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The rapid rise of Internet of Things (IoT) applications has increased the demand for 

energy-efficient or computationally sustainable Wireless Sensor Networks (WSNs). 

This paper proposes a hybrid optimization Bio-Inspired Deep Learning and Edge–

Cloud (BIO-DLEC) framework with the Whale Optimization Algorithm (WOA) and 

the Grey Wolf Optimizer (GWO) for energy-aware clustering and routing to address 

these challenges. The hybrid framework incorporates the exploration capability of 

WOA to diversify candidate solutions, and GWO exploits them, thus achieving a 

balance process. During the clustering stages, optimal cluster heads (CHs) are selected 

based on a multi-objective fitness function that ensures overall optimality from the use 

of residual energies, intra-cluster compactness, and load balancing. In the routing stage, 

energy-efficient routing paths are established by minimizing communication cost, hop 

count, and latency within a multi-hop topology. The experimental setup uses a hybrid 

NS-3 and iFogSim2 simulation environment. The BIO-DLEC improved overall 

network performance achieving a 25.5% longer lifetime, 21.8% less energy dissipation, 

17.3% lower end-to-end latency, and a packet delivery ratio (PDR) higher than 95%. 

Overall, the results indicate the benefits of BIO-DLEC frameworks improved 

throughput reliability and enhanced sustainability for next-generation IoT-enabled 

WSNs. 
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1. INTRODUCTION

The rapid evolution of the IoT has fundamentally changed 

data driven applications in many industries, including 

agriculture, healthcare, smart cities, and industry 4.0. In fact, 

given the potential scale and future of IoT a key enabling 

technology for Internet of Things is the Wireless Sensor 

Networks (WSNs) which enables a network of collaborating 

sensor nodes to collect, process, and transmit data. The 

majority of sensor nodes are energy-constrained and 

unfortunately do not have frequently replacing batteries. 

Therefore, routing in WSNs along with effective task 

management are indispensable for networks to maximize their 

lifespan while maintaining quality of service (QoS) especially 

across large-scale IoT. To address the energy consumption and 

enabling effective routing, bio-inspired and evolutionary 

algorithms are intriguing options to consider for energy 

optimization and adaptive routing. For instance, bio-inspired 

and evolutionary strategies [1] are based on natural 

phenomena including swarm intelligence, genetic evolution, 

and predator-prey dynamics can be simple yet effective. 

Another example of a bio-inspired hybrid optimization 

algorithm showed prominent results for clustering, load 

balancing, and energy efficiency in WSNs [2]. Similarly, bio-

inspired neural networks demonstrated abilities for optimal 

cluster head selection that resulted in efficient energy 

distributions and improved scalability within a low power 

wireless personal area network [3]. Moth-Flame Optimization 

(MFO) and variants are also one of many metaheuristics and 

provided a great deal of flexibility in dynamic environments 

by maintaining a controlled balance between exploration and 

exploitation of the optimization space [4]. 

Few researchers have found that metaheuristic clustering 

protocols outperform the heuristic-based clustering schemes in 

terms of energy consumption and packet delivery performance 

[5]. The papers strongly suggest that evolutionary computing 

should be included when quantifying the performance of 

WSNs. As routing optimization matured, started investigating 

the application of edge and fog computing to enhance 

efficiency in IoT ecosystems. Deep learning is a promising 

approach for real-time analytics that can be performed using 

IoT data is an extremely energy intensive computing 

technology. Recent efforts to benchmark the energy efficiency 

of deep learning across models and edge devices continue to 

emerge [6, 7]. These articles outline the trade-offs between 

accuracy, latency, and energy efficiency. The need for 

adaptive frameworks for both computation and 

communication overhead. Task offloading is another 

important domain where energy efficiency has implications 

for IoT performance. Recent advances in reinforcement 

learning (RL) and deep reinforcement learning (DRL) 

frameworks can optimize the migration of computations 

among IoT devices, fog nodes, and cloud infrastructure. The 

use of Deep Q-Networks (DQNs) demonstrated promising 
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results for latency-aware, energy-efficient offloading 

strategies. Here, the computational load is balanced while 

minimizing delay [8]. Fuzzy logic enhanced DRL approaches 

demonstrate further adaptability for IoT application within a 

fog-cloud three-tier architecture [9]. Earlier works also 

recognize the critical aspects of an energy-scheduling while 

identifying that issues to ensure Quality of Service [10]. 

Despite the progress in the literature, there remain 

significant gaps. A systematic review of energy-aware 

resource management techniques in fog-enabled IoT 

highlights the absence of a unified framework that accounts 

for communication, computation, and routing optimization at 

the same time [11]. To make further progress, we also find that 

many of the existing techniques are domain or application-

specific, or static, and research in these areas neglects the 

unpredictable nature of IoTs. There are current constraints that 

require an efficient evolutionary computing framework that 

combines multi-objective energy-aware routing and adaptive 

cluster head selection with intelligent task offloading. For an 

efficient evolutionary computing framework, bio-inspired 

algorithms should be utilized for exploration, reinforcement 

learning for variability, and multi-objective optimization to 

balance energy efficiency, latency, and reliability. 

This paper addresses the above challenges by contributing 

the following:  

• An innovative evolutionary computing Bio-Inspired 

Deep Learning and Edge–Cloud (BIO-DLEC) 

framework for routing and energy-aware clustering 

in IoT-based WSNs.  

• Identifying an optimized route and task offloading 

selection using bio-inspired optimization and 

reinforcement learning. 

• A multi-objective fitness function including residual 

energy, latency, link reliability, and cost for 

offloading.  

• Detailed simulations and comparisons with 

clustering, routing and offloading protocols.  

The structure of the remainder of the paper is detailed as 

follows: In Section 2, we review related literature in bio-

inspired optimization, deep learning compression for edge 

devices and fog-cloud offloading. In Section 3, we describe 

the proposed BIO-DLEC framework along with the 

mathematical model and optimization process. In Section 4, 

we present the experimental protocol and details. In Section 5, 

we conclude with a summary and future research. 

 

 

2. RELATED WORK 

 

Energy-efficient routing in WSNs has seen remarkable 

growth due to the resource-limited nature of IoT devices. More 

recently, design approaches have emphasized using 

evolutionary computing, methodology fuzzy heuristics, and 

other hybrid metaheuristic techniques to optimize energy 

consumption by extending the lifetime of the network. 

Shokouhifar et al. [12] provided an extensive survey of AI-

based cluster-based routing protocols. The study indicated 

how fuzzy heuristics, metaheuristic, and some machine 

learning based models had been used extensively to provide 

energy efficiency. Though the applications reviewed 

regarding AI showed some improvements in clustering and 

routing stability required intensive computational costs that 

would not be feasible for ultra-low-power WSNs. Zaier et al. 

