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Early and accurate detection of retinal diseases is essential to prevent avoidable vision 

loss. However, manual assessment of fundus images is time-consuming and can vary 

across clinicians. Deep convolutional neural networks (DCNNs) have improved 

automated screening, but many models remain computationally demanding and provide 

limited interpretability. This study proposes a hybrid ensemble framework for multi-

class retinal disease classification that balances accuracy, efficiency, and explainability. 

InceptionV3 and DenseNet121 were used as feature extractors on a public Eye Diseases 

Classification dataset comprising four categories: normal, cataract, glaucoma, and 

diabetic retinopathy. The extracted deep features were fused and classified using several 

ensemble strategies, including hard voting, soft voting, stacking, bagging with Random 

Forest, and gradient boosting. Performance was evaluated using accuracy, precision, 

recall, and F1-score, together with training time. DenseNet121 achieved higher 

accuracy than InceptionV3 while requiring shorter training time. Ensemble learning 

further improved performance. Bagging with Random Forest reached 99.4% accuracy, 

and the optimized boosting model achieved 100% accuracy on the held-out test set. 

Model interpretability was examined using Grad-CAM, which highlighted clinically 

plausible regions such as the optic disc, macula, and lesion areas. Although the results 

are promising, external validation on additional datasets is required before clinical 

deployment. 
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1. INTRODUCTION

Retinal diseases are a major cause of visual impairment and 

blindness worldwide, affecting individuals across all age 

groups. Visual signals are captured by the retina and 

transmitted to the brain through the optic nerve [1, 2]. Several 

conditions, including cataract, glaucoma, diabetic retinopathy, 

and age-related macular degeneration, can lead to severe and 

irreversible vision loss if diagnosis or treatment is delayed [3]. 

The World Health Organization estimates that 2.2 billion 

people experience vision impairment, and a substantial 

proportion of cases could be prevented or treated through 

timely diagnosis and intervention [4]. Cataract and diabetic 

retinopathy account for a large number of preventable cases, 

and glaucoma remains a major cause of permanent vision loss 

[5]. 

Manual screening of retinal fundus images is labor-

intensive and depends on expert interpretation, which may 

lead to variability and delayed clinical decisions [6, 7]. Recent 

advances in artificial intelligence have enabled automated 

analysis of ophthalmic images using deep learning, 

particularly deep convolutional neural networks (DCNNs) [8-

11]. Despite their success, conventional end-to-end deep 

models often require substantial computational resources and 

may generalize poorly across datasets, especially when image 

acquisition conditions differ. In addition, many DCNNs 

provide limited transparency, which can reduce clinical trust 

[12]. 

Ensemble learning is a well-established strategy to improve 

robustness and generalization by combining multiple models. 

Methods such as hard voting, soft voting, stacking, bagging, 

and boosting can reduce variance and mitigate the limitations 

of individual classifiers [13-15]. Nevertheless, many existing 

retinal classification studies focus primarily on maximizing 

accuracy, while offering limited analysis of computational 

cost and limited interpretability beyond qualitative examples 

[16]. 

To address these limitations, this work makes the following 

contributions: 

(1) A hybrid framework is proposed that combines two

complementary CNN backbones (InceptionV3 and 

DenseNet121) with multiple ensemble learning strategies 

(hard voting, soft voting, stacking, bagging, and gradient 

boosting) for four-class retinal disease classification. 

(2) Single-CNN and ensemble configurations are compared

using predictive metrics and training time to assess practical 

deployability. 

(3) Grad-CAM is used to generate visual explanations and

to examine whether the learned attention patterns align with 

clinically meaningful retinal structures. 
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The overall objective is to deliver a screening system that is 

accurate, computationally efficient, and interpretable. 

2. RELATED WORK

Several studies have investigated deep learning for 

automated retinal disease classification. In a previous study 

[17], a CNN-based system was developed for multi-class 

diagnosis of diabetic eye disease using fundus images and 

achieved 81.33% accuracy. The authors emphasized that while 

deep learning performs well in binary settings, multi-class 

discrimination remains challenging. 

