
Managing Partitioning Uncertainty and Transition Ambiguity in Fuzzy Time Series: A 

Robust IT2FCM-Markov Chain Approach 

Ali Bardadi1* , Budi Warsito1 , Bayu Surarso1 , Wibowo Harry Sugiharto2

1 Doctoral Program of Information Systems, Postgraduate School, Universitas Diponegoro, Semarang 50275, Indonesia 
2 Department of Informatics Engineering, Faculty of Engineering, Universitas Muria Kudus, Kudus 59300, Indonesia 

Corresponding Author Email: alibardadi@students.undip.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.121229 ABSTRACT 

Received: 17 November 2025 

Revised: 20 December 2025 

Accepted: 26 December 2025 

Available online: 31 December 2025 

Fuzzy Time Series (FTS) models are effective for handling uncertain and vague 

datasets, but their performance is often limited by subjective partitioning and 

ambiguous state transitions. Objectives: This study aims to address partitioning 

uncertainty caused by empirical fuzzifier parameters in Fuzzy C-Means (FCM) and 

resolve the one-to-many transition ambiguity in Fuzzy Logical Relationship Groups 

(FLRGs). We propose a novel hybrid model, IT2FCM-MC-FTS, which integrates 

Interval Type-2 Fuzzy C-Means (IT2FCM) with a first-order Markov Chain (MC). The 

methodology involves using IT2FCM to generate robust, data-driven interval partitions 

that account for noise, followed by the application of MC transition probabilities to 

provide logical weights for resolving complex relationship groups. The model was 

validated using ambient CO concentration data from Semarang, Indonesia. 

Experimental results show that the proposed model achieved an RMSE of 887.47 and a 

SMAPE of 17.86%, significantly outperforming traditional FTS, FCM-FTS, and FTS-

MC models. By synergizing robust clustering with probabilistic inference, the IT2FCM-

MC-FTS model provides a more reliable and accurate framework for time series 

forecasting (TSF) in volatile environments.  
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1. INTRODUCTION

Time series forecasting (TSF) is a critical tool for decision-

making across diverse fields, including energy production [1-

4], environmental monitoring [5, 6], and financial analysis [7-

9]. While traditional statistical models have been used 

extensively, they often struggle with the inherent uncertainty 

and linguistic vagueness of real-world data [10, 11]. The 

Fuzzy Time Series (FTS) approach, introduced by Song and 

Chissom [12, 13], offered a paradigm shift by modeling 

temporal data through fuzzy sets. However, despite its success, 

the reliability of FTS is persistently hampered by two 

fundamental challenges: partitioning uncertainty and 

transition ambiguity. 

Partitioning uncertainty arises during the division of the 

universe of discourse into intervals. Early models relied on 

rigid, subjective intervals, which were later improved by 

objective clustering algorithms like Fuzzy C-Means (FCM) 

[14, 15]. However, FCM remains highly sensitive to noise and 

the selection of the fuzzifier parameter, leading to unstable 

partitions [16]. Simultaneously, transition ambiguity occurs 

when a single fuzzy state leads to multiple potential future 

states (one-to-many relationships). Standard FTS models often 

use simple averaging to resolve these Fuzzy Logical 

Relationship Groups (FLRGs), which can lead to significant 

loss of information and reduced accuracy [17, 18]. 

Current literature has addressed these issues primarily in 

isolation. One group of researchers has focused on improving 

partitioning robustness by employing advanced fuzzy logic, 

such as Interval Type-2 Fuzzy Sets (IT2FS), to handle the 

uncertainty in clustering [18, 19]. For instance, IT2FCM has 

been recognized for its ability to model the "Footprint of 

Uncertainty" (FOU) more effectively than traditional type-1 

methods [20-23]. Another group has focused on refining 

transition modeling by integrating Markov Chain (MC) 

models to calculate probabilities for fuzzy state transitions [20, 

21, 24, 25]. While these individual advancements are 

significant, a critical gap remains: There is a lack of a unified 

hybrid framework that addresses both partitioning uncertainty 

and transition ambiguity simultaneously within a single, 

cohesive architecture. 

To fill this gap, this study proposes a novel hybrid model, 

IT2FCM-MC-FTS. The synergy between IT2FCM’s robust 

clustering and MC’s probabilistic inference forms the core 

contribution of this research. Specifically, IT2FCM is utilized 

to establish noise-resistant intervals, while a first-order MC 

provides a logical and data-driven mechanism for resolving 

one-to-many ambiguities. The proposed model is validated 

using volatile carbon monoxide (CO) concentration data, 

demonstrating its ability to provide more accurate and stable 

forecasts than existing hybrid variants. 

