Z‘ I El' A International Information and

Engineering Technology Association

Mathematical Modelling of Engineering Problems
Vol. 12, No. 12, December, 2025, pp. 4325-4337

Journal homepage: http://iieta.org/journals/mmep

Optimization of a Coffee Bean Roasting Machine Using Fuzzy Logic and Deep Learning ]

Approaches

Check for
updates

I Putu Hariyadi'"¥, Andi Sofyan Anas'®”, Bima Romadhon Parada Dian Palevi*, Bayani Adam Sasaki'”,

Mulyana!

' Faculty of Engineering, Bumigora University, Mataram 83127, Indonesia
2 Electrical Engineering, Faculty of Engineering, Institut Teknologi Nasional Malang, Malang 65145, Indonesia

Corresponding Author Email: putu.hariyadi@universitasbumigora.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.121221

ABSTRACT

Received: 30 September 2025
Revised: 12 November 2025
Accepted: 17 November 2025
Available online: 31 December 2025

Keywords:
CNN, fuzzy logic, coffee roasting, deep learning,
coffee bean

Coffee is a primary commodity in international trade. Post-harvest processing,
particularly the roasting stage, plays a critical role in determining the final product
attributes, such as flavour, aroma, colour, and bioactive compound content. Precise
control during the roasting process is essential to ensure quality consistency, especially
at a commercial production scale. This study aims to develop an adaptive control system
to achieve a uniform roast level in coffee beans. The implemented method integrates
fuzzy logic with a deep learning-based evaluation mechanism. The fuzzy logic
functions as the main controller for the roaster, dynamically regulating temperature,
time, and heat intensity parameters based on sensor input. Subsequently, a
Convolutional Neural Network (CNN) algorithm was employed as an objective
evaluation system to classify the roast degree (light, medium, dark) based on images of
the coffee beans. The research dataset, comprising 1,600 images of roasted coffee
beans, was obtained from Kaggle.com for model training and validation, while the
beans roasted by the machine were used as test data. The test results demonstrated
highly reliable system performance. The fuzzy controller exhibited robust adaptability
across various baking phases, and the CNN model achieved a validation accuracy of
95.83% based on the results of 5-fold cross-validation testing. These findings confirm
that the integration of these two technologies successfully creates a closed-loop system
capable of producing roasted coffee beans with a high degree of consistency and
accuracy. This approach also significantly reduces reliance on manual assessment,
which is prone to subjectivity and error.

1. INTRODUCTION

Coffee has emerged as

a primary commodity in

still rely on conventional methods, such as manual roasting in
iron pans with constant stirring. According to Majeed et al. [7],
this approach is not only inefficient in terms of energy and

international trade. Research indicates that 40% of coffee
quality is determined at the pre-harvest stage through field
processes, 40% is influenced by primary post-harvest
processing, and the remaining 20% is determined during
storage, distribution, and serving [1]. This underscores that
post-harvest processing, particularly the roasting stage, plays
a critical role in defining the final attributes of coffee, such as
flavor, aroma, color, and bioactive compound content [2, 3].
During roasting, coffee beans undergo complex
physicochemical  transformations, including Maillard
reactions and pyrolysis, which alter moisture content, color,
and the formation of volatile and antioxidant compounds [4].
The two key parameters influencing these transformations are
temperature and time, where minor deviations (+5°C or =+1
minute) can significantly alter the bean's sensory profile and
chemical composition [5, 6]. Therefore, precise control during
roasting 1is essential for ensuring quality consistency,
particularly in commercial-scale production.

Despite its importance, roasting practices in many regions
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time but also prone to outcome variability due to its
dependence on the operator's subjective skill. Semi-controlled
systems, such as gas-fired rotary ovens equipped with basic
temperature sensors, have improved temperature consistency.
However, the assessment of bean maturity remains reliant on
human visual observation, which is influenced by factors such
as lighting conditions, operator fatigue, and experience [8-10].
Studies indicate that visual misjudgment can lead to over-
roasting or under-roasting, resulting in diminished antioxidant
activity and flavor quality [11, 12].

To address these limitations, full-control systems based on
fuzzy logic, machine learning, and deep learning technologies
have begun to be adopted. This approach provides adaptive
capabilities in decision-making and information processing
from heterogeneous data sources. A previous study [13]
demonstrated that the implementation of Convolutional
Neural Network (CNN) achieved up to 98% classification
accuracy for coffee bean maturity levels on 600 coffee beans
grouped into five distinct ripeness stages. In that study, the test
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data were obtained through multispectral image acquisition,
and a CNN was then employed to extract pattern
representations from high-dimensional data.

Meanwhile, the study [14] developed a machine learning-
based predictive model to estimate optimal roasting
parameters, including the color profile of roasted coffee beans.
The model was trained on a dataset integrating key process
variables, namely temperature, humidity, and roasting
duration. In another work, a study [15] designed a coffee bean
roasting machine equipped with a 2 kW heating coil and
controlled by fuzzy logic algorithms. This study empirically
demonstrated the effectiveness of fuzzy logic in maintaining
the roasting process by considering complex variables such as
bean mass and temperature fluctuations. In addition, the study
[16] designed a fuzzy logic control system for a portable
roaster. Evaluation results indicated that the system was
capable of regulating roasting temperatures stably and
following varying set-points with minimal fluctuation,
confirming its reliability in processing materials such as
coffee.

However, most of these approaches remain partial: CNNs
are applied only for visual classification without integration
into real-time control mechanisms, while fuzzy logic still
relies on conventional sensor input without image-based
feedback to evaluate roasting quality [17, 18]. This separation
reveals a significant research gap. Therefore, this study aims
to fill this gap by introducing an innovative synergy between
fuzzy logic and CNN. In the proposed system, fuzzy logic
functions as the primary controller that dynamically regulates
process parameters, including drum temperature, roasting
duration, and heating intensity. In parallel, the CNN algorithm
is integrated to provide objective visual analysis that acts as
closed-loop quality feedback. This integration creates a fully
closed-loop system that not only controls the roasting process
but also continuously verifies its output, with the ultimate goal
of producing roasted coffee beans with high and consistent
maturity levels.

