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Predicting students’ study programs based on heterogeneous academic and personal
attributes remains a complex challenge in educational data mining. Conventional neural
network models that rely solely on academic parameters often suffer from
misclassification and weak generalization. This study proposes a heuristic-based
backpropagation optimization framework that combines a Genetic Algorithm (GA)
with an adaptive Fusion-A mechanism to enhance Multi-Layer Perceptron (MLP)
performance. The GA adaptively tunes learning rate, momentum, batch size, and neuron
configuration, while Fusion-A balances the contributions of academic (grades in
mathematics, English, and Indonesian) and non-academic features (interests,
personality traits, and learning styles). Using a dataset of undergraduate students from
Universitas Katolik Santo Thomas Medan (class of 2024), the proposed GA—Fusion-A
model was trained for 50 epochs under a stratified data-split setting. Experimental
results reveal an accuracy improvement from 47.37% to 52.63%, corresponding to a
5.26% absolute and 11.1% relative gain. Although the improvement appears modest, it
is educationally meaningful, as it reduces program misplacement errors by nearly 10%,
which directly enhances academic guidance and admission decisions. The results
indicate that heuristic-guided parameter optimization improves model stability, reduces
overfitting risks, and provides a methodologically novel pathway toward developing
adaptive, fair, and data-driven educational recommender systems that support the goal

of quality higher education (SDG 4).

1. INTRODUCTION

The accurate selection of a study program plays a vital role
in shaping students’ academic success and long-term career
development [1]. However, many prospective students
continue to rely primarily on institutional reputation or
accreditation status [2] rather than considering intrinsic factors
such as personal interests, aptitudes, and learning preferences
[3]. This mismatch between individual characteristics and the
chosen study program often leads to decreased motivation,
academic underperformance, and career uncertainty after
graduation [1]. Therefore, developing a data-driven decision-
support system that objectively aligns student profiles with
suitable study programs is essential to enhance educational
quality and fairness in higher education. The advancement of
Artificial Intelligence (AI) provides an effective framework
for this purpose, as it enables the modeling of complex
relationships in educational data [4, 5].

Among Al-based approaches, Artificial Neural Networks
(ANNs) trained through the backpropagation algorithm have
shown remarkable ability in handling nonlinear classification
problems and learning intricate feature dependencies [6, 7].
However, most prior studies still rely exclusively on academic
indicators such as examination results and grade point
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averages [8], overlooking non-academic factors, including
interests, personality traits, and learning styles that strongly
influence students’ study choices. Furthermore, many ANN
models use default hyperparameters such as fixed learning
rate, hidden-layer configuration, and batch size without
systematic tuning [9, 10], resulting in slow convergence and
inconsistent predictive accuracy. Optimization strategies such
as Stochastic Gradient Descent (SGD), mini-batch learning,
and learning rate scheduling [11-13] have been introduced to
improve training efficiency, yet they remain limited by
deterministic search behaviors and sensitivity to parameter
initialization, particularly when datasets are small or
imbalanced.

Two major research gaps persist in this field. The first
involves the absence of an effective optimization framework
for ANN hyperparameters, as most studies rely on manual or
heuristic trial-and-error approaches that fail to achieve global
optima [9, 10]. The second concerns the lack of integration
between academic and non-academic attributes within a
unified predictive structure, even though such integration is
essential for personalized educational recommendations [14].
Previous studies employing traditional machine learning
methods such as decision trees, Naive Bayes, and Support
Vector Machines (SVMs) [15, 16] have provided valuable
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insights into student performance prediction but lack adaptive
learning capability. Although ANN-based approaches exhibit
stronger generalization capacity [17, 18], they remain prone to
overfitting and require mechanisms such as cross-validation,
early stopping, and regularization [19-21] to ensure model
stability. Meanwhile, metaheuristic algorithms, notably the
Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO), have shown significant success in optimizing ANN
architectures for other domains, such as image classification
[22] and tidal forecasting [23], yet their application to
educational prediction problems remains limited.