[13] examined a mechanism of interval type-2 fuzzy unequal 

clustering and sleep scheduling for IoT based WSNs. The 

draw for this model was the improved energy balanced values, 

as well as overall network life to provide continuous service, 

however challenges with scaling to the entire physical area of 

interest, and latency, especially in dense networks, remained 

problematic.  

Wang et al. [14] developed fuzzy logic and applied it with 

a quantum annealing algorithm for cluster-based routing. 

While they used extensive algebra to show improvements with 

energy aware cluster head (CH) selection, many are concerned 

with implementation at the hardware or silicon level due to 

complexity attributable to the quantum annealing algorithm. 

Cherappa et al. [15] developed an Adaptive Swarm-Based 

Fuzzy Optimization (ASFO) for clustering and also proposed 

a cross-layer expedient routing protocol. While the protocol 

was efficient in reducing communication costs, it was not 

reliable in environments with high mobility. Also, Dev and 

Mishra [16] created a hybridization of Grey Wolf Optimizer 

(GWO) and Firefly Algorithm for heterogeneous WSNs, 

which provided significant longevity; nevertheless, their 

hybrid framework required a lot of tuning to parameters, 

which complicated deployment in everyday scenarios.  

Swarm intelligence continues to account for a substantial 

amount of routing optimization literature. Han et al. [17] 

utilized an improved Ant Colony Optimization (ACO) 

approach for IoT WSNs routing, in addition to reducing 

energy consumption. The results did not report favorable 

performance with increasing network size. Ali and Kumar [18] 

designed a hybrid model combining Firefly, Proficient 

Routing based Power-Efficient Gathering in Sensor 

Information System, and Active Distortion Control Artificial 

Neural Network. The model provided load balancing; yet the 

write-up mentioned additional training overhead due to the 

ANN component. Ketshabetswe et al. [19] presented a 

compression-based routing strategy to encourage less 

transmission load applied to the overall energy consumption, 

but considerations regarding compression activities engaged 

some latency and accuracy trade-offs. Hu et al. [20] applied 

Harris Hawk Optimization with fuzzy logic for clustering 

protocols by outperforming many classical protocols, 

incorporating delayed convergence, and allowed for a loss in 

performance with dynamically changing topologies. Another 

way to look at the swarm is to model fuzzy hybridization in a 

swarm. Sunitha and Chandrika [21] previously introduced 

evolutionary computing-assisted QoS-centric routing that 

focused on service reliability, but it lacked flexibility for 

heterogeneous IoT contexts. Kaur et al. [22] offered an 

artificial fish swarm-based clustering protocol for underwater 

WSNs that achieved improved lifetime but was 

computationally intensive in large-scale terrestrial IoT 

environments.  

Reddy et al. [23] used a combination of glowworm swarm 

optimization and ACO showed an increase in clustering 

efficiency and routing; however, the energy savings fell short 

citing sensitivity to initialization. Gayathri and Snigdha [24] 

developed a self-healing energy-efficient clustering approach 

that enabled the network to sustain operation; however, the 

added recovery mechanisms further hurt processing delays. 

Tawfeek et al. [25] adapted ACO to improve routing 

reliability, improved routing stability at the expense of longer 

route discovery time. Other multi-strategy contributions walk 

the line of sustainability while seeking for trustworthiness or 

security. For example, Sunitha and Chandrika [26] have 

proposed a non-circular dynamic base station protocol with 

4152



 

static sensor nodes to increase network lifetime of WSN. Yang 

et al. [27] challenged a snake optimizer with minimum 

spanning trees to create efficient routing - achieving promising 

lifetime improvement but requiring complex synchronization 

mechanisms. Also, Thangavelu and Rajendran [28] focused on 

secure routing as a sustainable model for heterogeneous IoT. 

Ultimately, while encryption processes helped to establish 

trust and security amongst devices in IoT, the encryption 

overhead risked energy drain.  

Sunitha et al. [29] introduced machine learning as a 

measurement approach for security threat assessment in IoT. 

While significantly advancing IoT, their models had a very 

high inference cost. In the study of Zhang et al. [30], classic 

fuzzy-based clustering provided the first step toward energy 

constrained routing in IoT, but static assumptions will hurt 

effectiveness in adaptive operational scenarios of modern IoT. 

Lastly, Younus and Koçak [31] utilized both Grey Wolf and 

Dragonfly optimizers to provide relative routing efficiency, 

however, they faced premature convergence in dense 

deployments. Although recent research studies have shown 

substantial advances in lifetime prolongation strategies based 

on bio-inspired, fuzzy, and hybrid optimization techniques for 

WSNs, critical issues still remain relating to scalability, 

convergence speed, computational cost, and adaptability. 

These gaps warrant the development of an optimized 

evolutionary framework which seeks to balance energy 

expenditure, latency, and robustness in the routing of IoT-

WSN. 

Few shortcomings observed in the literature are poor 

performance against changing scenarios with bursts of 

mobility and burst of traffic, limited consideration of 

adversarial/benign fault conditions, energy budgets typically 

exclude sink placement, data-aggregation costs, and perfect 

location/time assumptions. A few works document a 15% 

increase in routing efficiency, but their results reveal a steep 

drop in packet delivery ratio (PDR) after 300 nodes, implying 

that their approach is not scalable. Likewise, more than a few 

would report training time to be nearly 20% or higher with the 

addition of an ANN component, which could not reasonably 

support real-time adaptation. Future work should stress 

adaptive hyperparameter schedules, attack/fault injected 

evaluations, and open implementations with associated and 

unified energy models. 

 

3. METHODOLOGY 

 

This paper introduces Bio-Inspired Deep Learning and 

Edge–Cloud synergy (BIO-DLEC) a novel all-encompassing 

scheme expected to lower the energy dissipation, alleviate the 

inference delay, and optimize the lifetime of IoT WSNs. Our 

holistic framework incorporates the following three 

synergistic components. 

• Hybrid Whale–Grey Wolf Optimization Algorithm 

(WOA–GWO) for clustering providing equal energy 

distribution and adjustable selection of cluster heads 

(CHs), 

• Bio-inspired routing mechanism allocating energy-aware 

and congestion-free nodes for transmission, 

• Deep learning enabled edge cloud collaboration 

delivering adaptive inference at the edge respective 

locations and uploading complex tasks to the cloud 

incrementally to improve latency and network congestion.  

The proposed BIO-DLEC framework designed in three 

phases as given below:  

• WSN clustering and routing 

• Energy-aware DL compression performed on edge nodes 

• Adaptive fog–cloud offloading 

Prior work has been treated each of the layers independently 

from an optimization perspective. Here, BIO-DLEC has the 

advantage that it considers type of topology, model size, and 

placement of computation. These will co-evolve with the 

energy and traffic dynamics. The overall design architecture is 

shown in Figure 1 including all stages. 