In a previous study [18], pre-trained CNNs and optimization 

strategies were evaluated for mild and multi-class diabetic eye 

disease classification. VGG16 achieved 88.3% accuracy for 

multi-class classification and 85.95% accuracy for mild multi-

class classification. VisionDeep-AI [19] combined vessel 

segmentation and disease classification using a bi-directional 

feature pyramid network and a U-Net-based architecture. The 

reported vessel segmentation accuracy reached 97.73%, while 

classification accuracy was 81.50%. 

Other works focused on enhancing preprocessing and 

feature extraction. Image enhancement and segmentation were 

used prior to classification, and EfficientNetB7 produced 

strong results [20]. A custom DCNN achieved high detection 

rates across cataract, diabetic retinopathy, glaucoma, and 

normal cases. Nawaz et al. [21] proposed an optimized CNN 

for large-scale retinal disease classification and reported 95% 

accuracy on the Eye-Net dataset. A hybrid pipeline used 

segmentation, SqueezeNet feature extraction, and a stacked 

sparse autoencoder classifier, achieving 96.3% accuracy [22]. 

Comparative studies have also been reported. In a previous 

study [23], multiple CNN architectures were evaluated on the 

MURED dataset, and the best reported accuracy remained 

limited, highlighting the dependence on dataset scale and 

quality. Ensemble-based approaches have shown improved 

robustness. Multiple CNNs were trained on RFMiD and 

combined using ensemble strategies, achieving an AUROC of 

0.9613 for screening and 0.9295 average AUROC for 

condition classification [24]. In a previous study [25], 

ResNet50 and DenseNet121 were applied to multi-class 

identification of cataract, glaucoma, and diabetic retinopathy. 

In the study by Khan et al. [26], an ensemble of EfficientNet 

variants achieved an AUC of 0.973 on RFMiD, with emphasis 

on efficiency and scalability. 

Overall, prior work confirms the effectiveness of DCNNs 

and ensembles for retinal analysis. However, several 

limitations persist. Many studies address binary or narrowly 

defined multi-class problems, which restricts real-world 

applicability. Some ensemble methods are computationally 

intensive and provide limited discussion of training cost. 

Moreover, interpretability is often treated superficially, and 

few studies analyze whether model attention consistently 

overlaps with clinically relevant anatomical structures. 

This study differs by targeting four common retinal 

categories in a single unified framework, combining deep 

feature extraction with classical ensemble learners to balance 

accuracy and efficiency, and integrating Grad-CAM to 

examine the clinical plausibility of model attention.  

Table 1. Related work analysis 

References Focus Area Dataset Model Used 
Accuracy 

(%) 
Key Contributions 

[17] 
CNN-based multi-class 

classification of DED 

Publicly available 

DED dataset 
CNN model 81.33 

CNN-based classification 

of multiple DED categories 

[18] 

Deep learning-based 

classification of mild and 

multi-class DED 

Retinal fundus 

images 
VGG16, CNN 88.3 

VGG16 achieved high 

accuracy for mild and 

multi-class DED 

[19] 

VisionDeep-AI for vessel 

segmentation & 

classification 

Large fundus 

image dataset 

Bi-directional feature 

pyramid, U-Net 
97.73 

VisionDeep-AI enhances 

segmentation and 

classification performance 

[20] 

Deep learning-based 

enhancement, segmentation, 

and classification of DED 

DED fundus 

images 

ResNet50, VGG16, 

Xception, EfficientNetB7 
98.33 

Custom DCNN model with 

advanced segmentation 

techniques 

[21] 

CNN-based multi-class 

classification optimizing 

feature extraction 

Eye-Net dataset Optimized CNN model 95 

Memory-efficient CNN 

model for large-scale 

classification 

[22] 

