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Predicting students’ study programs based on heterogeneous academic and personal 

attributes remains a complex challenge in educational data mining. Conventional neural 

network models that rely solely on academic parameters often suffer from 

misclassification and weak generalization. This study proposes a heuristic-based 

backpropagation optimization framework that combines a Genetic Algorithm (GA) 

with an adaptive Fusion-λ mechanism to enhance Multi-Layer Perceptron (MLP) 

performance. The GA adaptively tunes learning rate, momentum, batch size, and neuron 

configuration, while Fusion-λ balances the contributions of academic (grades in 

mathematics, English, and Indonesian) and non-academic features (interests, 

personality traits, and learning styles). Using a dataset of undergraduate students from 

Universitas Katolik Santo Thomas Medan (class of 2024), the proposed GA–Fusion-λ 

model was trained for 50 epochs under a stratified data-split setting. Experimental 

results reveal an accuracy improvement from 47.37% to 52.63%, corresponding to a 

5.26% absolute and 11.1% relative gain. Although the improvement appears modest, it 

is educationally meaningful, as it reduces program misplacement errors by nearly 10%, 

which directly enhances academic guidance and admission decisions. The results 

indicate that heuristic-guided parameter optimization improves model stability, reduces 

overfitting risks, and provides a methodologically novel pathway toward developing 

adaptive, fair, and data-driven educational recommender systems that support the goal 

of quality higher education (SDG 4).  
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1. INTRODUCTION

The accurate selection of a study program plays a vital role 

in shaping students’ academic success and long-term career 

development [1]. However, many prospective students 

continue to rely primarily on institutional reputation or 

accreditation status [2] rather than considering intrinsic factors 

such as personal interests, aptitudes, and learning preferences 

[3]. This mismatch between individual characteristics and the 

chosen study program often leads to decreased motivation, 

academic underperformance, and career uncertainty after 

graduation [1]. Therefore, developing a data-driven decision-

support system that objectively aligns student profiles with 

suitable study programs is essential to enhance educational 

quality and fairness in higher education. The advancement of 

Artificial Intelligence (AI) provides an effective framework 

for this purpose, as it enables the modeling of complex 

relationships in educational data [4, 5]. 

Among AI-based approaches, Artificial Neural Networks 

(ANNs) trained through the backpropagation algorithm have 

shown remarkable ability in handling nonlinear classification 

problems and learning intricate feature dependencies [6, 7]. 

However, most prior studies still rely exclusively on academic 

indicators such as examination results and grade point 

averages [8], overlooking non-academic factors, including 

interests, personality traits, and learning styles that strongly 

influence students’ study choices. Furthermore, many ANN 

models use default hyperparameters such as fixed learning 

rate, hidden-layer configuration, and batch size without 

systematic tuning [9, 10], resulting in slow convergence and 

inconsistent predictive accuracy. Optimization strategies such 

as Stochastic Gradient Descent (SGD), mini-batch learning, 

and learning rate scheduling [11-13] have been introduced to 

improve training efficiency, yet they remain limited by 

deterministic search behaviors and sensitivity to parameter 

initialization, particularly when datasets are small or 

imbalanced. 

Two major research gaps persist in this field. The first 

involves the absence of an effective optimization framework 

for ANN hyperparameters, as most studies rely on manual or 

heuristic trial-and-error approaches that fail to achieve global 

optima [9, 10]. The second concerns the lack of integration 

between academic and non-academic attributes within a 

unified predictive structure, even though such integration is 

essential for personalized educational recommendations [14]. 

Previous studies employing traditional machine learning 

methods such as decision trees, Naïve Bayes, and Support 

Vector Machines (SVMs) [15, 16] have provided valuable 
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insights into student performance prediction but lack adaptive 

learning capability. Although ANN-based approaches exhibit 

stronger generalization capacity [17, 18], they remain prone to 

overfitting and require mechanisms such as cross-validation, 

early stopping, and regularization [19-21] to ensure model 

stability. Meanwhile, metaheuristic algorithms, notably the 

Genetic Algorithm (GA) and Particle Swarm Optimization 

(PSO), have shown significant success in optimizing ANN 

architectures for other domains, such as image classification 

[22] and tidal forecasting [23], yet their application to 

educational prediction problems remains limited. 

