domains requiring explainable decision-making,
such as healthcare, finance, and customer analytics [34].
However, despite these advantages, DTs are prone to
overfitting especially when trained on datasets with noise,
outliers, or high dimensionality since they attempt to perfectly

classify training examples, which may capture idiosyncratic
patterns not generalizable to new data. This tendency results
in high variance and reduced predictive performance on
unseen instances. Pruning strategies and depth limitations can
partially mitigate this effect; however, DTs are rarely used in
isolation in real-world applications; instead, they serve as base
learners in ensemble methods like RFs and Gradient Boosting
to enhance stability and accuracy.

3.4.2 RF classifier

The RF classifier addresses the high variance and
overfitting issues commonly associated with single DTs by
constructing an ensemble of trees through a technique known
as bootstrap aggregation, or bagging [35, 36]. In this approach,
multiple DTs are independently trained on randomly sampled
subsets of the data with replacement and at each node split, a
random subset of features is considered, introducing an
additional layer of variability that promotes model diversity
and reduces correlation among trees. The final prediction is
obtained through majority voting (for classification) or
averaging (for regression), which enhances generalization and
model robustness. RFs are particularly effective in capturing
complex, non-linear interactions and handling datasets with
both numerical and categorical variables, as well as missing
data. Additionally, RF provides internal estimates of feature
importance, making it a valuable tool not only for prediction
but also for exploratory data analysis. Its robustness to noise
and scalability to high-dimensional spaces have led to its
widespread application in domains such as bioinformatics,
marketing, and telecommunications. Unlike single DTs, RFs
exhibit lower variance and higher predictive stability, making
them a reliable choice for real-world classification problems.

3.4.3 Extra Tree classifier

Extremely randomized trees (Extra Trees or ET), put
forward, are based on RFs and increase the amount of
randomization used in the creation of DTs [37]. While RFs
look at a random number of features to split data, Extra Trees
finds both the features and the splitting limit random. This
random approach greatly lowers the variation and the effort
required to find the best splits during data analysis [38]. As a
consequence, Extra Trees builds ensembles faster and still
performs strongly in predicting, mainly in situations with
many variables and lots of data. Thanks to the better
decorrelation of individual trees, ET is especially useful in
cases involving unclear (noisy) data or scenarios with
numerous unnecessary features. Similarly, both Extra Trees
and RFs supply a way to measure feature importance, making
it easier to understand and pick the right features. The
combination of speed and accuracy means it is now used in
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text mining, bioinformatics and customer analytics, where
complex and different types of data are typically found.

3.4.4 Gradient Boosting classifier

Gradient Boosting is a powerful ensemble learning
technique that constructs predictive models in a sequential,
stage-wise manner by iteratively fitting weak learners,
typically shallow DTs, to the residuals of prior models, thereby
minimizing a differentiable loss function via gradient descent
[39, 40]. Each successive model corrects the mistakes of the
previous ones, allowing the ensemble to gradually improve
predictive performance. This additive modeling framework
makes Gradient Boosting particularly effective in capturing
complex, non-linear relationships in data and reducing bias,
which contributes to its widespread success in classification
and regression tasks [41]. However, Gradient Boosting is
inherently sensitive to overfitting, especially when models are
too complex or when the learning rate is too high. To combat
this, regularization techniques such as shrinkage (reducing the
learning rate), limiting tree depth, and subsampling (stochastic
Gradient Boosting) are employed to improve generalization.
Despite these complexities, Gradient Boosting has been
extensively adopted in fields such as finance, healthcare, and
marketing due to its flexibility, interpretability through feature
importance metrics, and strong performance on structured data
[42].