To address these challenges, this study proposes a heuristic-
based backpropagation optimization framework that integrates
a GA and an adaptive Fusion-A mechanism within a multilayer
perceptron (MLP) architecture. The GA component optimizes
key hyperparameters, including the learning rate, momentum,
and neuron configuration, while Fusion-)\ adaptively balances
the contributions of academic features (mathematics, English,
and the Indonesian language) and non-academic attributes
(interests, personality traits, and learning styles). This
integration enhances convergence, stability, and accuracy
when processing multidimensional educational data.
Experimental evaluation demonstrates that the proposed
model achieves an accuracy improvement from 47.37% to
52.63%, corresponding to a 5.26% absolute and 11.1% relative
gain, which is educationally meaningful in reducing study-
program misclassification by approximately 10%. The main
contributions of this study are threefold: (1) a methodological
contribution through the introduction of a GA-Fusion-A
optimization scheme that merges heuristic tuning and adaptive
feature weighting, (2) an empirical contribution by
demonstrating improved prediction performance and
convergence stability, and (3) a practical contribution by
providing a personalized, data-driven decision-support tool to
promote equitable and quality-oriented program selection in
higher education.

2. THE MATERIALS AND METHOD

In the development of Al-based decision support systems in
higher education, particularly for predicting students’ study
program choices, a systematic methodology is essential to
ensure accurate and reliable outcomes. This study commenced
with the collection of both academic and non-academic
student data, followed by a preprocessing stage to guarantee
data quality. Subsequently, the two types of data were
integrated through a feature fusion mechanism, enabling the
comprehensive utilization of heterogeneous information. A
baseline ANN model with a backpropagation algorithm was
then constructed prior to parameter optimization using
heuristic approaches to enhance performance. Finally, the
research concluded with a model performance evaluation
employing accuracy metrics and a confusion matrix, as
summarized in Figure 1.

2.1 Data acquisition process

The data acquisition process constitutes a fundamental stage
in this research, as the quality and characteristics of the data
critically determine the performance of the predictive model
being developed. In the context of student study program
selection, the data employed are not limited solely to academic
aspects, as is commonly found in previous studies; rather, this
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research extends the scope by incorporating additional
dimensions to provide a more comprehensive basis for
prediction [24].
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Figure 1. Proposed research design
2.1.1 Academic data
The academic data encompass students’ cognitive

achievements, such as grades in core subjects (mathematics,
Indonesian language, and English), overall grade point
averages, and other academic indicators that reflect learning
performance. These variables serve as a representation of
formal academic ability, which has traditionally been the
primary reference in study program selection.

2.1.2 Non-academic data

The non-academic data were obtained through surveys
containing information on students’ interests and talents,
learning styles (visual, auditory, kinesthetic), and program
preferences, as well as extracurricular activities. These data
complement the academic perspective by incorporating
personal and affective factors that also play a critical role in
shaping students’ tendencies in study program selection.

2.1.3 Preprocessing

The data preprocessing stage constitutes a crucial step in
this study to ensure that the data employed possess high
quality, consistency, and optimal suitability for processing by
the ANN model. At this stage, several key procedures were
carried out as follows [24]:

(1) Data cleaning



The initial step involved data cleaning, which was carried
out by removing entries with missing values, detecting and
eliminating duplicate records, and discarding inconsistent
data. This process aimed to preserve the integrity of the dataset
and ensure that the model would not be influenced by invalid
information.

(2) Normalization of numerical data

The subsequent step was the normalization of numerical
variables to harmonize the scale across features. This
normalization was performed using the z-score normalization
method, such that each feature was transformed to have a
distribution with a mean of zero and a standard deviation of
one. The transformation formula is expressed as follows:

X—u
g

X= 1

where, X denotes the original value, u represents the mean,
and o indicates the standard deviation of the corresponding
feature.