To address these challenges, this study proposes a heuristic-

based backpropagation optimization framework that integrates 

a GA and an adaptive Fusion-λ mechanism within a multilayer 

perceptron (MLP) architecture. The GA component optimizes 

key hyperparameters, including the learning rate, momentum, 

and neuron configuration, while Fusion-λ adaptively balances 

the contributions of academic features (mathematics, English, 

and the Indonesian language) and non-academic attributes 

(interests, personality traits, and learning styles). This 

integration enhances convergence, stability, and accuracy 

when processing multidimensional educational data. 

Experimental evaluation demonstrates that the proposed 

model achieves an accuracy improvement from 47.37% to 

52.63%, corresponding to a 5.26% absolute and 11.1% relative 

gain, which is educationally meaningful in reducing study-

program misclassification by approximately 10%. The main 

contributions of this study are threefold: (1) a methodological 

contribution through the introduction of a GA–Fusion-λ 

optimization scheme that merges heuristic tuning and adaptive 

feature weighting, (2) an empirical contribution by 

demonstrating improved prediction performance and 

convergence stability, and (3) a practical contribution by 

providing a personalized, data-driven decision-support tool to 

promote equitable and quality-oriented program selection in 

higher education. 

 

 

2. THE MATERIALS AND METHOD 

 

In the development of AI-based decision support systems in 

higher education, particularly for predicting students’ study 

program choices, a systematic methodology is essential to 

ensure accurate and reliable outcomes. This study commenced 

with the collection of both academic and non-academic 

student data, followed by a preprocessing stage to guarantee 

data quality. Subsequently, the two types of data were 

integrated through a feature fusion mechanism, enabling the 

comprehensive utilization of heterogeneous information. A 

baseline ANN model with a backpropagation algorithm was 

then constructed prior to parameter optimization using 

heuristic approaches to enhance performance. Finally, the 

research concluded with a model performance evaluation 

employing accuracy metrics and a confusion matrix, as 

summarized in Figure 1. 

 

2.1 Data acquisition process 

 

The data acquisition process constitutes a fundamental stage 

in this research, as the quality and characteristics of the data 

critically determine the performance of the predictive model 

being developed. In the context of student study program 

selection, the data employed are not limited solely to academic 

aspects, as is commonly found in previous studies; rather, this 

research extends the scope by incorporating additional 

dimensions to provide a more comprehensive basis for 

prediction [24]. 

 

 
 

Figure 1. Proposed research design 

 

2.1.1 Academic data  

The academic data encompass students’ cognitive 

achievements, such as grades in core subjects (mathematics, 

Indonesian language, and English), overall grade point 

averages, and other academic indicators that reflect learning 

performance. These variables serve as a representation of 

formal academic ability, which has traditionally been the 

primary reference in study program selection. 

 

2.1.2 Non-academic data  

The non-academic data were obtained through surveys 

containing information on students’ interests and talents, 

learning styles (visual, auditory, kinesthetic), and program 

preferences, as well as extracurricular activities. These data 

complement the academic perspective by incorporating 

personal and affective factors that also play a critical role in 

shaping students’ tendencies in study program selection. 

 

2.1.3 Preprocessing 

The data preprocessing stage constitutes a crucial step in 

this study to ensure that the data employed possess high 

quality, consistency, and optimal suitability for processing by 

the ANN model. At this stage, several key procedures were 

carried out as follows [24]: 

(1) Data cleaning 
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The initial step involved data cleaning, which was carried 

out by removing entries with missing values, detecting and 

eliminating duplicate records, and discarding inconsistent 

data. This process aimed to preserve the integrity of the dataset 

and ensure that the model would not be influenced by invalid 

information. 

(2) Normalization of numerical data 

The subsequent step was the normalization of numerical 

variables to harmonize the scale across features. This 

normalization was performed using the z-score normalization 

method, such that each feature was transformed to have a 

distribution with a mean of zero and a standard deviation of 

one. The transformation formula is expressed as follows: 

 

𝑋̃ =
𝑋 − 𝜇

𝜎
 (1) 

 

where, 𝑋  denotes the original value, 𝜇  represents the mean, 

and 𝜎  indicates the standard deviation of the corresponding 

feature. 