Based on this research gap, the novelty of this study lies in
the development of an intelligent closed-loop roasting system
integrating fuzzy logic and CNN within a single unified
architecture. Unlike previous fragmented approaches, the
proposed system utilizes CNN visual classification outputs as
direct feedback to tune fuzzy logic control parameters. This
integration enables the system not only to control the process
based on conventional sensor conditions but also to
autonomously adjust roasting operations based on objective
evaluation of the actual roasted beans, thus establishing an
adaptive roasting mechanism that has not been implemented
in previous research. Furthermore, this approach reduces
reliance on manual assessment and enables adaptation to
natural variability in coffee beans, such as differences in size,
moisture content, and initial chemical composition [19, 20].
The system's advantage is further reinforced by its ability to
minimize the degradation of bioactive compounds through
dynamically optimized roasting profiles, while maintaining
consistency in flavor and aroma, critical aspects for meeting
market demand for high-quality premium coffee [21, 22].

The urgency of this research is particularly relevant in the
context of Industry 4.0, where Al-based automation forms the
backbone of production efficiency. By combining the
sophistication of CNNs and fuzzy logic, this system is
expected not only to enhance the control accuracy of roasting
machines but also to reduce energy waste and operational
costs, making it suitable for adoption by small to medium-
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scale coffee producers. Ultimately, the integration of this
technology represents a strategic step toward bridging the gap
between traditional practices and digital innovation, thereby
strengthening the competitiveness of the coffee industry in the
global market.

2. LITERATURE REVIEW

Optimal coffee roasting serves to transform green coffee
beans, which initially lack a distinct aroma, into a commercial
product with high economic value and superior complexity of
flavor and aroma [1]. This transformation is mediated by a
series of chemical reactions during roasting, which produce
between 800 and 1000 volatile and non-volatile compounds
that determine the coffee's sensory profile [23]. Two key
reactions in this process are the Maillard reaction and
caramelization. The Maillard reaction, which is fundamental
and critical, is a chemical process between amino acids and
reducing sugars within the coffee beans at specific
temperatures  (typically = 140-165°C)  [24].  Unlike
caramelization, which solely involves the breakdown of
sugars, the Maillard reaction is primarily responsible for
creating the characteristic brown color of roasted coffee beans;
while also generating most of the flavor and aroma complexity
we associate with coffee. Consequently, the Maillard reaction
can be considered the core transformation that turns raw beans
into a flavor-rich product [25].

The roasting process transforms the coffee beans by
developing their three main taste elements: acidity, sweetness,
and bitterness. The fundamental objective of this process is to
create an optimal balance among these three sensory elements.
Different roasting profiles result in different taste emphases
[26]. Light roasts tend to preserve or highlight acidity and
fruity flavor complexity, whereas medium roasts establish a
balance between acidity, sweetness, and body (mouthfeel).
Conversely, dark roasts place greater emphasis on bitter
intensity and a strong body, while reducing acidity. Failure to
control the roasting process results in flavor imbalance, which
can manifest as excessively sharp acidity or a dominance of
bitter and burnt tastes [27, 28].

Furthermore, the application of proper and controlled
roasting techniques aims not only to extract optimal flavor but
also to guarantee final product consistency. The use of
standardized roasting machines and precise methodologies
ensures that each production batch possesses uniform quality
and flavor profile [29]. This consistency ultimately provides a
predictable and reliable sensory experience for the consumer.

The correct coffee bean roasting process involves
controlling three main variables: temperature, heat intensity,
and roasting time. Precise control of temperature is crucial as
it governs the complex chemical reactions inside the bean
responsible for the development of caramel, chocolate, and
nutty flavors, as well as the pyrolysis that breaks down bitter
substances and develops the characteristic coffee aroma. If the
temperature is too low, these reactions will not proceed
optimally, resulting in underdeveloped coffee with vegetal or
grassy flavors. Conversely, excessively high temperatures can
scorch the beans, yielding a dominant burnt and bitter taste,
and obliterating the beans' original characteristics. Meanwhile,
heat intensity plays a role in regulating the rate of temperature
increase [30]. Excessively aggressive heat can char the
exterior of the beans while the interior remains under-roasted,
whereas overly gentle heat will steam the beans rather than



roast them, producing a flat and less clean flavor [31]. In
addition, roasting time determines the extent to which these
flavor developments occur. A shorter time (light roast) will
retain more acidity, fruitiness, and complex origin
characteristics. In contrast, a longer time (dark roast) will
accentuate a heavier body, dark chocolate flavors, and reduced
acidity [32].

Achieving an optimal roasting process necessitates the
precise control of the three main variables: temperature, heat
intensity, and time. Several studies have developed solutions
addressing this. A survey by Ayu et al. [33] designed a 4 kg
capacity roasting machine equipped with a temperature control
system using a K-type thermocouple. The results
demonstrated that the machine was capable of producing
coffee beans with a medium to dark roast level within 52
minutes at 180°C, with an average yield of 69.17%.
Meanwhile, research by Botha et al. [34] proposed a model-
based control strategy for the batch roasting process using a
Proportional-Integral (PI) controller with the Internal Model
Control (IMC) method. A key finding revealed that the initial
90 seconds of the roasting process could not be effectively
controlled due to the presence of dead time and evaporative
cooling phenomena. Based on this, a two-stage control
strategy was formulated, which refrains from intervention
during the first 90 seconds, then applies a secondary loop until
the 140th second to ensure temperature profile accuracy,
before finally switching to the main loop that controls the
derivative of the roast profile. This approach proved capable

of consistently replicating flavor profiles, increasing
production rates, and simplifying the operation of
conventional  roasting  machines with  economical

implementation costs.