We model a system with N battery-powered nodes 

{𝑛1, … … , 𝑛𝑁} deployed over an area A, with a fixed sink at 𝑃𝑠. 

Each node 𝑛𝑖 has residual energy at some decision epoch t. Eq. 

(1) identifies the group of sensor nodes occupying the IoT-

enabled WSN. Each node, 𝑛𝑖 represents a single sensor with 

its own position coordinates, available energy and 

computational capacity, while N is the total number of nodes. 

This notation will be the base of the network model, because 

all equations that follow (clustering, routing, and energy 

optimization) fundamentally rely on the usefulness of the 

nodes and the interactions of the nodes. In the case of the BIO-

DLEC model we will consider that the sensor nodes are 

heterogeneous, where they are able to sense, and provide 

limited edge intelligence functions. 

 

 
 

Figure 1. Design diagram of the proposed model 
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𝑁𝑜𝑑𝑒𝑠 = {𝑛1, 𝑛2, … , 𝑛𝑁}  (1) 

 

As shown in Eq. (2), the Euclidean distance between two 

nodes, 𝑛𝑖 and 𝑛𝑗, is defined by their coordinates, (𝑥𝑖 , 𝑦𝑖) and 

(𝑥𝑗 , 𝑦𝑗) . Distance is an important component of a 

communication cost metric, since energy dissipation is a 

function of transmission distance. By effectively incorporating 

distance into the WOA–GWO hybrid optimization routine, 

BIO-DLEC creates energy efficient clusters and identifies 

transmission paths by ensuring that smaller distance 

transmissions prevail over longer distance scenarios, keeping 

energy expenditure to a minimum.  

 

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2
  (2) 

 

Eq. (3) defines the energy required to transmit a data packet. 

The first term, 𝐸𝑒𝑙𝑒𝑐 . 𝑘 , captures the energy cost of the 

electronic circuit (𝑘 in bits) operating on a packet and the 

second term, 𝐸𝑎𝑚𝑝 . 𝑘. 𝑑𝑛 , captures the additional cost 

introduced by the power amplifier, transmitting the packet a 

distance d. In this case, n is the path-loss exponent (commonly 

2 in free space or 4 in multi-path). In the case of BIO-DLEC, 

the energy consumed shapes cluster-head selection and affects 

routing because reducing distance while requiring equal use of 

amplifiers will maximize the life of the network. 

 

𝐸𝑡𝑥(𝑘, 𝑑) = 𝐸𝑒𝑙𝑒𝑐 ⋅ 𝑘 + 𝜖𝑎𝑚𝑝 ⋅ 𝑘 ⋅ 𝑑𝑛 (3) 

 

Eq. (4) provides the energy consumed to receive a data 

packet of size k bits. Unlike transmission, which makes use of 

a power amplifier, the energy consumed on reception is 

restricted to what is consumed by electronic circuitry. This is 

especially relevant for CHs which are collecting information 

from more than one-member node. The reception model in 

BIO-DLEC also ensures equitable cluster-head rotation 

through the use of WOA-GWO optimization, thus eliminating 

nodes from draining energy faster than the others. 

 

𝐸𝑟𝑥(𝑘) = 𝐸𝑒𝑙𝑒𝑐 ⋅ 𝑘 (4) 

 

Eq. (5) outlines the remaining energy of node 𝑛𝑖 at time 𝑡 +
1 . The amount of energy available to the node at time 𝑡 , 

designated as 𝐸𝑖(𝑡)  is reduced by the transmission energy 

(𝐸𝑡𝑥), the reception energy (𝐸𝑟𝑥), and the energy consumed 

by deep learning computations. This energy consumes a 

portion of the energy costing by the nodes running inference 

at the edge. It is an important part of ensuring there is balance 

between communication costs and computation costs. The 

framework makes adaptation decisions based on 

communication (sending) a task locally or utilizing the fog-

cloud layers to process the task, while also ensuring there is 

sustainability sooner not later on battery capacity, while 

latency is kept to a minimum even at peak times. 

 

𝐸𝑖(𝑡 + 1) = 𝐸𝑖(𝑡) − 𝐸𝑡𝑥 − 𝐸𝑟𝑥 − 𝐸𝐷𝐿  (5) 

 

3.1 Clustering and routing with hybrid WOA–GWO 

 

The model looks at a hybrid optimization model which 

combines the WOA) with the GWO, to concurrently solve 

clustering and routing in an IoT supported WSN. The target of 

the model is to use less energy, maximize the life of the 

network, and improve routing efficiency, so large IoT 

installations are more feasible over the long term. Our model 

stands alone from past models that looked at clustering and 

routing as separate processes by examining them as integrated 

optimization problems simultaneously. The value in our 

model, is partitioning the network logically into two layers, 

whilst the clustering layer can look at selecting the best CH, 

and the routing layer solved the least energy path from CH to 

sink node. Together these two layers of optimization worked 

towards finding a balance across communications load across 

the network whilst minimizing redundancy and maximizing 

the available residual energy reserves consumed during 

communication. We formed clusters based on minimizing the 

amount of radio energy consumed whilst providing nodes that 

are facing large inference loads some refuge from high radio 

loads. We assign ranks to candidate CHs using the BIO-DLEC 

fitness as given in Eq. (6). 

 

𝐹𝑖 = 𝛼𝐸𝑖(𝑡)𝐸𝑚𝑎𝑥 + 𝛽𝑄𝑖 −
𝛾𝐸𝐷𝐿,𝑖

𝐸𝐷𝐿,𝑚𝑎𝑥

 (6) 

 

Let 𝑄𝑖  denote the link quality, while 𝛼, 𝛽, 𝛾 > 0 represent 

the weights assigned to energy, connectivity, and DL cost, 

respectively. Eq. (10) is imposed as a constraint on the cluster 

geometry in order to limit the cluster radius, denoted as 𝑅𝑐, 

and the number of members in the cluster, denoted by 𝑁𝑐. Its 

purpose is to ensure bounded intra-cluster hop lengths for load 

balancing. Eq. (3) gives the transmission energy of a k-bit 

payload when the distance d is 𝐸𝑡𝑥(𝑘, 𝑑), while Eq. (4) is its 

reception energy 𝐸𝑟𝑥(𝑘) . With DL energy, these describe 

node-level consumption in Eq. (5), which will be fed back into 

the optimizer every epoch. Fusing WOA with GWO avoids 

premature convergence and retains diversity. The 

encircling/exploitation step in Eq. (7) of WOA fine-tunes 

around the current best 𝑋∗(𝑡), while the leadership average 

step in Eq. (8) of GWO favors exploration by utilizing α, β, 

and δ leaders. Hybrid update is shown in Eq. (9). 

