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The rapid rise of Internet of Things (IoT) applications has increased the demand for
energy-efficient or computationally sustainable Wireless Sensor Networks (WSNS).
This paper proposes a hybrid optimization Bio-Inspired Deep Learning and Edge—
Cloud (BIO-DLEC) framework with the Whale Optimization Algorithm (WOA) and
the Grey Wolf Optimizer (GWO) for energy-aware clustering and routing to address
these challenges. The hybrid framework incorporates the exploration capability of
WOA to diversify candidate solutions, and GWO exploits them, thus achieving a
balance process. During the clustering stages, optimal cluster heads (CHs) are selected
based on a multi-objective fitness function that ensures overall optimality from the use
of residual energies, intra-cluster compactness, and load balancing. In the routing stage,
energy-efficient routing paths are established by minimizing communication cost, hop
count, and latency within a multi-hop topology. The experimental setup uses a hybrid
NS-3 and iFogSim2 simulation environment. The BIO-DLEC improved overall
network performance achieving a 25.5% longer lifetime, 21.8% less energy dissipation,
17.3% lower end-to-end latency, and a packet delivery ratio (PDR) higher than 95%.
Overall, the results indicate the benefits of BIO-DLEC frameworks improved
throughput reliability and enhanced sustainability for next-generation loT-enabled

WSNE.

1. INTRODUCTION

The rapid evolution of the 10T has fundamentally changed
data driven applications in many industries, including
agriculture, healthcare, smart cities, and industry 4.0. In fact,
given the potential scale and future of 10T a key enabling
technology for Internet of Things is the Wireless Sensor
Networks (WSNs) which enables a network of collaborating
sensor nodes to collect, process, and transmit data. The
majority of sensor nodes are energy-constrained and
unfortunately do not have frequently replacing batteries.
Therefore, routing in WSNs along with effective task
management are indispensable for networks to maximize their
lifespan while maintaining quality of service (QoS) especially
across large-scale loT. To address the energy consumption and
enabling effective routing, bio-inspired and evolutionary
algorithms are intriguing options to consider for energy
optimization and adaptive routing. For instance, bio-inspired
and evolutionary strategies [1] are based on natural
phenomena including swarm intelligence, genetic evolution,
and predator-prey dynamics can be simple yet effective.
Another example of a bio-inspired hybrid optimization
algorithm showed prominent results for clustering, load
balancing, and energy efficiency in WSNs [2]. Similarly, bio-
inspired neural networks demonstrated abilities for optimal
cluster head selection that resulted in efficient energy
distributions and improved scalability within a low power
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wireless personal area network [3]. Moth-Flame Optimization
(MFO) and variants are also one of many metaheuristics and
provided a great deal of flexibility in dynamic environments
by maintaining a controlled balance between exploration and
exploitation of the optimization space [4].

Few researchers have found that metaheuristic clustering
protocols outperform the heuristic-based clustering schemes in
terms of energy consumption and packet delivery performance
[5]. The papers strongly suggest that evolutionary computing
should be included when quantifying the performance of
WSNSs. As routing optimization matured, started investigating
the application of edge and fog computing to enhance
efficiency in 10T ecosystems. Deep learning is a promising
approach for real-time analytics that can be performed using
loT data is an extremely energy intensive computing
technology. Recent efforts to benchmark the energy efficiency
of deep learning across models and edge devices continue to
emerge [6, 7]. These articles outline the trade-offs between
accuracy, latency, and energy efficiency. The need for
adaptive  frameworks for both  computation and
communication overhead. Task offloading is another
important domain where energy efficiency has implications
for loT performance. Recent advances in reinforcement
learning (RL) and deep reinforcement learning (DRL)
frameworks can optimize the migration of computations
among loT devices, fog nodes, and cloud infrastructure. The
use of Deep Q-Networks (DQNs) demonstrated promising
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results for latency-aware, energy-efficient offloading
strategies. Here, the computational load is balanced while
minimizing delay [8]. Fuzzy logic enhanced DRL approaches
demonstrate further adaptability for 10T application within a
fog-cloud three-tier architecture [9]. Earlier works also
recognize the critical aspects of an energy-scheduling while
identifying that issues to ensure Quality of Service [10].

Despite the progress in the literature, there remain
significant gaps. A systematic review of energy-aware
resource management techniques in fog-enabled IoT
highlights the absence of a unified framework that accounts
for communication, computation, and routing optimization at
the same time [11]. To make further progress, we also find that
many of the existing techniques are domain or application-
specific, or static, and research in these areas neglects the
unpredictable nature of 10Ts. There are current constraints that
require an efficient evolutionary computing framework that
combines multi-objective energy-aware routing and adaptive
cluster head selection with intelligent task offloading. For an
efficient evolutionary computing framework, bio-inspired
algorithms should be utilized for exploration, reinforcement
learning for variability, and multi-objective optimization to
balance energy efficiency, latency, and reliability.

This paper addresses the above challenges by contributing
the following:
An innovative evolutionary computing Bio-Inspired
Deep Learning and Edge-Cloud (BIO-DLEC)
framework for routing and energy-aware clustering
in loT-based WSNs.
Identifying an optimized route and task offloading
selection using bio-inspired optimization and
reinforcement learning.
A multi-objective fitness function including residual

energy, latency, link reliability, and cost for
offloading.
e Detailed simulations and comparisons with

clustering, routing and offloading protocols.

The structure of the remainder of the paper is detailed as
follows: In Section 2, we review related literature in bio-
inspired optimization, deep learning compression for edge
devices and fog-cloud offloading. In Section 3, we describe
the proposed BIO-DLEC framework along with the
mathematical model and optimization process. In Section 4,
we present the experimental protocol and details. In Section 5,
we conclude with a summary and future research.