Although these approaches demonstrate potential in
improving temperature control accuracy and producing roasts
with a certain degree of consistency, constrain their practical
effectiveness. In the study [33], the developed control system
still predominantly relies on temperature measurements as a
single parameter and, therefore, is unable to detect and correct
the dynamic changes in physical characteristics that occur
during the roasting process. In other words, the success of the
final roasted coffee remains highly dependent on the
operator’s manual interpretation of changes in color aroma and
crack sound. Meanwhile, the study [34] offers a more
systematic model-based control strategy; however, the scope
of control remains limited to the manipulation of temperature
profiles and does not incorporate a mechanism to evaluate the
actual maturity level of the beans. The system implicitly
assumes that a given temperature profile will consistently
result in the same roasting maturity level. This becomes a
major weakness because, in practice, the coffee roasting
process is highly non-linear and strongly influenced by
variability in moisture content, bean size, varietal type, and
origin characteristics. Thus, both approaches still operate
within an open-loop architecture that primarily relies on
machine parameters alone, and therefore are unable to deliver
an adaptive closed-loop system based on real-time evaluation
of the actual bean quality during the roasting process.

Additionally, Miskon et al. [35] proposed a Self-Tuned
Fuzzy PID (STFPID) control system used to regulate
temperature in a laboratory-scale roasting machine.
Simulation results indicated that the STFPID significantly
reduced overshoot and accelerated settling time compared to a
conventional PID, thereby maintaining temperature stability
critical for roast quality consistency. The limitation of that
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study lies in its narrow focus on temperature stabilization as
the sole indicator of successful roasting. In addition, the
STFPID operates in an open-loop manner with respect to the
final product, as it does not incorporate sensors or intelligent
systems capable of identifying bean maturity in real time.
Consequently, while the system can maintain a stable
temperature, it cannot guarantee that such temperature
stability consistently corresponds to an optimal roasting
profile.

Another study by Kim et al. [36] proposed a real-time
monitoring system for the coffee roasting process based on
computer vision and deep learning. This system was able to
classify coffee bean roast results and quantify real-time bean
color changes by analyzing histograms and the Sum of Pixel
Grayscale Values (SPGV), where a decrease in SPGV over
time reflected the darkening of the beans. Additionally,
research by Astuti et al. [37] developed an electronic nose (E-
Nose) system equipped with six TGS gas sensors (2600, 2602,
2611, 2612, 2620, and 826) to classify the roast level of
Robusta coffee beans based on their aroma profiles. An
Artificial Neural Network (ANN) method was integrated into
this system to analyze sensor responses corresponding to five
roast levels (185°C to 225°C). The results demonstrated very
high classification accuracy through cross-validation: 98.2%
for light roast, 98.4% for light-medium, 98.8% for medium,
97.8% for medium-dark, and 95.9% for dark roast. This
research proves that the combination of E-Nose and deep
learning can be a solution for roasting quality control in the
coffee industry.

Even though the computer vision-based approach in study
[36] and the integration of an E-Nose with deep learning in
study [37] demonstrate very high accuracy in classifying roast
levels, both studies still suffer from significant limitations. The
vision system and E-Nose developed in these studies function
only as evaluation systems or quality monitoring systems for
roasted beans, without direct integration into the control
mechanism of roasting parameters. In other words, these
approaches merely identify the condition of coffee beans after
the process has occurred, and therefore still require human
operators to manually adjust temperature, flame intensity, or
roasting duration. As a result, even though these methods are
strong in final quality classification, they cannot provide direct
roasting automation, as they do not operate as part of an
adaptive control loop that is capable of correcting the process
in real time.

Based on the weaknesses identified in previous studies, the
approach in this research offers a more comprehensive and
constructive contribution by integrating two domains that
were previously explored only partially and in isolation.
Studies [33-35] focus solely on process control based on
machine parameters (temperature, flame, and time), but cannot
evaluate the actual bean quality during and after the roasting
process. Conversely, studies [36, 37] leverage deep learning
and intelligent sensors to identify bean maturity levels, but
only function as post-process evaluation systems that are not
linked to a control mechanism capable of automatically
adjusting parameters. This research addresses both sets of
limitations by designing an adaptive control system based on
fuzzy logic as the core controller that dynamically manipulates
roasting parameters according to sensor responses, and
integrating a CNN as an objective evaluator that accurately
classifies bean maturity based on visual images of roasted
beans. The integration of these two modules creates a closed-
loop architecture capable of adjusting parameters based on the



actual bean outcome, rather than relying solely on assumed
temperature profiles or manual operator input.

3. RESEARCH METHOD
3.1 Data collection and datasets

At this stage, data collection is carried out through two
primary steps. First, the determination of hardware and
software specifications used in the research is conducted.
Second, the acquisition of the roasted coffee bean image
dataset and data preparation for CNN model training are
performed. The coffee bean dataset is classified into four
categories: green bean, light roast, medium roast, and dark
roast. The hardware and software specifications can be
presented in Table 1.

Table 1. Hardware and software components

Type Component Function
Raspberry Pi-4 As the main controller
Thermocouple As a real-time temperature
Type K Sensor sensor
Real Time Clock R
(RTC) As digital time
As a flame intensity
Hardware Servo Motor regulator
Coffee roasting As a coffee bean roasting
machine tool with a capacity of 1 kg
Raspberry Pi- As a coffee image producer
Camera
Arduino Mega As the main controller for
2560 Arduino device
Visual Studio Code  IDE for writing Python code
Software iti i
W Arduino IDE IDE for writing Arduino
Code
Google Colab LeNet model training

The classification system for coffee bean roast levels in
this study employs a CNN as the artificial intelligence
architecture. The classification process commences with two
primary stages: training and predicting, utilizing image data of
both roasted and unroasted coffee beans. The dataset
comprises images of coffee beans across four primary maturity
levels: unroasted, light roast, medium roast, and dark roast. In
total, the dataset consists of 1,600 images with a balanced
distribution, with each category contributing 400 images.
Subsequently, the dataset is partitioned into two subsets: a
training subset containing 1,200 images (75%) and a testing
subset comprising 400 images (25%). Prior to processing, all
images undergo dimensional standardization to a uniform
resolution of 224 x 224 pixels. The complete dataset, along
with its documentation, is publicly accessible via the following
repository: https://s.id/datasetCoffee123.

