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Coffee is a primary commodity in international trade. Post-harvest processing, 

particularly the roasting stage, plays a critical role in determining the final product 

attributes, such as flavour, aroma, colour, and bioactive compound content. Precise 

control during the roasting process is essential to ensure quality consistency, especially 

at a commercial production scale. This study aims to develop an adaptive control system 

to achieve a uniform roast level in coffee beans. The implemented method integrates 

fuzzy logic with a deep learning-based evaluation mechanism. The fuzzy logic 

functions as the main controller for the roaster, dynamically regulating temperature, 

time, and heat intensity parameters based on sensor input. Subsequently, a 

Convolutional Neural Network (CNN) algorithm was employed as an objective 

evaluation system to classify the roast degree (light, medium, dark) based on images of 

the coffee beans. The research dataset, comprising 1,600 images of roasted coffee 

beans, was obtained from Kaggle.com for model training and validation, while the 

beans roasted by the machine were used as test data. The test results demonstrated 

highly reliable system performance. The fuzzy controller exhibited robust adaptability 

across various baking phases, and the CNN model achieved a validation accuracy of 

95.83% based on the results of 5-fold cross-validation testing. These findings confirm 

that the integration of these two technologies successfully creates a closed-loop system 

capable of producing roasted coffee beans with a high degree of consistency and 

accuracy. This approach also significantly reduces reliance on manual assessment, 

which is prone to subjectivity and error. 
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1. INTRODUCTION

Coffee has emerged as a primary commodity in 

international trade. Research indicates that 40% of coffee 

quality is determined at the pre-harvest stage through field 

processes, 40% is influenced by primary post-harvest 

processing, and the remaining 20% is determined during 

storage, distribution, and serving [1]. This underscores that 

post-harvest processing, particularly the roasting stage, plays 

a critical role in defining the final attributes of coffee, such as 

flavor, aroma, color, and bioactive compound content [2, 3]. 

During roasting, coffee beans undergo complex 

physicochemical transformations, including Maillard 

reactions and pyrolysis, which alter moisture content, color, 

and the formation of volatile and antioxidant compounds [4]. 

The two key parameters influencing these transformations are 

temperature and time, where minor deviations (±5℃ or ±1 

minute) can significantly alter the bean's sensory profile and 

chemical composition [5, 6]. Therefore, precise control during 

roasting is essential for ensuring quality consistency, 

particularly in commercial-scale production.  

Despite its importance, roasting practices in many regions 

still rely on conventional methods, such as manual roasting in 

iron pans with constant stirring. According to Majeed et al. [7], 

this approach is not only inefficient in terms of energy and 

time but also prone to outcome variability due to its 

dependence on the operator's subjective skill. Semi-controlled 

systems, such as gas-fired rotary ovens equipped with basic 

temperature sensors, have improved temperature consistency. 

However, the assessment of bean maturity remains reliant on 

human visual observation, which is influenced by factors such 

as lighting conditions, operator fatigue, and experience [8-10]. 

Studies indicate that visual misjudgment can lead to over-

roasting or under-roasting, resulting in diminished antioxidant 

activity and flavor quality [11, 12]. 

To address these limitations, full-control systems based on 

fuzzy logic, machine learning, and deep learning technologies 

have begun to be adopted. This approach provides adaptive 

capabilities in decision-making and information processing 

from heterogeneous data sources. A previous study [13] 

demonstrated that the implementation of Convolutional 

Neural Network (CNN) achieved up to 98% classification 

accuracy for coffee bean maturity levels on 600 coffee beans 

grouped into five distinct ripeness stages. In that study, the test 
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data were obtained through multispectral image acquisition, 

and a CNN was then employed to extract pattern 

representations from high-dimensional data.  

Meanwhile, the study [14] developed a machine learning-

based predictive model to estimate optimal roasting 

parameters, including the color profile of roasted coffee beans. 

The model was trained on a dataset integrating key process 

variables, namely temperature, humidity, and roasting 

duration. In another work, a study [15] designed a coffee bean 

roasting machine equipped with a 2 kW heating coil and 

controlled by fuzzy logic algorithms. This study empirically 

demonstrated the effectiveness of fuzzy logic in maintaining 

the roasting process by considering complex variables such as 

bean mass and temperature fluctuations. In addition, the study 

[16] designed a fuzzy logic control system for a portable

roaster. Evaluation results indicated that the system was

capable of regulating roasting temperatures stably and

following varying set-points with minimal fluctuation,

confirming its reliability in processing materials such as

coffee.

However, most of these approaches remain partial: CNNs 

are applied only for visual classification without integration 

into real-time control mechanisms, while fuzzy logic still 

relies on conventional sensor input without image-based 

feedback to evaluate roasting quality [17, 18]. This separation 

reveals a significant research gap. Therefore, this study aims 

to fill this gap by introducing an innovative synergy between 

fuzzy logic and CNN. In the proposed system, fuzzy logic 

functions as the primary controller that dynamically regulates 

process parameters, including drum temperature, roasting 

duration, and heating intensity. In parallel, the CNN algorithm 

is integrated to provide objective visual analysis that acts as 

closed-loop quality feedback. This integration creates a fully 

closed-loop system that not only controls the roasting process 

but also continuously verifies its output, with the ultimate goal 

of producing roasted coffee beans with high and consistent 

maturity levels. 

Based on this research gap, the novelty of this study lies in 

the development of an intelligent closed-loop roasting system 

integrating fuzzy logic and CNN within a single unified 

architecture. Unlike previous fragmented approaches, the 

proposed system utilizes CNN visual classification outputs as 

direct feedback to tune fuzzy logic control parameters. This 

integration enables the system not only to control the process 

based on conventional sensor conditions but also to 

autonomously adjust roasting operations based on objective 

evaluation of the actual roasted beans, thus establishing an 

adaptive roasting mechanism that has not been implemented 

in previous research. Furthermore, this approach reduces 

reliance on manual assessment and enables adaptation to 

natural variability in coffee beans, such as differences in size, 

moisture content, and initial chemical composition [19, 20]. 