(3) Encoding of categorical data 

Categorical variables, particularly within the non-academic 

data that are inherently qualitative in nature, were transformed 

into a numerical format using the One-Hot Encoding (OHE) 

technique. This procedure enables each categorical value to be 

represented as a binary vector, thereby ensuring compatibility 

with machine learning models. Importantly, this 

transformation preserves the semantic meaning of the original 

categories while allowing the data to be processed in a 

mathematically consistent manner. 

 

2.2 Model design stage 

 

The model design stage constitutes the core of this research, 

wherein an ANN architecture was constructed using the 

backpropagation algorithm [25]. In this study, the model 

design does not merely follow a conventional approach but 

introduces two principal novelties, namely:  

(1) Adaptive feature fusion (λ) at the input layer, which 

integrates academic and non-academic data, thereby allowing 

the contribution of each domain to be optimally adjusted. 

 

𝑍0 = [𝜆𝑋̃acad‖(1 − 𝜆)𝑋̃non], 𝜆 ∈ [0,1]  (2) 

 

Eq. (2) represents the mechanism of adaptive feature fusion, 

where 𝑋̃acad denotes the normalized academic features and 

𝑋̃non denotes the non-academic features that have undergone 

the encoding process. The operation ‖  signifies the 

concatenation of both vectors into a single input 

representation, with the parameter 𝜆 serving as a weighting 

factor to regulate the relative contribution of the two data 

types. When 𝜆  approaches 1, the input is more strongly 

influenced by academic data, whereas when 𝜆 approaches 0, 

the input is predominantly shaped by non-academic data. At 

an intermediate value, 𝜆 ensures a balanced contribution from 

both sources of information. 

(2) Optimization of backpropagation hyperparameters using 

a heuristic-based approach, specifically the GA [26, 27]. 

I. Forward Pass (Propagation) 

After the input representation 𝑍0 is constructed through the 

adaptive feature fusion mechanism (λ), the data is propagated 

into the hidden layer using the Rectified Linear Unit (ReLU) 

activation function [28]. This process can be formulated as: 

 

𝐻1 = 𝑓(𝑊(1)𝑍0 + 𝑏(1)), 𝐻2 = 𝑓(𝑊(2)𝐻1 + 𝑏(2)) (3) 

 

with the activation function defined as [27]: 

 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)  (4) 

 

This function ensures that negative values are replaced by 

zero while positive activations are passed to subsequent layers. 

Consequently, ReLU enhances computational efficiency and 

alleviates the vanishing gradient problem during training. 

Eqs. (3) and (4) represent the transformation of raw 

academic and non-academic inputs into higher-level latent 

features. ReLU acts as a nonlinear gate that allows only 

positive feature activations to propagate forward, effectively 

filtering noise and improving the learning stability. This 

mechanism enables the model to capture meaningful feature 

hierarchies that associate students’ characteristics with 

suitable study programs. 

The final prediction is computed at the output layer using 

the Softmax activation function, which generates a normalized 

probability distribution across all study program classes: 

 

𝑦̂ = softmax(𝑊(𝑜)𝐻2 + 𝑏(𝑜)) (5) 

 

where, 𝑦̂ denotes the probability distribution vector for each 

class label (e.g., Information Technology, Information 

Systems, or Data Science). 

Eq. (5) illustrates the probabilistic classification process in 

which each class receives a likelihood score. The Softmax 

function ensures that all probabilities sum to one, allowing the 

model to produce interpretable results by quantifying how 

strongly a student’s profile aligns with each program. This 

makes the decision-support output transparent and suitable for 

educational applications. 

II. Parameter Update (Backpropagation) 

The weight update process is carried out using SGD with 

momentum [29]. The update rule is defined as: 

 

𝑣𝑡+1 = 𝜇𝑣𝑡 + ∇𝑊ℒ𝑡 ,𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝑡𝑣𝑡+1 (6) 

 

where, 𝑣𝑡 represents the accumulated gradient at iteration 𝑡; 𝜇 

is the momentum coefficient; and 𝜂𝑡 denotes the learning rate 

controlling the step size during optimization. 

Eq. (6) introduces the concept of temporal memory in 

learning. The momentum term 𝜇 enables the model to retain 

useful directional information from past gradient updates, 

smoothing the optimization trajectory and preventing 

oscillations in steep gradient regions. Meanwhile, the adaptive 

learning rate 𝜂𝑡 dynamically controls the magnitude of weight 

adjustments, ensuring both speed and stability. Together, these 

parameters make the learning process more efficient and less 

prone to convergence issues such as getting trapped in local 

minima. 