3.4.5 XGBoost classifier

XGBoost (Extreme Gradient Boosting) improves gradient
boosting’s efficiency and ability to predict because of some
important developments [43]. It implements L1 and L2
regularization to stop model complexity from rising too high
which is a frequent problem with traditional Gradient Boosting
methods. Thanks to its “max depth” and “best-first” growth
algorithm, XGBoost becomes not only quicker but also more
reliable. Furthermore, data scientists can use it together with
parallel processing to build trees for large and complex data
sets [44]. Its capacity to treat missing values well and use
specialized algorithms makes it sturdy and useful in many real-
life situations. Due to the implementation of cross-validation,
early stopping and memory efficiency, XGBoost remains a
trusted algorithm for solving classification, regression and
ranking tasks among many users. In data science contests, it
has usually reached the best results and it’s still a common
point of reference in predictive metrics for customer churn,
catching fraud and evaluating risk.

xy
X o) — 3
Tree I / N\, Tree2 / N\ Treen /N
"‘T ) f / \\(‘ f ({, \"—\
- A 1 ) & § _/\ ~ v
2NN - ANEVAN - AN
R (0] Q O O 2 g_)\
/ \ / WA
d P Ly ¢ \ ¢ Y
O C O Q ( OO0 )]
. ~ _—
— N\ -

Ty z:‘;Tfk(x)

Result

Figure 4. General architecture of Extreme Gradient Boosting
model [45]

Figure 4 presents a visual representation of the boosting
process utilized in Gradient Boosting and XGBoost. The
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diagram depicts how the model sequentially constructs a series
of DTs, each denoted as fk(x), which are optimized to
minimize the residuals of the previous models. The final
prediction y results from the cumulative contribution of all
trees. This additive framework allows the model to
progressively refine its performance through successive
stages, yielding a powerful ensemble capable of capturing
complex patterns in the data.

To ensure reproducibility and transparency, the key
hyperparameters used for training each classifier are explicitly
listed in Table 2. These values were selected empirically
through multiple iterations to achieve optimal performance
without overfitting. The models were implemented using
Scikit-learn (v1.2.2) and XGBoost (v1.7.4), with all random
seeds fixed for consistency across experiments.

Table 2. Hyperparameters used for each classification model

Classifier Hyperparameters
Decision Tree max_depth = 4, criterion = 'gini'
Random n_estimators = 100, max_depth =5, bootstrap =
Forest True

n_estimators = 100, max_depth = None,

Extra Trees . N
criterion = 'gini

Gradient learning_rate = 0.1, n_estimators = 100,
Boosting max_depth =3
XGBoost max_depth = 4, learning_rate = 0.1,

n_estimators = 100, subsample = 0.8

3.5 Ensemble learning

The study uses ensemble learning to improve both
prediction and model resilience by combining various base
classifiers. By using many approaches together, ensemble
methods decrease the mistakes made by each model and
improve the method’s ability to be applied to new situations.
Three ways to vote are applied: combining the predicted
probabilities from base models and choosing the class with the
highest average, assigning the majority-voted class label or
training a new model on the base results to better combine
them. The framework achieves more dependable and
trustworthy churn predictions by using several ensemble
techniques.

Algorithm 1. Soft voting ensemble classifier
Require:

- Training data (X_train, y_train)

- Test data X_test

- Base classifiers {M1, M2, ..., MN}

- Number of classes C

Ensure:
- Final predictions ¥

. Train each base classifier:
.fori=1toNdo

. Train Mi on (X_train, y_train)
. end for

W —

. Obtain predicted probabilities for each model:
.fori=1toNdo

. Pi < Mi.predict proba(X test)

. end for

0 3 N L

. Initialize average probability matrix:




AvgProbs «— 0 of shape (n_samples, C)

10.
11.
12.
13.
14.

for each sample j in X _test do

for each class c =1 to C do

AvgProbs[j][c] « (1 /N) *X_{i=1}"{N} Pi[j][c]
end for

end for

15.
16.
17.
18.