(3) Encoding of categorical data

Categorical variables, particularly within the non-academic
data that are inherently qualitative in nature, were transformed
into a numerical format using the One-Hot Encoding (OHE)
technique. This procedure enables each categorical value to be
represented as a binary vector, thereby ensuring compatibility
with  machine learning models. Importantly, this
transformation preserves the semantic meaning of the original
categories while allowing the data to be processed in a
mathematically consistent manner.

2.2 Model design stage

The model design stage constitutes the core of this research,
wherein an ANN architecture was constructed using the
backpropagation algorithm [25]. In this study, the model
design does not merely follow a conventional approach but
introduces two principal novelties, namely:

(1) Adaptive feature fusion (1) at the input layer, which
integrates academic and non-academic data, thereby allowing
the contribution of each domain to be optimally adjusted.

Zy = [A-X~acad||(1 - A)X~non]vl € [0'1] (2)

Eq. (2) represents the mechanism of adaptive feature fusion,
where X,.,4 denotes the normalized academic features and
X.on denotes the non-academic features that have undergone
the encoding process. The operation || signifies the
concatenation of both vectors into a single input
representation, with the parameter A serving as a weighting
factor to regulate the relative contribution of the two data
types. When A approaches 1, the input is more strongly
influenced by academic data, whereas when A approaches 0,
the input is predominantly shaped by non-academic data. At
an intermediate value, A ensures a balanced contribution from
both sources of information.

(2) Optimization of backpropagation hyperparameters using
a heuristic-based approach, specifically the GA [26, 27].

L Forward Pass (Propagation)

After the input representation Z, is constructed through the
adaptive feature fusion mechanism (), the data is propagated
into the hidden layer using the Rectified Linear Unit (ReLU)
activation function [28]. This process can be formulated as:
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Hy = f(W®Zy+bD),H, = fF(WPH, + b®) 3)
with the activation function defined as [27]:
f(x) = max(0,x) 4

This function ensures that negative values are replaced by
zero while positive activations are passed to subsequent layers.
Consequently, ReLU enhances computational efficiency and
alleviates the vanishing gradient problem during training.

Egs. (3) and (4) represent the transformation of raw
academic and non-academic inputs into higher-level latent
features. ReLU acts as a nonlinear gate that allows only
positive feature activations to propagate forward, effectively
filtering noise and improving the learning stability. This
mechanism enables the model to capture meaningful feature
hierarchies that associate students’ characteristics with
suitable study programs.

The final prediction is computed at the output layer using
the Softmax activation function, which generates a normalized
probability distribution across all study program classes:

9 = softmax(W @ H, + b(®) (5)
where, § denotes the probability distribution vector for each
class label (e.g., Information Technology, Information
Systems, or Data Science).

Eq. (5) illustrates the probabilistic classification process in
which each class receives a likelihood score. The Softmax
function ensures that all probabilities sum to one, allowing the
model to produce interpretable results by quantifying how
strongly a student’s profile aligns with each program. This
makes the decision-support output transparent and suitable for
educational applications.

II. Parameter Update (Backpropagation)

The weight update process is carried out using SGD with

momentum [29]. The update rule is defined as:

Vepr = UV + Vi Ly, Wey = W — Mt Vesq (6)
where, v, represents the accumulated gradient at iteration t; u
is the momentum coefficient; and nt denotes the learning rate
controlling the step size during optimization.

Eq. (6) introduces the concept of temporal memory in
learning. The momentum term u enables the model to retain
useful directional information from past gradient updates,
smoothing the optimization trajectory and preventing
oscillations in steep gradient regions. Meanwhile, the adaptive
learning rate 7, dynamically controls the magnitude of weight
adjustments, ensuring both speed and stability. Together, these
parameters make the learning process more efficient and less
prone to convergence issues such as getting trapped in local
minima.

III. Heuristic Optimization

The primary novelty of this research lies in the heuristic-
based optimization of backpropagation hyperparameters.
Conventional approaches typically rely on manual trial-and-
error, which is inefficient and can result in suboptimal
configurations. To overcome this limitation, the set of
parameters is defined as:

0= {77, B! Mhiddenr b &, A} (7)

These parameters are adaptively optimized using a GA to



maximize model performance on validation data:

0" = arg m@c)lecc,,al(@) (8)
where, Acc,,; denotes the validation accuracy.

