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Early and accurate detection of retinal diseases is essential to prevent avoidable vision
loss. However, manual assessment of fundus images is time-consuming and can vary
across clinicians. Deep convolutional neural networks (DCNNs) have improved
automated screening, but many models remain computationally demanding and provide
limited interpretability. This study proposes a hybrid ensemble framework for multi-
class retinal disease classification that balances accuracy, efficiency, and explainability.
InceptionV3 and DenseNet121 were used as feature extractors on a public Eye Diseases
Classification dataset comprising four categories: normal, cataract, glaucoma, and
diabetic retinopathy. The extracted deep features were fused and classified using several
ensemble strategies, including hard voting, soft voting, stacking, bagging with Random
Forest, and gradient boosting. Performance was evaluated using accuracy, precision,
recall, and Fl-score, together with training time. DenseNet121 achieved higher
accuracy than InceptionV3 while requiring shorter training time. Ensemble learning
further improved performance. Bagging with Random Forest reached 99.4% accuracy,
and the optimized boosting model achieved 100% accuracy on the held-out test set.
Model interpretability was examined using Grad-CAM, which highlighted clinically
plausible regions such as the optic disc, macula, and lesion areas. Although the results
are promising, external validation on additional datasets is required before clinical

deployment.

1. INTRODUCTION

Retinal diseases are a major cause of visual impairment and
blindness worldwide, affecting individuals across all age
groups. Visual signals are captured by the retina and
transmitted to the brain through the optic nerve [1, 2]. Several
conditions, including cataract, glaucoma, diabetic retinopathy,
and age-related macular degeneration, can lead to severe and
irreversible vision loss if diagnosis or treatment is delayed [3].
The World Health Organization estimates that 2.2 billion
people experience vision impairment, and a substantial
proportion of cases could be prevented or treated through
timely diagnosis and intervention [4]. Cataract and diabetic
retinopathy account for a large number of preventable cases,
and glaucoma remains a major cause of permanent vision loss
[51.

Manual screening of retinal fundus images is labor-
intensive and depends on expert interpretation, which may
lead to variability and delayed clinical decisions [6, 7]. Recent
advances in artificial intelligence have enabled automated
analysis of ophthalmic images using deep learning,
particularly deep convolutional neural networks (DCNNs) [8-
11]. Despite their success, conventional end-to-end deep
models often require substantial computational resources and
may generalize poorly across datasets, especially when image
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acquisition conditions differ. In addition, many DCNNs
provide limited transparency, which can reduce clinical trust
[12].

Ensemble learning is a well-established strategy to improve
robustness and generalization by combining multiple models.
Methods such as hard voting, soft voting, stacking, bagging,
and boosting can reduce variance and mitigate the limitations
of individual classifiers [13-15]. Nevertheless, many existing
retinal classification studies focus primarily on maximizing
accuracy, while offering limited analysis of computational
cost and limited interpretability beyond qualitative examples
[16].

To address these limitations, this work makes the following
contributions:

(1) A hybrid framework is proposed that combines two
complementary CNN  backbones (InceptionV3  and
DenseNet121) with multiple ensemble learning strategies
(hard voting, soft voting, stacking, bagging, and gradient
boosting) for four-class retinal disease classification.

(2) Single-CNN and ensemble configurations are compared
using predictive metrics and training time to assess practical
deployability.

(3) Grad-CAM is used to generate visual explanations and
to examine whether the learned attention patterns align with
clinically meaningful retinal structures.


https://orcid.org/0000-0002-2137-1199
https://orcid.org/0000-0002-3128-7134
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The overall objective is to deliver a screening system that is
accurate, computationally efficient, and interpretable.

2. RELATED WORK

Several studies have investigated deep learning for
automated retinal disease classification. In a previous study
[17], a CNN-based system was developed for multi-class
diagnosis of diabetic eye disease using fundus images and
achieved 81.33% accuracy. The authors emphasized that while
deep learning performs well in binary settings, multi-class
discrimination remains challenging.

In a previous study [18], pre-trained CNNs and optimization
strategies were evaluated for mild and multi-class diabetic eye
disease classification. VGG16 achieved 88.3% accuracy for
multi-class classification and 85.95% accuracy for mild multi-
class classification. VisionDeep-Al [19] combined vessel
segmentation and disease classification using a bi-directional
feature pyramid network and a U-Net-based architecture. The
reported vessel segmentation accuracy reached 97.73%, while
classification accuracy was 81.50%.

