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Most of the traditional and existing methods in lung cancer detection suffer from 

challenges such as limited interpretability, delayed decision-making, limited diagnostic 

assistance, scope of misinterpretations, and single modality processing models. To 

address these, a hybrid deep learning model is required that consists of a 3 Dimensional 

Convolutional Neural Network (3D-CNN), a Transformer, and an RNN-LSTM pipeline 

for the identification of lung cancer. The hybrid model predicts the disease early and 

alerts so that the mortality rate is reduced. In these, 3D-CNN is used for volumetric CT 

images and nodules malignant processing, Transformer is used for processing genomics 

sequences, and the RNN-LSTM pipeline is used for temporal clinical data 

interpretation. The features from each section are fused using a multi-modal fusion layer 

for efficient lung disease classification. The results obtained over the LIDC-IDRI 

dataset (publicly available repository) of images, clinical/genomics data after 

preprocessing, and hybrid model processing, in terms of AUC, sensitivity, and 

specificity, are observed to be better than existing models used. The statistical test via 

DeLong would determine the effectiveness of the model. The interpretability is 

increased due to the usage of SHAP explainability by clinical and nodules features.  
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1. INTRODUCTION

Lung cancer is one of global cancer mortality affected 

disease, due to a lack of advanced screening methods and 

delayed decisions.  

1.1 Background 

Lung cancer results in the death of many people. In this, 

specific parameters are noted that are useful in estimating the 

risk, as well as rehabilitation would be preferred for recovery 

and mental support. Detecting lung cancer in the last stage is a 

high-risk scenario as well as the recovery rate is very low, 

which increases the mortality rate. In this, CT scans support 

clinical mechanisms for nodule detection, while genomics 

provides complementary information on risk assessment. 

Personalized treatments, as well as timely alerts, would 

improve the health of the patient with early prediction and 

accurate risk assessment. The available traditional methods 

suffer from a single modality and are limited in diagnostic 

power and interpretability.  

1.2 Research gaps 

The disadvantages of existing methods were demonstrated, 

such as: (i) support only a single modality like CT or 

genomics, which avoids rich information from cross-modality; 

(ii) limited integration of heterogeneous datatypes, which

lacks advanced feature concatenation like multi-modal fusion;

(iii) delayed decision-making due to dependent on radiologist

reports, which involve manual or semiautomated mechanisms;

(iv) insufficient interpretability, due to many DL methods

behave as back boxes, and lack of agnostic explainability; and

(v) limited statistical validation, due to not using statistical test

like DeLong tests for AUC comparison.

1.3 Objectives 

The proposed hybrid model would overcome and ensure 

objectives such as: (i) a hybrid architecture system that 

supports CT, clinical, and genomic data for accurate 

identification; (ii) use modality-specific models like 3 

Dimensional Convolutional Neural Network (3D-CNN) for 

CT, Transformer for genomics, and LSTM-RNN for clinical; 

(iii) involve multimodal fusion that extracts cross-rich

information from CT, clinical, and genomic data, for

improvement of performance; and (iv) better interpretation

using SHAP explainability usage.

1.4 Contributions 

The key contributions are highlighted, for example, 

integration of a multi-modal architecture, which consists of 

3D-CNN for CT image processing and nodule detection, 

Transformer for genomic analysis, and LSTM-RNN for 

temporal clinical data interpretation. The earlier significant 

contributions are demonstrated for the understanding of lung 

cancer identification. Although existing multimodal systems 
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exist, they still suffer from unified training and a lack of 

meaningful explainability. The existing DL models suffer 

from weak interpretation, limited modality use, and inadequate 

feature fusion support. Hence, a multi-architecture fusion with 

3D-CNN, Transformer, and RNN-LSTM pipeline is to be 

integrated for enhancing lung disease prediction and better 

decision support. From a study made by Dritsas and Trigka 

[1], an ML model was used on a single modality, with low 

discrimination, hence requiring the motivation for 

multimodality support and hybrid models. From Gao et al. [2], 

although supporting clinical data and CT, the model suffers 

from lower accuracy, lacks genomic data and XAI, which 

motivates a hybrid approach that preserves all the positive 

aspects. 

2. LITERATURE REVIEW

There are studies on the severity of lung cancer. The 

accurate prediction depends on the risks involved. The 

categories of parameters, if they are involved, would 

experience serious lung cancer. If they are in a smaller portion, 

it would help with expenditure forecasting. Existing systems 

face several key challenges: a lack of standardization, the need 

to handle large data volumes, and the requirement for multi-

modal input support to enable efficient processing. 

