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Fuzzy Time Series (FTS) models are effective for handling uncertain and vague
datasets, but their performance is often limited by subjective partitioning and
ambiguous state transitions. Objectives: This study aims to address partitioning
uncertainty caused by empirical fuzzifier parameters in Fuzzy C-Means (FCM) and
resolve the one-to-many transition ambiguity in Fuzzy Logical Relationship Groups
(FLRGs). We propose a novel hybrid model, IT2FCM-MC-FTS, which integrates
Interval Type-2 Fuzzy C-Means (IT2FCM) with a first-order Markov Chain (MC). The
methodology involves using IT2FCM to generate robust, data-driven interval partitions
that account for noise, followed by the application of MC transition probabilities to
provide logical weights for resolving complex relationship groups. The model was
validated using ambient CO concentration data from Semarang, Indonesia.
Experimental results show that the proposed model achieved an RMSE of 887.47 and a
SMAPE of 17.86%, significantly outperforming traditional FTS, FCM-FTS, and FTS-
MC models. By synergizing robust clustering with probabilistic inference, the IT2FCM-
MC-FTS model provides a more reliable and accurate framework for time series
forecasting (TSF) in volatile environments.

1. INTRODUCTION

Time series forecasting (TSF) is a critical tool for decision-
making across diverse fields, including energy production [1-
4], environmental monitoring [5, 6], and financial analysis [7-
9]. While traditional statistical models have been used
extensively, they often struggle with the inherent uncertainty
and linguistic vagueness of real-world data [10, 11]. The
Fuzzy Time Series (FTS) approach, introduced by Song and
Chissom [12, 13], offered a paradigm shift by modeling
temporal data through fuzzy sets. However, despite its success,
the reliability of FTS is persistently hampered by two
uncertainty  and

fundamental challenges:
transition ambiguity.

partitioning

isolation. One group of researchers has focused on improving
partitioning robustness by employing advanced fuzzy logic,
such as Interval Type-2 Fuzzy Sets (IT2FS), to handle the
uncertainty in clustering [18, 19]. For instance, IT2FCM has
been recognized for its ability to model the "Footprint of
Uncertainty" (FOU) more effectively than traditional type-1
methods [20-23]. Another group has focused on refining
transition modeling by integrating Markov Chain (MC)
models to calculate probabilities for fuzzy state transitions [20,
21, 24, 25]. While these individual advancements are
significant, a critical gap remains: There is a lack of a unified
hybrid framework that addresses both partitioning uncertainty
and transition ambiguity simultaneously within a single,
cohesive architecture.

Partitioning uncertainty arises during the division of the
universe of discourse into intervals. Early models relied on
rigid, subjective intervals, which were later improved by
objective clustering algorithms like Fuzzy C-Means (FCM)
[14, 15]. However, FCM remains highly sensitive to noise and
the selection of the fuzzifier parameter, leading to unstable
partitions [16]. Simultaneously, transition ambiguity occurs
when a single fuzzy state leads to multiple potential future
states (one-to-many relationships). Standard FTS models often
use simple averaging to resolve these Fuzzy Logical
Relationship Groups (FLRGs), which can lead to significant
loss of information and reduced accuracy [17, 18].

Current literature has addressed these issues primarily in
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To fill this gap, this study proposes a novel hybrid model,
IT2FCM-MC-FTS. The synergy between IT2FCM’s robust
clustering and MC’s probabilistic inference forms the core
contribution of this research. Specifically, IT2FCM is utilized
to establish noise-resistant intervals, while a first-order MC
provides a logical and data-driven mechanism for resolving
one-to-many ambiguities. The proposed model is validated
using volatile carbon monoxide (CO) concentration data,
demonstrating its ability to provide more accurate and stable
forecasts than existing hybrid variants.

The remainder of this paper is organized as follows: Section
2 presents the related works. Section 3 details the proposed
hybrid model. Section 4 presents the experimental setup and
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case study. Section 5 discusses the results. Finally, Section 6
concludes the paper.