The system's advantage is further reinforced by its ability to 

minimize the degradation of bioactive compounds through 

dynamically optimized roasting profiles, while maintaining 

consistency in flavor and aroma, critical aspects for meeting 

market demand for high-quality premium coffee [21, 22].  

The urgency of this research is particularly relevant in the 

context of Industry 4.0, where AI-based automation forms the 

backbone of production efficiency. By combining the 

sophistication of CNNs and fuzzy logic, this system is 

expected not only to enhance the control accuracy of roasting 

machines but also to reduce energy waste and operational 

costs, making it suitable for adoption by small to medium-

scale coffee producers. Ultimately, the integration of this 

technology represents a strategic step toward bridging the gap 

between traditional practices and digital innovation, thereby 

strengthening the competitiveness of the coffee industry in the 

global market. 

2. LITERATURE REVIEW

Optimal coffee roasting serves to transform green coffee 

beans, which initially lack a distinct aroma, into a commercial 

product with high economic value and superior complexity of 

flavor and aroma [1]. This transformation is mediated by a 

series of chemical reactions during roasting, which produce 

between 800 and 1000 volatile and non-volatile compounds 

that determine the coffee's sensory profile [23]. Two key 

reactions in this process are the Maillard reaction and 

caramelization. The Maillard reaction, which is fundamental 

and critical, is a chemical process between amino acids and 

reducing sugars within the coffee beans at specific 

temperatures (typically 140–165℃) [24]. Unlike 

caramelization, which solely involves the breakdown of 

sugars, the Maillard reaction is primarily responsible for 

creating the characteristic brown color of roasted coffee beans; 

while also generating most of the flavor and aroma complexity 

we associate with coffee. Consequently, the Maillard reaction 

can be considered the core transformation that turns raw beans 

into a flavor-rich product [25].  

The roasting process transforms the coffee beans by 

developing their three main taste elements: acidity, sweetness, 

and bitterness. The fundamental objective of this process is to 

create an optimal balance among these three sensory elements. 

Different roasting profiles result in different taste emphases 

[26]. Light roasts tend to preserve or highlight acidity and 

fruity flavor complexity, whereas medium roasts establish a 

balance between acidity, sweetness, and body (mouthfeel). 

Conversely, dark roasts place greater emphasis on bitter 

intensity and a strong body, while reducing acidity. Failure to 

control the roasting process results in flavor imbalance, which 

can manifest as excessively sharp acidity or a dominance of 

bitter and burnt tastes [27, 28].  

Furthermore, the application of proper and controlled 

roasting techniques aims not only to extract optimal flavor but 

also to guarantee final product consistency. The use of 

standardized roasting machines and precise methodologies 

ensures that each production batch possesses uniform quality 

and flavor profile [29]. This consistency ultimately provides a 

predictable and reliable sensory experience for the consumer.  

The correct coffee bean roasting process involves 

controlling three main variables: temperature, heat intensity, 

and roasting time. Precise control of temperature is crucial as 

it governs the complex chemical reactions inside the bean 

responsible for the development of caramel, chocolate, and 

nutty flavors, as well as the pyrolysis that breaks down bitter 

substances and develops the characteristic coffee aroma. If the 

temperature is too low, these reactions will not proceed 

optimally, resulting in underdeveloped coffee with vegetal or 

grassy flavors. Conversely, excessively high temperatures can 

scorch the beans, yielding a dominant burnt and bitter taste, 

and obliterating the beans' original characteristics. Meanwhile, 

heat intensity plays a role in regulating the rate of temperature 

increase [30]. Excessively aggressive heat can char the 

exterior of the beans while the interior remains under-roasted, 

whereas overly gentle heat will steam the beans rather than 
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roast them, producing a flat and less clean flavor [31]. In 

addition, roasting time determines the extent to which these 

flavor developments occur. A shorter time (light roast) will 

retain more acidity, fruitiness, and complex origin 

characteristics. In contrast, a longer time (dark roast) will 

accentuate a heavier body, dark chocolate flavors, and reduced 

acidity [32].  

Achieving an optimal roasting process necessitates the 

precise control of the three main variables: temperature, heat 

intensity, and time. Several studies have developed solutions 

addressing this. A survey by Ayu et al. [33] designed a 4 kg 

capacity roasting machine equipped with a temperature control 

system using a K-type thermocouple. The results 

demonstrated that the machine was capable of producing 

coffee beans with a medium to dark roast level within 52 

minutes at 180℃, with an average yield of 69.17%. 

Meanwhile, research by Botha et al. [34] proposed a model-

based control strategy for the batch roasting process using a 

Proportional-Integral (PI) controller with the Internal Model 

Control (IMC) method. A key finding revealed that the initial 

90 seconds of the roasting process could not be effectively 

controlled due to the presence of dead time and evaporative 

cooling phenomena. Based on this, a two-stage control 

strategy was formulated, which refrains from intervention 

during the first 90 seconds, then applies a secondary loop until 

the 140th second to ensure temperature profile accuracy, 

before finally switching to the main loop that controls the 

derivative of the roast profile. This approach proved capable 

of consistently replicating flavor profiles, increasing 

production rates, and simplifying the operation of 

conventional roasting machines with economical 

implementation costs.  

Although these approaches demonstrate potential in 

improving temperature control accuracy and producing roasts 

with a certain degree of consistency, constrain their practical 

effectiveness. In the study [33], the developed control system 

still predominantly relies on temperature measurements as a 

single parameter and, therefore, is unable to detect and correct 

the dynamic changes in physical characteristics that occur 

during the roasting process. In other words, the success of the 

final roasted coffee remains highly dependent on the 

operator’s manual interpretation of changes in color aroma and 

crack sound. Meanwhile, the study [34] offers a more 

systematic model-based control strategy; however, the scope 

of control remains limited to the manipulation of temperature 

profiles and does not incorporate a mechanism to evaluate the 

actual maturity level of the beans. The system implicitly 

assumes that a given temperature profile will consistently 

result in the same roasting maturity level. This becomes a 

major weakness because, in practice, the coffee roasting 

process is highly non-linear and strongly influenced by 

variability in moisture content, bean size, varietal type, and 

origin characteristics. Thus, both approaches still operate 

within an open-loop architecture that primarily relies on 

machine parameters alone, and therefore are unable to deliver 

an adaptive closed-loop system based on real-time evaluation 

of the actual bean quality during the roasting process. 