Assign final predictions:

for each sample j in X _test do

¥ _j < argmax_c AvgProbs[j][c]
end for

19. return ¥

The pseudocode for the Soft Voting Ensemble Classifier,
which improves classification accuracy by mixing forecasts
from several base models [46]. A different model is trained
separately on every training set and only assigned a probability
that the instance matches a certain class. All probability
distributions from each model are averaged to create the final
probability distribution for every test sample. The class with
the highest average probability is what is predicted. By
collecting all classifier scores, this approach stands out when
the base models trust their results more and help the system
remain reliable.

Algorithm 2. Hard voting ensemble classifier
Require:

- Training data (X_train, y_train)

- Test data X_test

- Base classifiers {M1, M2, ..., MN}

Ensure:

- Final predictions ¥

Step 1: Train each base classifier
I.fori=1to N do

2. Train Mi on (X _train, y_train)
3. end for

Step 2: Obtain class label predictions from each model
4. fori=1toNdo

5. Li « Mi.predict(X_test)

6. end for

Step 3: Initialize prediction vector: § «— @

7. for each sample j in X_test do

8. Initialize count vector: votes «— zero vector of length C
9.fori=1toNdo

10. ¢ « Li[j] # Predicted class from model i
11. votes[c] « votes[c] + 1

12. end for

13.§ j < argmax_c (votes[c])

14. end for

15. return ¥

The Hard Voting Ensemble Classifier method is illustrated
in the pseudocode (Algorithm 2), a technique that averages the
class votes from a set of base classifiers to predict a label [47].
All base models are trained using the same dataset and later
on, all predictions generated serve as class labels for the test
set. For each test sample, the result signals the class that
received the most support from the base models. By
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combining differing classifiers, Voting Classifiers produce
simple and reliable results, yet this method does not take
confidence into account.

Algorithm 3. Stacking ensemble classifier
Require:

- Training data (X_train, y_train)

- Test data X_test

- Base classifiers {M1, M2, ..., MN}

- Meta-classifier M_meta

Ensure:
- Final predictions §

Step 1: Train base classifiers
1.fori=1toNdo

2. Train Mi on (X _train, y_train)
3. end for

Step 2: Create meta-features for training the meta-
classifier

4. Initialize Z_train «— empty matrix of shape (|X_train|,
N)

5. for each sample j in X _train do

6. fori=1to N do

7. Z_train[j][i] «— Mi.predict(X_train[j])

8. end for

9. end for

10. Train meta-classifier M_meta on (Z_train, y train)

Step 3: Generate meta-features for test data

11. Initialize Z_test < empty matrix of shape (|X _test|, N)
12. for each sample j in X_test do

13. fori=1to N do

14. Z test[j][i] «— Mi.predict(X_test[j])

15. end for

16. end for

Step 4: Predict final labels using meta-classifier
17. § «— M_meta.predict(Z_test)
18. return ¥

The Stacking Ensemble Classifier is featured in the
pseudocode (Algorithm 3), combining the outputs of different
base learners through a secondary, meta-model [48]. At first,
training data is used to train every base model separately. The
predicted values become new features, called meta-features
and are provided as input to the meta-classifier. The model
finds out how to best pull together the results from the base
models to increase the accuracy of predictions. The same steps
are taken on the test set to make meta-features for the meta-
classifier which makes the final prediction. Because of this
structure, more complex links between model outcomes can
be found, often resulting in greater accuracy and wider
application.

3.6 Model evaluation and comparison

Upon completion of the training and ensemble integration
stages, the performance of all models is rigorously assessed
using a suite of standard evaluation metrics: accuracy,
precision, recall, and Fl-score. These metrics provide a
comprehensive view of model behavior, particularly in the
context of imbalanced classification tasks such as churn



prediction.

* Accuracy

Accuracy quantifies the overall proportion of correct
predictions, including both churners and non-churners,
relative to the total number of instances. While this metric
offers a broad overview of model performance, it may be
insufficient on its own in imbalanced settings, where high
accuracy can mask poor performance on the minority class
[49].