The remainder of this paper is organized as follows: Section 

2 presents the related works. Section 3 details the proposed 

hybrid model. Section 4 presents the experimental setup and 

Mathematical Modelling of Engineering Problems 
Vol. 12, No. 12, December, 2025, pp. 4406-4412 

Journal homepage: http://iieta.org/journals/mmep 

4406

https://orcid.org/0000-0001-9907-2466
https://orcid.org/0000-0003-1948-4511
https://orcid.org/0000-0002-1528-841X
https://orcid.org/0000-0002-5940-0805
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.121229&domain=pdf


case study. Section 5 discusses the results. Finally, Section 6 

concludes the paper. 

2. RELATED WORKS

Several methods have been developed to manage 

uncertainties in FTS and clustering algorithms are shown in 

Table 1. The traditional Type-1 Fuzzy Markov Chain (T1FM) 

uses Type-1 Fuzzy Sets (T1FS) to describe the distributional 

behavior of a discrete-time Markov process, but is limited in 

handling data noise and linguistic ambiguity [26-28]. To 

address these limitations, the Interval Type-2 Fuzzy Markov 

Chain (IT2FM) extends the scope by embedding multiple 

T1FS within its FOU, allowing for better modeling of 

uncertainties [26-28]. However, IT2FM approaches are often 

computationally intensive and complex [26-28]. 

FCM clustering is another method widely used for objective 

function-based partitioning, but it struggles with high-level 

fuzzy uncertainty [29-31]. The Adaptive Interval Type-2 

Fuzzy C-Means (A-IT2FCM) algorithm improves upon FCM 

by using IT2FS and Karnik-Mendel type reduction, yet it 

introduces significant computational overhead [31]. Similarly, 

the General Type-2 Fuzzy C-Means (GT2 FCM) algorithm 

uses -planes and zSlices for efficient representation, but it 

remains computationally intensive [32]. 

Table 1. Comparative summary of existing methods and the 

proposed approach 

Method Components Limitations 

Type-1 Fuzzy 

Markov Chain 

(T1FM) [26-28] 

T1FS 

Limited in handling 

data noise and 

linguistic ambiguity 

Interval Type-2 

Fuzzy Markov 

Chain (IT2FM) 

[26-28] 

IT2FS, Type-

reduction 

algorithms 

Computational 

intensity, complexity in 

modeling uncertainties 

Fuzzy C-Means 

(FCM) Clustering 

[29-31] 

Objective 

function-based 

clustering, 

T1FS 

Ineffective in managing 

high-level fuzzy 

uncertainty  

Adaptive IT2FCM 

(A-IT2FCM) [31] 

IT2FS, Karnik-

Mendel type 

reduction 

Complexity in type 

reduction, 

computational overhead 

General Type-2 

FCM (GT2 FCM) 

[32] 

-planes, 

zSlices, 

linguistic 

fuzzifier 

High computational 

intensity, complexity in 

processing 

Hybrid FTS-MC 

with C-Means [33] 

FTS, MC, C-

means 

clustering 

Random partitioning, 

insufficient accuracy in 

interval partitioning 

Credal C-Means 

(CCM) Clustering

[34]

Credal 

partition, meta-

clusters 

Difficulty in classifying 

objects close to 

multiple clusters 

Proposed IT2FCM-

MC-FTS 

IT2FCM, MC, 

volatility-

based heuristic 

Focuses on univariate 

data; empirical fuzzifier 

selection 

Hybrid models combining FTS with Markov Chains and 

clustering techniques, such as the FTS-MC with C-means 

clustering, aim to improve model robustness. However, 

models often suffer from random partitioning and insufficient 

accuracy in interval partitioning [33]. Credal C-Means (CCM) 

clustering introduces meta-clusters to handle objects close to 

multiple clusters, but it faces challenges in correctly 

classifying such objects [34]. Table 1 provides a comparative 

summary of these existing methods and their limitations. 

In conclusion, while various methods exist to manage 

partitioning uncertainty and transition ambiguity, a critical gap 

remains: There is a lack of a unified hybrid framework that 

addresses both issues simultaneously within a single, cohesive 

architecture. 