Additionally, Miskon et al. [35] proposed a Self-Tuned 

Fuzzy PID (STFPID) control system used to regulate 

temperature in a laboratory-scale roasting machine. 

Simulation results indicated that the STFPID significantly 

reduced overshoot and accelerated settling time compared to a 

conventional PID, thereby maintaining temperature stability 

critical for roast quality consistency. The limitation of that 

study lies in its narrow focus on temperature stabilization as 

the sole indicator of successful roasting. In addition, the 

STFPID operates in an open-loop manner with respect to the 

final product, as it does not incorporate sensors or intelligent 

systems capable of identifying bean maturity in real time. 

Consequently, while the system can maintain a stable 

temperature, it cannot guarantee that such temperature 

stability consistently corresponds to an optimal roasting 

profile. 

Another study by Kim et al. [36] proposed a real-time 

monitoring system for the coffee roasting process based on 

computer vision and deep learning. This system was able to 

classify coffee bean roast results and quantify real-time bean 

color changes by analyzing histograms and the Sum of Pixel 

Grayscale Values (SPGV), where a decrease in SPGV over 

time reflected the darkening of the beans. Additionally, 

research by Astuti et al. [37] developed an electronic nose (E-

Nose) system equipped with six TGS gas sensors (2600, 2602, 

2611, 2612, 2620, and 826) to classify the roast level of 

Robusta coffee beans based on their aroma profiles. An 

Artificial Neural Network (ANN) method was integrated into 

this system to analyze sensor responses corresponding to five 

roast levels (185℃ to 225℃). The results demonstrated very 

high classification accuracy through cross-validation: 98.2% 

for light roast, 98.4% for light-medium, 98.8% for medium, 

97.8% for medium-dark, and 95.9% for dark roast. This 

research proves that the combination of E-Nose and deep 

learning can be a solution for roasting quality control in the 

coffee industry. 

Even though the computer vision-based approach in study 

[36] and the integration of an E-Nose with deep learning in

study [37] demonstrate very high accuracy in classifying roast

levels, both studies still suffer from significant limitations. The

vision system and E-Nose developed in these studies function

only as evaluation systems or quality monitoring systems for

roasted beans, without direct integration into the control

mechanism of roasting parameters. In other words, these

approaches merely identify the condition of coffee beans after

the process has occurred, and therefore still require human

operators to manually adjust temperature, flame intensity, or

roasting duration. As a result, even though these methods are

strong in final quality classification, they cannot provide direct

roasting automation, as they do not operate as part of an

adaptive control loop that is capable of correcting the process

in real time.

Based on the weaknesses identified in previous studies, the 

approach in this research offers a more comprehensive and 

constructive contribution by integrating two domains that 

were previously explored only partially and in isolation. 

Studies [33-35] focus solely on process control based on 

machine parameters (temperature, flame, and time), but cannot 

evaluate the actual bean quality during and after the roasting 

process. Conversely, studies [36, 37] leverage deep learning 

and intelligent sensors to identify bean maturity levels, but 

only function as post-process evaluation systems that are not 

linked to a control mechanism capable of automatically 

adjusting parameters. This research addresses both sets of 

limitations by designing an adaptive control system based on 

fuzzy logic as the core controller that dynamically manipulates 

roasting parameters according to sensor responses, and 

integrating a CNN as an objective evaluator that accurately 

classifies bean maturity based on visual images of roasted 

beans. The integration of these two modules creates a closed-

loop architecture capable of adjusting parameters based on the 
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actual bean outcome, rather than relying solely on assumed 

temperature profiles or manual operator input. 

3. RESEARCH METHOD

3.1 Data collection and datasets 

At this stage, data collection is carried out through two 

primary steps. First, the determination of hardware and 

software specifications used in the research is conducted. 

Second, the acquisition of the roasted coffee bean image 

dataset and data preparation for CNN model training are 

performed. The coffee bean dataset is classified into four 

categories: green bean, light roast, medium roast, and dark 

roast. The hardware and software specifications can be 

presented in Table 1. 

Table 1. Hardware and software components 

Type Component Function 

Hardware 

Raspberry Pi-4 As the main controller 

Thermocouple 

Type K Sensor 

As a real-time temperature 

sensor 

Real Time Clock 

(RTC) 
As digital time 

Servo Motor 
As a flame intensity 

regulator 

Coffee roasting 

machine 

As a coffee bean roasting 

tool with a capacity of 1 kg 

Raspberry Pi-

Camera 
As a coffee image producer 

Arduino Mega 

2560 

As the main controller for 

Arduino device 

Software 

Visual Studio Code IDE for writing Python code 

Arduino IDE 
IDE for writing Arduino 

Code 

Google Colab LeNet model training 

The classification system for coffee bean roast levels in 

this study employs a CNN as the artificial intelligence 

architecture. The classification process commences with two 

primary stages: training and predicting, utilizing image data of 

both roasted and unroasted coffee beans. The dataset 

comprises images of coffee beans across four primary maturity 

levels: unroasted, light roast, medium roast, and dark roast. In 

total, the dataset consists of 1,600 images with a balanced 

distribution, with each category contributing 400 images. 

Subsequently, the dataset is partitioned into two subsets: a 

training subset containing 1,200 images (75%) and a testing 

subset comprising 400 images (25%). Prior to processing, all 

images undergo dimensional standardization to a uniform 

resolution of 224 × 224 pixels. The complete dataset, along 

with its documentation, is publicly accessible via the following 

repository: https://s.id/datasetCoffee123. 