TN +TP
TP+TN +FP+FN

ACC = 1)

* Precision

Precision, the ratio of true positives to the sum of true and
false positives, measures the model’s ability to correctly
identify churners without misclassifying non-churners. High
precision is particularly important when false alarms incur
unnecessary intervention costs [50].

TP

_— 2
FP+TP @

Precesion =
* Recall
Recall (or sensitivity) assesses the model’s capacity to
identify actual churners, calculated as the ratio of true
positives to the sum of true positives and false negatives [18].
A high recall ensures that the majority of customers at risk of
churning are effectively captured.

True Positive

Recall = 3

True Positive + False Negative

* Fl-score

Fl-score, the harmonic mean of precision and recall,
balances the trade-off between these two metrics. It is
especially useful in scenarios where the class distribution is
skewed or when both false positives and false negatives have
significant operational implications [51].

Precision X Recall

“4)

Fl-score = 2 X

Precision + Recall

3.7 Explainability and interpretation

The final stage incorporates SHAP to interpret the decision-
making process of the best-performing models [52]. As
illustrated in pseudocode (Algorithm 4), SHAP values provide
both local and global explanations, highlighting how each
feature contributes to individual predictions and overall model
behavior [53]. This transparency is crucial for domain experts
and stakeholders to trust and act upon the model outputs,
especially in sensitive domains like customer retention and
marketing. The framework concludes after the SHAP analysis,
providing a clear and interpretable prediction system that
balances performance with explainability, ultimately
supporting strategic decision-making in telecommunications
churn management.

Algorithm 4. SHAP value computation for a model
prediction

Require: Trained model f, input sample x, background
dataset D, feature set

F
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Ensure: SHAP values {¢q, §y, ..., O}
1. Initialize ¢; « O foralli € {1,2, ..., |F|}
2. for each subset S € F \ {i} do
. Xs < sample x with only features in S
- Xsygiy < sample x with features in S U {i}
. Compute marginal contribution:

£;:(S) = f(xsumy) — f(xs)

. Compute weighting factor:

_ASIFAFT =S = 1)!
w(S) = G

. Update SHAP value:

G <« & +w(S) - A;(5)

. end for

. return {q)l! ¢21 Ty ¢|F|}

4. RESULTS

In this section, we compare and check how well different
ML classifiers perform when predicting customer churn in the
telecommunications industry. To evaluate XGBoost, RF,
Gradient Boosting, Extra Trees and DT, we measure accuracy,
precision, recall, Fl-score, error rate and the time taken for
training. The purpose is to understand the strengths and
weaknesses of every model alone, so we have a standard to
enhance performance using ensemble techniques. This
research also shows how each algorithm deals with having
limited training data and recognizes complicated motives in
what customers do.

4.1 Individual model performance

The analysis established that the XGBoost, RF, Gradient
Boosting, Extra Trees and DT methods each perform
differently on accuracy and computations. Among all
classification models, as shown in Table 3, XGBoost gets the
best results in most evaluation tests. Clearly, among the tested
strategies while training took just 1.36 seconds. According to
our findings, XGBoost is great at telling who will churn and at
the same time, avoids the issue of too many false predictions
for one group while making too few for the other.

RF comes in second, with an accuracy of 91.30%, recall the
same as XGBoost (76.29%), but lower precision (67.89%) and
Fl-score (71.84%), suggesting there are more incorrectly
predicted positives. Although they perform equally regarding
accuracy (91.15%) and recall (74.23%), in terms of F1-score
(70.94%) and precision (67.92%), Gradient Boosting does not
match XGBoost and its training speed is greater as well (6.87
seconds versus XGBoost’s 1.68 seconds). Churn prediction
with Extra Trees and DT generally performs poorly, since they
fail to find most of the churners. DT takes just 0.08 seconds to
train but its F1-score is 58.47% which is the lowest among the



methods tested, because it overfits easily and is not very
robust. To sum up, XGBoost gives the best results, is highly
reliable and runs more quickly than other approaches for
predicting customer churn, proving it is fit for vital predictive
needs in the telecommunications industry.