3. METHODOLOGY

3.1 The proposed IT2FCM-MC-FTS model 

Our proposed model integrates robust partitioning 

(IT2FCM) with probabilistic forecasting (MC) in a single, 

cohesive framework. The overall architecture is depicted in 

Figure 1, and to ensure high transparency and reproducibility, 

the implementation details are described through the following 

stages: 

Figure 1. Flowchart of the proposed model 

The implementation details, derived from the experimental 

code, are described below: 

3.1.1 Stage 1: Robust partitioning with IT2FCM 

The foundation of the model is the quality of fuzzy 

partitions. To create partitions robust to noise, we employ 

IT2FCM, which accounts for the uncertainty in the fuzzifier 

parameter. The algorithm seeks to minimize the objective 

function: 

𝐽𝑚1,𝑚2 = ∑ ∑(𝑣𝑖𝑘)𝑚 ‖𝑥𝑘 − 𝑣𝑖‖2

𝑐

𝑖=1

𝑛

𝑘=1

(1) 

where, 𝑚 ∈ [𝑚1, 𝑚2] represents the interval-valued fuzzifier.
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In our implementation, we utilize the centroid of this interval 
(𝑚̅ = 1.95)  to achieve a robust representative clustering 

center. To ensure reproducibility of the fuzzy partitions, a 

fixed random seed of 7521 is applied. The clustering process 

is governed by a convergence threshold (∈ = 0.005) and a 

maximum of 1000 iterations. 

The optimal number of clusters 𝑐  is determined 

dynamically using a volatility-based heuristic. This is 

calculated as the ratio between the total range of data and the 

average volatility (mean absolute difference): 

𝐶𝑟𝑎𝑤 = 𝑟𝑜𝑢𝑛𝑑 (
𝐷max − 𝐷min

1
𝑛 − 1

∑ |𝑥𝑖 − 𝑥𝑖−1|𝑛
1=2

) (2) 

To ensure model stability across different dataset sizes, a 

constraint is applied:  (𝑐 = max (2, min (𝑐𝑟𝑎𝑤 , 𝑛/2))) . This

ensures that the number of fuzzy states is proportional to the 

dynamic behavior of the series while maintaining enough data 

points per cluster for statistical validity. 

3.1.2 Stage 2: Fuzzification and FLRG establishment 

With the cluster centers 𝑣𝑖
∗  obtained and sorted, the

historical time series 𝑌𝑡  is fuzzified. Unlike traditional

methods that use equal-length intervals, our model defines the 

boundaries of fuzzy sets {𝐴𝑖, … … , 𝐴𝑐} based on the midpoints

between adjacent cluster centers: 

𝐵𝑖 =
𝑣𝑖

∗ + 𝑣𝑖+1
∗

2
, 𝑖 = 1, … , 𝑐 − 1 (3) 

This creates adaptive intervals that are denser where data 

points are concentrated. Each 𝑌𝑡  is mapped to the

corresponding fuzzy set 𝐴𝑖  within these boundaries. The

sequence of fuzzy sets forms Fuzzy Logical Relationships 

(FLR), denoted as 𝐴𝑡−1 →  𝐴𝑡 , which are then grouped by

their antecedent to form FLRGs. 

3.1.3 Stage 3: Probabilistic forecasting with MC 

To resolve the one-to-many ambiguity in FLRGs, we 

construct a 𝑐 × 𝑐  transition probability matrix 𝑃.  Each 

element 𝑃𝑖𝑗  represents the probability of moving from state t

𝐴𝑖 to 𝐴𝑗 , a first-order MC transition probability matrix 𝑃 is

constructed: 

𝑃𝑖𝑗 =
𝑁𝑖𝑗

∑ 𝑁𝑖𝑘
𝑐
𝑘=1

(4) 

where, 𝑁𝑖𝑗 is the frequency of the transition observed in the

training data 𝐴𝑖 →  𝐴𝑗. This ensures that the weights for future

states are entirely data-driven. 

3.1.4 Forecasting (Defuzzification) 

The final forecast 𝑌̂(𝑡+1)  is computed as the probabilistic 

weighted average of the centers of all potential future states: 

𝑌̂(𝑡+1) = ∑ 𝑣𝑗
∗

𝑐

𝑗=1

· 𝑃𝑖𝑗 (5) 

This approach avoids the information loss inherent in 

simple averaging by prioritizing transitions that occur more 

frequently in the historical data. 

3.2 Algorithmic structure of IT2FCM-MC-FTS 

The complete logic of the proposed IT2FCM-MC-FTS 

model is summarized in Algorithm 1. 