2. RELATED WORKS

Several methods have been developed to manage
uncertainties in FTS and clustering algorithms are shown in
Table 1. The traditional Type-1 Fuzzy Markov Chain (T1FM)
uses Type-1 Fuzzy Sets (T1FS) to describe the distributional
behavior of a discrete-time Markov process, but is limited in
handling data noise and linguistic ambiguity [26-28]. To
address these limitations, the Interval Type-2 Fuzzy Markov
Chain (IT2FM) extends the scope by embedding multiple
T1FS within its FOU, allowing for better modeling of
uncertainties [26-28]. However, IT2FM approaches are often
computationally intensive and complex [26-28].

FCM clustering is another method widely used for objective
function-based partitioning, but it struggles with high-level
fuzzy uncertainty [29-31]. The Adaptive Interval Type-2
Fuzzy C-Means (A-IT2FCM) algorithm improves upon FCM
by using IT2FS and Karnik-Mendel type reduction, yet it
introduces significant computational overhead [31]. Similarly,
the General Type-2 Fuzzy C-Means (GT2 FCM) algorithm
uses a-planes and zSlices for efficient representation, but it
remains computationally intensive [32].

Table 1. Comparative summary of existing methods and the

proposed approach
Method Components Limitations
Type-1 Fuzzy Limited in handling
Markov Chain T1FS data noise and
(T1FM) [26-28] linguistic ambiguity
I;;Zrz\]all\;fzriz-f IT2FS, Type- Computational
Zy reduction intensity, complexity in
Chain (IT2FM) algorithms modeling uncertainties
[26-28]
Fuzzy C-Means fun?:?ijoer?fll;)\;ese d Ineffective in managing
(FCM) Clustering clusterin high-level fuzzy
[29-31] TIFS & uncertainty
Adaptive IT2FCM IT2FS, Karnik- Complex1t3_/ in type
(A-IT2FCM) [31] Mendel type reduction,
reduction computational overhead
General Type-2 a_é)ll anes, High computational
FCM (GT2 FCM) liZn il(l?:tsi,c intensity, complexity in
[32] fu;gzi fier processing
Hybrid FTS-MC FTS, MC, C- . Random partltlomng.,
. means insufficient accuracy in
with C-Means [33] . . o
clustering interval partitioning
Credal C-Means Credal Difficulty in classifying
(CCM) Clustering  partition, meta- objects close to
[34] clusters multiple clusters
Proposed IT2FCM- ITZFCI\./[3 MC, Foc.uses on umvarlgte
MC-FTS volatility- data; empirical fuzzifier

based heuristic selection

Hybrid models combining FTS with Markov Chains and
clustering techniques, such as the FTS-MC with C-means
clustering, aim to improve model robustness. However,
models often suffer from random partitioning and insufficient
accuracy in interval partitioning [33]. Credal C-Means (CCM)
clustering introduces meta-clusters to handle objects close to
multiple clusters, but it faces challenges in correctly
classifying such objects [34]. Table 1 provides a comparative

4407

summary of these existing methods and their limitations.

In conclusion, while various methods exist to manage
partitioning uncertainty and transition ambiguity, a critical gap
remains: There is a lack of a unified hybrid framework that
addresses both issues simultaneously within a single, cohesive
architecture.

3. METHODOLOGY
3.1 The proposed IT2ZFCM-MC-FTS model

Our proposed model integrates robust partitioning
(IT2FCM) with probabilistic forecasting (MC) in a single,
cohesive framework. The overall architecture is depicted in
Figure 1, and to ensure high transparency and reproducibility,
the implementation details are described through the following
stages:

/ Historical Time Series Data Y(t) /

Step 1: Define Universe of Discourse U

Innovation 1;
Using IT2FCM provides
stable, data-driven

Step 2: Partition U using IT2FCM
to get robust intervals

partitions, reducing
sensitivity to fuzzifier.

Step 3: Fuzzify Data & Establish FLRGs

Innovation 2:

Markov Chains provide
probabilistic weights for
transitions, enabling logical
forecasting for one-to-man

Step 4: Construct Markov Transition
Matrix P

e N e N

relationships.