Other works focused on enhancing preprocessing and
feature extraction. Image enhancement and segmentation were
used prior to classification, and EfficientNetB7 produced
strong results [20]. A custom DCNN achieved high detection
rates across cataract, diabetic retinopathy, glaucoma, and
normal cases. Nawaz et al. [21] proposed an optimized CNN
for large-scale retinal disease classification and reported 95%
accuracy on the Eye-Net dataset. A hybrid pipeline used

segmentation, SqueezeNet feature extraction, and a stacked
sparse autoencoder classifier, achieving 96.3% accuracy [22].

Comparative studies have also been reported. In a previous
study [23], multiple CNN architectures were evaluated on the
MURED dataset, and the best reported accuracy remained
limited, highlighting the dependence on dataset scale and
quality. Ensemble-based approaches have shown improved
robustness. Multiple CNNs were trained on RFMiD and
combined using ensemble strategies, achieving an AUROC of
0.9613 for screening and 0.9295 average AUROC for
condition classification [24]. In a previous study [25],
ResNet50 and DenseNetl21 were applied to multi-class
identification of cataract, glaucoma, and diabetic retinopathy.
In the study by Khan et al. [26], an ensemble of EfficientNet
variants achieved an AUC of 0.973 on RFMiD, with emphasis
on efficiency and scalability.

Overall, prior work confirms the effectiveness of DCNN5s
and ensembles for retinal analysis. However, several
limitations persist. Many studies address binary or narrowly
defined multi-class problems, which restricts real-world
applicability. Some ensemble methods are computationally
intensive and provide limited discussion of training cost.
Moreover, interpretability is often treated superficially, and
few studies analyze whether model attention consistently
overlaps with clinically relevant anatomical structures.

This study differs by targeting four common retinal
categories in a single unified framework, combining deep
feature extraction with classical ensemble learners to balance
accuracy and efficiency, and integrating Grad-CAM to
examine the clinical plausibility of model attention.

Table 1. Related work analysis

References Focus Area Dataset Model Used ACE:,Z )a <y Key Contributions
CNN-based multi-class Publicly available CNN-based classification
[17] classification of DED DED dataset CNN model 81.33 of multiple DED categories
Deep learning-based Retinal fundus VGG16 achieved high
[18] classification of mild and . VGGI16, CNN 88.3 accuracy for mild and
images 4
multi-class DED & multi-class DED
V1s10nDeep-AI_ for vessel Large fundus Bi-directional feature VlslonDeep-AI enhances
[19] segmentation & . . 97.73 segmentation and
. . image dataset pyramid, U-Net . .
classification classification performance
Deep learning-based Custom DCNN model with
[20] enhancement, segmentation, DEi]I?Hfussdus Xc?i?gft%%hgigft}ﬁ&B7 98.33 advanced segmentation
and classification of DED & ption, techniques
CNN-based multi-class Memory-efficient CNN
[21] classification optimizin, Eye-Net dataset Optimized CNN model 95 model for large-scale
P g y iy 24
feature extraction classification
IDL-MRDD: Multi-label Benchmark multi- Hybrid deep learning model
[22] classification of retinal retinal disease SqueezeNet, SSAE 96.3 for multi-label
diseases dataset classification
Comparison of CNN Scratch Model, GoogleNet, Comparison of multiple
[23] architectures for retinal MURED dataset VGG, ResNet, MobileNet, 49.85 CNN architectures for
disease classification DenseNet disease classification
Ensemble CNNs improve
[24] E?}ie?:itizscey;: (?;?e(::ﬂ(s)rfor RFMiD dataset Ensemble CNNs 92.95 retinal disease classification
" in REMiD
MoblleNetVZ. for rnult}- Color fundus MobileNetV2, ResNet50, MobileNetV2 optimized for
[25] class classification of retinal . 94.23 . . .
discases images DenseNet121 real-time disease detection
Multi Retinal Disease RFMiD dataset . MRDCM surpasses
[26] Classification Model (45 disease EfficientNetB4, 97.3 previous models with

(MRDCM)

classes)

EfficientNetV2S

ensemble learning
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Table 1 summarizes representative studies, highlighting
datasets, model choices, reported accuracy, and main
contributions.