IDL-MRDD: Multi-label 

classification of retinal 

diseases 

Benchmark multi-

retinal disease 

dataset 

SqueezeNet, SSAE 96.3 

Hybrid deep learning model 

for multi-label 

classification 

[23] 

Comparison of CNN 

architectures for retinal 

disease classification 

MURED dataset 

Scratch Model, GoogleNet, 

VGG, ResNet, MobileNet, 

DenseNet 

49.85 

Comparison of multiple 

CNN architectures for 

disease classification 

[24] 
Ensemble CNN models for 

multi-disease detection 
RFMiD dataset Ensemble CNNs 92.95 

Ensemble CNNs improve 

retinal disease classification 

in RFMiD 

[25] 

MobileNetV2 for multi-

class classification of retinal 

diseases 

Color fundus 

images 

MobileNetV2, ResNet50, 

DenseNet121 
94.23 

MobileNetV2 optimized for 

real-time disease detection 

[26] 

Multi Retinal Disease 

Classification Model 

(MRDCM) 

RFMiD dataset 

(45 disease 

classes) 

EfficientNetB4, 

EfficientNetV2S 
97.3 

MRDCM surpasses 

previous models with 

ensemble learning 
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Table 1 summarizes representative studies, highlighting 

datasets, model choices, reported accuracy, and main 

contributions. 

The reviewed literature indicates that high performance is 

achievable; however, generalization across datasets, 

computational efficiency, and explainability remain open 

challenges. 

3. PROPOSED METHODOLOGY

Figure 1 illustrates the overall workflow of the proposed 

approach. The pipeline includes dataset preparation, image 

preprocessing, deep feature extraction using two CNN 

backbones, feature fusion, ensemble classification, and 

interpretability analysis using Grad-CAM. 

3.1 Dataset overview 

The Eye Diseases Classification dataset contains 4,217 

color fundus images distributed across four classes: 1,074 

normal, 1,038 cataract, 1,007 glaucoma, and 1,098 diabetic 

retinopathy [27]. The class distribution is approximately 

balanced. Therefore, no over-sampling, under-sampling, or 

class-weighting strategy was applied. Instead, a stratified split 

was used to preserve class proportions. 

The dataset was partitioned into 80% training data (3,373 

images) and 20% held-out test data (844 images) using 

stratification at the image level. During training, 10% of the 

training set was further reserved for validation to support early 

stopping and hyperparameter selection. All reported results 

correspond to the held-out test set, which was not used during 

training or model selection (Table 2). 

Figure 1. Proposed scheme 

Table 2. Dataset overview 

Category Number of Images Description 

Normal 1,074 Retinal images from healthy individuals, used as a control group. 

Cataract 1,038 Images depicting cataract-affected eyes, characterized by lens clouding. 

Glaucoma 1,007 Retinal images showing signs of glaucoma, a disease that damages the optic nerve. 

Diabetic 

Retinopathy 
1,098 

Images illustrating diabetic retinopathy, a complication of diabetes affecting blood 

vessels in the retina. 

Figure 2. Retinal images from the dataset 

Representative examples from each class are shown in 

Figure 2. Normal images present typical retinal anatomy 

without visible pathology. Cataract images often exhibit 

reduced contrast due to lens opacity. Glaucoma images are 

characterized by changes around the optic nerve head, 

including increased cupping. Diabetic retinopathy images may 

contain microaneurysms, hemorrhages, and exudates. 

3.2 Preprocessing 

All images were resized to 224 × 224 pixels to ensure 

consistent input dimensions. Pixel intensities were normalized 

to the [0,1] range to stabilize training. The images were kept 

in RGB format because color information is clinically relevant 

in fundus imaging. 

To reduce overfitting and improve robustness, data 

augmentation was applied during training. The augmentation 

included random horizontal flips, small rotations (±10°), 

random zooming (up to 10%), and mild brightness and 

contrast variations. After preprocessing, the training set 

contained 3,373 images and the held-out test set contained 844 

images [28]. 