Step 5: Forecasting

Predicted Value Y(t + 1)

AN

Figure 1. Flowchart of the proposed model

The implementation details, derived from the experimental
code, are described below:

3.1.1 Stage 1: Robust partitioning with IT2FCM

The foundation of the model is the quality of fuzzy
partitions. To create partitions robust to noise, we employ
IT2FCM, which accounts for the uncertainty in the fuzzifier
parameter. The algorithm seeks to minimize the objective

function:
n c
Iz = Y > @)™ Il = will
k=1i=1

where, m € [m,, m,] represents the interval-valued fuzzifier.

(1)



In our implementation, we utilize the centroid of this interval
(m = 1.95) to achieve a robust representative clustering
center. To ensure reproducibility of the fuzzy partitions, a
fixed random seed of 7521 is applied. The clustering process
is governed by a convergence threshold (€ = 0.005) and a
maximum of 1000 iterations.

The optimal number of clusters ¢ is determined
dynamically using a volatility-based heuristic. This is
calculated as the ratio between the total range of data and the
average volatility (mean absolute difference):

- Dmin

Dmax

1
7= Lr=2l¥i — Xial

Crqw = round

2

To ensure model stability across different dataset sizes, a
constraint is applied: (¢ = max (2, min (¢,q,,n/2))). This
ensures that the number of fuzzy states is proportional to the
dynamic behavior of the series while maintaining enough data
points per cluster for statistical validity.

3.1.2 Stage 2: Fuzzification and FLRG establishment

With the cluster centers v; obtained and sorted, the
historical time series Y; is fuzzified. Unlike traditional
methods that use equal-length intervals, our model defines the
boundaries of fuzzy sets {4;, ,A.} based on the midpoints
between adjacent cluster centers:

* *
UtV
Bi= =g

A3)

This creates adaptive intervals that are denser where data
points are concentrated. Each Y; is mapped to the
corresponding fuzzy set A; within these boundaries. The
sequence of fuzzy sets forms Fuzzy Logical Relationships
(FLR), denoted as A,_; = A;, which are then grouped by
their antecedent to form FLRGs.

3.1.3 Stage 3: Probabilistic forecasting with MC

To resolve the one-to-many ambiguity in FLRGs, we
construct a ¢ X ¢ transition probability matrix P. Each
element P;; represents the probability of moving from state t
A;jto Aj, a first-order MC transition probability matrix P is
constructed:

N;;

p==
Y X Nix

“4)
where, N;; is the frequency of the transition observed in the

training data A; — A;. This ensures that the weights for future
states are entirely data-driven.

3.1.4 Forecasting (Defuzzification)
The final forecast ?(tﬂ) is computed as the probabilistic
weighted average of the centers of all potential future states:

c

fien = Z vj - Py

Jj=1

)

This approach avoids the information loss inherent in
simple averaging by prioritizing transitions that occur more
frequently in the historical data.
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3.2 Algorithmic structure of IT2FCM-MC-FTS

The complete logic of the proposed IT2FCM-MC-FTS
model is summarized in Algorithm 1.

Algorithm 1: IT2ZFCM-MC-FTS Forecasting Procedure
1. Input:
Historical time series {Y = yq,y,,
range [1.8, 2.1], seed 7521

,Ynt, fuzzifier

2. Cluster Determination:
a. Calculate average volatility: vol = ﬁZD’t -
Ve-1l
b. Determine raw  cluster count:  Cpqy =
round (max(Yi;lmm(Y))
c. Setc = clamp( crqp,2,1/2)
3. Robust Partitioning:
a. Execute IT2FCM with m = 1.95 and fixed seed
b. Extract and sort cluster centers V* =
{v;' U;, T v:}
4. Fuzzification:
a. Define interval boundaries B as midpoints
between vy
b. Convert Y into fuzzy state sequence S =
{51, 82, S}
5. Markov Chain Modeling:
a. Build frequency matrix N from transitions in §
b. Normalize N row-wise to obtain transition
probability matrix P
6. Inference:
a. Identify current state s;
b. ¥ +1=sum (P[S;]xV")
7. Output:

Predicted value 7, + 1

4. EXPERIMENTAL SETUP
4.1 Case study: CO concentration forecasting

To validate the proposed model, we conduct a case study
using the ambient concentration of CO from the AQMS
Station in Mijen, Semarang City, Indonesia. The dataset
represents a highly volatile environment, making it a suitable
benchmark for testing partitioning robustness.