3.2 Fuzzy logic system design 

The coffee roasting process constitutes a critical stage that 

requires dynamic adjustment and precision in controlling key 

parameters, namely temperature, time, and heat intensity, to 

achieve the desired roast profile and ensure batch-to-batch 

quality consistency [28]. To automate and optimize this 

process, fuzzy logic is applied to emulate the decision-making 

capabilities of an experienced roast master. The fuzzy logic 

system is designed to translate real-time sensor data inputs, 

such as bean temperature readings and time, into precise 

control actions for roasting parameters. This system 

overcomes the limitations of conventional control methods by 

effectively handling the nonlinear and uncertain nature of the 

roasting process, thereby maintaining the process along the 

intended trajectory despite variations in raw material 

properties or external disturbances. The stages of fuzzy logic 

implementation consist of fuzzification, inference, and 

defuzzification. 

3.2.1 Fuzzification 

Figure 1. Input member of a function 

Figure 2. Output member of the function 

The fuzzification stage is a fundamental process in fuzzy 

logic systems, which functions to transform precise numerical 

input quantities (crisp inputs) from roasting parameters into 
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fuzzy sets that the inference engine can process [15]. In this 

study, the input variables undergoing the fuzzification process 

include Actual Temperature, observed within the range of 160 

to 220℃ and categorized into four fuzzy sets, namely Low, 

Medium, High, and Very High, as well as the Remaining Time 

in the roasting process, defined over the interval of 0 to 15 

minutes with the classifications Very Short, Short, Moderate, 

and Long. Furthermore, the output variable of the control 

system is designed to generate two corrective actions: ΔT 

(Delta Temperature), representing the required magnitude of 

temperature change with a value range from -10℃ to +10℃, 

and Heat Intensity, controlled on a scale from 0 to 40. This 

transformation enables the system to handle continuous input 

values and measurement uncertainties, thereby allowing 

control decisions to be made based on the degree of 

membership within each fuzzy set. The degree of membership 

for each variable can be illustrated in Figures 1 and 2. 

3.2.2 Inference 

Before making a decision, fuzzy rules are used to control 

the system logically to connect fuzzy inputs and fuzzy outputs 

by taking the form of “If-Then” logic [15], as shown in Eq. 

(1). 

𝑖𝑓 𝑥1 𝑖𝑠 𝑎1 …  𝑖𝑓 𝑥𝑛 𝑖𝑠 𝑎𝑛 𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝑏 (1) 

Decision making uses the min-max mechanism to produce 

fuzzy outputs as expressed by Eq. (2). 

𝜇𝑦(𝑦) = 𝑀𝑎𝑥[min[𝜇𝑥1(𝑖𝑛𝑝𝑢𝑡(𝑖)), 𝜇𝑥2(𝑖𝑛𝑝𝑢𝑡(𝑗)), … ]] (2) 

3.2.3 Defuzzification 

Defuzzification is the process of converting fuzzy outputs 

into crisp values [15]. The defuzzification method used is the 

average, expressed in Eq. (3). 

𝑍0 = ∑
𝜇(𝑍𝑖). 𝑍𝑖

𝜇(𝑍𝑖)

𝑛

𝑖=1

(3) 

3.3 CNN model training 

3.3.1 Input layer 

The training of the CNN model commences at the input 

layer, which is responsible for receiving raw image data. This 

layer serves as the foundation that determines the initial 

dimensions of the data. Its primary function is to accept, 

organize, and prepare the input data in a format compatible for 

processing in the subsequent convolutional stages [38]. In 

contrast to other layers within the CNN, this stage does not 

perform learnable computations; instead, it acts as a data 

buffer to ensure the input dimensions and structure conform to 

the model architecture's requirements [39].  

In this study, the input layer receives images of coffee beans 

that have been roasted using a machine controlled by a fuzzy 

logic system. The coffee beans produced from this process are 

classified into three roast levels: light, medium, and dark. Each 

input image has a fixed resolution of 224 × 224 pixels with 

three color channels, Red-Green-Blue (RGB), resulting in an 

input dimension of 224 × 224 × 3 for the model. 

3.3.2 Convolutional layer 

At this stage, the convolutional layer uses kernel features to 

extract spatial patterns from an image. Kernel features consist 

of small matrices containing learned values, which are shifted 

across the entire input area [40]. At each position, a dot 

product operation is performed between the filter and the pixel 

section it overlaps, producing a feature map that indicates the 

location and strength of a pattern, such as an edge or corner. 

However, the convolution operation is essentially linear. To 

enable the network to learn non-linear and complex 

relationships, the Rectified Linear Unit (ReLU) activation 

function is applied to each value in the feature map. This 

function is very efficient because it only changes all negative 

values to zero and leaves positive values unchanged, thus 

introducing non-linearity without complicating the 

computation. The illustration of the operational mechanism of 

the convolutional layer is presented in Figure 3. 

Figure 3. Illustration of a convolutional layer 

3.3.3 Pooling layer 

This layer serves to reduce computational costs and prevent 

overfitting by cutting down on the number of parameters. In 

addition, this layer also increases the model's resilience to 

small changes in objects, such as shifts or rotations. One 

popular method is max pooling, which works by taking the 

highest value from an area (for example, a group of 2 × 2 

pixels). By filtering and retaining only the most dominant 

features, the pooling layer makes the neural network less 

dependent on the specific location of a feature, which 

ultimately strengthens the model's generalization power. The 

operational mechanism of the pooling layer is illustrated in 

Figure 4. 

Figure 4. Illustration of the max-pooling layer 

3.3.4 Flatten layer 

The flatten layer acts as a connector that transforms data 

from the convolutional layer to the classification layer. This 

layer converts feature maps that have multiple dimensions 
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(such as height, width, and number of channels) into a one-

dimensional array or vector. This transformation is critical 

because the fully connected layer, which is responsible for 

classification, can only process data in vector form, not in 

multidimensional matrix form. 