3.2 Fuzzy logic system design

The coffee roasting process constitutes a critical stage that
requires dynamic adjustment and precision in controlling key
parameters, namely temperature, time, and heat intensity, to
achieve the desired roast profile and ensure batch-to-batch
quality consistency [28]. To automate and optimize this
process, fuzzy logic is applied to emulate the decision-making
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capabilities of an experienced roast master. The fuzzy logic
system is designed to translate real-time sensor data inputs,
such as bean temperature readings and time, into precise
control actions for roasting parameters. This system
overcomes the limitations of conventional control methods by
effectively handling the nonlinear and uncertain nature of the
roasting process, thereby maintaining the process along the
intended trajectory despite variations in raw material
properties or external disturbances. The stages of fuzzy logic
implementation consist of fuzzification, inference, and
defuzzification.

3.2.1 Fuzzification

MIx1]
N
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Low Medium  High High
] 0\ ._,A.\. f
.__f ‘..\.._' >
0 160 180 200 220 250
Actual Temperature (°C)
Mx2]
~
Very
Short Short  Moderate Long
SRR \ /
\ / L
0 2 4 6 8 15

Remaining Time (minute)

Figure 1. Input member of a function

MIz1]
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0 10 20 30 40
Fire Intensity
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n .
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Delta Temperature

Figure 2. Output member of the function

The fuzzification stage is a fundamental process in fuzzy
logic systems, which functions to transform precise numerical
input quantities (crisp inputs) from roasting parameters into



fuzzy sets that the inference engine can process [15]. In this
study, the input variables undergoing the fuzzification process
include Actual Temperature, observed within the range of 160
to 220°C and categorized into four fuzzy sets, namely Low,
Medium, High, and Very High, as well as the Remaining Time
in the roasting process, defined over the interval of 0 to 15
minutes with the classifications Very Short, Short, Moderate,
and Long. Furthermore, the output variable of the control
system is designed to generate two corrective actions: AT
(Delta Temperature), representing the required magnitude of
temperature change with a value range from -10°C to +10°C,
and Heat Intensity, controlled on a scale from 0 to 40. This
transformation enables the system to handle continuous input
values and measurement uncertainties, thereby allowing
control decisions to be made based on the degree of
membership within each fuzzy set. The degree of membership
for each variable can be illustrated in Figures 1 and 2.

3.2.2 Inference

Before making a decision, fuzzy rules are used to control
the system logically to connect fuzzy inputs and fuzzy outputs
by taking the form of “If-Then” logic [15], as shown in Eq.

().
(1)

if x;isay ... if x,isa, thenyisbh

Decision making uses the min-max mechanism to produce
fuzzy outputs as expressed by Eq. (2).

by () = Max[min [ty (inpue(®), s (inpue (D), ]| (2)
3.2.3 Defuzzification

Defuzzification is the process of converting fuzzy outputs
into crisp values [15]. The defuzzification method used is the
average, expressed in Eq. (3).

n
K@)z,

“= 2@ %)

3.3 CNN model training

3.3.1 Input layer

The training of the CNN model commences at the input
layer, which is responsible for receiving raw image data. This
layer serves as the foundation that determines the initial
dimensions of the data. Its primary function is to accept,
organize, and prepare the input data in a format compatible for
processing in the subsequent convolutional stages [38]. In
contrast to other layers within the CNN, this stage does not
perform learnable computations; instead, it acts as a data
buffer to ensure the input dimensions and structure conform to
the model architecture's requirements [39].

In this study, the input layer receives images of coffee beans
that have been roasted using a machine controlled by a fuzzy
logic system. The coffee beans produced from this process are
classified into three roast levels: light, medium, and dark. Each
input image has a fixed resolution of 224 x 224 pixels with
three color channels, Red-Green-Blue (RGB), resulting in an
input dimension of 224 x 224 x 3 for the model.

3.3.2 Convolutional layer
At this stage, the convolutional layer uses kernel features to
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extract spatial patterns from an image. Kernel features consist
of small matrices containing learned values, which are shifted
across the entire input area [40]. At each position, a dot
product operation is performed between the filter and the pixel
section it overlaps, producing a feature map that indicates the
location and strength of a pattern, such as an edge or corner.
However, the convolution operation is essentially linear. To
enable the network to learn non-linear and complex
relationships, the Rectified Linear Unit (ReLU) activation
function is applied to each value in the feature map. This
function is very efficient because it only changes all negative
values to zero and leaves positive values unchanged, thus
introducing  non-linearity ~ without complicating the
computation. The illustration of the operational mechanism of
the convolutional layer is presented in Figure 3.

Figure 3. Illustration of a convolutional layer

3.3.3 Pooling layer

This layer serves to reduce computational costs and prevent
overfitting by cutting down on the number of parameters. In
addition, this layer also increases the model's resilience to
small changes in objects, such as shifts or rotations. One
popular method is max pooling, which works by taking the
highest value from an area (for example, a group of 2 x 2
pixels). By filtering and retaining only the most dominant
features, the pooling layer makes the neural network less
dependent on the specific location of a feature, which
ultimately strengthens the model's generalization power. The
operational mechanism of the pooling layer is illustrated in
Figure 4.

q
t::q_ii" 77-—-.;-'-_7':7.":.7.7_37__ 7-_ L 9
. 1 v 3 N .7..1 Output {2x2)

Input tensor (4x4)
Figure 4. Illustration of the max-pooling layer

3.3.4 Flatten layer

The flatten layer acts as a connector that transforms data
from the convolutional layer to the classification layer. This
layer converts feature maps that have multiple dimensions



(such as height, width, and number of channels) into a one-
dimensional array or vector. This transformation is critical
because the fully connected layer, which is responsible for
classification, can only process data in vector form, not in
multidimensional matrix form.