2. RELATED WORK

Energy-efficient routing in WSNs has seen remarkable
growth due to the resource-limited nature of 10T devices. More
recently, design approaches have emphasized using
evolutionary computing, methodology fuzzy heuristics, and
other hybrid metaheuristic techniques to optimize energy
consumption by extending the lifetime of the network.
Shokouhifar et al. [12] provided an extensive survey of Al-
based cluster-based routing protocols. The study indicated
how fuzzy heuristics, metaheuristic, and some machine
learning based models had been used extensively to provide
energy efficiency. Though the applications reviewed
regarding Al showed some improvements in clustering and
routing stability required intensive computational costs that
would not be feasible for ultra-low-power WSNs. Zaier et al.
[13] examined a mechanism of interval type-2 fuzzy unequal
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clustering and sleep scheduling for 10T based WSNs. The
draw for this model was the improved energy balanced values,
as well as overall network life to provide continuous service,
however challenges with scaling to the entire physical area of
interest, and latency, especially in dense networks, remained
problematic.

Wang et al. [14] developed fuzzy logic and applied it with
a quantum annealing algorithm for cluster-based routing.
While they used extensive algebra to show improvements with
energy aware cluster head (CH) selection, many are concerned
with implementation at the hardware or silicon level due to
complexity attributable to the quantum annealing algorithm.
Cherappa et al. [15] developed an Adaptive Swarm-Based
Fuzzy Optimization (ASFO) for clustering and also proposed
a cross-layer expedient routing protocol. While the protocol
was efficient in reducing communication costs, it was not
reliable in environments with high mobility. Also, Dev and
Mishra [16] created a hybridization of Grey Wolf Optimizer
(GWO) and Firefly Algorithm for heterogeneous WSNS,
which provided significant longevity; nevertheless, their
hybrid framework required a lot of tuning to parameters,
which complicated deployment in everyday scenarios.

Swarm intelligence continues to account for a substantial
amount of routing optimization literature. Han et al. [17]
utilized an improved Ant Colony Optimization (ACO)
approach for lIoT WSNSs routing, in addition to reducing
energy consumption. The results did not report favorable
performance with increasing network size. Ali and Kumar [18]
designed a hybrid model combining Firefly, Proficient
Routing based Power-Efficient Gathering in Sensor
Information System, and Active Distortion Control Acrtificial
Neural Network. The model provided load balancing; yet the
write-up mentioned additional training overhead due to the
ANN component. Ketshabetswe et al. [19] presented a
compression-based routing strategy to encourage less
transmission load applied to the overall energy consumption,
but considerations regarding compression activities engaged
some latency and accuracy trade-offs. Hu et al. [20] applied
Harris Hawk Optimization with fuzzy logic for clustering
protocols by outperforming many classical protocols,
incorporating delayed convergence, and allowed for a loss in
performance with dynamically changing topologies. Another
way to look at the swarm is to model fuzzy hybridization in a
swarm. Sunitha and Chandrika [21] previously introduced
evolutionary computing-assisted QoS-centric routing that
focused on service reliability, but it lacked flexibility for
heterogeneous 10T contexts. Kaur et al. [22] offered an
artificial fish swarm-based clustering protocol for underwater
WSNs that achieved improved lifetime but was
computationally intensive in large-scale terrestrial loT
environments.

Reddy et al. [23] used a combination of glowworm swarm
optimization and ACO showed an increase in clustering
efficiency and routing; however, the energy savings fell short
citing sensitivity to initialization. Gayathri and Snigdha [24]
developed a self-healing energy-efficient clustering approach
that enabled the network to sustain operation; however, the
added recovery mechanisms further hurt processing delays.
Tawfeek et al. [25] adapted ACO to improve routing
reliability, improved routing stability at the expense of longer
route discovery time. Other multi-strategy contributions walk
the line of sustainability while seeking for trustworthiness or
security. For example, Sunitha and Chandrika [26] have
proposed a non-circular dynamic base station protocol with



static sensor nodes to increase network lifetime of WSN. Yang
et al. [27] challenged a snake optimizer with minimum
spanning trees to create efficient routing - achieving promising
lifetime improvement but requiring complex synchronization
mechanisms. Also, Thangavelu and Rajendran [28] focused on
secure routing as a sustainable model for heterogeneous IoT.
Ultimately, while encryption processes helped to establish
trust and security amongst devices in 10T, the encryption
overhead risked energy drain.

Sunitha et al. [29] introduced machine learning as a
measurement approach for security threat assessment in 10T.
While significantly advancing loT, their models had a very
high inference cost. In the study of Zhang et al. [30], classic
fuzzy-based clustering provided the first step toward energy
constrained routing in 10T, but static assumptions will hurt
effectiveness in adaptive operational scenarios of modern 10T.
Lastly, Younus and Kok [31] utilized both Grey Wolf and
Dragonfly optimizers to provide relative routing efficiency,
however, they faced premature convergence in dense
deployments. Although recent research studies have shown
substantial advances in lifetime prolongation strategies based
on bio-inspired, fuzzy, and hybrid optimization techniques for
WSNs, critical issues still remain relating to scalability,
convergence speed, computational cost, and adaptability.
These gaps warrant the development of an optimized
evolutionary framework which seeks to balance energy
expenditure, latency, and robustness in the routing of 1oT-
WSN.