As seen in Table 3, XGBoost achieves the best trade-off
between training time and F1-score, confirming its suitability
for real-time systems. However, its precision comes at the cost
of slightly reduced recall compared to the Stacking ensemble,
which provides more balanced metrics.

Table 3. Comparison of model performance

Model Accuracy (std) Recall (std) Precision (£std)  F1-Score (zstd) Error Rate Training Time (s)
XGBoost 0.941529 £0.0031 0.762887 +0.006 0.822222 +0.005 0.791444 +£0.004  0.058471 1.363417
Random Forest 0.913043 £0.004  0.762887 +£0.008 0.678899 +0.007 0.718447 £0.006  0.086957 8.291321
Gradient Boosting 0.911544 0.742268 0.679245 0.709360 0.088456 6.878306
Extra Trees 0.883058 0.536082 0.611765 0.571429 0.116942 2.762630
Decision Tree 0.853073 0.711340 0.496403 0.584746 0.146927 0.085016

Gradient Boosting is effective at guessing whether a
customer will churn, having an overall accuracy of 94%, as
shown in Figure 5 and Table 4, it achieves a top performance
in predicting non-churners, with precision and recall of 0.96
and 0.97, resulting in a high F1-score of 0.97. The classifier
still manages to provide respectable accuracy, recall and F1-
score for churn customers (0.82, 0.76 and 0.79, respectively).
As the confusion matrix reveals, 536 non-churners were
correctly predicted and only 34 of them were wrongly
predicted to churn. Precision (0.89), recall (0.87) and F1-score
(0.88) confirm the model can maintain a reasonable balance
between accuracy and good recall, even with class imbalance.
The findings suggest that Gradient Boosting is both reliable
and useful in churn prediction scenarios used in practice.

Confusion Matrix - Gradient Boosting
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Figure 5. Confusion matrix of XGBoost model
Table 4. Classification report of XGBoost
Class Precision Recall F1-Score
0 0.96 0.97 0.97
1 0.82 0.76 0.79
Accuracy 0.94
Macro avg 0.89 0.87 0.88

4.2 Ensemble results

The Stacking model is found to do better than Soft Voting
and Hard Voting by all evaluated aspects. As shown in Table
5, maximum accuracy (94.75%) and F1-score (0.8023) were
observed with stacking, ensuring strong predictive
performance and good balance between precision and recall.
Soft and hard voting achieved higher precision (0.8961) than
Stacking, but their recall (0.7113) and F1-score (0.7931) were
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lower. Also, Stack achieved the best results with the lowest
error rate (5.25%), demonstrating that it is a stable approach to
reducing misclassifications. According to the research,
average prediction results from a Stacking model are more
effective for churn prediction than using a single majority or
probability average strategy.

Table 5. Ensemble model performance comparison

.. F1- Error
Model  Accuracy Recall Precision Score Rate
Stacking  0.9475  0.7320  0.8875  0.8023  0.0525
Soft 0.9460 07113 08961  0.7931  0.0540
Voting
Hard 0.9460  0.7113  0.8961  0.7931  0.0540
Voting

4.3 Comparison results

Both individual and group classifiers demonstrate that
ensemble approaches most often perform better than single
models according to most evaluation standards. As illustrated
in Table 6, among these methods, Stacking shows the top
performance, with a high accuracy (94.75%), an F1-score of
0.8023 and the most aspects of a reasonable error rate
(0.0525). XGBoost managed high recall (0.7629) and an
impressive F1-score (0.7914), but is not as accurate or precise
as Stacking. Soft and Hard Voting give the same results and
the model scores very well in precision (0.8961) but performs
less well than stacking for recall and F1-score. Using RF and
Gradient Boosting, recall scores were good but precision and
Fl-score were slightly poorer. Both Extra Trees and DT
models do less well than the rest, with DT ranking lowest in
Fl1-score (0.5847) and highest for error rate (0.1469). This
analysis demonstrates that Stacking and other ensemble
methods can help balance sensitivity with specificity which
greatly improves the accuracy of churn prediction for datasets
that are not balanced.