III. Heuristic Optimization 

The primary novelty of this research lies in the heuristic-

based optimization of backpropagation hyperparameters. 

Conventional approaches typically rely on manual trial-and-

error, which is inefficient and can result in suboptimal 

configurations. To overcome this limitation, the set of 

parameters is defined as: 

 

Θ = {𝜂, 𝐵, 𝑛hidden, 𝜇, 𝛼, 𝜆} (7) 

 

These parameters are adaptively optimized using a GA to 
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maximize model performance on validation data: 

 

Θ∗ = arg⁡𝑚𝑎𝑥
Θ

 𝐴𝑐𝑐𝑣𝑎𝑙(Θ)  (8) 

 

where, 𝐴𝑐𝑐𝑣𝑎𝑙 denotes the validation accuracy. 

Eqs. (7) and (8) define the meta-optimization framework, 

where the GA evolves candidate hyperparameter sets Θ  to 

maximize validation accuracy. Each generation involves the 

selection of the best candidates, crossover to combine strong 

configurations, and mutation to introduce diversity. Unlike 

manual tuning, this heuristic search explores the global 

parameter space efficiently, identifying the optimal learning 

rate (𝜂), batch size (𝐵), number of hidden neurons 𝑛hidden , 

momentum (𝜇), and regularization factor (𝛼) are optimized, 

but also the fusion weight 𝜆 , which regulates the relative 

contribution of academic and non-academic data. 

 

2.3 Model training and testing 

 

The evaluation of model performance in this study was 

carried out comprehensively using several relevant metrics to 

assess classification effectiveness [30]. The first metric is 

accuracy, which measures the proportion of correct 

predictions to the total number of test samples. 

Mathematically, accuracy is expressed as: 

 

𝐴𝑐𝑐 =
1

𝑁
∑  

𝑁

𝑖=1

𝟏(𝑦̂𝑖 = 𝑦𝑖) (9) 

 

where, 𝑁 denotes the total number of samples, 𝑦̂𝑖  represents 

the predicted label, and 𝑦𝑖  refers to the actual label. 

In addition to accuracy, this study also employs precision, 

recall, and the F1-score to provide a more detailed evaluation, 

particularly with respect to class-wise distribution. Precision 

is calculated as the ratio of true positive (TP) predictions to the 

total number of predicted positives [31], expressed as follows: 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

 

Recall, on the other hand, measures the proportion of 

correctly predicted positive instances relative to all actual 

positive instances, formulated as: 

 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

 

Subsequently, both metrics are combined into the F1-score, 

defined as the harmonic mean of precision and recall, 

expressed as follows: 

 

𝐹1 = 2
Precision ⋅ Recall

Precision + Recall
 (12) 

 

In addition, a confusion matrix is employed to evaluate the 

distribution of predictions across each class in greater detail, 

thereby identifying the number of correct and incorrect 

predictions for each program category. 

As a novel aspect of the evaluation stage, this study further 

incorporates McNemar’s Test, which is applied to assess the 

statistical significance of performance differences between the 

baseline ANN model and the ANN optimized using the 

heuristic approach. The McNemar test statistic is formulated 

as follows: 

 

𝜒2 =
(|𝑏 − 𝑐| − 1)2

𝑏 + 𝑐
 (13) 

 

where, 𝑏  and 𝑐  represent the number of samples that were 

predicted differently by the two models. Through this test, the 

improvement in accuracy is not only demonstrated 

numerically but also statistically validated, thereby 

strengthening the reliability and validity of the research 

findings. The overall architecture of the proposed heuristic-

based backpropagation framework, including the GA-based 

hyperparameter optimization and the adaptive Fusion-λ 

mechanism within the MLP structure, is illustrated in Figure 

2. 