3.3.5 Fully connected layer 

The main task of this layer is to interpret the extracted 

features and perform classification, with a structural 

configuration similar to that of a standard ANN. The fully 

connected connections between neurons and the previous layer 

enable the network to learn complex nonlinear patterns from 

all high-level features. In its operation, the fully connected 

layer also utilizes the ReLU activation function to maintain its 

non-linearity. The working mechanism of the fully connected 

layer is illustrated in Figure 5. 

Figure 5. Illustration of a fully connected layer 

3.3.6 Output layer 

The final layer in neural network architecture is responsible 

for producing definitive prediction results. The neuron 

configuration in this layer is equivalent to the number of 

categories to be classified. The activation function applied is 

task-specific. For binary classification tasks, such as 

distinguishing between images of cats and dogs, the Sigmoid 

function is chosen because its output values between 0 and 1 

can be considered as the model's confidence level. On the other 

hand, multi-class classification problems, such as recognizing 

numbers from 0 to 9, require the Softmax function. The 

advantage of Softmax lies in its ability to convert output scores 

into a standardized probability distribution (summing to 1), so 

that each value represents the probability of each class. 

3.4 Architecture of LeNet 

The LeNet architecture was a pioneer in CNN and became 

the foundation for the development of modern CNN, 

introducing basic patterns that are still relevant today. LeNet 

consists of seven learning layers arranged in a convolution and 

subsampling (pooling) pattern, ending with a fully connected 

layer. The LeNet architecture is shown in Figure 6. 

Based on this LeNet architecture, the input layer receives a 

32 × 32 pixel grayscale image. Layer C1 performs convolution 

with six 5 × 5 filters without padding, producing a 28 × 28 × 6 

feature map. Each filter learns to detect different patterns, such 

as edges and corners. The S2 layer performs subsampling with 

2 × 2 average pooling, reducing the resolution to 14 × 14 × 6 

while making detection more robust against small shifts. The 

C3 layer applies another convolution with 16 × 5 × 5 filters, 

producing a 10 × 10 × 16 feature map that captures more 

complex combinations of features. Layer S4 performs average 

pooling again, reducing the dimensions to 5 × 5 × 16. Once 

feature extraction is complete, layer C5 flattens the 5 × 5 × 16 

feature map into a 400-element vector and connects it to 120 

fully connected neurons. Layer F6 further processes these 

features with 84 neurons before the output layer finally 

produces probabilities for 10-digit classes (0-9). In modern 

implementations, the Softmax function is typically used in the 

output layer for multi-class classification, although the 

original version used Euclidean Radial Basis Function units. 

Figure 6. Architecture of LeNet 

The selection of CNN in this study is grounded on the 

characteristics of the evaluated data, namely, the visual images 

of roasted coffee beans. CNNs have been proven to be highly 

effective methods for automatically extracting visual features, 

particularly shape, texture, and color distribution patterns that 

change significantly throughout the roasting process. Several 

more recent machine learning algorithms (e.g., Vision 

Transformer/ViT, latest-generation EfficientNet, Swin 

Transformer, MobileFormer, and others) indeed exhibit 

excellent performance in principle, but there are two strategic 

reasons why CNN remains the most appropriate choice for the 

context of this research. 

First, the most dominant changes that occur when the beans 

enter the roasting phase are surface texture alterations and 

localized color distribution shifts, rather than global 

morphological changes. CNNs are inherently more suitable for 

detecting such localized patterns, whereas state-of-the-art 

transformer-based architectures require very large datasets to 

“learn” these visual structures end-to-end without relying on 

such inductive bias. Second, these more advanced models 

typically demand significantly higher computational capacity, 

require large datasets, and have inference latency that is not 

ideal for a control system that demands rapid responses. 

CNNs, especially lightweight architectures such as LeNet, can 

deliver inference within millisecond-scale latency without 

compromising the parallel execution of the fuzzy-logic-based 

control system. 

3.5 Roasting machine prototype design 

The roasting machine prototype was developed by 

integrating Arduino Mega 2560 as the main controller 

connected to several critical components. These components 

include a thermocouple sensor for real-time temperature data 

acquisition, an RTC module for temporal accuracy, and a 

servo motor as an actuator to regulate the intensity of the fire. 

The intelligent control system in this prototype implements 

fuzzy logic that functions to process sensor data and calculate 

optimal control parameters. The fuzzy inference process 

produces two output variables, namely the amount of 

temperature change (ΔT) and the level of flame intensity 

required by the roasting machine. These output variables then 

act as feedback to continuously adjust the roasting process 

(closed-loop system). When the target roast level is reached, 
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the system automatically transfers the coffee beans to the 

cooling bin for the final cooling process. Furthermore, CNN is 

implemented as a quality control mechanism by analyzing 

images of roasted coffee beans. CNN provides feedback in the 

form of a percentage of conformity between the roasting 

results and the classification desired by the user. The design of 

the fuzzy system implementation in the roasting machine and 

the CNN evaluation architecture is shown schematically in 

Figure 7. 

Figure 7. Roasting machine of prototype design 

4. RESULT AND DISCUSSION

4.1 Coffee machine design results 

Fundamentally, coffee roasting apparatuses operate as 

thermodynamic systems engineered to apply measured 

thermal energy to transform green coffee beans into a material 

that has undergone flavor and aroma development, thereby 

achieving an optimal level of maturity for the grinding 

process. Essentially, the construction of a coffee roasting 

machine comprises several primary constituent parts that 

function synergistically. The core component of this thermal 

process is a rotating cylindrical drum. This chamber houses the 

raw material, the green coffee beans. Through its rotational 

mechanism, the drum serves to agitate the beans continuously, 

ensuring the creation of a uniform heating profile and a 

consistent roasting development across all parts of the beans.  