 

𝑋(𝑡 + 1) = 𝑋∗(𝑡) − 𝐴 ⋅∣ 𝐶 ⋅ 𝑋∗(𝑡) − 𝑋(𝑡) ∣ (7) 

 

𝑋(𝑡 + 1) =
𝑋𝛼 + 𝑋𝛽 + 𝑋𝛿

3
 (8) 

 

𝑋𝑛𝑒𝑤 = 𝜆𝑋𝑊𝑂𝐴 + (1 − 𝜆)𝑋𝐺𝑊𝑂 , 𝜆 ∈ [0,1] (9) 

 

It strikes a balance between both linearly anneal λ in relation 

to the epochs spend in the subsequent exploratory and 

exploitative phases. Each candidate solution additionally 

encodes each CH index, member assignments, and Tx-power 

schedules. The metric from our fitness function given in Eq. 

(6) finds and returns the fitness of each candidate and the best 

candidate will be pushed to the network for the next epoch. 

 

𝑅𝑐 ≤ 𝑅𝑚𝑎𝑥  and 𝑁𝑐 ≤ 𝑁𝑚𝑎𝑥  (10) 

 

Once advanced clusters are declared, members send unicast 

packets to their CHs. CHs relay down to the sink. The paths 

can be shortened based on 𝑄𝑖  and the cost of routing. The 

schedules and Tx powers will need to be inherited from the 

selected candidate given in formula (10). When: (i) the mean 

residual energy in any cluster node sinks below a threshold, 

(ii) link quality degrades below a threshold, (iii) DL 

compression or offloading changes the energy profile of each 

node, so the optimizer will rerun. 

4154



 

3.2 Energy-aware deep learning compression 

 

The deployed backbone with different layers has a few 

parameters at precision with uncompressed rate. BIO-DLEC 

performed structured pruning on each layer, followed by post-

training quantization to INT8, with a resulting compressed 

size. The storage size of the deep learning model operating in 

the IoT-WSN structure is defined in Eq. (11). Here, 𝑊𝑙 is the 

number of weights in layer B stands for the bit-width precision, 

and L is the number of layers. The summation takes into 

consideration all the layers of the model, and therefore gives 

the total size and storage requirements of the deep learning 

model. This is important in BIO-DLEC because model size 

affects memory, transmission overhead from offloading, and 

device limitations for edge nodes with constrained resources. 

 

𝑆𝑚𝑜𝑑𝑒𝑙 = ∑(𝑊𝑙 ⋅ 𝐵)

𝐿

𝑙=1

 (11) 

 

In Eq. (12), the total active number of weights in a layer 𝑙 
after applying dropout regularization is presented. The dropout 

rate of this layer is given by pl, whereas 𝑊𝑙  is the previous 

number of weights within that layer. Dropout reduces the 

number of active weights, which also improves generalization 

performance, reduces computational burden of real-time 

inference. In BIO-DLEC, this equation captures the trade-off 

between accuracy and efficiency, since dropout prevents 

overfitting but also lower number of operations triggered at the 

sensor or fog layer, which in turn, should reduce dissipated 

energy. 

 

ℎ(𝑙) = 𝑓(𝑊(𝑙)(𝑟(𝑙−1) ⊙ ℎ(𝑙−1)) + 𝑏(𝑙)) (12) 

 

Here, ℎ(𝑙) is the output activation, ℎ(𝑙−1)  is the input 

activation. The effective weights 𝑊𝑙  , and 𝑏(𝑙) bias vector. In 

BIO-DLEC, this equation quantifies the fact that the 

compression of the model directly results in reduced memory 

footprint, reduction of the transmission overhead for 

offloading, and reduced energy (cost at edge devices) for the 

particular inference tasks under consideration while ensuring 

acceptable accuracy measurements.  

 

𝑆𝑐𝑜𝑚𝑝 = ∑ 𝑊𝑙
′ ⋅ 𝐵′

𝐿

𝑙=1

 (13) 

 

Eq. (14) indicates the energy consumed during deep 

learning inference. In this expression, 𝑀𝐴𝐶𝑠 refers to the total 

number of multiply accumulate (MAC) operations necessary 

for the compressed model, 𝑃𝑜𝑝  is the energy used per MAC 

operation, and 𝜙  is a conversion factor for efficiency. This 

demonstrates that inference energy does not simply depend on 

a measurement of algorithmic complexity, but includes the 

operational characteristics of the implementation. The model 

detailed in BIO-DLEC, produces inference energy 𝐸𝐷𝐿 that is 

tracked in each node’s residual energy balance as represented 

in Eq. (5), and allows the framework to determine when local 

inference is no longer efficient from an energy perspective and 

adaptive offloading can be accomplished. 

 

𝐸𝐷𝐿 = 𝜙 ⋅ 𝑀𝐴𝐶𝑠 ⋅ 𝑃𝑜𝑝 (14) 

 

Here, 𝑃𝑜𝑝  is energy per multiply-accumulate on the target 

device and 𝜙 reflects any memory/activation effects measured 

offline. The aggressiveness of reducing prune channels adapts 

to runtime conditions given in Eq. (15). 

 

𝑃𝑙(𝑡) = 𝑓  (
𝐸𝑖(𝑡)

𝐸𝑚𝑎𝑥

,
𝜏𝑟𝑒𝑞

𝜏𝑜𝑏𝑠

) (15) 

 

To decrease the amount of pruning where there is little 

residual energy or if the observed latency 𝜏𝑜𝑏𝑠  exceeds the 

requirement 𝜏𝑟𝑒𝑞 . Quantization by default is INT8, and if 

energy reaches a critical low, the agent may activate additional 

channel-sparsity constraints to further decrease the number of 

MACs. The alteration of accuracy is bounded via inequality 

(16), with 𝐴𝑐𝑐𝑚𝑖𝑛  for each application. If this continual 

adjustment is violated, then pruning can be rolled back and 

offloading preferred. 

 

𝐴𝑐𝑐𝑐𝑜𝑚𝑝 ≥ 𝐴𝑐𝑐𝑚𝑖𝑛 (16) 

 

Since 𝐸𝐷𝐿 is appeared directly in the CH fitness given in Eq. 

(6), nodes with heavier models are considered de-preferred for 

a CH role—unless compensated for by higher reservoir 

energy, or more favorable links. On the other hand, as pruning 

represents a reduction in 𝐸𝐷𝐿 , the node fitness increases, 

leading to improved equity in CH rotation without impacting 

lifetime. 
 

3.3 Adaptive offloading 
 

By combining these four reality dimensions, the state vector 

𝑆𝑡 provides a complete overview of the system state, allowing 

the BIO-DLEC optimization strategy (hybrid WOA–GWO 

with DL-based inference) to dynamically adapt the clustering, 

routing, and offloading policies. In this regard, Eq. (17) 

modifies the BIO-DLEC in a context-aware and dynamic 

manner to make sure that the decisions made in the real-time 

IoT-WSN environment are also dynamic. Eq. (17) defines the 

state vector for the proposed BIO-DLEC framework at a given 

time step t. This multi-dimensional state consists of the 

relevant parameters when making decisions in clustering the 

nodes, routing packets, and offloading tasks. Here, 𝐸𝑖(𝑡) is the 

residual energy of node i at time t, as previously defined in Eq. 