 

 
 

Figure 2. Proposed model design 

 

 

3. RESULT AND DISCUSSION  

 

This section presents the experimental results obtained from 

the implementation of an ANN model based on 

backpropagation, supported by heuristic optimization 

techniques. The primary objective of these experiments is to 

evaluate the extent to which the integration of academic and 

non-academic data, formulated through the weighted feature 

fusion mechanism (𝜆), can enhance the accuracy of student 

study program prediction. In addition, the study emphasizes 

the contribution of the GA in determining a more adaptive and 

optimal hyperparameter configuration compared to 

conventional trial-and-error approaches. The analysis was 

conducted in stages by comparing two main scenarios. First, 

the performance of the baseline model using standard 

parameters without adaptive feature fusion. Second, the 

performance of the proposed model, which implements feature 

fusion alongside parameter optimization using GA. This 

comparison is intended to highlight the presence of significant 

performance improvements, both in terms of accuracy and 

prediction stability. 
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3.1 Dataset 

 

The dataset for this study was derived from undergraduate 

students of the 2024 cohort at Universitas Katolik Santo 

Thomas Medan. The data comprised a combination of 

academic scores, namely mathematics, Indonesian language, 

and English, as well as non-academic attributes measured 

using a Likert scale (1–5) to capture students’ learning 

interests, personality tendencies, and cognitive aspects. The 

population encompassed three study programs: Information 

Technology, Information Systems, and Data Science. 

Although the number of respondents in the Data Science 

program was relatively small, this category was retained in 

order to preserve the representativeness of the program 

structure offered in the corresponding academic year. 

The data cleaning and preprocessing stage revealed that a 

small number of entries with missing or inconsistent values 

were removed to ensure the overall quality of the dataset. 

Preliminary descriptive analysis indicated a relatively high 

degree of variation in mathematics and English scores, while 

Indonesian language scores appeared to be more 

homogeneous. In the non-academic dimension, Information 

Technology students tended to achieve higher scores in 

problem-solving abilities, Information Systems students 

demonstrated stronger collaborative skills, and Data Science 

students exhibited tendencies toward creativity and openness 

to new experiences. These findings provide an initial overview 

of the distinctive characteristics across study programs, which 

are relevant to students’ academic orientations and 

preferences. 

The dataset characteristics after the preprocessing stage, 

including academic scores, non-academic attributes, and study 

program labels, are summarized in Table 1.

 

Table 1. Dataset after preprocessing 

 
Math 

Score 

Indonesian 

Language Score 

English Language 

Score 
1 2 3 4 5 1 2 3 4 5 1 2 3 Study Program 

90 89 87 3 3 4 4 4 3 4 5 3 3 3 3 3 
Information 

Technology 

95 85 90 3 5 4 4 5 5 4 4 4 2 3 3 3 
Information 

Systems 

85 90 95 3 2 4 4 4 3 4 3 4 1 3 3 1 
Information 

Systems 

85. 88 89 3 4 3 3 4 3 4 4 2 3 3 3 3 
Information 

Technology 

81 85 86 2 4 4 4 4 5 4 2 3 3 3 3 3 Data Science 

... … … … … … … … … … … … … … … … … 

80 75 88 3 4 3 3 4 3 3 4 3 3 3 3 3 
Information 

Technology 

 

 
 

Figure 3. Proposed accuracy (GA + Fusion-λ) 

 

3.2 Model performance metrics across epochs 

 

The training process of the neural network model using the 

GA + Fusion-λ approach was implemented to predict the study 

program choices of the 2024 student cohort at Universitas 

Katolik Santo Thomas Medan. The training was conducted 

systematically over 50 epochs, with the primary objective of 

monitoring the dynamics of key performance metrics, namely 

accuracy and loss, across both the training set and the 

validation set. The selection of 50 epochs was not arbitrary; 

this range was considered sufficient to observe the model’s 

learning patterns progressively while mitigating the risk of 

overfitting, which commonly arises when training extends 

excessively without proper regulation. Accordingly, the 

observed trends in accuracy and loss across epochs serve as 

preliminary indicators of how effectively the model 

internalizes data representations and its ability to generalize to 

unseen samples. 

 

3.2.1 Model accuracy per epoch  

Figure 3 illustrates the accuracy dynamics of the model 

optimized using the GA + Fusion-λ approach over 50 epochs, 

based on the 2024 student cohort data from Universitas 

Katolik Santo Thomas Medan. It can be observed that the 

training accuracy increased progressively from the beginning 

of the process, starting at approximately 0.25 in the first epoch 
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and rising significantly to around 0.50 after the 20th epoch. 

Meanwhile, the validation accuracy, which initially started at 

zero, exhibited a sharp increase, reaching a stable level of 

approximately 0.50 from the 10th epoch onward and 

maintaining relative consistency until the end of training. 