Few shortcomings observed in the literature are poor
performance against changing scenarios with bursts of
mobility and burst of traffic, limited consideration of
adversarial/benign fault conditions, energy budgets typically
exclude sink placement, data-aggregation costs, and perfect
location/time assumptions. A few works document a 15%
increase in routing efficiency, but their results reveal a steep
drop in packet delivery ratio (PDR) after 300 nodes, implying
that their approach is not scalable. Likewise, more than a few
would report training time to be nearly 20% or higher with the
addition of an ANN component, which could not reasonably
support real-time adaptation. Future work should stress
adaptive hyperparameter schedules, attack/fault injected
evaluations, and open implementations with associated and
unified energy models.
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3. METHODOLOGY

This paper introduces Bio-Inspired Deep Learning and
Edge—Cloud synergy (BIO-DLEC) a novel all-encompassing
scheme expected to lower the energy dissipation, alleviate the
inference delay, and optimize the lifetime of loT WSNs. Our
holistic framework incorporates the following three
synergistic components.

e Hybrid Whale-Grey Wolf Optimization Algorithm
(WOA-GWO) for clustering providing equal energy
distribution and adjustable selection of cluster heads
(CHs),

e Bio-inspired routing mechanism allocating energy-aware
and congestion-free nodes for transmission,

e Deep learning enabled edge cloud collaboration
delivering adaptive inference at the edge respective
locations and uploading complex tasks to the cloud
incrementally to improve latency and network congestion.

The proposed BIO-DLEC framework designed in three
phases as given below:

e WSN clustering and routing

e Energy-aware DL compression performed on edge nodes

e Adaptive fog—cloud offloading

Prior work has been treated each of the layers independently
from an optimization perspective. Here, BIO-DLEC has the
advantage that it considers type of topology, model size, and
placement of computation. These will co-evolve with the
energy and traffic dynamics. The overall design architecture is
shown in Figure 1 including all stages.

We model a system with N battery-powered nodes
{ng, ... .. ,ny} deployed over an area A, with a fixed sink at P,.
Each node n; has residual energy at some decision epoch t. Eq.
(1) identifies the group of sensor nodes occupying the 10T-
enabled WSN. Each node, n; represents a single sensor with
its own position coordinates, available energy and
computational capacity, while N is the total number of nodes.
This notation will be the base of the network model, because
all equations that follow (clustering, routing, and energy
optimization) fundamentally rely on the usefulness of the
nodes and the interactions of the nodes. In the case of the BIO-
DLEC model we will consider that the sensor nodes are
heterogeneous, where they are able to sense, and provide
limited edge intelligence functions.

i Hybrid WOA-GWO
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Figure 1. Design diagram of the proposed model
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(1)

As shown in Eq. (2), the Euclidean distance between two
nodes, n; and n;, is defined by their coordinates, (x;, y;) and
(xj,y;) . Distance is an important component of a
communication cost metric, since energy dissipation is a
function of transmission distance. By effectively incorporating
distance into the WOA-GWO hybrid optimization routine,
BIO-DLEC creates energy efficient clusters and identifies
transmission paths by ensuring that smaller distance
transmissions prevail over longer distance scenarios, keeping
energy expenditure to a minimum.

Nodes = {ny,n,, ..., ny}

dij = \/(xi —x)" + (- )’ )
Eqg. (3) defines the energy required to transmit a data packet.
The first term, E, ...k, captures the energy cost of the
electronic circuit (k in bits) operating on a packet and the
second term, Egpy.k.d, , captures the additional cost
introduced by the power amplifier, transmitting the packet a
distance d. In this case, n is the path-loss exponent (commonly
2 in free space or 4 in multi-path). In the case of BIO-DLEC,
the energy consumed shapes cluster-head selection and affects
routing because reducing distance while requiring equal use of
amplifiers will maximize the life of the network.
Etx(k' d) = Eetec - k + €amp k- dy 3)
Eqg. (4) provides the energy consumed to receive a data
packet of size k bits. Unlike transmission, which makes use of
a power amplifier, the energy consumed on reception is
restricted to what is consumed by electronic circuitry. This is
especially relevant for CHs which are collecting information
from more than one-member node. The reception model in
BIO-DLEC also ensures equitable cluster-head rotation
through the use of WOA-GWO optimization, thus eliminating
nodes from draining energy faster than the others.
Erx(k) = Egrec - k “)
Eqg. (5) outlines the remaining energy of node n; attime t +
1. The amount of energy available to the node at time t,
designated as E;(t) is reduced by the transmission energy
(E.,), the reception energy (E,,), and the energy consumed
by deep learning computations. This energy consumes a
portion of the energy costing by the nodes running inference
at the edge. It is an important part of ensuring there is balance
between communication costs and computation costs. The
framework makes adaptation decisions based on
communication (sending) a task locally or utilizing the fog-
cloud layers to process the task, while also ensuring there is
sustainability sooner not later on battery capacity, while
latency is kept to a minimum even at peak times.
E(t+1) =E(t) —Ex — Enx

—Epy ©)

3.1 Clustering and routing with hybrid WOA-GWO

The model looks at a hybrid optimization model which
combines the WOA) with the GWO, to concurrently solve
clustering and routing in an loT supported WSN. The target of
the model is to use less energy, maximize the life of the
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network, and improve routing efficiency, so large loT
installations are more feasible over the long term. Our model
stands alone from past models that looked at clustering and
routing as separate processes by examining them as integrated
optimization problems simultaneously. The value in our
model, is partitioning the network logically into two layers,
whilst the clustering layer can look at selecting the best CH,
and the routing layer solved the least energy path from CH to
sink node. Together these two layers of optimization worked
towards finding a balance across communications load across
the network whilst minimizing redundancy and maximizing
the available residual energy reserves consumed during
communication. We formed clusters based on minimizing the
amount of radio energy consumed whilst providing nodes that
are facing large inference loads some refuge from high radio
loads. We assign ranks to candidate CHs using the BIO-DLEC
fitness as given in Eq. (6).