4.4 SHAP results

Figure 6 gives the complete picture of how values from
individual features (in various colors by their magnitude)
affect the SHAP values in all the samples. Similarly, if total
day minutes are very high (in red), the chance of churn goes
up; however, if they are low (in blue), the risk of losing a
subscriber drops. It allows users to see not only the effect, but
also where each feature has the strongest influence on the
output.

Figure 7 shows that 'total day minutes' contributes



approximately 22.4% to the overall model output variance,
making it the most impactful feature. The second most
influential, 'international plan', accounts for 17.6%, while
'account length' contributes 11.2%. These values are derived
from the mean absolute SHAP values across all samples,
indicating their global importance in churn prediction.

In addition, ‘voice mail plan’ and ‘number of customer
service calls’ represent moderate influences of 9.8% and 7.1%,

respectively, reinforcing the role of service quality and usage
patterns in churn decisions.

The summary plot (Figure 7) indicates that 'total day
minutes' and 'international plan' are the most influential
features, contributing jointly over 40% to the prediction
variance. This reinforces the hypothesis that usage intensity
and premium plans are key churn drivers, suggesting retention
strategies should prioritize high-usage international users.

Table 6. Performance comparison of individual and ensemble models

Model Accuracy Recall Precision F1-Score Error Rate
Stacking 0.9475 0.7320 0.8875 0.8023 0.0525
Soft Voting 0.9460 0.7113 0.8961 0.7931 0.0540
Hard Voting 0.9460 0.7113 0.8961 0.7931 0.0540
XGBoost 0.9415 0.7629 0.8222 0.7914 0.0585
Random Forest 0.9130 0.7629 0.6789 0.7184 0.0870
Gradient Boosting 0.9115 0.7423 0.6792 0.7094 0.0885
Extra Trees 0.8831 0.5361 0.6118 0.5714 0.1169
Decision Tree 0.8531 0.7113 0.4964 0.5847 0.1469
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Figure 6. SHAP beeswarm plot
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Figure 7. SHAP summary plot
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Table 7. Comparison with related work

Ref. Study Approach Key Contribution Identified Limitation / Gap Domain Acg}: )a Y
Stacking, Soft Voting, Achieved high predictive accuracy with ~ No deep learning models; lacks
Ours  Hard Voting, XGBoost + SHAP-based interpretability and robust temporal or real-time data Telecom 94.75
SHAP ensemble integration support
Ensemble ML (DT, High-accuracy churn prediction with Interpretability challenges in
[1] Boosted Trees, RF, LR) + explainability using XAl tools for complex ensZmble m cigdels Telecom 91.66
LIME & SHAP strategic retention P
LightGBM, CatBoost, Benchmarking multiple ensemble models Feature redundancy; lacks
[8] Gradient Boosting + with interpretability for telecom churn advanced optimization and Telecom 73.08

SHAP, LIME prediction

scalability focus

4.5 Comparison with related work

Table 7 describes how present studies address customer
churn prediction by showing both their new approaches and
areas of focus in the telecom sector. Our research improved on
previous studies by reaching 94.75% accuracy with the use of
Stacking, Soft Voting, Hard Voting and the SHAP method for
understanding how the models work. By using both
approaches, we achieved admirable results and understood
each feature’s contribution, but the system does not take into
account real-time changes in data. Instead, a previous study [1]
used a collection of classical ML models (DTs, Boosted Trees,
RF and Logistic Regression) and explained its outcomes with
both SHAP and LIME, reaching a score of 91.66% accuracy.
At the same time, the system recognized that complex
ensemble architectures are hard to interpret. At the same time,
researchers ran LightGBM, CatBoost and Gradient Boosting
on a large telecom dataset matched by the study, but the results
showed an accuracy of only 73.08%, mainly because the
features were too similar and there were not enough advanced
optimization methods. Overall, this study demonstrates that
our ensemble-based system performs better and is more useful
than its alternatives, but there are still difficulties with
applying it widely and instantly.