3.3.5 Fully connected layer

The main task of this layer is to interpret the extracted
features and perform classification, with a structural
configuration similar to that of a standard ANN. The fully
connected connections between neurons and the previous layer
enable the network to learn complex nonlinear patterns from
all high-level features. In its operation, the fully connected
layer also utilizes the ReLU activation function to maintain its
non-linearity. The working mechanism of the fully connected
layer is illustrated in Figure 5.

°‘l“jlf“|“‘|“~\,“|

8-/
9

Flattened Pooled
Feature Map

Pooled Feature Map

FC Layer

Figure 5. Illustration of a fully connected layer

3.3.6 Output layer

The final layer in neural network architecture is responsible
for producing definitive prediction results. The neuron
configuration in this layer is equivalent to the number of
categories to be classified. The activation function applied is
task-specific. For binary classification tasks, such as
distinguishing between images of cats and dogs, the Sigmoid
function is chosen because its output values between 0 and 1
can be considered as the model's confidence level. On the other
hand, multi-class classification problems, such as recognizing
numbers from 0 to 9, require the Softmax function. The
advantage of Softmax lies in its ability to convert output scores
into a standardized probability distribution (summing to 1), so
that each value represents the probability of each class.

3.4 Architecture of LeNet

The LeNet architecture was a pioneer in CNN and became
the foundation for the development of modern CNN,
introducing basic patterns that are still relevant today. LeNet
consists of seven learning layers arranged in a convolution and
subsampling (pooling) pattern, ending with a fully connected
layer. The LeNet architecture is shown in Figure 6.

Based on this LeNet architecture, the input layer receives a
32 x 32 pixel grayscale image. Layer C1 performs convolution
with six 5 x 5 filters without padding, producing a 28 x 28 x 6
feature map. Each filter learns to detect different patterns, such
as edges and corners. The S2 layer performs subsampling with
2 x 2 average pooling, reducing the resolution to 14 x 14 x 6
while making detection more robust against small shifts. The
C3 layer applies another convolution with 16 x 5 x 5 filters,
producing a 10 x 10 x 16 feature map that captures more
complex combinations of features. Layer S4 performs average
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pooling again, reducing the dimensions to 5 x 5 x 16. Once
feature extraction is complete, layer C5 flattens the 5 x 5 x 16
feature map into a 400-element vector and connects it to 120
fully connected neurons. Layer F6 further processes these
features with 84 neurons before the output layer finally
produces probabilities for 10-digit classes (0-9). In modern
implementations, the Softmax function is typically used in the
output layer for multi-class classification, although the
original version used Euclidean Radial Basis Function units.

(C3) (S4) (F6)
16@10x10 16@5%5 1B © )
utput

%% D“"qn% \\1x10

MaxP

(C3)
(€1) 1x120

6@28x28

B

(52)
6@14x14

G

MaxP

1@32x32

[

Conv Conv Conv

Figure 6. Architecture of LeNet

The selection of CNN in this study is grounded on the
characteristics of the evaluated data, namely, the visual images
of roasted coffee beans. CNNs have been proven to be highly
effective methods for automatically extracting visual features,
particularly shape, texture, and color distribution patterns that
change significantly throughout the roasting process. Several
more recent machine learning algorithms (e.g., Vision
Transformer/ViT, latest-generation EfficientNet, Swin
Transformer, MobileFormer, and others) indeed exhibit
excellent performance in principle, but there are two strategic
reasons why CNN remains the most appropriate choice for the
context of this research.

First, the most dominant changes that occur when the beans
enter the roasting phase are surface texture alterations and
localized color distribution shifts, rather than global
morphological changes. CNNs are inherently more suitable for
detecting such localized patterns, whereas state-of-the-art
transformer-based architectures require very large datasets to
“learn” these visual structures end-to-end without relying on
such inductive bias. Second, these more advanced models
typically demand significantly higher computational capacity,
require large datasets, and have inference latency that is not
ideal for a control system that demands rapid responses.
CNNs, especially lightweight architectures such as LeNet, can
deliver inference within millisecond-scale latency without
compromising the parallel execution of the fuzzy-logic-based
control system.

3.5 Roasting machine prototype design

The roasting machine prototype was developed by
integrating Arduino Mega 2560 as the main controller
connected to several critical components. These components
include a thermocouple sensor for real-time temperature data
acquisition, an RTC module for temporal accuracy, and a
servo motor as an actuator to regulate the intensity of the fire.
The intelligent control system in this prototype implements
fuzzy logic that functions to process sensor data and calculate
optimal control parameters. The fuzzy inference process
produces two output variables, namely the amount of
temperature change (AT) and the level of flame intensity
required by the roasting machine. These output variables then
act as feedback to continuously adjust the roasting process
(closed-loop system). When the target roast level is reached,



the system automatically transfers the coffee beans to the
cooling bin for the final cooling process. Furthermore, CNN is
implemented as a quality control mechanism by analyzing
images of roasted coffee beans. CNN provides feedback in the
form of a percentage of conformity between the roasting
results and the classification desired by the user. The design of
the fuzzy system implementation in the roasting machine and
the CNN evaluation architecture is shown schematically in
Figure 7.
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Figure 7. Roasting machine of prototype design

4. RESULT AND DISCUSSION
4.1 Coffee machine design results

Fundamentally, coffee roasting apparatuses operate as
thermodynamic systems engineered to apply measured
thermal energy to transform green coffee beans into a material
that has undergone flavor and aroma development, thereby
achieving an optimal level of maturity for the grinding
process. Essentially, the construction of a coffee roasting
machine comprises several primary constituent parts that
function synergistically. The core component of this thermal
process is a rotating cylindrical drum. This chamber houses the
raw material, the green coffee beans. Through its rotational
mechanism, the drum serves to agitate the beans continuously,
ensuring the creation of a uniform heating profile and a
consistent roasting development across all parts of the beans.