YEpL;

EDL,max

F, = aE;(t)Emax + BQ; — (6)

Let Q; denote the link quality, while a, 8,y > 0 represent
the weights assigned to energy, connectivity, and DL cost,
respectively. Eq. (10) is imposed as a constraint on the cluster
geometry in order to limit the cluster radius, denoted as R,
and the number of members in the cluster, denoted by N.. Its
purpose is to ensure bounded intra-cluster hop lengths for load
balancing. Eqg. (3) gives the transmission energy of a k-bit
payload when the distance d is E., (k, d), while Eq. (4) is its
reception energy E,..(k). With DL energy, these describe
node-level consumption in Eq. (5), which will be fed back into
the optimizer every epoch. Fusing WOA with GWO avoids
premature convergence and retains diversity. The
encircling/exploitation step in Eq. (7) of WOA fine-tunes
around the current best X*(t), while the leadership average
step in Eq. (8) of GWO favors exploration by utilizing «, 5,
and o leaders. Hybrid update is shown in Eq. (9).

Xt+1D)=X"t)—-A-1C-X"(t)—X() | (7)
X1 =TT (8)
Xnew = AXwoa + (1 — DXgwo, A € [0,1] )

It strikes a balance between both linearly anneal A in relation
to the epochs spend in the subsequent exploratory and
exploitative phases. Each candidate solution additionally
encodes each CH index, member assignments, and Tx-power
schedules. The metric from our fitness function given in Eq.
(6) finds and returns the fitness of each candidate and the best
candidate will be pushed to the network for the next epoch.

Rc < Riax and N¢ < Nax (10)

Once advanced clusters are declared, members send unicast
packets to their CHs. CHs relay down to the sink. The paths
can be shortened based on Q; and the cost of routing. The
schedules and Tx powers will need to be inherited from the
selected candidate given in formula (10). When: (i) the mean
residual energy in any cluster node sinks below a threshold,
(ii) link quality degrades below a threshold, (iii) DL
compression or offloading changes the energy profile of each
node, so the optimizer will rerun.



3.2 Energy-aware deep learning compression

The deployed backbone with different layers has a few
parameters at precision with uncompressed rate. BIO-DLEC
performed structured pruning on each layer, followed by post-
training quantization to INT8, with a resulting compressed
size. The storage size of the deep learning model operating in
the 10T-WSN structure is defined in Eq. (11). Here, W, is the
number of weights in layer B stands for the bit-width precision,
and L is the number of layers. The summation takes into
consideration all the layers of the model, and therefore gives
the total size and storage requirements of the deep learning
model. This is important in BIO-DLEC because model size
affects memory, transmission overhead from offloading, and
device limitations for edge nodes with constrained resources.

L
Smoder = ) (Wi B) (an
=1

In Eq. (12), the total active number of weights in a layer [
after applying dropout regularization is presented. The dropout
rate of this layer is given by p;, whereas W, is the previous
number of weights within that layer. Dropout reduces the
number of active weights, which also improves generalization
performance, reduces computational burden of real-time
inference. In BIO-DLEC, this equation captures the trade-off
between accuracy and efficiency, since dropout prevents
overfitting but also lower number of operations triggered at the
sensor or fog layer, which in turn, should reduce dissipated
energy.

h® = f(W(l)(r(l—l) ) h(l—l)) + b(l)) (12)

Here, h® is the output activation, R~ is the input
activation. The effective weights W', and b bias vector. In
BIO-DLEC, this equation quantifies the fact that the
compression of the model directly results in reduced memory
footprint, reduction of the transmission overhead for
offloading, and reduced energy (cost at edge devices) for the
particular inference tasks under consideration while ensuring
acceptable accuracy measurements.

>

=1

W, - B’

(13)

Scomp

Eg. (14) indicates the energy consumed during deep
learning inference. In this expression, MAC; refers to the total
number of multiply accumulate (MAC) operations necessary
for the compressed model, F,,, is the energy used per MAC
operation, and ¢ is a conversion factor for efficiency. This
demonstrates that inference energy does not simply depend on
a measurement of algorithmic complexity, but includes the
operational characteristics of the implementation. The model
detailed in BIO-DLEC, produces inference energy Ep; that is
tracked in each node’s residual energy balance as represented
in Eq. (5), and allows the framework to determine when local
inference is no longer efficient from an energy perspective and
adaptive offloading can be accomplished.

Ep, = ¢ - MACs - P,, (14)

Here, P,,, is energy per multiply-accumulate on the target
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device and ¢ reflects any memory/activation effects measured
offline. The aggressiveness of reducing prune channels adapts
to runtime conditions given in Eq. (15).

)
Emax Tobs

P(t) = f ( (15)

To decrease the amount of pruning where there is little
residual energy or if the observed latency 7, exceeds the
requirement ..., . Quantization by default is INT8, and if
energy reaches a critical low, the agent may activate additional
channel-sparsity constraints to further decrease the number of
MACs. The alteration of accuracy is bounded via inequality
(16), with Acc,,;, for each application. If this continual
adjustment is violated, then pruning can be rolled back and
offloading preferred.

AcCoomp = AcCin (16)

Since Ep,, is appeared directly in the CH fitness given in Eq.
(6), nodes with heavier models are considered de-preferred for
a CH role—unless compensated for by higher reservoir
energy, or more favorable links. On the other hand, as pruning
represents a reduction in Ep;, the node fitness increases,
leading to improved equity in CH rotation without impacting
lifetime.