The reviewed literature indicates that high performance is
achievable; however, generalization across datasets,
computational efficiency, and explainability remain open
challenges.

3. PROPOSED METHODOLOGY

Figure 1 illustrates the overall workflow of the proposed
approach. The pipeline includes dataset preparation, image
preprocessing, deep feature extraction using two CNN
backbones, feature fusion, ensemble classification, and
interpretability analysis using Grad-CAM.

3.1 Dataset overview

The Eye Discases Classification dataset contains 4,217
color fundus images distributed across four classes: 1,074
normal, 1,038 cataract, 1,007 glaucoma, and 1,098 diabetic
retinopathy [27]. The class distribution is approximately
balanced. Therefore, no over-sampling, under-sampling, or
class-weighting strategy was applied. Instead, a stratified split
was used to preserve class proportions.

The dataset was partitioned into 80% training data (3,373
images) and 20% held-out test data (844 images) using
stratification at the image level. During training, 10% of the
training set was further reserved for validation to support early
stopping and hyperparameter selection. All reported results
correspond to the held-out test set, which was not used during
training or model selection (Table 2).

Input . . .
data Preprocessing H Modeling H Comparison H Ensemble
l ; i 4 Optimization
Color conversion Inception Hard Voting and
Resizing DenseNet Soft Voting Robustness
Normalization Stacking Testing
Label encoding Boosting (GB)
Sphitting data Bagging (FR)
Figure 1. Proposed scheme
Table 2. Dataset overview
Category Number of Images Description
Normal 1,074 Retinal images from healthy individuals, used as a control group.
Cataract 1,038 Images depicting cataract-affected eyes, characterized by lens clouding.
Glaucoma 1,007 Retinal images showing signs of glaucoma, a disease that damages the optic nerve.
Diabetic 1.098 Images illustrating diabetic retinopathy, a complication of diabetes affecting blood
Retinopathy ’ vessels in the retina.

cataract

normal

glaucoma

Figure 2. Retinal images from the dataset

Representative examples from each class are shown in
Figure 2. Normal images present typical retinal anatomy
without visible pathology. Cataract images often exhibit
reduced contrast due to lens opacity. Glaucoma images are
characterized by changes around the optic nerve head,
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including increased cupping. Diabetic retinopathy images may
contain microaneurysms, hemorrhages, and exudates.

3.2 Preprocessing

All images were resized to 224 x 224 pixels to ensure
consistent input dimensions. Pixel intensities were normalized
to the [0,1] range to stabilize training. The images were kept
in RGB format because color information is clinically relevant
in fundus imaging.

To reduce overfitting and improve robustness, data
augmentation was applied during training. The augmentation
included random horizontal flips, small rotations (£10°),
random zooming (up to 10%), and mild brightness and
contrast variations. After preprocessing, the training set
contained 3,373 images and the held-out test set contained 844
images [28].

Deep learning-based modeling: In this study, two
ImageNet-pretrained CNN architectures were used as feature
extractors: InceptionV3 and DenseNetl2l. For each
backbone, the original classification head was removed and
replaced by a GAP layer, followed by a fully connected layer
with 256 units (ReLU) and dropout (0.5). A final softmax layer
with four outputs was used during CNN training to support



supervised feature learning. Deep features were extracted from
the penultimate layer and later used to train ensemble
classifiers.
Inception

InceptionV3 employs parallel convolutional operations
with multiple kernel sizes within Inception modules, allowing
multi-scale feature extraction. This design improves
representational capacity while controlling computational cost
through factorized convolutions and 1 x 1 bottleneck layers.
Figure 3 shows the InceptionV3 architecture used in this work

3xInception

[29, 30].
DenseNet

DenseNet121 introduces dense connectivity, where each
layer receives feature maps from all preceding layers and
passes its own feature maps to all subsequent layers. This
design strengthens gradient flow, encourages feature reuse,
and reduces redundant computation. DenseNet121 is therefore
well suited for medical image classification tasks that require
fine-grained feature representation. Figure 4 shows the
DenseNet121 architecture [31].
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Figure 4. DenseNet121 model architecture [32]

The DenseNetl21 is a DCNN that improves feature
information sharing and gradient path with deep network
connectivity. DenseNet layers connect to every one of the
preceding layers, accepting their feature maps for processing
until they propagate the results to all subsequent layers, which
reduces processing redundancy [32]. The model design
utilizes four dense blocks with a layer and includes transition
layers containing 1 x 1 convolutions together with 2 x 2
average pooling elements. The first step combines a 7 x 7
convolution filter with a 3 x 3 max pooling operation to handle
the input before the dense blocks receive it.