The thermal energy required for the roasting process is 

generated by a burner, positioned beneath the drum, which is 

typically configured to use gas as its fuel source. Meanwhile, 

to regulate the temperature within the roasting chamber and 

simultaneously eliminate chaff (the bean's skin) released 

during the process, the machine is integrated with a 

mechanical ventilation system utilizing a fan. Process stability 

is highly dependent on a control system that encompasses 

temperature regulation, time management, and adjustments for 

drum rotation speed and airflow. Other auxiliary components 

include a hopper as a funnel for holding the raw beans, a 

cooling tray to rapidly cool the beans post-roasting via air 

circulation, and an exhaust system (such as an afterburner or 

scrubber system) to manage the emissions produced. All these 

components are assembled within a robust machine housing, 

forming an integrated system that enables the roaster to 

develop coffee flavor profiles according to specific 

preferences. The design result of the coffee machine can be 

presented in Figure 8. 

Figure 8. Coffee machine design results 

4.2 Results of testing type K thermocouple sensors 

Accurate temperature measurement is a critical parameter 

in the coffee bean roasting process, wherein type K 

thermocouple sensors are commonly implemented as the 

primary devices for monitoring real-time temperature values 

inside the drum. This study aims to evaluate the reliability and 

temperature reading accuracy of the type K thermocouple 

sensor by comparing it against a standard thermometer 

(reference instrument) with higher specifications and 

precision. This comparative evaluation is intended to quantify 

the degree of deviation or potential error, thereby determining 

the extent to which the temperature data from the sensor can 

be relied upon for process control and product quality 

consistency.  

The testing procedure was conducted through several 

methodological stages. First, the preparation and calibration 

stage, wherein the standard thermometer to be used as a 

reference was first calibrated to ensure its accuracy. The type 

K thermocouple sensor and the standard thermometer were 

then installed side-by-side at strategic positions inside the 

drum of the coffee roasting machine, which was neutralized of 

coffee beans, to ensure both sensors were exposed to identical 

heat profiles. Subsequently, the data acquisition stage 

commenced by operating the roasting machine at several 

predetermined operational temperature levels. At each stable 

temperature level, readings from both instruments were 

recorded simultaneously at 60-second intervals to obtain an 

adequate dataset. The sensor test results can be presented in 

Table 2. 

Figure 9 confirmed a positive correlation observed between 

the increase in the roasting machine's drum temperature and 

the magnitude of the deviation between the thermocouple and 

digital thermometer readings. The maximum recorded 

absolute deviation reached 22.05℃, with an average deviation 
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value across the testing range of 10.51℃. This phenomenon 

directly correlates with the sensor's error percentage, where 

the temperature increase is directly proportional to the 

enlargement of the thermocouple's reading error. The highest 

identified relative error was 13.024%, while the average 

relative error was 8.27%. Based on this data, the accuracy level 

of the thermocouple sensor in reading the temperature inside 

the drum can be quantified at 91.33%. With this accuracy 

level, it can be concluded that the sensor possesses sufficient 

reliability for use in temperature data acquisition, which 

functions as the input variable for the fuzzy control system. 

Table 2. Thermocouple sensor test results 

Time (second) 
Temperature 

Deviation (℃) Error (%) 
Thermocouple (℃) Thermometer (℃) 

0 32.6 32.4 0.2 0.617 

60 64.5 68.8 4.3 6.250 

120 77.75 85.2 7.45 8.744 

180 90.25 96.6 6.35 6.573 

240 102.75 112.9 10.15 8.990 

300 113.5 123.6 10.1 8.172 

360 122.75 136.1 13.35 9.809 

420 132 145.3 13.3 9.153 

480 139.25 157.1 17.85 11.362 

540 147.25 169.3 22.05 13.024 

Average 10.51 8.27 

Figure 9. K-type thermocouple test chart 

4.3 Fuzzy logic algorithm test results 

The implementation of a fuzzy algorithm in a coffee bean 

roasting system is primarily aimed at replicating the cognitive 

capabilities of a professional roaster in making decisions 

during the process. This algorithm is designed to perform 

fuzzification, which translates real-time sensor input variables, 

such as in-drum temperature and roasting duration, into fuzzy 

sets with linguistic values like "low," "medium," and "high." 

Subsequently, through an inference engine containing a rule 

base formulated from expert knowledge, the system maps 

these input fuzzy sets into an output decision. This output then 

undergoes a defuzzification process to be converted into a 

precise and dynamic control action for heating parameters, 

such as burner intensity and airflow rate, thereby mimicking 

the adaptive approach employed by a human.  

The operational testing phase of the system begins with 

sample preparation, where green coffee beans with a moisture 

content below 12% are prepared to ensure consistency in 

thermal response. The roaster machine is then activated to 

preheat the drum until it reaches a stable temperature of 180℃. 

The introduction of the green coffee beans marks the 

commencement of the drying phase, during which the fuzzy 

algorithm becomes actively involved in monitoring and 

regulating the temperature. The system continuously acquires 

real-time temperature data and performs fuzzy inference 

calculations to determine the optimal control output. The 

transition to the Maillard phase occurs automatically based on 

the logic embedded within the system. This process continues 

until the system detects the auditory indication of the first 

crack. At this point, the system switches to the development 

phase, which is the primary determinant of the final roast level. 

The duration of this phase is calculated by the fuzzy algorithm 

based on the desired profile. Immediately upon reaching the 

target, the coffee beans are discharged from the drum and 

rapidly cooled on a cooling tray to definitively halt the thermal 

process, resulting in roasted coffee beans with consistent and 

controlled characteristics. 

Table 3. Fuzzy logic algorithm test results 

Input Output 

Thermocouple (℃) Time (s) Fire Intensity ΔT 

160 14 40 10 

165 13 38 9 

170 12 36 8 

175 11 34 7 

180 10 32 6 

185 9 28 4 

190 8 25 3 

195 7 22 1 

200 6 18 0 

205 5 15 -2

210 4 12 -4

215 3 8 -6

220 2 5 -8

Table 3 depicts that the system demonstrates responsive 

performance in controlling roasting parameters. In the initial 

condition, where the temperature was still low (160℃) with a 

substantial remaining time (14 minutes), the system responded 

appropriately by generating a maximum fire intensity output 

of 40 and the largest positive temperature change of +10℃. 

This indicates the system's capability to perform aggressive 

heating to reach the optimal temperature rapidly.  