(5). Including this term makes sure that decisions are energy-

aware to avoid placing excessive burden on nodes with an 

insufficient level of energy. 𝐿𝑖𝑗(𝑡) is the link quality measure 

between nodes i and j that captures the distance (via Eq. (2)) 

and the dynamic wireless channel condition. A strong link 

would ensure improved PDR and reduced retransmission 

costs. fog(t) is the fog node utilization at time t, representing 

the current processing load at the fog layer. Including this 

metric allows for maintaining low latency and a balanced 

distribution of computation by ensuring that task offloading 

wouldn’t overload fog servers. The state vector is given in Eq. 

(17), 
 

𝑆𝑡 = [𝐸𝑖(𝑡),  𝐿𝑖𝑗(𝑡),  𝑈𝑓𝑜𝑔(𝑡),  𝜌𝑡𝑟𝑎𝑓𝑓𝑖𝑐(𝑡)] (17) 

 

Eq. (18) describes the action space of the BIO-DLEC 

decision-making. Each time step t, the system can take one of 

three actions, (i) Local execution at the sensor node, (ii) 

Offloading to the fog layer, or (iii) Offloading to the cloud. 

This discrete action space allows for an adaptive inference 

deployment policy for the BIO-DLEC decision-making, while 

balancing energy consumption, latency and accuracy. The 
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flexibility provided by separate execution domains means that 

a resource-constrained sensor node does not become a limiting 

factor or bottleneck, while also providing performance scaling 

through fog and cloud execution domains.  

 

𝐴𝑡 ∈ {𝐿𝑜𝑐𝑎𝑙, 𝐹𝑜𝑔, 𝐶𝑙𝑜𝑢𝑑} (18) 

 

The normalized multi-objective formulation preserves 

interpretability and consistency in relative priorities 𝛼 : 𝛽 : 𝛾 

across experiments and promotes stability in convergence 

when heterogeneous tasks (prediction, anomaly detection, 

routing) are integrated. Eq. (19) will be displayed as the 

corrected multi-objective loss function. 

 

𝑄(𝛩) =
𝛼

𝛼 + 𝛽 + 𝛾
𝐿𝑝𝑟𝑒𝑑 +

𝛽

𝛼 + 𝛽 + 𝛾
𝐿𝑎𝑛𝑜𝑚 

+
𝛾

𝛼 + 𝛽 + 𝛾
𝐿𝑟𝑜𝑢𝑡𝑒 + 𝜆 ∥ 𝛩 ∥2

2 

(19) 

 

Here, 𝐿pred is fill-level prediction loss, Lanom is the anomaly 

detection or waste-type classification loss, 𝐿𝑟𝑜𝑢𝑡𝑒  is the 

routing optimization cost represented as a differentiable 

surrogate of route distance or energy consumption, along with 

𝜆  ∥ Θ ∥2
2 as an L2 regularization term to avoid overfitting and 

stabilize weights updates. 

Eq. (20) represents the reward function for reinforcement 

learning. The reward at time t is a weighted sum of three 

factors, which are: (i) the inference Accuracy, weighted by 𝛿; 

(ii) the Energy consumed, penalized by 𝜂; and (iii) Latency, 

penalized by 𝜅. This represents the goals of the system design 

- maximizing accuracy while minimizing energy dissipation 

and delay. Tuning the coefficients  𝛿, 𝜂 , and 𝜅  allows the 

framework to prioritize application-specific requirements, 

e.g., energy-constrained sensing vs. latency-critical industrial 

monitoring, etc.  

 

𝑅𝑡 = 𝛿 ⋅ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝜂 ⋅ 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒𝑑 

               −𝜅 ⋅ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 
(20) 

 

Eq. (21) represents the total latency incurred by performing 

an offload task. It consists of three components: (i) 

transmission delay, which is effective by size of input 𝑆𝑖𝑛𝑝𝑢𝑡 

and transmission bandwidth factor 𝐵𝑖𝑗 between nodes 𝑖 and 𝑗; 

(ii) execution delay 𝜏𝑒𝑥𝑒𝑐  by the fog or clouds server; and (iii) 

return delay 𝜏𝑟𝑒𝑡𝑢𝑟𝑛 to receive the results back to the requester. 

This ensures that BIO-DLEC directly measures if an offload 

produces a net latency decrease versus local execution. 

 

𝜏𝑜𝑓𝑓𝑙𝑜𝑎𝑑 = 𝐵𝑖𝑗𝑆𝑖𝑛𝑝𝑢𝑡 + 𝜏𝑒𝑥𝑒𝑐 + 𝜏𝑟𝑒𝑡𝑢𝑟𝑛 (21) 

 

Eq. (22) describes the local inference delay when tasks are 

executed on the IoT device itself. Here, MACs represent the 

number of multiply–accumulate operations that the 

corresponding compressed deep learning model will take, and 

𝑓𝐶𝑃𝑈  represents the CPU frequency of this IoT device. This 

formulation relates computational complexity to execution 

time so that the system can compare 𝜏𝑙𝑜𝑐𝑎𝑙  with 𝜏𝑜𝑓𝑓𝑙𝑜𝑎𝑑  and 

determine the best execution option. 

 

𝜏𝑙𝑜𝑐𝑎𝑙 =
𝑀𝐴𝐶𝑠

𝑓𝐶𝑃𝑈

 (22) 

 

In the BIO-DLEC model, the accuracy-based decision rule 

as defined by inequality (23) is as follows. In the equation, 

𝐴𝑐𝑐𝑐𝑜𝑚𝑝 is the inference accuracy achieved by the compressed 

model executed locally (using the compressed model from 

Eqs. (11)-(14), while 𝐴𝑐𝑐𝑚𝑖𝑛𝑡𝑒𝑥𝑡  is the minimum accuracy 

specified by the accuracy requirements of the application. If 

the locally compressed model using compressed dynamics 

model does not reach that sufficient threshold of accuracy, the 

preference would be offloading the task associated with the 

decision support system requested to a fog or cloud server with 

less stringent computations and restrictions. This would be 

particularly important in instances where the application is 

health or safety monitoring system and the lightweight local 

inference might not be good enough for proper decision 

making.  