Deep learning-based modeling: In this study, two 

ImageNet-pretrained CNN architectures were used as feature 

extractors: InceptionV3 and DenseNet121. For each 

backbone, the original classification head was removed and 

replaced by a GAP layer, followed by a fully connected layer 

with 256 units (ReLU) and dropout (0.5). A final softmax layer 

with four outputs was used during CNN training to support 
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supervised feature learning. Deep features were extracted from 

the penultimate layer and later used to train ensemble 

classifiers. 

• Inception

InceptionV3 employs parallel convolutional operations

with multiple kernel sizes within Inception modules, allowing 

multi-scale feature extraction. This design improves 

representational capacity while controlling computational cost 

through factorized convolutions and 1 × 1 bottleneck layers. 

Figure 3 shows the InceptionV3 architecture used in this work 

[29, 30]. 

• DenseNet

DenseNet121 introduces dense connectivity, where each

layer receives feature maps from all preceding layers and 

passes its own feature maps to all subsequent layers. This 

design strengthens gradient flow, encourages feature reuse, 

and reduces redundant computation. DenseNet121 is therefore 

well suited for medical image classification tasks that require 

fine-grained feature representation. Figure 4 shows the 

DenseNet121 architecture [31]. 

Figure 3. Inception model architecture [29] 

Figure 4. DenseNet121 model architecture [32] 

The DenseNet121 is a DCNN that improves feature 

information sharing and gradient path with deep network 

connectivity. DenseNet layers connect to every one of the 

preceding layers, accepting their feature maps for processing 

until they propagate the results to all subsequent layers, which 

reduces processing redundancy [32]. The model design 

utilizes four dense blocks with a layer and includes transition 

layers containing 1 × 1 convolutions together with 2 × 2 

average pooling elements. The first step combines a 7 × 7 

convolution filter with a 3 × 3 max pooling operation to handle 

the input before the dense blocks receive it. 

The distribution of 3 × 3 convolutional layers with 

BatchNorm and ReLU activation functions enables each dense 

block to improve stability and convergence. The model 

includes dropout layers, which help prevent overfitting, while 

global average pooling (GAP) reduces the feature dimensions 

before its output gets sent to a fully connected (FC) layer with 

a softmax classifier for prediction purposes. The results 

showed DenseNet121 as an efficient and better feature 

propagation, so it’s an optimal choice for medical image 

classification, giving high accuracy and computational 

efficiency performance. 

3.3 Ensemble learning 

To improve classification robustness and generalization, 

ensemble learning methods were applied to the fused deep 

features extracted from InceptionV3 and DenseNet121. 

Ensemble learning combines multiple predictors to reduce 

variance and improve stability, which is particularly beneficial 

in medical imaging tasks. The following ensemble strategies 

were evaluated. 

• Hard Voting

Hard voting assigns the final class label based on the

majority vote across base classifiers [33]. Each classifier 

produces a discrete class prediction, and the class with the 

highest vote count is selected. 

• Soft Voting

Soft voting aggregates predicted class probabilities instead

of discrete labels. The probability distributions produced by 

base models are averaged, and the class with the highest mean 

probability is selected [34, 35]. Soft voting typically improves 
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performance when probability estimates are well calibrated. 

• Stacking

Stacking trains multiple base models and uses their outputs

as inputs to a meta-learner. The meta-learner learns how to 

optimally combine base predictions, often improving 

generalization compared with simple voting [36, 37]. 

• Bagging (Random Forest)

Bagging trains multiple models on bootstrap samples of the

training data and aggregates their predictions by majority vote 

[38]. Random Forest is a commonly used bagging model based 

on decision trees. It reduces variance, is robust to noise, and 

can model complex decision boundaries. 