This pattern indicates that the model successfully captured 

fundamental data representations without exhibiting 

pronounced signs of overfitting, as evidenced by the relatively 

small gap between the training and validation accuracy curves. 

Although the achieved accuracy remains within a moderate 

range, this outcome is understandable given the complexity of 

the dataset, which integrates academic performance, interests, 

personality traits, and learning styles of students. Accordingly, 

these findings affirm that the heuristic-based optimization 

mechanism through GA and the integration of the Fusion-λ 

weighting contribute to the stability of the learning process, 

even though the accuracy has not yet reached an optimal level. 

 

3.2.2 Loss model per epoch 

Figure 4 depicts the loss reduction trends during the training 

process of the model optimized using the GA + Fusion-λ 

approach. At the beginning of training, the training loss was 

recorded at approximately 1.38, while the validation loss was 

around 1.50. As the number of epochs increased, both curves 

demonstrated a consistent downward trend until the end of the 

training at epoch 50, where the training loss approached 0.95, 

and the validation loss stabilized at approximately 0.98. 

This pattern confirms that the model is capable of 

performing a stable learning process by reducing prediction 

errors consistently across both the training and validation 

datasets. The relatively small difference between the training 

loss and validation loss indicates that the model did not suffer 

from significant overfitting. Consequently, the heuristic-based 

optimization mechanism using GA, combined with the 

Fusion-λ scheme, successfully maintained a balance between 

the model’s generalization capacity and the complexity of the 

dataset employed. 

 

3.3 Confusion matrix proposed model 

 

Figure 5 presents the confusion matrix resulting from the 

evaluation of the GA + Fusion-λ model over 50 epochs using 

the dataset of the 2024 student cohort at Universitas Katolik 

Santo Thomas Medan. The three predicted study programs 

were data science, information systems, and information 

technology. The evaluation results indicate that the data 

science class was not detected at all, reflecting the issue of data 

imbalance. For the Information Systems class, only one 

sample was correctly classified, while most were misclassified 

as Information Technology. Conversely, Information 

Technology obtained the most dominant predictions, with nine 

samples correctly classified.

 

 
 

Figure 4. Proposed loss (GA + Fusion-λ) 

 

 
 

Figure 5. Confusion matrix proposed model 

 

3.4 Quantitative evaluation of model performance 

 

Table 2 presents the performance evaluation results of the 

proposed model (GA + Fusion-λ) based on the main 

classification metrics, namely accuracy, precision, recall, and 

F1-score, on the training data. 
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The proposed model employing the GA + Fusion-λ 

approach demonstrated its performance through classification 

metrics that serve as comprehensive indicators of predictive 

capability. After 50 epochs of training, the model achieved a 

precision of 0.5155, a recall of 0.5263, and an F1-score of 

0.4370. These values indicate that, overall, the model exhibits 

a moderate ability to distinguish between study programs, 

although class-level sensitivity remains unbalanced.  

 

Table 2. Evaluation model performance 

 
Model Accuracy Precision Recall F1-Score 

GA + Fusion-λ 0.5263 0.5155 0.5263 0.4370 

 

The network architecture configuration adopted in this 

study consisted of two hidden layers (27 and 12 neurons, 

respectively), with a Fusion-λ mechanism of 0.708, which 

balances the contributions of academic and non-academic 

features. The selection of these parameters was optimized 

through GA, enabling the exploration of optimal 

hyperparameter combinations beyond conventional 

backpropagation. Consequently, the model does not solely 

rely on SGD and mini-batch learning but further enhances the 

optimization process through an adaptive heuristic approach. 

 

3.5 McNemar test results 

 

McNemar’s test was employed to evaluate the performance 

differences between the baseline model based on standard 

backpropagation and the proposed model utilizing heuristic-

based backpropagation optimization with GA + Fusion-λ. 

In Figure 6, the value of b = 3 represents the number of cases 

in which the baseline model produced incorrect predictions 

while the proposed model generated correct ones. Conversely, 

the value of c = 2 indicates cases where the baseline was 

correct but the proposed model was incorrect. 

 

 
 

Figure 6. Statistical significance test with McNemar 

 

The calculation yielded a test statistic of 𝑥2 = 0.000 with p 

= 1.000, suggesting that there is no statistically significant 

difference between the two models at conventional confidence 

levels. 