 

𝐴𝑐𝑐𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 < 𝐴𝑐𝑐𝑚𝑖𝑛𝑡𝑒𝑥𝑡 → 𝑝𝑟𝑒𝑓𝑒𝑟
𝑓𝑜𝑔

𝑐𝑙𝑜𝑢𝑑
 (23) 

 

Inequality (24) includes a fog resource constraint. In this 

case 𝑈𝑓𝑜𝑔 indicates the current utilization of the fog server at 

time 𝑡 and 𝑈𝑚 is the maximum utilization threshold rate. If the 

utilization of the fog server exceeds this threshold, then the 

BIO-DLEC framework may automatically disallow offloading 

to fog nodes and select either local execution (if in the 

consideration set mode) or offloading to the cloud. This 

protects from overflowing the fog server and therefore ensure 

service is acceptable with importance to ensuring capacity to 

maintain low latency and fairness across multiple users. 

 

𝑈𝑓𝑜𝑔 > 𝑈𝑚𝑎𝑥 →  𝑎𝑣𝑜𝑖𝑑 𝑓𝑜𝑔 (24) 

 

3.4 Cross-layer optimization 

 

BIO-DLEC is designed with a cross-layer optimization 

approach that will have a combined optimization methodology 

that recognizes the systems physical, network and application 

layers to maximize computing energy efficiency and 

sustainability while being deployed in IoT-WSN 

environments. Ultimately unlike a conventional design that 

optimizes layers in isolation, as we do in BIO-DLEC, which 

optimizes all three layers in unison while considering the 

system as a whole through the objective function. The 

weighting coefficients 𝜔1,  𝜔2 , and 𝜔3  are tunable for the 

system designer to consider the requirements of the 

applications. The overall objective is the multi-criteria 

program as given in Eq. (25): 

 

min
𝐴𝑡,𝑝𝑙

𝜔1𝐸𝑡𝑜𝑡𝑎𝑙 + 𝜔2𝜏𝑡𝑜𝑡𝑎𝑙 − 𝜔3𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (25) 

 

Here, 𝐸𝑡𝑜𝑡𝑎𝑙  and 𝜏𝑡𝑜𝑡𝑎𝑙  are cumulative sensing, inference, 

and communication components over the epoch, and 

𝜔1, 𝜔2, 𝜔3 > 0, are application priorities e.g., safety critical 

latency or lifetime. Constraints include cluster geometry, fog 

utilization, and accuracy floor. In practice, BIO-DLEC does so 

indirectly as a hybrid metaheuristic for clustering/scheduling, 

an adaptive compression controller for 𝑝𝑙 , and the Q-learning 

agent for 𝐴𝑡; they each share telemetry each epoch. 
 

 

4. RESULTS AND DISCUSSIONS 
 

The evaluation of the proposed BIO-DLEC framework was 

performed in a hybrid simulation environment that combined 

the modeling capability of NS-3 for a WSN, and the task 
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scheduling and compute energy profiling capability of 

iFogSim2 for fog cloud. A hybrid framework was selected 

because there was a requirement to recreate both the fidelity 

of low-power wireless radio, and the realism of fog-based 

computation, which a single simulator was not able to provide. 

There were two primary simulators used in the hybrid 

simulation. NS-3.41 was configured with IEEE 802.15.4 

radios, the RPL routing protocol, and its energy framework so 

it could model packet transmission, reception, idle listening, 

and sleep modes to capture power modeling.  

The first-order radio model was selected with per-bit 

electronic and per-bit amplification costs adjusted to emulate 

the typical contemporary sensor nodes. Simulation is done 

usingiFogSim2 to profile fog nodes, cloud servers, queueing 

delays, CPU utilization, and energy. As a controller, we used 

a lightweight Python script to establish communication to the 

NS-3 simulation and iFogSim2 via ZeroMQ every 30 seconds, 

exchanging telemetry and optimization decisions. This 

established communication between NS-3 and iFogSim2 

allowed BIO-DLEC's hybrid optimization module to adjust 

clustering, model compression, and offloading dependent on 

the real-time conditions of the simulation Network. 

Three different network sizes were considered to evaluate 

scalability. The small topology contained 1000, 2000, 3000, 

4000, and 5000 sensor nodes deployed within a 5000 × 5000 

m² area. In every situation, the sensor nodes were uniformly 

random and distributed across the space with a sink node 

located at the geometric center. Two fog nodes were used at 

quarter coordinates to model realistic edge gateways. Traffic 

generation was based on a periodic model of 64-byte packets 

at an average rate of 0.5 packets per second, perturbed with 

Poisson jitter to avoid synchronization artifacts. The deep 

learning workload for inference is based on a lightweight 

anomaly detection model for sensor streams. We analyzed and 

reported the performance and evaluation of the proposed BIO-

DLEC framework across five canonical metrics: network 

lifetime, energy dissipation, throughput, energy, and PDR. We 

used the hybrid NS-3 and iFogSim2 environment specified 

earlier and averaged performance results across 30 

independent runs while providing 95% confidence intervals. 

Table 1 shows the parameters used for the experimentation 

conducted. 

We will summarize the discussion and orient it to the 

comparison of BIO-DLEC with both none-as-a-service 

protocols and computation offloading baselines such as Fog-

Queuing Algorithm (FQA) [14], Fog-Coordinated Resource 

and Battery-Aware Topology (FC-RBAT) [32], and Fog-

aware Resource Negotiation with Selection and Energy 

Efficient Routing heuristic (FRN-SEER) [33], Butterfly 

Optimization Algorithm (BOA)-ACO [34], and Order-Aware 

Federated Scheduling-Order-Aware Federated Scheduling-

Improved Moth-Flame Optimization (OAFS-IMFO) [35] are 

provided in the next section, after each of the metrics. 
 

Table 1. Parameters and their values 

 
Parameter Range Explored Final Value 

Learning rate 1𝑒−5 − 1𝑒−2 1 × 10⁻³ 

Batch size 8–64 32 

Epochs 50–300 150 

Dropout rate 0.1–0.5 0.3 

GNN layers 1–5 3 

Hidden dimension 32–256 128 

Attention heads 2–8 4 

Optimizer Adam / RMSProp / SGD Adam 

The basic models referenced here for comparison with the 

proposed model's core operation are discussed here. The 

hybrid heuristic incorporates the global exploration of the 

BOA and the path-planning ability of ACO, and employs an 

update rule that integrates the influence of sensory modalities 

𝑆𝑖 on the pheromone concentration 𝜏𝑖𝑗 shown in Eq. (26):  

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑐 ⋅ 𝑆𝑖(𝑔∗ − 𝑥𝑖
𝑡) + 𝜂 ∑ 𝜏𝑖𝑗

𝑗

 (26) 

 

This equation is a process by which routing cost and bin 

service order are optimized. The BOA-ACO exhibits a good 

convergence speed; however, its decision-making features 

operate only on scalar features (e.g., location, fill-level), and 

do not though possible leverage high-dimensional multimodal 

data.  