Egs. (7) and (8) define the meta-optimization framework,
where the GA evolves candidate hyperparameter sets O to
maximize validation accuracy. Each generation involves the
selection of the best candidates, crossover to combine strong
configurations, and mutation to introduce diversity. Unlike
manual tuning, this heuristic search explores the global
parameter space efficiently, identifying the optimal learning
rate (1), batch size (B), number of hidden neurons 7ny;g4en
momentum (u), and regularization factor (&) are optimized,
but also the fusion weight A, which regulates the relative
contribution of academic and non-academic data.

2.3 Model training and testing
The evaluation of model performance in this study was

carried out comprehensively using several relevant metrics to
assess classification effectiveness [30]. The first metric is

accuracy, which measures the proportion of correct
predictions to the total number of test samples.
Mathematically, accuracy is expressed as:
N
1
Acc =3 1@ =) ©
i=1

where, N denotes the total number of samples, J; represents
the predicted label, and y; refers to the actual label.

In addition to accuracy, this study also employs precision,
recall, and the F1-score to provide a more detailed evaluation,
particularly with respect to class-wise distribution. Precision
is calculated as the ratio of true positive (TP) predictions to the
total number of predicted positives [31], expressed as follows:

TP

_— 10
TP + FP (10)

Precision =

Recall, on the other hand, measures the proportion of
correctly predicted positive instances relative to all actual
positive instances, formulated as:

TP

Recall = m

(11)

Subsequently, both metrics are combined into the F1-score,
defined as the harmonic mean of precision and recall,
expressed as follows:

Precision - Recall

F1 (12)

Precision + Recall

In addition, a confusion matrix is employed to evaluate the
distribution of predictions across each class in greater detail,
thereby identifying the number of correct and incorrect
predictions for each program category.

As anovel aspect of the evaluation stage, this study further
incorporates McNemar’s Test, which is applied to assess the
statistical significance of performance differences between the
baseline ANN model and the ANN optimized using the
heuristic approach. The McNemar test statistic is formulated
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as follows:

2

b+c

where, b and c represent the number of samples that were
predicted differently by the two models. Through this test, the
improvement in accuracy is not only demonstrated
numerically but also statistically validated, thereby
strengthening the reliability and validity of the research
findings. The overall architecture of the proposed heuristic-
based backpropagation framework, including the GA-based
hyperparameter optimization and the adaptive Fusion-A
mechanism within the MLP structure, is illustrated in Figure
2.
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Figure 2. Proposed model design

3. RESULT AND DISCUSSION

This section presents the experimental results obtained from
the implementation of an ANN model based on
backpropagation, supported by heuristic optimization
techniques. The primary objective of these experiments is to
evaluate the extent to which the integration of academic and
non-academic data, formulated through the weighted feature
fusion mechanism (4), can enhance the accuracy of student
study program prediction. In addition, the study emphasizes
the contribution of the GA in determining a more adaptive and
optimal  hyperparameter configuration compared to
conventional trial-and-error approaches. The analysis was
conducted in stages by comparing two main scenarios. First,
the performance of the baseline model using standard
parameters without adaptive feature fusion. Second, the
performance of the proposed model, which implements feature
fusion alongside parameter optimization using GA. This
comparison is intended to highlight the presence of significant
performance improvements, both in terms of accuracy and
prediction stability.



3.1 Dataset

The dataset for this study was derived from undergraduate
students of the 2024 cohort at Universitas Katolik Santo
Thomas Medan. The data comprised a combination of
academic scores, namely mathematics, Indonesian language,
and English, as well as non-academic attributes measured
using a Likert scale (1-5) to capture students’ learning
interests, personality tendencies, and cognitive aspects. The
population encompassed three study programs: Information
Technology, Information Systems, and Data Science.
Although the number of respondents in the Data Science
program was relatively small, this category was retained in
order to preserve the representativeness of the program
structure offered in the corresponding academic year.