3.3 Adaptive offloading

By combining these four reality dimensions, the state vector
S; provides a complete overview of the system state, allowing
the BIO-DLEC optimization strategy (hybrid WOA-GWO
with DL-based inference) to dynamically adapt the clustering,
routing, and offloading policies. In this regard, Eq. (17)
modifies the BIO-DLEC in a context-aware and dynamic
manner to make sure that the decisions made in the real-time
10T-WSN environment are also dynamic. Eq. (17) defines the
state vector for the proposed BIO-DLEC framework at a given
time step t. This multi-dimensional state consists of the
relevant parameters when making decisions in clustering the
nodes, routing packets, and offloading tasks. Here, E;(t) is the
residual energy of node i at time t, as previously defined in Eq.
(5). Including this term makes sure that decisions are energy-
aware to avoid placing excessive burden on nodes with an
insufficient level of energy. L;;(t) is the link quality measure
between nodes i and j that captures the distance (via Eq. (2))
and the dynamic wireless channel condition. A strong link
would ensure improved PDR and reduced retransmission
costs. fog(t) is the fog node utilization at time t, representing
the current processing load at the fog layer. Including this
metric allows for maintaining low latency and a balanced
distribution of computation by ensuring that task offloading
wouldn’t overload fog servers. The state vector is given in Eq.
),

Se = [E:@®), Lij (), Usog(t), peragric()] (17)

Eg. (18) describes the action space of the BIO-DLEC
decision-making. Each time step t, the system can take one of
three actions, (i) Local execution at the sensor node, (ii)
Offloading to the fog layer, or (iii) Offloading to the cloud.
This discrete action space allows for an adaptive inference
deployment policy for the BIO-DLEC decision-making, while
balancing energy consumption, latency and accuracy. The



flexibility provided by separate execution domains means that
a resource-constrained sensor node does not become a limiting
factor or bottleneck, while also providing performance scaling
through fog and cloud execution domains.
A; € {Local,Fog, Cloud} (18)
The normalized multi-objective formulation preserves
interpretability and consistency in relative priorities a: 8 :y
across experiments and promotes stability in convergence
when heterogeneous tasks (prediction, anomaly detection,
routing) are integrated. Eq. (19) will be displayed as the
corrected multi-objective loss function.

a B
0)=—— L g+ ————
Q( ) a+[3+)f pred (X+B+Y anom (19)
ml‘route +A106 13
Here, L,,,.q is fill-level prediction loss, L,,om is the anomaly

detection or waste-type classification 10SS, L,y iS the
routing optimization cost represented as a differentiable
surrogate of route distance or energy consumption, along with
A 11 @ |13 as an L2 regularization term to avoid overfitting and
stabilize weights updates.

Eq. (20) represents the reward function for reinforcement
learning. The reward at time t is a weighted sum of three
factors, which are: (i) the inference Accuracy, weighted by §;
(ii) the Energy consumed, penalized by n; and (iii) Latency,
penalized by k. This represents the goals of the system design
- maximizing accuracy while minimizing energy dissipation
and delay. Tuning the coefficients §, n, and x allows the
framework to prioritize application-specific requirements,
e.g., energy-constrained sensing vs. latency-critical industrial
monitoring, etc.

R, = § - Accuracy —n - Energy Used
(20)
—k - Latency

Eqg. (21) represents the total latency incurred by performing
an offload task. It consists of three components: (i)
transmission delay, which is effective by size of input S,
and transmission bandwidth factor B;; between nodes i and j;
(ii) execution delay 7., by the fog or clouds server; and (iii)
return delay .., 10 receive the results back to the requester.
This ensures that BIO-DLEC directly measures if an offload
produces a net latency decrease versus local execution.
Toffload = BijSinput + Texec + Treturn (21)
Eqg. (22) describes the local inference delay when tasks are
executed on the loT device itself. Here, MACs represent the
number of multiply—-accumulate operations that the
corresponding compressed deep learning model will take, and
fepu represents the CPU frequency of this 1oT device. This
formulation relates computational complexity to execution
time so that the system can compare 7;,¢q; With 7,194 and

determine the best execution option.

MACs

fCPU (22)

Tiocal =

In the BIO-DLEC model, the accuracy-based decision rule
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as defined by inequality (23) is as follows. In the equation,
Acceomp 18 the inference accuracy achieved by the compressed
model executed locally (using the compressed model from
Egs. (11)-(14), while Accypintex: 1S the minimum accuracy
specified by the accuracy requirements of the application. If
the locally compressed model using compressed dynamics
model does not reach that sufficient threshold of accuracy, the
preference would be offloading the task associated with the
decision support system requested to a fog or cloud server with
less stringent computations and restrictions. This would be
particularly important in instances where the application is
health or safety monitoring system and the lightweight local
inference might not be good enough for proper decision
making.

fog
cloud

ACCcompressed < ACCpintext = DTEfET (23)

Inequality (24) includes a fog resource constraint. In this
case Uy, indicates the current utilization of the fog server at
time t and U, is the maximum utilization threshold rate. If the
utilization of the fog server exceeds this threshold, then the
B10O-DLEC framework may automatically disallow offloading
to fog nodes and select either local execution (if in the
consideration set mode) or offloading to the cloud. This
protects from overflowing the fog server and therefore ensure
service is acceptable with importance to ensuring capacity to
maintain low latency and fairness across multiple users.

Usog > Unax — avoid fog (24)

3.4 Cross-layer optimization

BIO-DLEC is designed with a cross-layer optimization
approach that will have a combined optimization methodology
that recognizes the systems physical, network and application
layers to maximize computing energy efficiency and
sustainability ~ while being deployed in loT-WSN
environments. Ultimately unlike a conventional design that
optimizes layers in isolation, as we do in BIO-DLEC, which
optimizes all three layers in unison while considering the
system as a whole through the objective function. The
weighting coefficients w;, w,, and w5 are tunable for the
system designer to consider the requirements of the
applications. The overall objective is the multi-criteria
program as given in Eq. (25):

Ir4nin W1Etotar + W2Trorar — w3Accuracy
Pl

(25)

Here, E;orqr @and Ty are cumulative sensing, inference,
and communication components over the epoch, and
w1, W4, w3 > 0, are application priorities e.g., safety critical
latency or lifetime. Constraints include cluster geometry, fog
utilization, and accuracy floor. In practice, BIO-DLEC does so
indirectly as a hybrid metaheuristic for clustering/scheduling,
an adaptive compression controller for p;, and the Q-learning
agent for A;; they each share telemetry each epoch.