3.4 Interpretability using Grad-CAM 

Grad-CAM was applied to the last convolutional layers of 

the trained CNNs to generate class-specific heatmaps. For 

glaucoma, activations were concentrated around the optic 

nerve head and cup-to-disc region, which are clinically 

relevant for assessing glaucomatous damage. For diabetic 

retinopathy, the highlighted regions often corresponded to 

lesion patterns near the posterior pole, including areas 

consistent with microaneurysms and exudates. In normal 

images, activation tended to focus on anatomical landmarks 

such as the optic disc and major vessels without emphasizing 

irrelevant background regions. 

For cataract images, attention patterns were more diffuse. 

This behavior is expected because cataract primarily affects 

the lens and can reduce global image contrast rather than 

producing localized retinal lesions. Overall, Grad-CAM 

results suggested that the models relied on clinically plausible 

cues. However, this analysis remained qualitative, and future 

work should include expert evaluation to quantify agreement 

between explanations and clinical criteria [39]. 

3.5 Training configuration and hyperparameters 

InceptionV3 and DenseNet121 were initialized with 

ImageNet pretrained weights. Input images were resized to 

224 × 224 pixels and normalized to [0,1]. Data augmentation 

was applied online during training. 

Both CNNs were trained using the Adam optimizer with an 

initial learning rate of 1×10⁻⁴, a batch size of 32, and 

categorical cross-entropy loss. Training was performed for up 

to 50 epochs. Early stopping monitored validation loss with a 

patience of 7 epochs, and the learning rate was reduced on 

plateau (factor 0.5, patience 3). 

Ensemble models (Random Forest bagging and gradient 

boosting) were trained using deep features extracted from the 

penultimate layer of the CNNs. Hyperparameters such as the 

number of trees, maximum depth, and learning rate were tuned 

using grid search on the training and validation sets. All 

experiments were implemented in Python using 

TensorFlow/Keras and scikit-learn and were executed on a 

GPU-enabled workstation. 

4. EVALUATION METRICS

Model performance was assessed using accuracy, precision, 

recall, and F1-score. These metrics were computed on the 

held-out test set.  

4.1 Accuracy 

Accuracy measures the proportion of correctly classified 

samples among all samples [40]. 

4.2 Precision 

Precision measures the reliability of positive predictions 

and is defined as the ratio of true positives to the total number 

of predicted positives [41]. 

4.3 Recall 

Recall measures the ability to identify actual positive 

samples and is defined as the ratio of true positives to the total 

number of actual positives [42]. 

4.4 F1-score 

The F1-score is the harmonic mean of precision and recall 

and provides a balanced measure when class-wise 

performance is important [43].  

5. EXPERIMENTAL RESULTS

5.1 Inception results 

Table 3 reports class-wise precision, recall, and F1-score for 

InceptionV3. The model achieved an overall accuracy of 0.85 

on the test set. Performance was highest for cataract and 

diabetic retinopathy, while glaucoma exhibited lower recall, 

suggesting that some glaucoma cases were misclassified. 

Table 3. Classification of the inception model 

Class Precision Recall F1-score 

Cataract 0.89 0.94 0.91 

Diabetic Retinopathy 0.89 0.93 0.91 

Glaucoma 0.83 0.75 0.79 

Normal 0.79 0.79 0.79 

Accuracy 0.85 

Macro Average 0.85 0.85 0.85 

Figure 5 shows the learning curves for training and 

validation. Training accuracy increased steadily and 

approached saturation. Validation accuracy stabilized after the 

initial epochs, indicating reasonable generalization. Training 

and validation loss decreased overall, although minor 

fluctuations were observed in validation loss, which may 

indicate residual sensitivity to sample variability. 

Figure 6 presents the ROC curves. The AUC values were 

high across classes, reaching 0.99 for cataract and diabetic 

retinopathy and 0.96 for glaucoma and normal. These results 

indicate strong separability, although classification errors 

remained more frequent for glaucoma. 