Algorithm 1: IT2FCM-MC-FTS Forecasting Procedure 

1. Input:

Historical time series {𝑌 =  𝑦1, 𝑦2, ⋯ , 𝑦𝑛} , fuzzifier

range [1.8, 2.1], seed 7521

2. Cluster Determination:

a. Calculate average volatility: 𝑣𝑜𝑙 =
1

𝑛−1
∑|𝑦𝑡 −

𝑦𝑡−1|
b. Determine raw cluster count: 𝑐𝑟𝑎𝑤 =

𝑟𝑜𝑢𝑛𝑑(
max(𝑌)−min(𝑌)

𝑣𝑜𝑙
) 

c. Set 𝑐 = 𝑐𝑙𝑎𝑚𝑝( 𝑐𝑟𝑎𝑤 , 2, 𝑛/2)
3. Robust Partitioning:

a. Execute IT2FCM with 𝑚̅ =  1.95 and fixed seed

b. Extract and sort cluster centers 𝑉∗ =
{𝑣1

∗, 𝑣2
∗, ⋯ , 𝑣𝑐

∗}
4. Fuzzification:

a. Define interval boundaries 𝐵  as midpoints

between 𝑣1
∗

b. Convert 𝑌  into fuzzy state sequence 𝑆 =
{𝑠1, 𝑠2, ⋯ 𝑠𝑛}

5. Markov Chain Modeling:

a. Build frequency matrix 𝑁 from transitions in 𝑆
b. Normalize 𝑁  row-wise to obtain transition

probability matrix 𝑃
6. Inference:

a. Identify current state 𝑠𝑡

b. 𝑦𝑡̂ + 1 = 𝑠𝑢𝑚 (𝑃[𝑆𝑡] × 𝑉∗)
7. Output:

Predicted value 𝑦𝑡̂ + 1

4. EXPERIMENTAL SETUP

4.1 Case study: CO concentration forecasting 

To validate the proposed model, we conduct a case study 

using the ambient concentration of CO from the AQMS 

Station in Mijen, Semarang City, Indonesia. The dataset 

represents a highly volatile environment, making it a suitable 

benchmark for testing partitioning robustness. 

4.2 Validation strategy: Rolling forecast 

To ensure a rigorous evaluation, we implemented a rolling-

basis (walk-forward) validation strategy. For each time step 𝑡, 

the model is trained on observations {𝑌1, … , 𝑌𝑡−1} and tested

on 𝑌𝑡 . This process is repeated until the end of the dataset.

Unlike standard k-fold cross-validation, the rolling forecast 

preserves the temporal dependencies within the data, 

providing a more realistic measure of forecasting accuracy for 

real-world applications. 

4.3 Baseline models for comparison 

To evaluate the specific contributions of our model's 

components, we compare its performance against three 

baseline models: 

1) IT2FCM-FTS: This model uses the same robust
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IT2FCM partitioning (Stage 1) as our proposed model, 

but uses a simple averaging method for forecasting 

instead of an MC. This isolates the benefit of the MC. 

2) FTS-MC: This model uses a traditional, uniform

(equal-length) partitioning method but applies the same

MC (Stage 3) for forecasting. This isolates the benefit

of the IT2FCM partitioning.

3) IMWPFCM-FTS: This is a competing advanced

hybrid model that uses n-Pythagorean FCM and an

improved Markov weighted (IMW) method.

Conducted previous research by Yin et al. [23], our 

proposed model and IT2FCM-FTS, the fuzzifier interval was 

set to [m1, m2] = [1.8, 2.1].

4.4 Evaluation metrics 

The forecasting accuracy is measured using three standard 

metrics: Root Mean Square Error (RMSE) and Symmetric 

Mean Absolute Percentage Error (SMAPE). To verify the 

significance of the results, we define the Wilcoxon Signed-

Rank Test as our primary statistical tool. The null hypothesis 

(𝐻0) assumes no significant difference in the absolute error

series between the proposed model and benchmarks 𝛼 = 0.05. 

5. RESULTS AND DISCUSSION

5.1 Forecasting performance 

The forecasting results for all models on the CO 

concentration dataset are summarized in Table 2. The 

proposed IT2FCM-MC-FTS model achieved the lowest error 

on both metrics, demonstrating the highest accuracy among 

the tested models for this case study, as shown in Figure 2. 

Table 2. Forecasting error comparison with FTS models 

Model RMSE SMAPE (%) 

IT2FCM-FTS 897.29 19.32 

FTS-MC 1068.99 20.34 

IT2FCM-MC-FTS (Proposed) 887.47 17.86 

IMWPFCM-FTS 914.68 17.96 

Figure 2. Comparison of actual vs. forecasted values for the dataset 

(a) Absolute error distribution (b) Cumulative absolute error

Figure 3. Statistical significance analysis 

5.2 Discussion: The synergistic effect 

Visual analysis in Figure 3 provides critical evidence that 

complements the statistical tests. The Boxplot in Figure 3(a) 

shows that the proposed model achieves a lower median 

absolute error and a more compact interquartile range (IQR) 
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compared to FTS-MC, suggesting higher prediction stability. 