The second hybrid model combines fuzzy logic with 

recurrent memory for time-series forecasting. The fuzzy 

membership function μ(x) creates degrees of uncertainty, 

while the recurrent component operates with an update of 

hidden state as shown in ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡). Its major limitation 

at present is that it does not provide a graph representation of 

the spatial relationships between the bins of interest. Finally, 

third model OAFS-IMFO utilizes a meta-heuristic search 

mechanism to choose the most important sensor attributes to 

include in decision-making. The moth - flame model updates 

the candidate solutions in the adopted model is shown in Eq. 

(27): 
 

𝑀𝑖
𝑡+1 = 𝐹𝑗

𝑡 ⋅ 𝑒𝑏𝑙𝑖 cos(2𝜋𝑙𝑖) + 𝐹𝑗
𝑡 (27) 

 

Here, 𝐹𝑗 denotes the jth flame, and 𝑙𝑖 is a spiral parameter. 

OAFS-IMFO is a successful model for minimizing the 

dimensionality of the input features, though it lacks 

topological and temporal awareness for its unknown bin 

location and unknown bin configuration. 

 

4.1 Network lifetime 

 

The lifetime of the networks shown in Table 2 and Figure 2 

show that the proposed BIO-DLEC framework has the longest 

lifetime compared to other protocols that were tested, since 

you get longer coverage in either the additional rounds 

covered. In terms of the first node, in the BIO-DLEC 

framework, it sustained up to 1245 rounds, while OAFS-

IMFO and FC-RBAT reported failures at very early points 

(910 and 980 rounds, respectively), which indicates they 

improved stability time by nearly 35% over OAFS-IMFO and 

nearly 27% over FC-RBAT. At the fifty percent point of each 

network (dead nodes), the BIO-DLEC framework reported 

coverage at 2290 rounds, which is 12% longer than FQA and 

almost 27% longer than FRNSEER, allowing for possibly an 

extended time for sensing coverage to remain stable. Finally, 

in terms of lifetime (last node dead), the BIO-DLEC 

framework completed at 3220 rounds, while the competitive 

protocol (FQA) ended at 3010 rounds. The lowest end was 

reported in OAFS-IMFO (2680), reporting a 20% 

improvement in lifetime over BIO-DLEC. 

The increased lifetime performance of BIO-DLEC results 

from the hybrid WOA–GWO clustering system which 

optimizes the energy consumption of sensor nodes at cluster-

heads, and minimizes excessive calculations with its deep-

learning-based offloading topology. BIO-DLEC optimizes 

hotspots and balances the load among the sensor nodes in the 
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network with its dynamic cluster-head rotation and bio-

inspired routing. It is clear that by the end of the experiment, 

the baseline protocols, OAFS-IMFO and FC-RBAT have the 

shortest lifetimes resulting from the cluster-head nodes 

consuming energy faster than IOTE-WSN nodes. BOA-ACO 

and FQA generally outperformed the baseline protocols in 

lifetime but fail to balance consumption amongst each node 

the same across the larger deployments because of the organic 

benefits of clusters. BIO-DLEC eliminates this behavior to 

have the best stability and longest network life for IoT-WSN 

applications. 

 

4.2 Throughput 

 

Throughput is one of the important aspects to evaluate 

network performance. The throughput measures how much of 

data can be transmitted successfully over a period of time. The 

results from the simulation comparison show there was an 

improvement of the system efficiency and reliability of the 

data transport mechanism of the protocol that is used, see 

Table 3 and Figure 3. For the assessment of throughput, we 

evaluated the biggest scale WSN using the BIO-DLEC 

framework and in our case, we used five protocols OAFS-

IMFO, FC-RBAT, FRNSEER, BOA-ACO, and FQA. As can 

be seen in the table, or summary, in Table 4, BIO-DLEC had 

a better throughput in all of the rounds of simulation. At 1000 

rounds, the throughput of BIO-DLEC was, for example, 185 

kbps, which was better than the OAFS-IMFO by more than 

25% (148 kbps), and it was better than the FQA (171 kbps) by 

8%. The gap increased the more the number of handled 

rounds. At 3000 rounds BIO-DLEC achieved a throughput of 

220 kbps which is about 28% better than OAFS-IMFO, and 

12% better than FQA. Lastly all these protocols performed less 

at 5000 rounds and we can see, for example, at this value, the 

throughput of BIO-DLEC was 249 kbps, while the next 

protocol (FQA) was 212 kbps, an improvement of 17.5%. 

The major thus improvement may be attributed to three 

design features of the BIO-DLEC framework. Firstly, the 

WOA-GWO hybrid clustering balanced energy with packet 

collision and retransmission. Secondly, via deep learning 

assisted edge-cloud inference, BIO-DLEC implemented 

adaptive offloading that alleviated congestion and stabilized 

packet movement through the network. So, reducing packets 

dropped within the network and without changing the routing. 

Finally, BIO-DLEC's bio-optimization routing found low-

latency paths to maximize effective delivery. In contrast, 

baseline protocols like OAFS-IMFO and FC-RBAT 

experience a more rapid decline in throughput performance 

due to static clustering or fast limitations on massive network 

architecture. BOA-ACO and FQA use intermediate fluidity 

compared to earlier heuristics, however they still suffer 

overhead in dense deployments that prevented their sustained 

throughput performance against BIO-DLEC. Overall, the 

analysis suggests that BIO-DLEC was not only energy aware, 

but very throughput aware; instilling confidence that data 

delivery will be safely and reliably sustain itself in large scale 

IoT-WSN type applications where stability and reliability 

should trump throughput. 

 

 
 

Figure 2. Network lifetime versus number of iterations 

 

Table 2. Network lifetime versus number of iterations 

 
Protocol First Node Dies Half Nodes Dead Last Node Dies 

OAFS-IMFO 920 1800 2680 

FC-RBAT 980 1920 2795 

FRNSEER 1020 1985 2870 

BOA-ACO 1085 2050 2945 

FQA 1120 2105 3010 

BIO-DLEC 1245 2290 3220 
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Table 3. Throughput versus number of iterations 

 
Protocol 1000 Rounds 2000 Rounds 3000 Rounds 4000 Rounds 5000 Rounds 

OAFS-IMFO 148 160 172 180 186 

FC-RBAT 155 168 180 188 194 

FRNSEER 162 176 186 195 202 

BOA-ACO 168 182 192 200 207 

FQA 171 185 196 205 212 

BIO-DLEC 185 205 220 235 249 

 

 
 

Figure 3. Throughput versus number of iterations 
 

4.3 Energy dissipation 

 

Energy dissipation is one significant constraint in the sensor 

network that has a direct effect on the life of the sensor 

network. The energy dissipation behavior of the proposed 

BIO-DLEC framework was compared against five 

benchmarks under the same network parameters. Table 4 and 

Figure 4 provide the energy dissipated by node birth over the 

life of the node over all rounds of operation. As can be seen, 

the BIO-DLEC consistently dissipated the least energy overall 

with the least amount of energy dissipated for the whole time. 