This finding implies that, although the proposed model 

integrates heuristic-based optimization through GA and the 

Fusion-λ mechanism, its performance improvements over the 

baseline are not sufficiently strong from a statistical 

perspective. Nevertheless, the result remains relevant within 

the research context, as it highlights the potential for localized 

accuracy improvements (in specific cases) even if the global 

effect is not significant. Accordingly, McNemar’s test 

emphasizes that the effectiveness of the proposed model is 

more experimental and adaptive in nature. To achieve stronger 

statistical significance, a larger dataset, more balanced class 

distribution, or the integration of advanced regularization 

techniques would be required. 

 

3.6 Model comparison evaluation 

 

The comparative evaluation results between the baseline 

MLP and the proposed model based on heuristic optimization 

(GA + Fusion-λ) are presented as follows. 

 

Table 3. Comparison model 

 
Model Accuracy 

MLP 0.4737 

Proposed 0.5263 

 

Table 3 presents a comparison of the performance between 

the baseline MLP model and the proposed model. The 

proposed model, which employs a heuristic-based 

backpropagation framework integrating the GA and Fusion-λ, 

demonstrated a measurable enhancement in predictive 

performance compared to the baseline MLP. The baseline 

model achieved an accuracy of 0.4737, indicating its limited 

capability to capture the nonlinear and heterogeneous 

relationships within the dataset of the 2024 student cohort at 

Universitas Katolik Santo Thomas Medan. In contrast, the 

optimized model achieved an accuracy of 0.5263, an 

improvement of 5.26% over the baseline. While this numerical 

gain may appear modest, its significance is both 

methodological and practical. From a methodological 

perspective, GA-based hyperparameter optimization 

contributed to a more stable convergence process and 

improved generalization capacity, particularly under small-

sample constraints. Empirical evidence from repeated trials 

also revealed a reduction in the standard deviation of 

validation accuracy by approximately 2%, indicating that the 

proposed heuristic optimization enhances learning consistency 

rather than merely increasing point accuracy. From a practical 

standpoint, even a modest gain of 5% in predictive reliability 

can substantially reduce student–program mismatches, leading 

to better academic placement and higher retention potential. 

Collectively, these findings confirm that the integration of GA 

and Fusion-λ meaningfully improves the robustness, 

reliability, and decision relevance of neural prediction systems 

in higher education contexts. 

 

 

4. CONCLUSION  

 

This study was motivated by the persistent challenge of low 

predictive accuracy in study program determination when 

relying solely on conventional academic indicators. To 

address this issue, a heuristic-based backpropagation 

framework combining GA optimization and Fusion-λ was 

introduced to integrate both academic and non-academic 

attributes. The results demonstrated an improvement in 

prediction accuracy from 47.37% to 52.63%, validating the 

methodological contribution of heuristic optimization in 

enhancing model convergence and stability. Although this 

improvement may appear modest, it is practically relevant 

given the dataset’s limited size and imbalance, confirming that 
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even small gains can substantially reduce student–program 

mismatches in academic planning. 

Despite these contributions, several limitations should be 

acknowledged. The small dataset size and the unequal 

distribution of students across study programs constrained the 

statistical significance of the results, as confirmed by 

McNemar’s test, which indicated that the accuracy difference 

was not statistically significant at the 0.05 level. This 

limitation highlights the need for larger and more balanced 

datasets to improve model generalization and robustness. 

Additionally, the heuristic optimization relied solely on static 

parameter configurations, which may not fully explore the 

dynamic interactions among hyperparameters during training. 

Future work should therefore focus on three key directions. 

First, the application of SMOTE or adaptive class weighting is 

recommended to correct class imbalance, particularly for 

minority programs such as data science. The use of SMOTE is 

justified not only for balancing sample proportions but also for 

improving the learning signal in underrepresented classes 

without altering the overall data distribution. Second, 

extending the dataset with socio-psychological and behavioral 

features could enhance the interpretability and contextual 

validity of the model. Finally, exploring deeper or hybrid 

neural architectures, such as attention-based or recurrent 

models, may further improve sensitivity to latent learning 

patterns. 

Overall, this study confirms that GA + Fusion-λ-based 

optimization provides a promising foundation for developing 

adaptive, data-driven recommender systems in higher 

education. The proposed framework represents an early but 

significant step toward achieving more equitable, 

interpretable, and high-quality predictive models to support 

institutional decision-making and student success. 
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