5.2 DenseNet results 

Table 4 summarizes performance for DenseNet121. The 

model achieved 0.91 test accuracy. Diabetic retinopathy 

yielded the highest performance, with an F1-score of 0.99. 

Cataract also achieved a strong performance, while glaucoma 

remained the most challenging class due to lower recall (0.81). 
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Figure 5. Learning curve of InceptionV3 

Figure 6. ROC curve of InceptionV3 

Figure 7. ROC curve of DenseNet 

Table 4. Classification of DenseNet 

Class Precision Recall F1-score 

Cataract 0.89 0.97 0.93 

Diabetic Retinopathy 1.00 0.98 0.99 

Glaucoma 0.87 0.81 0.84 

Normal 0.88 0.89 0.89 

Accuracy 0.91 

Macro Average 0.91 0.91 0.91 

Figure 7 shows the ROC curves for DenseNet121. AUC 

values were 1.00 for diabetic retinopathy, 0.99 for cataract, 

0.98 for normal, and 0.97 for glaucoma, confirming strong 

multi-class discrimination. 

5.3 Ensemble results 

Table 5 compares ensemble strategies using accuracy, 

precision, recall, and F1-score. Bagging with Random Forest 

achieved the highest accuracy (0.9941), indicating strong 

robustness and stability. Stacking, soft voting, and hard voting 

also improved performance relative to individual CNN 

models, although with smaller gains. 

Table 5. Comparison analysis of learning techniques used 

The Model Accuracy Precision Recall F1-score 

Bagging 0.994076 0.994069 0.994076 0.994067 

Stacking 0.928910 0.928800 0.928910 0.928442 

Soft Voting 0.915877 0.915457 0.915877 0.915097 

Hard Voting 0.911137 0.910418 0.911137 0.910225 

Table 6 compares training time after applying the training 

process by the graphics card RTX 4060 Ti and using parallel 

process for evaluating a short time, also the macro-average 

accuracy for InceptionV3, DenseNet121, and the combined 

CNN feature ensemble. DenseNet121 achieved higher macro-

average accuracy than InceptionV3 and required shorter 
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training time. The fused feature ensemble further improved 

macro-average accuracy with a moderate increase in total 

computation. 

Table 6. Training time with the accuracy comparison 

Model 
Cataract 

Acc (%) 
Diabetic Retinopathy 

Acc (%) 
Glaucoma 

Acc (%) 
Normal 

Acc (%) 
Macro Avg 

Accuracy (%) 
Total Training 

Time (min) 
Avg. Epoch 

Time (s) 
InceptionV3 94.2 92.7 91.5 95.3 93.4 58.4 140.2 
DenseNet121 95.1 94.0 92.6 96.1 94.5 43.6 104.6 

Ensemble 

(Dense+Incep) 
96.0 95.3 93.8 96.8 95.5 62.1 — 

5.3.1 Results of best model: Bagging (Random Forest) 

Table 7 reports class-wise performance for bagging with 

Random Forest. Cataract, diabetic retinopathy, and normal 

achieved perfect precision, recall, and F1-score. Glaucoma 

achieved near-perfect performance with an F1-score of 0.99. 

Overall test accuracy reached 0.99, and macro-average metrics 

remained consistently high across classes. 

5.3.2 Improve boost results 

Table 8 shows performance for the optimized boosting 

model. All classes achieved precision, recall, and F1-score of 

1.00, resulting in 1.00 overall accuracy on the test set. 

Although this outcome is strong, it should be interpreted 

cautiously given the single-dataset evaluation and the potential 

for overfitting. 