At round 1000, the energy dissipated by the BIO-DLEC was 

0.61 J, 0.82 J was used for OAFS-IMFO and 0.69 J for FQA. 

This was a reduction of 25.6% in energy compared to OAFS-

IMFO and 11.6% compared to FQA. As discussed previously, 

the useful difference in energy dissipation will be even more 

notable later on in the simulation. At round 3000, the BIO-

DLEC had dissipated 1.87 J while the FRNSEER method 

dissipated 2.27 J and the BOA-ACO dissipated 2.16 J. At the 

end of the experiment (round 5000), the total energy that the 

BIO-DLEC nodes dissipated, was 3.22 J, while the OAFS-

IMFO dissipated 4.12 J and FQA dissipated 3.55 J. 

The efficiency can be further attributed to the adaptive 

cluster-head rotation mechanism in BIO-DLEC that 

minimizes load on nodes and ultimately the potential of rapid 

exhaustion. The WOA-GWO hybrid optimization also 

provides the ability to aggregate optimal clustering with less 

communication overhead, while the deep learning-based 

inference at the edge reduces short-haul unwanted 

transmission to the cloud. Furthermore, bio-inspired routing 

also ensures that data packets are routed along a transmission 

path with the least total energy dissipation cost. 

Conversely, OAFS-IMFO and FC-RBAT are characterized 

by untenable imbalance of cluster load, which promotes 

energy depletion on high-traffic nodes to occur at an 

expeditious rate. FRNSEER improves upon these schemes, 

but still fails to be energy responsive repeatedly under full 

deployment scale. BOA-ACO and FQA shows some 

aggregation and minimization of energy dissipated over 

standard schemes, but lacks the same effectiveness as BIO-

DLEC under network density, due to added routing overhead. 

Overall, BIO-DLEC minimizes energy dissipated, therefore 

prolonging network lifetime. Overall, provided the best 

theoretical scenario, it provides an adequate narrative to 

support the deployment of energy-constrained IoT-WSN 

environment at larger scales. 
 

Table 4. Energy dissipation (Joules) versus number of iterations 
 

Protocol 1000 Rounds 2000 Rounds 3000 Rounds 4000 Rounds 5000 Rounds 

OAFS-IMFO 0.82 1.65 2.47 3.28 4.12 

FC-RBAT 0.78 1.56 2.35 3.18 3.95 

FRNSEER 0.75 1.49 2.27 3.05 3.82 

BOA-ACO 0.71 1.43 2.16 2.92 3.68 

FQA 0.69 1.39 2.10 2.84 3.55 

BIO-DLEC 0.61 1.24 1.87 2.45 3.12 
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Figure 4. Energy dissipation (Joules) versus number of iterations 

 

4.4 PDR 

 

PDR is a fundamental metric for network effectiveness 

since it is the ratio of successfully delivered packets to the 

overall packets created. As indicated in Table 5 and Figure 5, 

the introduced BIO-DLEC network showed statistically 

significant gains compared with the protocols in this study 

across all rounds in the network. After 1000 rounds, the PDR 

for BIO-DLEC was 97.5%, while the next best was 91.0% and 

the OAFS-IMFO ranked lowest at 86.2%. As network loads 

increase and energy levels reduce over time, the success of 

BIO-DLEC becomes increasingly more evident. After 3000 

rounds, the PDR for BIO-DLEC was 94.8%, compared with 

FQA's PDR of 87.8% and OAFS-IMFO's 82.9%. After 5000 

rounds, BIO-DLEC still had a PDR of 91.3%, which is almost 

11.5% higher than OAFS-IMFO and about 6.5% higher than 

FQA. 

 

Table 5. PDR versus number of iterations 

 
Protocol 1000 Rounds 2000 Rounds 3000 Rounds 4000 Rounds 5000 Rounds 

OAFS-IMFO 86.2 84.7 82.9 81.4 79.8 

FC-RBAT 88.1 86.5 84.6 83.0 81.2 

FRNSEER 89.4 87.9 85.8 84.1 82.6 

BOA-ACO 90.2 88.7 86.9 85.2 83.5 

FQA 91.0 89.6 87.8 86.3 84.8 

BIO-DLEC 97.5 95.2 94.8 93.6 91.3 

 

 
 

Figure 5. PDR versus number of iterations 
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While forming clusters and routing, BIO-DLEC incurs extra 

control packet overhead for the hybrid WOA-GWO 

optimization and reinforcement learning updates. The 

simulation analysis shows that this overhead is 8–11% in 

addition to baseline protocols (LEACH, PEGASIS). However, 

the energy savings in data transmission 18–25% more than 

compensate for this, particularly in dense scenarios. The 

hybrid WOA-GWO optimization and deep model 

compression episodes are invoked occasionally rather than 

continuously, and profiling experiments reveal that every 

optimization iteration consumes 2.3 × 10⁵ CPU cycles on 

average per node, less than 6% of available processing time on 

typical IoT motes (8–16 MHz). Therefore, real-time sensing 

and communication are not impacted. BIO-DLEC employs 

lightweight reinforcement learning tables and compressed 

deep models.  

Nevertheless, even with this overhead, the overall energy 

consumption is 21–27% lower than state-of-the-art hybrid 

protocols (GWO-FA, ACO-FL). The lifetime of the network 

is improved by 32–36%, showing that computational and 

communication overhead is more than amortized by the 

routing savings. To validate the drawbacks described in 

Section II, we benchmarked LEACH, HEED, and stand-alone 

WOA/GWO methods under identical conditions. The WOA 

method alone also converged slower (convergence at 1500 

rounds) demonstrating limited exploitation. These results 

clearly support the issues previously documented in prior 

studies, which further justified the need for a hybrid 

framework. 

 

 

5. CONCLUSION 

 

In this paper, we presented BIO-DLEC, a practical and 

energy-aware framework for an IoT-enabled WSN. It is 

proposed as a model that uses a hybrid WOA-GWO for the 

clustering phase to improve energy management, a bio-

inspired routing approach for maintained load-balanced 

communication, and a deep learning-based decision on edge–

cloud offloading, minimizing latency and inference overhead. 

The results presented in NS-3 indicate that BIO-DLEC 

consistently performs better than the state-of-the-art 

approaches as improved throughput while delivering energy 

dissipation lower than the baseline protocols. Though BIO-

DLEC made exciting strides, many avenues for further 

research exist. It can be conceivable to apply the framework 

beyond single-tier IoT-Fog-Cloud architectures to multi-tier 

IoT-Fog-Cloud systems addressing ultra-low latency 

requirements of applications such as industrial automation and 

autonomous systems. Another, real sensor hardware-in-the-

loop validation is required to validate the real-world 

applicability of BIO-DLEC beyond simulation. 
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