The Wilcoxon test comparing the proposed model against 

IT2FCM-FTS yielded a p-value of 0.0023, indicating a highly 

significant improvement (𝑝 <  0.01). This confirms that the 

MC's probabilistic inference is significantly superior to simple 

averaging when robust partitions are already established. 

For the comparison against FTS-MC, the test resulted in a 

p-value of 0.1061. Although this exceeds the traditional 0.05

threshold, it represents a marginal significance that suggests a

strong trend toward improvement. In the context of TFS with

a limited sample size (𝑛 = 46). A p-value in this range often

indicates that the proposed model is consistently

outperforming the baseline, but the statistical power is

constrained by the number of observations.

5.3 Residual analysis and statistical significance 

Statistical test against IT2FCM-FTS yielded 𝑝 =  0.0023 

(highly significant). Against FTS-MC, 𝑝 =  0.1061, showing 

marginal significance constrained by sample size (𝑛 = 46). 

To validate the reliability of the model, we performed a 

residual analysis. Figure 4(a) shows that the residuals (the 

difference between actual and predicted values) are randomly 

scattered around the zero line without obvious 

heteroscedasticity patterns. This indicates that the model has 

effectively captured the temporal dynamics of the data. The 

error distribution in Figure 4(b), the histogram also shows a 

near-normal shape centered at zero, proving that model bias is 

very low despite the high volatility of the data. 

(a) Residual analysis

(b) Error distribution histogram

Figure 4. Residual analysis and statistical significance 

5.4 Discussion 

The performance metrics in Table 1 not only demonstrate 

the superiority of the proposed model but also serve as an 

ablation study to validate the role of its hybrid components. 

Analysis of RMSE and SMAPE reveals a clear synergistic 

effect. The FTS-MC model, which utilizes MCs but relies on 

simple uniform partitioning, yielded the highest error (RMSE 

1068.99; SMAPE 20.34%). This confirms that even a 

sophisticated transition mechanism cannot compensate for 

non-representative partitioning. Conversely, the IT2FCM-FTS 

model, using robust partitioning but simple averaging, 

performed significantly better (RMSE 897.29; SMAPE 

19.32%), yet remained less accurate than the proposed 

IT2FCM-MC-FTS. 

Furthermore, the superiority over the IMWPFCM-FTS 

model (RMSE 914.68 vs. 887.47) suggests that IT2FCM's 

ability to model the FOU provides a more noise-resistant 

foundation than other advanced fuzzy clustering variants for 

this specific volatile dataset. 

Beyond these technical benchmarks, the higher accuracy of 

the IT2FCM-MC-FTS model provides significant practical 

implications for air quality management in Semarang City: 

1) Public Health Early Warning: The reduction of

SMAPE to 17.86% enables more accurate detection of

CO pollution spikes, providing better response times

for health authorities to issue alerts.

2) Traffic Management: Stable and reliable predictions

assist the city government in planning adaptive traffic

management strategies to reduce vehicle emissions in

pollution-prone areas.

3) Environmental Policy: This model provides a more

robust data foundation for policymakers to evaluate and

refine the effectiveness of vehicle emission regulations

and urban sustainability initiatives.

6. CONCLUSION

This study presented a novel hybrid forecasting framework, 

IT2FCM-MC-FTS, designed to mitigate the fundamental 

challenges of partitioning uncertainty and transition ambiguity 

in FTS. By integrating IT2FCM for robust, data-driven 

partitioning and a first-order MC for probabilistic inference, 

the model provides a more resilient approach to handling 

volatile datasets. Experimental results on CO concentration 

data demonstrated that the proposed model achieves superior 

accuracy, with an RMSE of 887.47 and a SMAPE of 17.86%, 

significantly outperforming traditional FTS and single-

component hybrid models. 

Despite these contributions, several limitations of the 

current study must be acknowledged. First, the proposed 

model focuses exclusively on univariate time series data, 

which may not capture the complex interdependencies present 

in multivariate environmental systems. Second, the 

determination of the fuzzifier interval and the number of 

clusters, while based on volatility heuristics, still relies on 

empirical selections that may require further fine-tuning for 

different data scales. 

Future research directions will prioritize the extension of the 

IT2FCM-MC-FTS architecture to multivariate time series 

analysis. Furthermore, the integration of meta-heuristic 

optimization algorithms, such as Particle Swarm Optimization 

(PSO) or Genetic Algorithms (GA), will be explored to 

automate the selection of optimal fuzzifier parameters and 

cluster counts. Finally, the model's scalability will be tested 

across more diverse and large-scale volatile problems, 
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including renewable energy production and financial market 

forecasting. 
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