The distribution of 3 X% 3 convolutional layers with
BatchNorm and ReL U activation functions enables each dense
block to improve stability and convergence. The model
includes dropout layers, which help prevent overfitting, while
global average pooling (GAP) reduces the feature dimensions
before its output gets sent to a fully connected (FC) layer with
a softmax classifier for prediction purposes. The results
showed DenseNetl2]1 as an efficient and better feature
propagation, so it’s an optimal choice for medical image
classification, giving high accuracy and computational
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efficiency performance.
3.3 Ensemble learning

To improve classification robustness and generalization,
ensemble learning methods were applied to the fused deep
features extracted from InceptionV3 and DenseNetl21.
Ensemble learning combines multiple predictors to reduce
variance and improve stability, which is particularly beneficial
in medical imaging tasks. The following ensemble strategies
were evaluated.

Hard Voting

Hard voting assigns the final class label based on the
majority vote across base classifiers [33]. Each classifier
produces a discrete class prediction, and the class with the
highest vote count is selected.

Soft Voting

Soft voting aggregates predicted class probabilities instead
of discrete labels. The probability distributions produced by
base models are averaged, and the class with the highest mean
probability is selected [34, 35]. Soft voting typically improves



performance when probability estimates are well calibrated.
Stacking

Stacking trains multiple base models and uses their outputs
as inputs to a meta-learner. The meta-learner learns how to
optimally combine base predictions, often improving
generalization compared with simple voting [36, 37].

e Bagging (Random Forest)

Bagging trains multiple models on bootstrap samples of the
training data and aggregates their predictions by majority vote
[38]. Random Forest is a commonly used bagging model based
on decision trees. It reduces variance, is robust to noise, and
can model complex decision boundaries.

3.4 Interpretability using Grad-CAM

Grad-CAM was applied to the last convolutional layers of
the trained CNNs to generate class-specific heatmaps. For
glaucoma, activations were concentrated around the optic
nerve head and cup-to-disc region, which are clinically
relevant for assessing glaucomatous damage. For diabetic
retinopathy, the highlighted regions often corresponded to
lesion patterns near the posterior pole, including areas
consistent with microaneurysms and exudates. In normal
images, activation tended to focus on anatomical landmarks
such as the optic disc and major vessels without emphasizing
irrelevant background regions.

For cataract images, attention patterns were more diffuse.
This behavior is expected because cataract primarily affects
the lens and can reduce global image contrast rather than
producing localized retinal lesions. Overall, Grad-CAM
results suggested that the models relied on clinically plausible
cues. However, this analysis remained qualitative, and future
work should include expert evaluation to quantify agreement
between explanations and clinical criteria [39].

3.5 Training configuration and hyperparameters

InceptionV3 and DenseNetl21 were initialized with
ImageNet pretrained weights. Input images were resized to
224 x 224 pixels and normalized to [0,1]. Data augmentation
was applied online during training.

Both CNNs were trained using the Adam optimizer with an
initial learning rate of 1x10% a batch size of 32, and
categorical cross-entropy loss. Training was performed for up
to 50 epochs. Early stopping monitored validation loss with a
patience of 7 epochs, and the learning rate was reduced on
plateau (factor 0.5, patience 3).

Ensemble models (Random Forest bagging and gradient
boosting) were trained using deep features extracted from the
penultimate layer of the CNNs. Hyperparameters such as the
number of trees, maximum depth, and learning rate were tuned
using grid search on the training and validation sets. All
experiments were implemented in  Python using
TensorFlow/Keras and scikit-learn and were executed on a

GPU-enabled workstation.
4. EVALUATION METRICS
Model performance was assessed using accuracy, precision,

recall, and Fl-score. These metrics were computed on the
held-out test set.
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4.1 Accuracy

Accuracy measures the proportion of correctly classified
samples among all samples [40].

4.2 Precision

Precision measures the reliability of positive predictions
and is defined as the ratio of true positives to the total number
of predicted positives [41].

4.3 Recall

Recall measures the ability to identify actual positive
samples and is defined as the ratio of true positives to the total
number of actual positives [42].