As the input temperature increased, the system 

progressively reduced the fire intensity and decreased the 

magnitude of the temperature change, demonstrating adaptive 

control characteristics. In the intermediate temperature range 

of 185-200℃, which constitutes the optimal development 

zone, the system maintained the fire intensity within a range 
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of 18-28 with minimal temperature changes (+1 to +4℃), 

reflecting a strategy to maintain a stable temperature to 

optimize the development of coffee bean flavor. This pattern 

illustrates the system's capability for precision control during 

the critical development phase.  

During the finishing phase, where the temperature had 

reached high levels (205–220℃) with increasingly limited 

remaining time, the system consistently switched to a cooling 

mode by applying negative temperature changes (-2 to -8℃) 

and continuously decreasing the fire intensity down to 5. This 

response is critical to prevent over-roasting and burning, while 

simultaneously preparing for a controlled cooling process. The 

smooth transition from heating to cooling signifies the 

successful implementation of the fuzzy rule base in handling 

the non-linearity of the roasting process. 

4.4 CNN testing result 

CNN is a deep learning algorithm whose architecture is 

specifically designed for processing image data. Its capability 

to automatically extract hierarchical features has proven 

highly effective for handling various computer vision tasks, 

such as image classification, semantic segmentation, and 

object detection. This experiment aims to implement a CNN 

model to evaluate the results of coffee bean roasting. The 

model's performance was assessed through an analysis of 

training accuracy, validation accuracy, training loss, and 

validation loss metrics. The objective is to validate whether the 

constructed CNN model can function as an objective 

evaluation system capable of classifying the roast level of 

coffee beans, such as light, medium, and dark, thereby 

ensuring that product quality consistency meets established 

standards.  

The testing procedure commenced with data sample 

preparation. Green coffee beans were roasted using a 1-

kilogram capacity machine integrated with a fuzzy logic 

control system. For each batch, different roast level setpoints 

were established. Upon completion of the roasting process, 

samples of the roasted coffee beans were collected from each 

batch to serve as test subjects. The output from the CNN 

system, which is an objective classification of the beans' roast 

level, was subsequently analyzed. The results of this analysis 

serve as critical feedback for revising and refining the 

parameters and rule base of the fuzzy control system in the 

roasting machine. Consequently, an iterative cycle is formed, 

continuously enhancing the precision of the roasting process 

based on objective visual evaluation from the CNN. The 

training and validation results of the CNN algorithm are 

presented in Table 4. 

Table 4. CNN training accuracy and training loss test results 

Epoch 
Train 

Accuracy 

Train 

Loss 

Validation 

Accuracy 

Validation 

Loss 

5 0.8751 0.1923 0.9267 0.1978 

10 0.9561 0.0780 0.9733 0.0793 

15 0.9723 0.0425 0.9733 0.0469 

20 0.9665 0.0430 0.9767 0.0509 

25 0.9950 0.0247 0.9900 0.0269 

30 0.9908 0.0156 0.9867 0.0228 

Table 4 shows that the CNN model exhibits a highly 

positive performance improvement as the number of training 

epochs increases, as illustrated in Figure 10. An analysis of the 

accuracy and loss metrics reveals that the model exhibited a 

significant enhancement in its ability to learn the visual 

characteristics of coffee beans. Training accuracy consistently 

increased from 0.8751 at epoch 5 to 0.9908 at epoch 30, while 

validation accuracy showed a similar upward trend, rising 

from 0.9267 to 0.9867. This parallel growth pattern between 

training and validation accuracy indicates that the model did 

not overfit but instead successfully achieved a strong 

generalization capability.  

Figure 10. CNN testing result 

From the perspective of loss values, a stable decrease was 

observed in both training loss and validation loss. The training 

loss decreased from 0.1923 to 0.0156, and the validation loss 

declined from 0.1978 to 0.0228. The minimal discrepancy 

between the training and validation loss at the conclusion of 

the training process confirms the model's effectiveness in 

generalizing visual patterns. The model's performance peak 

was achieved at epoch 25, with a training accuracy of 0.9950, 

a validation accuracy of 0.9900, and concomitantly very low 

loss values.  

The consistent validation accuracy rate exceeding 97% after 

epoch 10 substantiates the viability of the CNN model as an 

automated evaluation system for coffee bean maturity 

classification. This reliable visual classification capability 

supports its integration with a fuzzy control system within the 

roasting process, where the CNN's classification output can 

serve as feedback to refine roasting parameters adaptively. 

Based on the comprehensive analysis, the developed CNN 

model has fulfilled the criteria for a dependable, objective 

evaluation system to ensure consistent quality in roasted 

coffee bean production. 

4.5 The 5-fold cross validation 

To mitigate potential overfitting, this study applied a 5-fold 

cross-validation scheme during the model training and 

evaluation process. In this scheme, the entire dataset 

consisting of 1,600 images of roasted coffee beans was divided 

into five equally sized subsets, each containing 320 images, 

referred to as “folds”. In the first fold iteration (folding-1), the 

first fold was assigned as the validation set, while the 

remaining four folds were used as the training set. In the 

second iteration (folding-2), the second fold was used as the 

validation set, and the other folds were used for training. This 

process was repeated until all folds served as the validation set 

exactly once. Accordingly, each image in the dataset 

contributed fairly to both the training and validation processes. 
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This cross-validation approach not only increases the 

reliability of the model evaluation but also produces a more 

stable performance estimate, since the measured accuracy, 

precision, sensitivity, and other evaluation metrics do not 

depend on a single test subset. The dataset splitting scheme in 

the cross-validation process is illustrated in Figure 11, which 

shows how each fold is alternately used as the validation set 

across the five training iterations. Thus, the risk of bias in test 

data selection can be minimized, while the model’s 

generalization capability to unseen data can be assessed in a 

more objective and representative manner. 