4.2 Validation strategy: Rolling forecast

To ensure a rigorous evaluation, we implemented a rolling-
basis (walk-forward) validation strategy. For each time step t,
the model is trained on observations {Y;, ..., Y;_;} and tested
on Y;. This process is repeated until the end of the dataset.
Unlike standard k-fold cross-validation, the rolling forecast
preserves the temporal dependencies within the data,
providing a more realistic measure of forecasting accuracy for
real-world applications.

4.3 Baseline models for comparison

To evaluate the specific contributions of our model's
components, we compare its performance against three
baseline models:

1) IT2FCM-FTS: This model uses the same robust



IT2FCM partitioning (Stage 1) as our proposed model,
but uses a simple averaging method for forecasting
instead of an MC. This isolates the benefit of the MC.

2) FTS-MC: This model uses a traditional, uniform
(equal-length) partitioning method but applies the same
MC (Stage 3) for forecasting. This isolates the benefit
of the IT2FCM partitioning.

3) IMWPFCM-FTS: This is a competing advanced
hybrid model that uses n-Pythagorean FCM and an
improved Markov weighted (IMW) method.

Conducted previous research by Yin et al. [23], our

proposed model and IT2FCM-FTS, the fuzzifier interval was
set to [my, m,] =[1.8, 2.1].

4.4 Evaluation metrics

The forecasting accuracy is measured using three standard
metrics: Root Mean Square Error (RMSE) and Symmetric
Mean Absolute Percentage Error (SMAPE). To verify the
significance of the results, we define the Wilcoxon Signed-
Rank Test as our primary statistical tool. The null hypothesis
(H,) assumes no significant difference in the absolute error

series between the proposed model and benchmarks @ = 0.05.

5. RESULTS AND DISCUSSION
5.1 Forecasting performance

The forecasting results for all models on the CO
concentration dataset are summarized in Table 2. The
proposed IT2FCM-MC-FTS model achieved the lowest error
on both metrics, demonstrating the highest accuracy among
the tested models for this case study, as shown in Figure 2.

Table 2. Forecasting error comparison with FTS models

Model RMSE  SMAPE (%)
IT2FCM-FTS 897.29 19.32
FTS-MC 1068.99 20.34
IT2FCM-MC-FTS (Proposed) 887.47 17.86
IMWPFCM-FTS 914.68 17.96

Comparison of Actual vs. Predicted Values for All Models (Rolling Forecast)
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s000

CO Concentration
&

2000

—e— Actual Data
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-=-- Prediction (IMWPFCM-FTS)

B
Time Period

Figure 2. Comparison of actual vs. forecasted values for the dataset
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Figure 3. Statistical significance analysis

5.2 Discussion: The synergistic effect

Visual analysis in Figure 3 provides critical evidence that

complements the statistical tests. The Boxplot in Figure 3(a)
shows that the proposed model achieves a lower median
absolute error and a more compact interquartile range (IQR)



compared to FTS-MC, suggesting higher prediction stability.

The Wilcoxon test comparing the proposed model against
IT2FCM-FTS yielded a p-value of 0.0023, indicating a highly
significant improvement (p < 0.01). This confirms that the
MC's probabilistic inference is significantly superior to simple
averaging when robust partitions are already established.

For the comparison against FTS-MC, the test resulted in a
p-value of 0.1061. Although this exceeds the traditional 0.05
threshold, it represents a marginal significance that suggests a
strong trend toward improvement. In the context of TFS with
a limited sample size (n = 46). A p-value in this range often
indicates that the proposed model is consistently
outperforming the baseline, but the statistical power is
constrained by the number of observations.