Furthermore, they often exhibit limited external validation 

across diverse populations and provide inadequate support for 

low-resource settings in lung cancer detection. 

From Dritsas and Trigka [1], various machine learning 

models are demonstrated on the risk impact on lung cancer. 

The Rotation Forest is considered the most accurate detection 

approach in this domain of detection. The hyperparameters 

play the severity of risk prediction. Pathan et al. [3] 

demonstrated lung cancer disease prediction using various 

machine learning models such as Random Forest, decision 

tree, and SVM. The focus is on hyperparameter tuning, which 

results in better accuracy. Gao et al. [2] demonstrated two 

models compared with the Brock model, and noticed that the 

performance of the co-learning model on both images and 

CDEs is far better than individuals alone, such as images only 

or CDEs only. Hong Kong men's lung cancer was taken as a 

study, and the multivariate Logistic Regression was used for 

risk prediction with cross-validation regression by Tse et al. 

[4]. The performance is estimated via AUC, Confusion matrix, 

and ROCC in this study. As shown by Azhdarpoor et al. [5], 

there is a low impact and low effect of radon exposure on 

Iranians, in both the home living segment and the workers 

segment. This study observed 3 platforms, such as cutting 

stone, residents, and plant processing, as a base, and concluded 

that no impact on these due to environmental conditions. 

Issanov et al. [6] demonstrated two review frameworks, 

such as PROBAST and CHARMS tools, for assessing the 

accuracy and performance of the model. The risk is high in the 

screening of smoking habits patients over lung cancer 

prediction (LCP). Feng et al. [7] demonstrated nine models in 

European countries, from which LLP has a lower risk 

performance, and the rest 8 are slightly different from the other 

8 models but used for lung cancer risk prediction. Liao et al. 

[8] demonstrated the seven models, such as LLP and its

versions, LC RAT, Bach, Pittsburgh, and PLCO approaches.

The feature CanPredict() is assessed using these 7 models.

Two significant factors, such as smoking, and the model's

criteria in the evaluation of performance. Maurya et al. [9]

demonstrated various ML models that are used for predicting 

the accuracy. These focused on classification and correlation. 

The clinical approach is a significant approach to take action 

at each stage for quick recovery. The two methods identified 

as K-nearest neighbor and Bernouli Bayes approaches produce 

better accuracy. Zhang et al. [10] demonstrated 4 models: 

Random Forest, Naive Bayes, Gradient Boosting, and Logistic 

Regression, in which performance and accuracy are assessed. 

The visualization is depicted using Shapley Additive 

Interpretation. Ostrowski et al. [11] demonstrated MOLTEST 

BIS people using three models, such as Back, LLP, and PLCO, 

in which another model called Tammemagi's risk model 

recommends that patients with minimal loss. Howell et al. [12] 

made a risk assessment over 16 factors covering aspects such 

as lifestyle, socioeconomic, demographic, clinical, and health 

data. The methodology used is linear regression to estimate the 

risk score. Feng et al. [13] demonstrated two risk models, such 

as smoking-based and proteomics-based, in terms of proteins. 

Based on 6 cohort studies, the protein-based risk model 

provides a standard model and is identified as a better risk 

prediction. Huang et al. [14] demonstrated many 

advancements in metabolism therapies, immunotherapies, 

radio therapies, etc. The need for AI and its importance were 

explored to help in plan preparation and personalized drug 

discovery for patient health recovery. AI predicts the 

immunoreactivity of patients and makes breakthroughs in lung 

cancer recovery. Yang et al. [15] demonstrated machine 

learning models in which decision trees and tree-based models 

are explored. The data of cell carcinoma and adenocarcinoma 

are integrated with clinical, genetic, and demographic details 

for determining the health status. It enables experts to make 

decisions on timeline, personalized care, and recovery plans. 