Figure 11. Dataset segmentation using 5-fold cross-

validation 

The training and validation performance across the five 

data-splitting iterations is presented in Table 5. The average 

validation accuracy obtained from this 5-fold scheme reached 

95.83%, indicating that the model generalizes well across 

different data partitions and does not exhibit overfitting on any 

specific portion of the dataset. These findings confirm that the 

CNN architecture employed in this study is robust and 

provides stable performance in classifying roasted coffee bean 

maturity levels. 

Table 5. Testing result using 5-fold cross-validation 

Fold 

Number 
Loss Accuracy 

Validation 

Loss 

Validation 

Accuracy 

Fold-1 0.0387 0.9744 0.0312 0.9864 

Fold-2 0.0521 0.9511 0.0453 0.9620 

Fold-3 0.0408 0.9582 0.0337 0.9722 

Fold-4 0.0674 0.9075 0.0591 0.9254 

Fold-5 0.0499 0.9218 0.0384 0.9453 

Average 0.0498 0.9426 0.0415 0.9583 

4.6 Analysis of coffee bean roasting results based on CNN 

algorithm 

This test was conducted with the main objective of 

evaluating the performance of a coffee bean roasting system 

integrated with a CNN-based deep learning model. The 

evaluation aimed to verify whether the coffee beans roasted by 

the machine met the specified maturity standards. 

Procedurally, the test began with the collection of samples of 

coffee beans that had undergone the roasting process. Digital 

images of these samples were then acquired for further 

processing and prediction by a pre-trained CNN algorithm. 

The results of this algorithm prediction were objective 

classifications of the coffee bean maturity level, such as light, 

medium, or dark roast. This classification served as a 

quantitative evaluation metric to validate the effectiveness of 

the fuzzy logic control system embedded in the roasting 

device. Thus, if the CNN algorithm consistently classifies 

samples that match the desired standards, it can be concluded 

that the fuzzy logic control system has been successfully 

implemented to produce consistent and accurate coffee bean 

maturity profiles. The CNN evaluation results are shown in 

Table 6. 

Table 6. Evaluation results of roasted coffee bean maturity 

levels produced by the fuzzy logic-based roasting system 

using CNN 

Capacity Roasting Time Result 

1 kg 15 minutes 

1 kg 14 minutes 

Table 5 portrayed that the roasting system integrated with 

fuzzy logic-based control has demonstrated excellent 

performance in producing a consistent roasting profile that 

aligns with the target. In the experiment with a 1 kg capacity 

and a 15-minute roasting time, the CNN algorithm confirmed 

the system's success in producing dark roast characteristics 

with the highest classification accuracy, namely 99.95%. This 

high accuracy value indicates that the fuzzy control parameters 

have successfully regulated the temperature profile and 

roasting duration optimally to achieve a complex and specific 

maturity level. Furthermore, the system was also capable of 

producing a medium roast with 93.29% accuracy, although the 

accuracy for a light roast was relatively lower at 61.57%, 

suggesting a need for adjustments to the fuzzy rules during the 

initial roasting phase.  

Moreover, the results under a 14-minute roasting time with 

the same capacity showed the system's highly reliable 

performance in producing a medium roast with an accuracy 
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reaching 99.01%. This high level of consistency proves that 

the fuzzy control system possesses a strong adaptive capability 

to variations in roasting time, while maintaining thermal 

process stability within the drum. Meanwhile, an additional 

result showing the classification of a light roast with 93.0% 

accuracy (p. 2) reinforces the analysis that the system has high 

reliability for a certain range of roasting profiles, although 

there remains room for optimization, particularly in enhancing 

accuracy for the light roast profile under longer roasting 

conditions. 

5. CONCLUSIONS

The experimental results unveiled that the developed hybrid 

control system integrating fuzzy logic and CNN has 

successfully demonstrated high effectiveness and reliability in 

automating the coffee roasting process. The system's core 

achievement lies in its ability to produce consistently high-

quality roasted coffee beans that accurately match predefined 

roast level profiles.  

The fuzzy logic controller proved to be highly adaptive in 

managing the complex, non-linear roasting dynamics. Test 

results showed the system's responsive performance across 

different roasting phases - initiating with aggressive heating at 

low temperatures (fire intensity 40, ΔT +10℃ at 160℃), 

maintaining precise stability in the critical development zone 

(fire intensity 18-28, ΔT +1 to +4℃ at 185–200℃), and 

appropriately transitioning to cooling mode at high 

temperatures (negative ΔT values at 205–220℃). This 

dynamic control strategy effectively emulated the decision-

making of an experienced roast master.  

The CNN-based evaluation system demonstrated 

outstanding performance in quality assessment, achieving a 

validation accuracy of 95.83%. This accuracy was obtained 

through a testing procedure employing 5-fold cross-validation. 

The validation results indicate that the model exhibits good 

generalization capability across various data partitions and 

does not show indications of overfitting.  

Furthermore, the evaluation of roasted coffee bean samples 

produced by the designed roasting machine reveals that the 

CNN architecture implemented in this study is robust and 

stable in classifying the roasting maturity levels of coffee 

beans. The integration of these technologies results in a 

resilient closed-loop control system, in which visual feedback 

from the CNN continuously optimizes the parameters used in 

the fuzzy logic module. Overall, the findings of this study 

confirm that the synergy between adaptive fuzzy-logic-based 

control and objective CNN-based quality assessment can 

significantly enhance roasting consistency and reduce reliance 

on subjective human judgment. 

Despite the promising results, this study is not without 

limitations. The CNN training dataset was obtained from a 

limited set of roasting experiments using a specific coffee bean 

type and a single roasting configuration, which may constrain 

the model’s generalizability when applied to different bean 

varieties, processing origins, or industrial-scale roasting 

environments. 

Future research should therefore focus on developing a 

multi-domain and multi-variety dataset that accommodates a 

broader spectrum of coffee bean characteristics, including 

diverse cultivars, moisture levels, and post-harvest processing 

methods, as well as exploring the integration of lightweight 

CNN architectures or emerging vision-based architectures 

such as Vision Transformers on embedded deployment to 

improve inference speed and model portability. 
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