Table 7. Classification of bagging (Random Forest) 

Class Precision Recall F1-score 

Cataract 1.00 1.00 1.00 

Diabetic Retinopathy 1.00 1.00 1.00 

Glaucoma 0.99 0.99 0.99 

Normal 1.00 1.00 1.00 

Accuracy 0.99 

Macro Average 0.99 0.99 0.99 

Table 8. Classification of optimized boosting 

Class Precision Recall F1-score 

Cataract 1.00 1.00 1.00 

Diabetic Retinopathy 1.00 1.00 1.00 

Glaucoma 1.00 1.00 1.00 

Normal 1.00 1.00 1.00 

Accuracy - - 1.00 

Macro Average 1.00 1.00 1.00 

Table 9. Comparison results 

Model Accuracy Precision Recall F1-score 

Bagging 

(Random 

Forest) 

0.994076 0.994069 0.994076 0.994067 

Stacking 0.928910 0.928800 0.928910 0.928442 

Soft Voting 0.915877 0.915457 0.915877 0.915097 

DenseNet121 0.912322 0.912409 0.912322 0.911648 

Hard Voting 0.911137 0.910418 0.911137 0.910225 

InceptionV3 0.851896 0.850582 0.851896 0.850469 

5.4 Final comparison 

Table 9 summarizes the performance of all evaluated 

models. Bagging with Random Forest produced the highest 

accuracy among the evaluated strategies. DenseNet121 

outperformed InceptionV3, suggesting that it captured 

discriminative retinal patterns more effectively in this setting. 

Overall, ensemble models improved performance over 

individual CNNs, which supports the effectiveness of 

combining deep features with classical ensemble learners for 

retinal disease classification. 

5.5 Grad-CAM results 

Figure 8 shows representative Grad-CAM visualizations. 

The heatmaps highlight image regions that contributed most to 

the predicted class. High-importance regions are indicated by 

warm colors. In several examples, activations focused on 

clinically relevant areas, such as the optic disc and vascular 

structures, supporting interpretability of the model decisions. 

Figure 8. Grad-CAM results 

Strong activation around the optic disc and surrounding 

vascular structures is shown in the first row of the heat map, 

indicating that the model uses these features for classification. 

With a distinct focus in the central retinal region, the activation 

in the second row is more localized and may suggest 

pathology. These findings demonstrate that the model 

successfully detects important diagnostic characteristics, 

improving the explanatory ability and reliability of AI-assisted 

medical diagnostics. 

5.6 Discussion 

Although the proposed ensembles achieved very high test 

accuracies (up to 99–100%), these results should be 

interpreted cautiously. First, evaluation was conducted on a 

single public dataset, which may not reflect the variability 

observed in real clinical environments, including differences 

in acquisition devices, illumination, and patient demographics. 
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Second, even with data augmentation, early stopping, and a 

held-out test set, overfitting cannot be fully excluded, 

particularly for tree-based models that can fit complex 

decision boundaries when feature representations are highly 

separable. 

Future work will therefore focus on external validation 

using additional datasets, cross-dataset testing, and 

prospective evaluation in clinical workflows. Further analysis 

should also investigate calibration, error patterns by disease 

severity, and model robustness under domain shifts. 

6. CONCLUSION

This study proposed a hybrid framework for multi-class 

classification of retinal fundus images into normal, cataract, 

glaucoma, and diabetic retinopathy. InceptionV3 and 

DenseNet121 were used as deep feature extractors, and several 

ensemble strategies were evaluated on the fused feature 

representations. DenseNet121 offered a favorable balance 

between predictive performance and training time. Ensemble 

learning further improved classification results, with bagging 

(Random Forest) and optimized boosting achieving the best 

performance on the held-out test set. 

Grad-CAM visualizations suggested that the models relied 

on clinically plausible retinal regions, which supports 

interpretability. However, the study was limited to a single 

dataset and did not include external validation or expert-based 

quantitative assessment of explanations. 

Future work will evaluate generalization across datasets and 

imaging devices, extend the framework to additional disease 

categories and multi-label settings, and assess clinical impact 

through prospective studies. Integrating multimodal inputs 

(e.g., OCT and clinical variables) is also a promising direction 

to further improve reliability. 
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