4. RESULTS AND DISCUSSIONS

The evaluation of the proposed BIO-DLEC framework was
performed in a hybrid simulation environment that combined
the modeling capability of NS-3 for a WSN, and the task



scheduling and compute energy profiling capability of
iFogSim2 for fog cloud. A hybrid framework was selected
because there was a requirement to recreate both the fidelity
of low-power wireless radio, and the realism of fog-based
computation, which a single simulator was not able to provide.
There were two primary simulators used in the hybrid
simulation. NS-3.41 was configured with IEEE 802.15.4
radios, the RPL routing protocol, and its energy framework so
it could model packet transmission, reception, idle listening,
and sleep modes to capture power modeling.

The first-order radio model was selected with per-bit
electronic and per-bit amplification costs adjusted to emulate
the typical contemporary sensor nodes. Simulation is done
usingiFogSim2 to profile fog nodes, cloud servers, queueing
delays, CPU utilization, and energy. As a controller, we used
a lightweight Python script to establish communication to the
NS-3 simulation and iFogSim2 via ZeroMQ every 30 seconds,
exchanging telemetry and optimization decisions. This
established communication between NS-3 and iFogSim2
allowed BIO-DLEC's hybrid optimization module to adjust
clustering, model compression, and offloading dependent on
the real-time conditions of the simulation Network.

Three different network sizes were considered to evaluate
scalability. The small topology contained 1000, 2000, 3000,
4000, and 5000 sensor nodes deployed within a 5000 > 5000
m=area. In every situation, the sensor nodes were uniformly
random and distributed across the space with a sink node
located at the geometric center. Two fog nodes were used at
quarter coordinates to model realistic edge gateways. Traffic
generation was based on a periodic model of 64-byte packets
at an average rate of 0.5 packets per second, perturbed with
Poisson jitter to avoid synchronization artifacts. The deep
learning workload for inference is based on a lightweight
anomaly detection model for sensor streams. We analyzed and
reported the performance and evaluation of the proposed BIO-
DLEC framework across five canonical metrics: network
lifetime, energy dissipation, throughput, energy, and PDR. We
used the hybrid NS-3 and iFogSim2 environment specified
earlier and averaged performance results across 30
independent runs while providing 95% confidence intervals.
Table 1 shows the parameters used for the experimentation
conducted.

We will summarize the discussion and orient it to the
comparison of BIO-DLEC with both none-as-a-service
protocols and computation offloading baselines such as Fog-
Queuing Algorithm (FQA) [14], Fog-Coordinated Resource
and Battery-Aware Topology (FC-RBAT) [32], and Fog-
aware Resource Negotiation with Selection and Energy
Efficient Routing heuristic (FRN-SEER) [33], Butterfly
Optimization Algorithm (BOA)-ACO [34], and Order-Aware
Federated Scheduling-Order-Aware Federated Scheduling-
Improved Moth-Flame Optimization (OAFS-IMFQ) [35] are
provided in the next section, after each of the metrics.

Table 1. Parameters and their values

Parameter Range Explored Final Value
Learning rate le™> — 1e7? 1x107
Batch size 8-64 32
Epochs 50-300 150

Dropout rate 0.1-0.5 0.3
GNN layers 1-5 3

Hidden dimension 32-256 128
Attention heads 2-8 4

Optimizer Adam / RMSProp / SGD Adam

The basic models referenced here for comparison with the
proposed model's core operation are discussed here. The
hybrid heuristic incorporates the global exploration of the
BOA and the path-planning ability of ACO, and employs an
update rule that integrates the influence of sensory modalities
S; on the pheromone concentration 7;; shown in Eq. (26):

= e S DAY 5 ()
J

This equation is a process by which routing cost and bin
service order are optimized. The BOA-ACO exhibits a good
convergence speed; however, its decision-making features
operate only on scalar features (e.g., location, fill-level), and
do not though possible leverage high-dimensional multimodal
data.

The second hybrid model combines fuzzy logic with
recurrent memory for time-series forecasting. The fuzzy
membership function u(x) creates degrees of uncertainty,
while the recurrent component operates with an update of
hidden state as shown in h; = f(h;_4, x;). Its major limitation
at present is that it does not provide a graph representation of
the spatial relationships between the bins of interest. Finally,
third model OAFS-IMFO utilizes a meta-heuristic search
mechanism to choose the most important sensor attributes to
include in decision-making. The moth - flame model updates
the candidate solutions in the adopted model is shown in Eq.
(27):

Mt = Ff - ePlicos(2mly) + Ff (27)

Here, F; denotes the jth flame, and [; is a spiral parameter.
OAFS-IMFO is a successful model for minimizing the
dimensionality of the input features, though it lacks
topological and temporal awareness for its unknown bin
location and unknown bin configuration.

4.1 Network lifetime

The lifetime of the networks shown in Table 2 and Figure 2
show that the proposed BIO-DLEC framework has the longest
lifetime compared to other protocols that were tested, since
you get longer coverage in either the additional rounds
covered. In terms of the first node, in the BIO-DLEC
framework, it sustained up to 1245 rounds, while OAFS-
IMFO and FC-RBAT reported failures at very early points
(910 and 980 rounds, respectively), which indicates they
improved stability time by nearly 35% over OAFS-IMFO and
nearly 27% over FC-RBAT. At the fifty percent point of each
network (dead nodes), the BIO-DLEC framework reported
coverage at 2290 rounds, which is 12% longer than FQA and
almost 27% longer than FRNSEER, allowing for possibly an
extended time for sensing coverage to remain stable. Finally,
in terms of lifetime (last node dead), the BIO-DLEC
framework completed at 3220 rounds, while the competitive
protocol (FQA) ended at 3010 rounds. The lowest end was
reported in OAFS-IMFO (2680), reporting a 20%
improvement in lifetime over BIO-DLEC.