The thermal energy required for the roasting process is
generated by a burner, positioned beneath the drum, which is
typically configured to use gas as its fuel source. Meanwhile,
to regulate the temperature within the roasting chamber and
simultaneously eliminate chaff (the bean's skin) released
during the process, the machine is integrated with a
mechanical ventilation system utilizing a fan. Process stability
is highly dependent on a control system that encompasses
temperature regulation, time management, and adjustments for
drum rotation speed and airflow. Other auxiliary components
include a hopper as a funnel for holding the raw beans, a
cooling tray to rapidly cool the beans post-roasting via air
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circulation, and an exhaust system (such as an afterburner or
scrubber system) to manage the emissions produced. All these
components are assembled within a robust machine housing,
forming an integrated system that enables the roaster to
develop coffee flavor profiles according to specific
preferences. The design result of the coffee machine can be
presented in Figure 8.

Fan
System

Drum Hopper

4

Servo
Motor

Controlling
System

Cooling
Tray

Burner

Figure 8. Coffee machine design results
4.2 Results of testing type K thermocouple sensors

Accurate temperature measurement is a critical parameter
in the coffee bean roasting process, wherein type K
thermocouple sensors are commonly implemented as the
primary devices for monitoring real-time temperature values
inside the drum. This study aims to evaluate the reliability and
temperature reading accuracy of the type K thermocouple
sensor by comparing it against a standard thermometer
(reference instrument) with higher specifications and
precision. This comparative evaluation is intended to quantify
the degree of deviation or potential error, thereby determining
the extent to which the temperature data from the sensor can
be relied upon for process control and product quality
consistency.

The testing procedure was conducted through several
methodological stages. First, the preparation and calibration
stage, wherein the standard thermometer to be used as a
reference was first calibrated to ensure its accuracy. The type
K thermocouple sensor and the standard thermometer were
then installed side-by-side at strategic positions inside the
drum of the coffee roasting machine, which was neutralized of
coffee beans, to ensure both sensors were exposed to identical
heat profiles. Subsequently, the data acquisition stage
commenced by operating the roasting machine at several
predetermined operational temperature levels. At each stable
temperature level, readings from both instruments were
recorded simultaneously at 60-second intervals to obtain an
adequate dataset. The sensor test results can be presented in
Table 2.

Figure 9 confirmed a positive correlation observed between
the increase in the roasting machine's drum temperature and
the magnitude of the deviation between the thermocouple and
digital thermometer readings. The maximum recorded
absolute deviation reached 22.05°C, with an average deviation



value across the testing range of 10.51°C. This phenomenon
directly correlates with the sensor's error percentage, where
the temperature increase is directly proportional to the
enlargement of the thermocouple's reading error. The highest
identified relative error was 13.024%, while the average
relative error was 8.27%. Based on this data, the accuracy level

of the thermocouple sensor in reading the temperature inside
the drum can be quantified at 91.33%. With this accuracy
level, it can be concluded that the sensor possesses sufficient
reliability for use in temperature data acquisition, which
functions as the input variable for the fuzzy control system.

Table 2. Thermocouple sensor test results

Time (second) Thermocouplgf"lgl))era]fﬁxmome ter (°C) Deviation (°C) Error (%)

0 32.6 324 0.2 0.617

60 64.5 68.8 43 6.250

120 77.75 85.2 7.45 8.744

180 90.25 96.6 6.35 6.573

240 102.75 112.9 10.15 8.990

300 113.5 123.6 10.1 8.172

360 122.75 136.1 13.35 9.809

420 132 145.3 133 9.153

480 139.25 157.1 17.85 11.362

540 147.25 169.3 22.05 13.024

Average 10.51 8.27
200 transition to the Maillard phase occurs automatically based on
o the logic embedded within the system. This process continues
< 150 until the system detects the auditory indication of the first
2 crack. At this point, the system switches to the development

g 100 o ) .

g phase, which is the primary determinant of the final roast level.
£ 50 /- The duration of this phase is calculated by the fuzzy algorithm
&= 0 based on the desired profile. Immediately upon reaching the
0 200 400 600 target, the coffee beans are discharged from the drum and

Time (Second)

—@— Thermocouple Type K Digital Thermometer

Figure 9. K-type thermocouple test chart
4.3 Fuzzy logic algorithm test results

The implementation of a fuzzy algorithm in a coffee bean
roasting system is primarily aimed at replicating the cognitive
capabilities of a professional roaster in making decisions
during the process. This algorithm is designed to perform
fuzzification, which translates real-time sensor input variables,
such as in-drum temperature and roasting duration, into fuzzy
sets with linguistic values like "low," "medium," and "high."
Subsequently, through an inference engine containing a rule
base formulated from expert knowledge, the system maps
these input fuzzy sets into an output decision. This output then
undergoes a defuzzification process to be converted into a
precise and dynamic control action for heating parameters,
such as burner intensity and airflow rate, thereby mimicking
the adaptive approach employed by a human.

The operational testing phase of the system begins with
sample preparation, where green coffee beans with a moisture
content below 12% are prepared to ensure consistency in
thermal response. The roaster machine is then activated to
preheat the drum until it reaches a stable temperature of 180°C.
The introduction of the green coffee beans marks the
commencement of the drying phase, during which the fuzzy
algorithm becomes actively involved in monitoring and
regulating the temperature. The system continuously acquires
real-time temperature data and performs fuzzy inference
calculations to determine the optimal control output. The

rapidly cooled on a cooling tray to definitively halt the thermal
process, resulting in roasted coffee beans with consistent and
controlled characteristics.

Table 3. Fuzzy logic algorithm test results

Input Output
Thermocouple (°C) Time (s) Fire Intensity AT
160 14 40 10
165 13 38 9
170 12 36 8
175 11 34 7
180 10 32 6
185 9 28 4
190 8 25 3
195 7 22 1
200 6 18 0
205 5 15 2
210 4 12 -4
215 3 8 -6
220 2 5 -8

Table 3 depicts that the system demonstrates responsive
performance in controlling roasting parameters. In the initial
condition, where the temperature was still low (160°C) with a
substantial remaining time (14 minutes), the system responded
appropriately by generating a maximum fire intensity output
of 40 and the largest positive temperature change of +10°C.
This indicates the system's capability to perform aggressive
heating to reach the optimal temperature rapidly.