4.4 F1-score

The F1-score is the harmonic mean of precision and recall
and provides a balanced measure when class-wise
performance is important [43].
5. EXPERIMENTAL RESULTS
5.1 Inception results

Table 3 reports class-wise precision, recall, and F1-score for
InceptionV3. The model achieved an overall accuracy of 0.85
on the test set. Performance was highest for cataract and
diabetic retinopathy, while glaucoma exhibited lower recall,

suggesting that some glaucoma cases were misclassified.

Table 3. Classification of the inception model

Class Precision Recall Fl1-score
Cataract 0.89 0.94 0.91
Diabetic Retinopathy 0.89 0.93 0.91
Glaucoma 0.83 0.75 0.79
Normal 0.79 0.79 0.79
Accuracy 0.85
Macro Average 0.85 0.85 0.85

Figure 5 shows the learning curves for training and
validation. Training accuracy increased steadily and
approached saturation. Validation accuracy stabilized after the
initial epochs, indicating reasonable generalization. Training
and validation loss decreased overall, although minor
fluctuations were observed in validation loss, which may
indicate residual sensitivity to sample variability.

Figure 6 presents the ROC curves. The AUC values were
high across classes, reaching 0.99 for cataract and diabetic
retinopathy and 0.96 for glaucoma and normal. These results
indicate strong separability, although classification errors
remained more frequent for glaucoma.

5.2 DenseNet results

Table 4 summarizes performance for DenseNet121. The
model achieved 0.91 test accuracy. Diabetic retinopathy
yielded the highest performance, with an Fl-score of 0.99.
Cataract also achieved a strong performance, while glaucoma
remained the most challenging class due to lower recall (0.81).
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Table 4. Classification of DenseNet

Class Precision Recall F1-score
Cataract 0.89 0.97 0.93
Diabetic Retinopathy 1.00 0.98 0.99
Glaucoma 0.87 0.81 0.84
Normal 0.88 0.89 0.89
Accuracy 0.91
Macro Average 0.91 0.91 0.91

Figure 7 shows the ROC curves for DenseNet121. AUC
values were 1.00 for diabetic retinopathy, 0.99 for cataract,
0.98 for normal, and 0.97 for glaucoma, confirming strong

multi-class discrimination.
5.3 Ensemble results

Table 5 compares ensemble strategies using accuracy,
precision, recall, and F1-score. Bagging with Random Forest

achieved the highest accuracy (0.9941), indicating strong
robustness and stability. Stacking, soft voting, and hard voting
also improved performance relative to individual CNN
models, although with smaller gains.

Table 5. Comparison analysis of learning techniques used

The Model Accuracy  Precision Recall F1-score
Bagging 0.994076  0.994069  0.994076  0.994067
Stacking 0.928910  0.928800  0.928910  0.928442

Soft Voting 0915877  0.915457  0.915877  0.915097

Hard Voting 0911137  0.910418 0911137  0.910225
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Table 6 compares training time after applying the training
process by the graphics card RTX 4060 Ti and using parallel
process for evaluating a short time, also the macro-average
accuracy for InceptionV3, DenseNetl121, and the combined
CNN feature ensemble. DenseNet121 achieved higher macro-
average accuracy than InceptionV3 and required shorter



training time. The fused feature ensemble further improved
macro-average accuracy with a moderate increase in total

computation.

Table 6. Training time with the accuracy comparison

Model Cataract Diabetic Retinopathy  Glaucoma Normal Macro Avg Total Training Avg. Epoch
Acc (%) Acc (%) Acc (%)  Acc (%)  Accuracy (%) Time (min) Time (s)
InceptionV3 94.2 92.7 91.5 95.3 93.4 58.4 140.2
DenseNet121 95.1 94.0 92.6 96.1 94.5 43.6 104.6
Ensemble
(Dense tHIncep) 96.0 95.3 93.8 96.8 95.5 62.1 —

5.3.1 Results of best model: Bagging (Random Forest)

Table 7 reports class-wise performance for bagging with
Random Forest. Cataract, diabetic retinopathy, and normal
achieved perfect precision, recall, and F1-score. Glaucoma
achieved near-perfect performance with an F1-score of 0.99.
Overall test accuracy reached 0.99, and macro-average metrics
remained consistently high across classes.