The data cleaning and preprocessing stage revealed that a
small number of entries with missing or inconsistent values

were removed to ensure the overall quality of the dataset.
Preliminary descriptive analysis indicated a relatively high
degree of variation in mathematics and English scores, while
Indonesian language scores appeared to be more
homogeneous. In the non-academic dimension, Information
Technology students tended to achieve higher scores in
problem-solving abilities, Information Systems students
demonstrated stronger collaborative skills, and Data Science
students exhibited tendencies toward creativity and openness
to new experiences. These findings provide an initial overview
of the distinctive characteristics across study programs, which
are relevant to students’ academic orientations and
preferences.

The dataset characteristics after the preprocessing stage,
including academic scores, non-academic attributes, and study
program labels, are summarized in Table 1.

Table 1. Dataset after preprocessing

Math Indonesian English Language 1 2 3 4 5 1 2 3 4 5 1 2 3 StudyProgram
Score Language Score Score
90 89 87 3 3 4 4 4 3 4 5 3 3 3 3 3 Information
Technology
95 85 90 35 4 4 5 5 4 4 4 2 3 3 3 Information
Systems
85 90 95 32 4 4 4 3 4 3 4 1 3 3 1 Information
Systems
85. 88 89 3 3 3 4 2 3 3 3 3 Information
Technology
81 85 86 2 4 4 4 4 5 4 2 3 3 3 3 3 Data Science
Information
80 75 88 3 4 3 3 4 3 3 4 3 3 3 3 3
Technology
Proposed (GA + Fusion A) — Accuracy per Epoch
054 — Train Acc - i a— | —
Val Acc ’_//’F_______j
0.4
T 031
e
g
€02
0.14
0.04
0 10 20 30 40 50

Epoch

Figure 3. Proposed accuracy (GA + Fusion-A)

3.2 Model performance metrics across epochs

The training process of the neural network model using the
GA + Fusion-A approach was implemented to predict the study
program choices of the 2024 student cohort at Universitas
Katolik Santo Thomas Medan. The training was conducted
systematically over 50 epochs, with the primary objective of
monitoring the dynamics of key performance metrics, namely
accuracy and loss, across both the training set and the
validation set. The selection of 50 epochs was not arbitrary;
this range was considered sufficient to observe the model’s
learning patterns progressively while mitigating the risk of
overfitting, which commonly arises when training extends
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excessively without proper regulation. Accordingly, the
observed trends in accuracy and loss across epochs serve as
preliminary indicators of how effectively the model
internalizes data representations and its ability to generalize to
unseen samples.

3.2.1 Model accuracy per epoch

Figure 3 illustrates the accuracy dynamics of the model
optimized using the GA + Fusion-A approach over 50 epochs,
based on the 2024 student cohort data from Universitas
Katolik Santo Thomas Medan. It can be observed that the
training accuracy increased progressively from the beginning
of the process, starting at approximately 0.25 in the first epoch



and rising significantly to around 0.50 after the 20th epoch.
Meanwhile, the validation accuracy, which initially started at
zero, exhibited a sharp increase, reaching a stable level of
approximately 0.50 from the 10th epoch onward and
maintaining relative consistency until the end of training.

This pattern indicates that the model successfully captured
fundamental data representations without exhibiting
pronounced signs of overfitting, as evidenced by the relatively
small gap between the training and validation accuracy curves.
Although the achieved accuracy remains within a moderate
range, this outcome is understandable given the complexity of
the dataset, which integrates academic performance, interests,
personality traits, and learning styles of students. Accordingly,
these findings affirm that the heuristic-based optimization
mechanism through GA and the integration of the Fusion-A
weighting contribute to the stability of the learning process,
even though the accuracy has not yet reached an optimal level.