As the input temperature increased, the system
progressively reduced the fire intensity and decreased the
magnitude of the temperature change, demonstrating adaptive
control characteristics. In the intermediate temperature range
of 185-200°C, which constitutes the optimal development
zone, the system maintained the fire intensity within a range
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of 18-28 with minimal temperature changes (+1 to +4°C),
reflecting a strategy to maintain a stable temperature to
optimize the development of coffee bean flavor. This pattern
illustrates the system's capability for precision control during
the critical development phase.

During the finishing phase, where the temperature had
reached high levels (205-220°C) with increasingly limited
remaining time, the system consistently switched to a cooling
mode by applying negative temperature changes (-2 to -8°C)
and continuously decreasing the fire intensity down to 5. This
response is critical to prevent over-roasting and burning, while
simultaneously preparing for a controlled cooling process. The
smooth transition from heating to cooling signifies the
successful implementation of the fuzzy rule base in handling
the non-linearity of the roasting process.

4.4 CNN testing result

CNN is a deep learning algorithm whose architecture is
specifically designed for processing image data. Its capability
to automatically extract hierarchical features has proven
highly effective for handling various computer vision tasks,
such as image classification, semantic segmentation, and
object detection. This experiment aims to implement a CNN
model to evaluate the results of coffee bean roasting. The
model's performance was assessed through an analysis of
training accuracy, validation accuracy, training loss, and
validation loss metrics. The objective is to validate whether the
constructed CNN model can function as an objective
evaluation system capable of classifying the roast level of
coffee beans, such as light, medium, and dark, thereby
ensuring that product quality consistency meets established
standards.

The testing procedure commenced with data sample
preparation. Green coffee beans were roasted using a 1-
kilogram capacity machine integrated with a fuzzy logic
control system. For each batch, different roast level setpoints
were established. Upon completion of the roasting process,
samples of the roasted coffee beans were collected from each
batch to serve as test subjects. The output from the CNN
system, which is an objective classification of the beans' roast
level, was subsequently analyzed. The results of this analysis
serve as critical feedback for revising and refining the
parameters and rule base of the fuzzy control system in the
roasting machine. Consequently, an iterative cycle is formed,
continuously enhancing the precision of the roasting process
based on objective visual evaluation from the CNN. The
training and validation results of the CNN algorithm are
presented in Table 4.

Table 4. CNN training accuracy and training loss test results

Epoch Train Train Validation Validation
Accuracy Loss Accuracy Loss
5 0.8751 0.1923 0.9267 0.1978
10 0.9561 0.0780 0.9733 0.0793
15 0.9723 0.0425 0.9733 0.0469
20 0.9665 0.0430 0.9767 0.0509
25 0.9950 0.0247 0.9900 0.0269
30 0.9908 0.0156 0.9867 0.0228

Table 4 shows that the CNN model exhibits a highly
positive performance improvement as the number of training
epochs increases, as illustrated in Figure 10. An analysis of the
accuracy and loss metrics reveals that the model exhibited a
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significant enhancement in its ability to learn the visual
characteristics of coffee beans. Training accuracy consistently
increased from 0.8751 at epoch 5 to 0.9908 at epoch 30, while
validation accuracy showed a similar upward trend, rising
from 0.9267 to 0.9867. This parallel growth pattern between
training and validation accuracy indicates that the model did
not overfit but instead successfully achieved a strong
generalization capability.

Training Loss and Accuracy
1.0-

0.8 -

o
=)

\

\

—— train_loss

o

Loss/Accuracy
B

0.2 -
— val_loss

train_acc
—— val_acc
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0.0 -
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Figure 10. CNN testing result

From the perspective of loss values, a stable decrease was
observed in both training loss and validation loss. The training
loss decreased from 0.1923 to 0.0156, and the validation loss
declined from 0.1978 to 0.0228. The minimal discrepancy
between the training and validation loss at the conclusion of
the training process confirms the model's effectiveness in
generalizing visual patterns. The model's performance peak
was achieved at epoch 25, with a training accuracy of 0.9950,
a validation accuracy of 0.9900, and concomitantly very low
loss values.

The consistent validation accuracy rate exceeding 97% after
epoch 10 substantiates the viability of the CNN model as an
automated evaluation system for coffee bean maturity
classification. This reliable visual classification capability
supports its integration with a fuzzy control system within the
roasting process, where the CNN's classification output can
serve as feedback to refine roasting parameters adaptively.
Based on the comprehensive analysis, the developed CNN
model has fulfilled the criteria for a dependable, objective
evaluation system to ensure consistent quality in roasted
coffee bean production.

4.5 The 5-fold cross validation

To mitigate potential overfitting, this study applied a 5-fold
cross-validation scheme during the model training and
evaluation process. In this scheme, the entire dataset
consisting of 1,600 images of roasted coffee beans was divided
into five equally sized subsets, each containing 320 images,
referred to as “folds”. In the first fold iteration (folding-1), the
first fold was assigned as the validation set, while the
remaining four folds were used as the training set. In the
second iteration (folding-2), the second fold was used as the
validation set, and the other folds were used for training. This
process was repeated until all folds served as the validation set
exactly once. Accordingly, each image in the dataset
contributed fairly to both the training and validation processes.



This cross-validation approach not only increases the
reliability of the model evaluation but also produces a more
stable performance estimate, since the measured accuracy,
precision, sensitivity, and other evaluation metrics do not
depend on a single test subset. The dataset splitting scheme in
the cross-validation process is illustrated in Figure 11, which
shows how each fold is alternately used as the validation set
across the five training iterations. Thus, the risk of bias in test
data selection can be minimized, while the model’s
generalization capability to unseen data can be assessed in a
more objective and representative manner.