5.3 Residual analysis and statistical significance

Statistical test against IT”2FCM-FTS yielded p = 0.0023
(highly significant). Against FTS-MC, p = 0.1061, showing
marginal significance constrained by sample size (n = 46).

To validate the reliability of the model, we performed a
residual analysis. Figure 4(a) shows that the residuals (the
difference between actual and predicted values) are randomly
scattered around the zero line without obvious
heteroscedasticity patterns. This indicates that the model has
effectively captured the temporal dynamics of the data. The
error distribution in Figure 4(b), the histogram also shows a
near-normal shape centered at zero, proving that model bias is
very low despite the high volatility of the data.

Residual Analysis (Actual - Predicted)
3000
2000
v
=2
g
5 1000
3
h=l
3
o [ e
—1000
0 10 20 30 40
Time Step
(a) Residual analysis
Distribution of Forecasting Errors
10
8
>
E
v 6
o
&
!
2 ’7
o = N
—1000 0 1000 2000 3000
Error Magnitude

(b) Error distribution histogram
Figure 4. Residual analysis and statistical significance
5.4 Discussion

The performance metrics in Table 1 not only demonstrate
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the superiority of the proposed model but also serve as an
ablation study to validate the role of its hybrid components.
Analysis of RMSE and SMAPE reveals a clear synergistic
effect. The FTS-MC model, which utilizes MCs but relies on
simple uniform partitioning, yielded the highest error (RMSE
1068.99; SMAPE 20.34%). This confirms that even a
sophisticated transition mechanism cannot compensate for
non-representative partitioning. Conversely, the [IT2FCM-FTS
model, using robust partitioning but simple averaging,
performed significantly better (RMSE 897.29; SMAPE
19.32%), yet remained less accurate than the proposed
IT2FCM-MC-FTS.

Furthermore, the superiority over the IMWPFCM-FTS
model (RMSE 914.68 vs. 887.47) suggests that IT2FCM's
ability to model the FOU provides a more noise-resistant
foundation than other advanced fuzzy clustering variants for
this specific volatile dataset.

Beyond these technical benchmarks, the higher accuracy of
the IT2FCM-MC-FTS model provides significant practical
implications for air quality management in Semarang City:

1) Public Health Early Warning: The reduction of
SMAPE to 17.86% enables more accurate detection of
CO pollution spikes, providing better response times
for health authorities to issue alerts.

Traffic Management: Stable and reliable predictions
assist the city government in planning adaptive traffic
management strategies to reduce vehicle emissions in
pollution-prone areas.

Environmental Policy: This model provides a more
robust data foundation for policymakers to evaluate and
refine the effectiveness of vehicle emission regulations
and urban sustainability initiatives.

2)

3)

6. CONCLUSION

This study presented a novel hybrid forecasting framework,
IT2FCM-MC-FTS, designed to mitigate the fundamental
challenges of partitioning uncertainty and transition ambiguity
in FTS. By integrating IT2FCM for robust, data-driven
partitioning and a first-order MC for probabilistic inference,
the model provides a more resilient approach to handling
volatile datasets. Experimental results on CO concentration
data demonstrated that the proposed model achieves superior
accuracy, with an RMSE of 887.47 and a SMAPE of 17.86%,
significantly outperforming traditional FTS and single-
component hybrid models.

Despite these contributions, several limitations of the
current study must be acknowledged. First, the proposed
model focuses exclusively on univariate time series data,
which may not capture the complex interdependencies present
in multivariate environmental systems. Second, the
determination of the fuzzifier interval and the number of
clusters, while based on volatility heuristics, still relies on
empirical selections that may require further fine-tuning for
different data scales.

Future research directions will prioritize the extension of the
IT2FCM-MC-FTS architecture to multivariate time series
analysis. Furthermore, the integration of meta-heuristic
optimization algorithms, such as Particle Swarm Optimization
(PSO) or Genetic Algorithms (GA), will be explored to
automate the selection of optimal fuzzifier parameters and
cluster counts. Finally, the model's scalability will be tested
across more diverse and large-scale volatile problems,



including renewable energy production and financial market
forecasting.
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