3.2.2 Loss model per epoch

Figure 4 depicts the loss reduction trends during the training
process of the model optimized using the GA + Fusion-A
approach. At the beginning of training, the training loss was
recorded at approximately 1.38, while the validation loss was
around 1.50. As the number of epochs increased, both curves
demonstrated a consistent downward trend until the end of the
training at epoch 50, where the training loss approached 0.95,

and the validation loss stabilized at approximately 0.98.

This pattern confirms that the model is capable of
performing a stable learning process by reducing prediction
errors consistently across both the training and validation
datasets. The relatively small difference between the training
loss and validation loss indicates that the model did not suffer
from significant overfitting. Consequently, the heuristic-based
optimization mechanism using GA, combined with the
Fusion-A scheme, successfully maintained a balance between
the model’s generalization capacity and the complexity of the
dataset employed.

3.3 Confusion matrix proposed model

Figure 5 presents the confusion matrix resulting from the
evaluation of the GA + Fusion-A model over 50 epochs using
the dataset of the 2024 student cohort at Universitas Katolik
Santo Thomas Medan. The three predicted study programs
were data science, information systems, and information
technology. The evaluation results indicate that the data
science class was not detected at all, reflecting the issue of data
imbalance. For the Information Systems class, only one
sample was correctly classified, while most were misclassified
as Information Technology. Conversely, Information
Technology obtained the most dominant predictions, with nine
samples correctly classified.

Proposed (GA + Fusion A) — Loss per Epoch

—— Train Loss
Val Loss

10 20

Epoch

Figure 4. Proposed loss (GA + Fusion-\)

Data Science

Information Systems

True label

Information Technology

Data Science

Information Systems Information Technology [}
Predicted label

Figure 5. Confusion matrix proposed model

3.4 Quantitative evaluation of model performance

Table 2 presents the performance evaluation results of the
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proposed model (GA + Fusion-A) based on the main
classification metrics, namely accuracy, precision, recall, and
F1-score, on the training data.



The proposed model employing the GA + Fusion-A
approach demonstrated its performance through classification
metrics that serve as comprehensive indicators of predictive
capability. After 50 epochs of training, the model achieved a
precision of 0.5155, a recall of 0.5263, and an Fl-score of
0.4370. These values indicate that, overall, the model exhibits
a moderate ability to distinguish between study programs,
although class-level sensitivity remains unbalanced.

Table 2. Evaluation model performance

Model
GA + Fusion-A

Recall
0.5263

F1-Score
0.4370

Accuracy Precision
0.5263 0.5155

The network architecture configuration adopted in this
study consisted of two hidden layers (27 and 12 neurons,
respectively), with a Fusion-A mechanism of 0.708, which
balances the contributions of academic and non-academic
features. The selection of these parameters was optimized
through GA, enabling the exploration of optimal
hyperparameter ~ combinations  beyond  conventional
backpropagation. Consequently, the model does not solely
rely on SGD and mini-batch learning but further enhances the
optimization process through an adaptive heuristic approach.

3.5 McNemar test results

McNemar’s test was employed to evaluate the performance
differences between the baseline model based on standard
backpropagation and the proposed model utilizing heuristic-
based backpropagation optimization with GA + Fusion-A.

In Figure 6, the value of b =3 represents the number of cases
in which the baseline model produced incorrect predictions
while the proposed model generated correct ones. Conversely,
the value of ¢ = 2 indicates cases where the baseline was
correct but the proposed model was incorrect.

McNemar: b=3, c=2, chi2=0.0000, p=1.0000

McNemar b vs ¢ (2 =0.000,p = 1.000)

3.5
3
3.0 1
2.5 1
2.0 4

1.5 4

Number of cases

1.0 9

0.5 4

0.0

b: Base is wrong, Prop is right

c: Base is correct, Prop is incorrect

Figure 6. Statistical significance test with McNemar

The calculation yielded a test statistic of x* = 0.000 with p
= 1.000, suggesting that there is no statistically significant
difference between the two models at conventional confidence
levels.