Folding 1 (320 )(320)(320)(320 (320
Folding 2 (320 (320 J(320)(320)(320

-

Folding 3 (320 (320 (320 (320 (320
Folding 4 (320 (320 (320 (320 (320

Folding 5 (320 (320 (320 (320](320)

Testing set
Training set

Figure 11. Dataset segmentation using 5-fold cross-
validation

The training and validation performance across the five
data-splitting iterations is presented in Table 5. The average
validation accuracy obtained from this 5-fold scheme reached
95.83%, indicating that the model generalizes well across
different data partitions and does not exhibit overfitting on any
specific portion of the dataset. These findings confirm that the
CNN architecture employed in this study is robust and
provides stable performance in classifying roasted coffee bean
maturity levels.

Table 5. Testing result using 5-fold cross-validation

Fold Loss  Accuracy Validation Validation

Number Loss Accuracy
Fold-1 0.0387 0.9744 0.0312 0.9864
Fold-2 0.0521 0.9511 0.0453 0.9620
Fold-3 0.0408 0.9582 0.0337 0.9722
Fold-4 0.0674 0.9075 0.0591 0.9254
Fold-5 0.0499 0.9218 0.0384 0.9453
Average  0.0498 0.9426 0.0415 0.9583

4.6 Analysis of coffee bean roasting results based on CNN
algorithm

This test was conducted with the main objective of
evaluating the performance of a coffee bean roasting system
integrated with a CNN-based deep learning model. The
evaluation aimed to verify whether the coffee beans roasted by
the machine met the specified maturity standards.
Procedurally, the test began with the collection of samples of
coffee beans that had undergone the roasting process. Digital
images of these samples were then acquired for further
processing and prediction by a pre-trained CNN algorithm.
The results of this algorithm prediction were objective
classifications of the coffee bean maturity level, such as light,
medium, or dark roast. This classification served as a
quantitative evaluation metric to validate the effectiveness of
the fuzzy logic control system embedded in the roasting
device. Thus, if the CNN algorithm consistently classifies
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samples that match the desired standards, it can be concluded
that the fuzzy logic control system has been successfully
implemented to produce consistent and accurate coffee bean
maturity profiles. The CNN evaluation results are shown in
Table 6.

Table 6. Evaluation results of roasted coffee bean maturity
levels produced by the fuzzy logic-based roasting system
using CNN

Capacity Roasting Time

Result

Dark 9“95%

Medium 93.29%

Light 61.57%

“ﬂ

Medium 99.01%

1 kg 14 minutes ‘

Light 93.0%

Table 5 portrayed that the roasting system integrated with
fuzzy logic-based control has demonstrated excellent
performance in producing a consistent roasting profile that
aligns with the target. In the experiment with a 1 kg capacity
and a 15-minute roasting time, the CNN algorithm confirmed
the system's success in producing dark roast characteristics
with the highest classification accuracy, namely 99.95%. This
high accuracy value indicates that the fuzzy control parameters
have successfully regulated the temperature profile and
roasting duration optimally to achieve a complex and specific
maturity level. Furthermore, the system was also capable of
producing a medium roast with 93.29% accuracy, although the
accuracy for a light roast was relatively lower at 61.57%,
suggesting a need for adjustments to the fuzzy rules during the
initial roasting phase.

Moreover, the results under a 14-minute roasting time with
the same capacity showed the system's highly reliable
performance in producing a medium roast with an accuracy

1kg 15 minutes




reaching 99.01%. This high level of consistency proves that
the fuzzy control system possesses a strong adaptive capability
to variations in roasting time, while maintaining thermal
process stability within the drum. Meanwhile, an additional
result showing the classification of a light roast with 93.0%
accuracy (p. 2) reinforces the analysis that the system has high
reliability for a certain range of roasting profiles, although
there remains room for optimization, particularly in enhancing
accuracy for the light roast profile under longer roasting
conditions.

5. CONCLUSIONS

The experimental results unveiled that the developed hybrid
control system integrating fuzzy logic and CNN has
successfully demonstrated high effectiveness and reliability in
automating the coffee roasting process. The system's core
achievement lies in its ability to produce consistently high-
quality roasted coffee beans that accurately match predefined
roast level profiles.

The fuzzy logic controller proved to be highly adaptive in
managing the complex, non-linear roasting dynamics. Test
results showed the system's responsive performance across
different roasting phases - initiating with aggressive heating at
low temperatures (fire intensity 40, AT +10°C at 160°C),
maintaining precise stability in the critical development zone
(fire intensity 18-28, AT +1 to +4°C at 185-200°C), and
appropriately transitioning to cooling mode at high
temperatures (negative AT values at 205-220°C). This
dynamic control strategy effectively emulated the decision-
making of an experienced roast master.

The CNN-based evaluation system demonstrated
outstanding performance in quality assessment, achieving a
validation accuracy of 95.83%. This accuracy was obtained
through a testing procedure employing 5-fold cross-validation.
The validation results indicate that the model exhibits good
generalization capability across various data partitions and
does not show indications of overfitting.

Furthermore, the evaluation of roasted coffee bean samples
produced by the designed roasting machine reveals that the
CNN architecture implemented in this study is robust and
stable in classifying the roasting maturity levels of coffee
beans. The integration of these technologies results in a
resilient closed-loop control system, in which visual feedback
from the CNN continuously optimizes the parameters used in
the fuzzy logic module. Overall, the findings of this study
confirm that the synergy between adaptive fuzzy-logic-based
control and objective CNN-based quality assessment can
significantly enhance roasting consistency and reduce reliance
on subjective human judgment.

Despite the promising results, this study is not without
limitations. The CNN training dataset was obtained from a
limited set of roasting experiments using a specific coffee bean
type and a single roasting configuration, which may constrain
the model’s generalizability when applied to different bean
varieties, processing origins, or industrial-scale roasting
environments.

Future research should therefore focus on developing a
multi-domain and multi-variety dataset that accommodates a
broader spectrum of coffee bean characteristics, including
diverse cultivars, moisture levels, and post-harvest processing
methods, as well as exploring the integration of lightweight
CNN architectures or emerging vision-based architectures
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such as Vision Transformers on embedded deployment to
improve inference speed and model portability.
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