The increased lifetime performance of BIO-DLEC results
from the hybrid WOA-GWO clustering system which
optimizes the energy consumption of sensor nodes at cluster-
heads, and minimizes excessive calculations with its deep-
learning-based offloading topology. BIO-DLEC optimizes
hotspots and balances the load among the sensor nodes in the



network with its dynamic cluster-head rotation and bio-
inspired routing. It is clear that by the end of the experiment,
the baseline protocols, OAFS-IMFO and FC-RBAT have the
shortest lifetimes resulting from the cluster-head nodes
consuming energy faster than IOTE-WSN nodes. BOA-ACO
and FQA generally outperformed the baseline protocols in
lifetime but fail to balance consumption amongst each node
the same across the larger deployments because of the organic
benefits of clusters. BIO-DLEC eliminates this behavior to
have the best stability and longest network life for IoT-WSN
applications.

4.2 Throughput

Throughput is one of the important aspects to evaluate
network performance. The throughput measures how much of
data can be transmitted successfully over a period of time. The
results from the simulation comparison show there was an
improvement of the system efficiency and reliability of the
data transport mechanism of the protocol that is used, see
Table 3 and Figure 3. For the assessment of throughput, we
evaluated the biggest scale WSN using the BIO-DLEC
framework and in our case, we used five protocols OAFS-
IMFO, FC-RBAT, FRNSEER, BOA-ACO, and FQA. As can
be seen in the table, or summary, in Table 4, BIO-DLEC had
a better throughput in all of the rounds of simulation. At 1000
rounds, the throughput of BIO-DLEC was, for example, 185
kbps, which was better than the OAFS-IMFO by more than
25% (148 kbps), and it was better than the FQA (171 kbps) by

8%. The gap increased the more the number of handled
rounds. At 3000 rounds BIO-DLEC achieved a throughput of
220 kbps which is about 28% better than OAFS-IMFO, and
12% better than FQA. Lastly all these protocols performed less
at 5000 rounds and we can see, for example, at this value, the
throughput of BIO-DLEC was 249 kbps, while the next
protocol (FQA) was 212 kbps, an improvement of 17.5%.

The major thus improvement may be attributed to three
design features of the BIO-DLEC framework. Firstly, the
WOA-GWO hybrid clustering balanced energy with packet
collision and retransmission. Secondly, via deep learning
assisted edge-cloud inference, BIO-DLEC implemented
adaptive offloading that alleviated congestion and stabilized
packet movement through the network. So, reducing packets
dropped within the network and without changing the routing.
Finally, BIO-DLEC's bio-optimization routing found low-
latency paths to maximize effective delivery. In contrast,
baseline protocols like OAFS-IMFO and FC-RBAT
experience a more rapid decline in throughput performance
due to static clustering or fast limitations on massive network
architecture. BOA-ACO and FQA use intermediate fluidity
compared to earlier heuristics, however they still suffer
overhead in dense deployments that prevented their sustained
throughput performance against BIO-DLEC. Overall, the
analysis suggests that BIO-DLEC was not only energy aware,
but very throughput aware; instilling confidence that data
delivery will be safely and reliably sustain itself in large scale
10T-WSN type applications where stability and reliability
should trump throughput.
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Figure 2. Network lifetime versus number of iterations
Table 2. Network lifetime versus number of iterations
Protocol First Node Dies Half Nodes Dead Last Node Dies
OAFS-IMFO 920 1800 2680
FC-RBAT 980 1920 2795
FRNSEER 1020 1985 2870
BOA-ACO 1085 2050 2945
FQA 1120 2105 3010
BIO-DLEC 1245 2290 3220

4158



Table 3. Throughput versus number of iterations

Protocol 1000 Rounds 2000 Rounds 3000 Rounds 4000 Rounds 5000 Rounds
OAFS-IMFO 148 160 172 180 186
FC-RBAT 155 168 180 188 194
FRNSEER 162 176 186 195 202
BOA-ACO 168 182 192 200 207
FQA 171 185 196 205 212
BIO-DLEC 185 205 220 235 249
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Figure 3. Throughput versus number of iterations

4.3 Energy dissipation

Energy dissipation is one significant constraint in the sensor
network that has a direct effect on the life of the sensor
network. The energy dissipation behavior of the proposed
BIO-DLEC framework was compared against five
benchmarks under the same network parameters. Table 4 and
Figure 4 provide the energy dissipated by node birth over the
life of the node over all rounds of operation. As can be seen,
the BIO-DLEC consistently dissipated the least energy overall
with the least amount of energy dissipated for the whole time.
At round 1000, the energy dissipated by the BIO-DLEC was
0.61 J, 0.82 J was used for OAFS-IMFO and 0.69 J for FQA.
This was a reduction of 25.6% in energy compared to OAFS-
IMFO and 11.6% compared to FQA. As discussed previously,
the useful difference in energy dissipation will be even more
notable later on in the simulation. At round 3000, the BIO-
DLEC had dissipated 1.87 J while the FRNSEER method
dissipated 2.27 J and the BOA-ACO dissipated 2.16 J. At the
end of the experiment (round 5000), the total energy that the
BIO-DLEC nodes dissipated, was 3.22 J, while the OAFS-
IMFO dissipated 4.12 J and FQA dissipated 3.55 J.