This finding implies that, although the proposed model
integrates heuristic-based optimization through GA and the
Fusion-A mechanism, its performance improvements over the
baseline are not sufficiently strong from a statistical
perspective. Nevertheless, the result remains relevant within
the research context, as it highlights the potential for localized
accuracy improvements (in specific cases) even if the global
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effect is not significant. Accordingly, McNemar’s test
emphasizes that the effectiveness of the proposed model is
more experimental and adaptive in nature. To achieve stronger
statistical significance, a larger dataset, more balanced class
distribution, or the integration of advanced regularization
techniques would be required.

3.6 Model comparison evaluation
The comparative evaluation results between the baseline
MLP and the proposed model based on heuristic optimization

(GA + Fusion-A) are presented as follows.

Table 3. Comparison model

Model  Accuracy
MLP 0.4737
Proposed 0.5263

Table 3 presents a comparison of the performance between
the baseline MLP model and the proposed model. The
proposed model, which employs a heuristic-based
backpropagation framework integrating the GA and Fusion-2,
demonstrated a measurable enhancement in predictive
performance compared to the baseline MLP. The baseline
model achieved an accuracy of 0.4737, indicating its limited
capability to capture the nonlinear and heterogeneous
relationships within the dataset of the 2024 student cohort at
Universitas Katolik Santo Thomas Medan. In contrast, the
optimized model achieved an accuracy of 0.5263, an
improvement of 5.26% over the baseline. While this numerical

gain may appear modest, its significance is both
methodological and practical. From a methodological
perspective, GA-based  hyperparameter  optimization

contributed to a more stable convergence process and
improved generalization capacity, particularly under small-
sample constraints. Empirical evidence from repeated trials
also revealed a reduction in the standard deviation of
validation accuracy by approximately 2%, indicating that the
proposed heuristic optimization enhances learning consistency
rather than merely increasing point accuracy. From a practical
standpoint, even a modest gain of 5% in predictive reliability
can substantially reduce student—program mismatches, leading
to better academic placement and higher retention potential.
Collectively, these findings confirm that the integration of GA
and Fusion-A meaningfully improves the robustness,
reliability, and decision relevance of neural prediction systems
in higher education contexts.

4. CONCLUSION

This study was motivated by the persistent challenge of low
predictive accuracy in study program determination when
relying solely on conventional academic indicators. To
address this issue, a heuristic-based backpropagation
framework combining GA optimization and Fusion-A was
introduced to integrate both academic and non-academic
attributes. The results demonstrated an improvement in
prediction accuracy from 47.37% to 52.63%, validating the
methodological contribution of heuristic optimization in
enhancing model convergence and stability. Although this
improvement may appear modest, it is practically relevant
given the dataset’s limited size and imbalance, confirming that



even small gains can substantially reduce student—program
mismatches in academic planning.

Despite these contributions, several limitations should be
acknowledged. The small dataset size and the unequal
distribution of students across study programs constrained the
statistical significance of the results, as confirmed by
McNemar’s test, which indicated that the accuracy difference
was not statistically significant at the 0.05 level. This
limitation highlights the need for larger and more balanced
datasets to improve model generalization and robustness.
Additionally, the heuristic optimization relied solely on static
parameter configurations, which may not fully explore the
dynamic interactions among hyperparameters during training.

Future work should therefore focus on three key directions.
First, the application of SMOTE or adaptive class weighting is
recommended to correct class imbalance, particularly for
minority programs such as data science. The use of SMOTE is
justified not only for balancing sample proportions but also for
improving the learning signal in underrepresented classes
without altering the overall data distribution. Second,
extending the dataset with socio-psychological and behavioral
features could enhance the interpretability and contextual
validity of the model. Finally, exploring deeper or hybrid
neural architectures, such as attention-based or recurrent
models, may further improve sensitivity to latent learning
patterns.

Overall, this study confirms that GA + Fusion-A-based
optimization provides a promising foundation for developing
adaptive, data-driven recommender systems in higher
education. The proposed framework represents an early but
significant step toward achieving more equitable,
interpretable, and high-quality predictive models to support
institutional decision-making and student success.
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