5.3.2 Improve boost results

Table 8 shows performance for the optimized boosting
model. All classes achieved precision, recall, and F1-score of
1.00, resulting in 1.00 overall accuracy on the test set.
Although this outcome is strong, it should be interpreted
cautiously given the single-dataset evaluation and the potential
for overfitting.

Table 7. Classification of bagging (Random Forest)

Class Precision Recall Fl1-score
Cataract 1.00 1.00 1.00
Diabetic Retinopathy 1.00 1.00 1.00
Glaucoma 0.99 0.99 0.99
Normal 1.00 1.00 1.00
Accuracy 0.99
Macro Average 0.99 0.99 0.99

Table 8. Classification of optimized boosting

Class Precision Recall F1-score
Cataract 1.00 1.00 1.00
Diabetic Retinopathy 1.00 1.00 1.00
Glaucoma 1.00 1.00 1.00
Normal 1.00 1.00 1.00
Accuracy - - 1.00
Macro Average 1.00 1.00 1.00
Table 9. Comparison results
Model Accuracy Precision  Recall F1-score
Bagging
(Random 0.994076  0.994069 0.994076  0.994067
Forest)
Stacking 0.928910  0.928800 0.928910 0.928442
Soft Voting 0.915877  0.915457 0.915877  0.915097
DenseNet121  0.912322  0.912409 0.912322 0.911648
Hard Voting 0911137  0.910418 0.911137 0.910225
InceptionV3 0.851896  0.850582  0.851896  0.850469

5.4 Final comparison

Table 9 summarizes the performance of all evaluated
models. Bagging with Random Forest produced the highest
accuracy among the evaluated strategies. DenseNetl121
outperformed InceptionV3, suggesting that it captured
discriminative retinal patterns more effectively in this setting.
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Overall, ensemble models improved performance over
individual CNNs, which supports the effectiveness of
combining deep features with classical ensemble learners for
retinal disease classification.

5.5 Grad-CAM results

Figure 8 shows representative Grad-CAM visualizations.
The heatmaps highlight image regions that contributed most to
the predicted class. High-importance regions are indicated by
warm colors. In several examples, activations focused on
clinically relevant areas, such as the optic disc and vascular
structures, supporting interpretability of the model decisions.

Original Image Superimposed Image

Original Image Superimposed Image

Figure 8. Grad-CAM results

Strong activation around the optic disc and surrounding
vascular structures is shown in the first row of the heat map,
indicating that the model uses these features for classification.
With a distinct focus in the central retinal region, the activation
in the second row is more localized and may suggest
pathology. These findings demonstrate that the model
successfully detects important diagnostic characteristics,
improving the explanatory ability and reliability of Al-assisted
medical diagnostics.

5.6 Discussion

Although the proposed ensembles achieved very high test
accuracies (up to 99-100%), these results should be
interpreted cautiously. First, evaluation was conducted on a
single public dataset, which may not reflect the variability
observed in real clinical environments, including differences
in acquisition devices, illumination, and patient demographics.



Second, even with data augmentation, early stopping, and a
held-out test set, overfitting cannot be fully excluded,
particularly for tree-based models that can fit complex
decision boundaries when feature representations are highly
separable.

Future work will therefore focus on external validation
using additional datasets, cross-dataset testing, and
prospective evaluation in clinical workflows. Further analysis
should also investigate calibration, error patterns by disease
severity, and model robustness under domain shifts.

6. CONCLUSION

This study proposed a hybrid framework for multi-class
classification of retinal fundus images into normal, cataract,
glaucoma, and diabetic retinopathy. InceptionV3 and
DenseNet121 were used as deep feature extractors, and several
ensemble strategies were evaluated on the fused feature
representations. DenseNetl21 offered a favorable balance
between predictive performance and training time. Ensemble
learning further improved classification results, with bagging
(Random Forest) and optimized boosting achieving the best
performance on the held-out test set.

Grad-CAM visualizations suggested that the models relied
on clinically plausible retinal regions, which supports
interpretability. However, the study was limited to a single
dataset and did not include external validation or expert-based
quantitative assessment of explanations.

Future work will evaluate generalization across datasets and
imaging devices, extend the framework to additional disease
categories and multi-label settings, and assess clinical impact
through prospective studies. Integrating multimodal inputs
(e.g., OCT and clinical variables) is also a promising direction
to further improve reliability.
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