The efficiency can be further attributed to the adaptive

cluster-head rotation mechanism in BIO-DLEC that
minimizes load on nodes and ultimately the potential of rapid
exhaustion. The WOA-GWO hybrid optimization also
provides the ability to aggregate optimal clustering with less
communication overhead, while the deep learning-based
inference at the edge reduces short-haul unwanted
transmission to the cloud. Furthermore, bio-inspired routing
also ensures that data packets are routed along a transmission
path with the least total energy dissipation cost.

Conversely, OAFS-IMFO and FC-RBAT are characterized
by untenable imbalance of cluster load, which promotes
energy depletion on high-traffic nodes to occur at an
expeditious rate. FRNSEER improves upon these schemes,
but still fails to be energy responsive repeatedly under full
deployment scale. BOA-ACO and FQA shows some
aggregation and minimization of energy dissipated over
standard schemes, but lacks the same effectiveness as BIO-
DLEC under network density, due to added routing overhead.
Overall, BIO-DLEC minimizes energy dissipated, therefore
prolonging network lifetime. Overall, provided the best
theoretical scenario, it provides an adequate narrative to
support the deployment of energy-constrained loT-WSN
environment at larger scales.

Table 4. Energy dissipation (Joules) versus number of iterations

Protocol 1000 Rounds 2000 Rounds 3000 Rounds 4000 Rounds 5000 Rounds
OAFS-IMFO 0.82 1.65 2.47 3.28 412
FC-RBAT 0.78 1.56 2.35 3.18 3.95
FRNSEER 0.75 1.49 2.27 3.05 3.82
BOA-ACO 0.71 1.43 2.16 2.92 3.68
FQA 0.69 1.39 2.10 2.84 3.55
BIO-DLEC 0.61 1.24 1.87 2.45 3.12
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Figure 4. Energy dissipation (Joules) versus number of iterations

4.4 PDR

PDR is a fundamental metric for network effectiveness
since it is the ratio of successfully delivered packets to the
overall packets created. As indicated in Table 5 and Figure 5,
the introduced BIO-DLEC network showed statistically
significant gains compared with the protocols in this study
across all rounds in the network. After 1000 rounds, the PDR
for BIO-DLEC was 97.5%, while the next best was 91.0% and

the OAFS-IMFO ranked lowest at 86.2%. As network loads
increase and energy levels reduce over time, the success of
BIO-DLEC becomes increasingly more evident. After 3000
rounds, the PDR for BIO-DLEC was 94.8%, compared with
FQA's PDR of 87.8% and OAFS-IMFQO's 82.9%. After 5000
rounds, BIO-DLEC still had a PDR of 91.3%, which is almost
11.5% higher than OAFS-IMFO and about 6.5% higher than
FQA.

Table 5. PDR versus number of iterations

Protocol 1000 Rounds 2000 Rounds 3000 Rounds 4000 Rounds 5000 Rounds
OAFS-IMFO 86.2 84.7 82.9 81.4 79.8
FC-RBAT 88.1 86.5 84.6 83.0 81.2
FRNSEER 89.4 87.9 85.8 84.1 82.6
BOA-ACO 90.2 88.7 86.9 85.2 83.5
FQA 91.0 89.6 87.8 86.3 84.8
BIO-DLEC 97.5 95.2 94.8 93.6 91.3
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Figure 5. PDR versus number of iterations
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While forming clusters and routing, BIO-DLEC incurs extra
control packet overhead for the hybrid WOA-GWO
optimization and reinforcement learning updates. The
simulation analysis shows that this overhead is 8-11% in
addition to baseline protocols (LEACH, PEGASIS). However,
the energy savings in data transmission 18-25% more than
compensate for this, particularly in dense scenarios. The
hybrid WOA-GWO optimization and deep model
compression episodes are invoked occasionally rather than
continuously, and profiling experiments reveal that every
optimization iteration consumes 2.3 x 105 CPU cycles on
average per node, less than 6% of available processing time on
typical 1oT motes (8-16 MHz). Therefore, real-time sensing
and communication are not impacted. BIO-DLEC employs
lightweight reinforcement learning tables and compressed
deep models.

Nevertheless, even with this overhead, the overall energy
consumption is 21-27% lower than state-of-the-art hybrid
protocols (GWO-FA, ACO-FL). The lifetime of the network
is improved by 32-36%, showing that computational and
communication overhead is more than amortized by the
routing savings. To validate the drawbacks described in
Section 11, we benchmarked LEACH, HEED, and stand-alone
WOA/GWO methods under identical conditions. The WOA
method alone also converged slower (convergence at 1500
rounds) demonstrating limited exploitation. These results
clearly support the issues previously documented in prior
studies, which further justified the need for a hybrid
framework.

5. CONCLUSION

In this paper, we presented BIO-DLEC, a practical and
energy-aware framework for an loT-enabled WSN. It is
proposed as a model that uses a hybrid WOA-GWO for the
clustering phase to improve energy management, a bio-
inspired routing approach for maintained load-balanced
communication, and a deep learning-based decision on edge—
cloud offloading, minimizing latency and inference overhead.
The results presented in NS-3 indicate that BIO-DLEC
consistently performs better than the state-of-the-art
approaches as improved throughput while delivering energy
dissipation lower than the baseline protocols. Though BIO-
DLEC made exciting strides, many avenues for further
research exist. It can be conceivable to apply the framework
beyond single-tier l1oT-Fog-Cloud architectures to multi-tier
loT-Fog-Cloud systems addressing ultra-low latency
requirements of applications such as industrial automation and
autonomous systems. Another, real sensor hardware-in-the-
loop validation is required to validate the real-world
applicability of BIO-DLEC beyond simulation.
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