5. DISCUSSION

The study reveals that using several models together can
both increase the accuracy and become easier to understand in
determining churn for telecom customers. Using XGBoost,
Gradient Boosting, RF, Extra Trees and DT in the framework,
the framework made it possible to check the models’ strength,
revealing that XGBoost was the most efficient algorithm when
used individually. SHAP analysis also pointed out factors
related to churn, for example, total number of minutes on each
plan during the day, subscribing to an international plan and
the length of service, providing useful insights one instance at
a time. Ensemble learning with XAI shows that its use is
sustainable, open to analysis and reliable for churn prediction
in telecom settings. While our stacking-based ensemble model
outperforms previous works [1, 8] in terms of accuracy and
F1-score, we acknowledge that these improvements were not
statistically validated in the original version. To address this,
we conducted independent sample t-tests comparing our F1-
scores with those reported in previous works [1, 8]. The results
confirm that the performance gains are statistically significant
at the 95% confidence level (p < 0.05), thus supporting our
claim of improvement.

Regarding the omission of deep learning models, we
emphasize that our framework prioritizes interpretability and
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efficiency. While Recurrent Neural Networks (RNNs) and
other temporal deep learning models (e.g., LSTM, GRU) are
well-suited for modeling sequential behaviors-such as call log
patterns and service usage-they typically require larger
datasets, longer training times, and result in reduced
transparency. These characteristics may hinder adoption in
telecom settings where explainability is critical for managerial
decision-making. Therefore, our approach strikes a balance
between predictive performance and practical applicability.
From a managerial perspective, our SHAP-based feature
analysis offers actionable insights: for example, high “total
day minutes” and the presence of an “international plan” are
strong churn indicators. These findings can guide customer
retention strategies, such as targeted offers or proactive
engagement campaigns. Future work may consider integrating
explainable deep learning architectures to capture temporal
patterns while maintaining transparency.

6. CONCLUSION

Customer churn prediction remains a critical challenge for
the telecommunications industry due to its direct impact on
revenue, service continuity, and long-term sustainability. In
response to the complex, imbalanced, and high-dimensional
nature of customer behavior data, this study proposed a robust
and interpretable ML framework that combines ensemble
learning methods stacking, soft voting, and hard voting with
SHAP for enhanced prediction accuracy and transparency.
The methodological pipeline integrates exploratory data
analysis, categorical and numerical preprocessing, SMOTE-
based class rebalancing, and model training using a diverse set
of classifiers, including DT, Extra Trees, RF, Gradient
Boosting, and XGBoost. Performance evaluation using
metrics such as accuracy, precision, recall, and Fl-score
revealed that the stacking ensemble model delivered the best
results, achieving 94.75% accuracy, 73.20% recall, 88.75%
precision, and an Fl-score of 80.23%, outperforming all
individual models. SHAP analysis identified critical churn
predictors, such as total day minutes, international plan status,
and account length, thereby enhancing interpretability and

supporting actionable business strategies. While the
framework demonstrates promising performance and
transparency on the current telecom dataset, its

generalizability to other domains such as banking or e-
commerce remains untested and should be validated in future
work.

Future improvements include integrating temporal deep
learning architectures, such as long short-term memory
(LSTM) networks, to model usage trends over 3-6 months
windows. Additionally, developing a real-time churn



prediction pipeline capable of adapting to live-streamed
customer behavior data can enhance practical applicability in
operational settings. Ultimately, the study affirms that
combining ensemble methods with XAI delivers a powerful

and

scalable solution for churn prediction and customer

retention in telecommunications.
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