A study made by Rubin et al. [16] demonstrated the 

Denmark population between specific years and applied 

Logistic Regression. By taking that specific dataset, an 

emerged model is derived that considers socio-demographic 

parameters and diagnostic parameters to determine the risk of 

patients' health stage. Chen et al. [17] demonstrated 4 

European countries and their air pollution influence on lung 

cancer incidence. The components involved are particulate 

matter concentration, Nitrogen oxides, and black carbon are 

positive aspects, and negative aspects of ozone. The mortality 

rate and incidence rate based on demographics are compared 

and analyzed. Xue et al. [18] focused on using AI methods and 

deep learning models to improve the accuracy of the model for 

tumor detection. The application of radiomics is one of the 

accurate screening and diagnostic methods, with the 

collaboration of advanced centers, which would result in a 

breakthrough in accurate tumor detection. Elia et al. [19] 

focused on reducing false positives and the incidence of the 

disease. The lesions are initially benign, but they may turn into 

malignant ones, and surgeons would have a challenge in 

removing them accurately. The 3 ML models were used, in 

which J48 was found to be better in the prediction. Makubhai 

et al. [20] focused on lifestyle and medical diagnostic 

parameters as a basis for predictions. It uses XAI methods such 

as partial plots, feature significance, and decision trees to 

provide a clear and interpretable framework with the support 

of machine learning models. Kothari et al. [21] demonstrated 

a web application in which input is given and outputs a 

detailed description of the disease. In this, XAI is used to 

produce an understandable and transparent framework with 

descriptions of many aspects. The need of storing data, and 

retrieving the details on load balancing is demonstrated 
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through the studies by Dey and Sangaraju [22, 23], in which 

the study [22] demonstrated the issues of using local, global 

load balancing strategies for the distribution of workload 

among the available entities over the cloud and the study [23] 

demonstrated effective mechanisms for evaluating the 

performance of load balancing involved over the cloud usage. 

Kumar and Raju [24] showed that identification of fraud using 

a combination of models, such as CNN, LSTM, and XGBoost, 

for quick processing and yielding of outcomes. From Basheer 

Ahmed [25], the study explored the risks of DR at an early 

stage in predicting diabetic surge during the COVID-19 

pandemic, using a fuzzy logic mechanism with an aggregated 

operator called OWA. Ali et al. [26] demonstrated that blood 

vessel failure towards the brain results in brain stroke, which 

would be detected using various ML and NN models, in which 

K-means performs better than other models. Tables 1 and 2 

demonstrate the methods used in LCP. 

In Table 1, traditional methods lack complex interactions, 

ML and DL methods offer more accuracy but require complex 

datasets and expensive processing, multi-modal approaches 

lack training design, and XAI mechanisms would enhance 

interpretability and suffer from overhead. 

Table 2 demonstrates specific deep-learning models whose 

description and demerits are mentioned. 

 

Table 1. Assessment methodologies 

 
Methodology Models Used Description Demerits 

Statistical and 

traditional 

LLP risk model, Bach model, and 

PLCOm2012 

Clinical, demographic, and 

behavioral 

Lack of complex interactions, and 

less accurate 

ML models 
Random Forests, Logistic Regression, 

SVM, LightGBM, and XGBoost 

Identify patterns and improve 

prediction accuracy 

Require high-dimensional datasets, 

and less interpretable 

DL models CNN, RNN, and Transformers Complex datatypes 
Expensive, requires large datasets, 

and is difficult to interpret 

Multimodal 

methods 
Late, early, and hybrid fusions Integrate multiple datatypes 

Requires preprocessing and is 

complex to design and train 

XAI 

technique 
LIME, SHAP, GRAD-CAM 

Interpretable explanations adopt 

clinical support and build trust 

Overhead involved, and simply 

complex decisions 

Clinical risk 

assessment 
NLST, USPSTF, and AI-based 

High-risk individuals use 

screening and interventions 

Limited quality, and may not 

generalize 
 

Table 2. Specific DL methods 
 

DL Method Description Demerits 

3D CNNs 
Ensures accuracy for imaging activities such as nodule 

detection and predicting the malignancy 
Requires large volumetric data and is expensive 

Transformers 
Suitable for genomic data but requires fine-tuning for clinical 

data 
Expensive to train, and limited interpretability 

U-Net 
Ensures accuracy for segmentation activities and is less 

suitable for classification 

Pixel-level annotation is time-consuming, and can't handle 

other types except imaging 

GNNs Suitable for structured data and requires graphs for analysis 
Computationally expensive for large graphs, with less 

interpretability 

1D CNNs Suitable for genomic data and sequential data 
May struggle with complex patterns and require careful 

parameter tuning 

 

 

3. METHODOLOGY 

 

In this, the description of the dataset in the sense of primary, 

secondary, and significant in the risk prediction over lung 

cancer in Table 3. The modules identified for lung cancer 

detection are demonstrated in Figure 1. The flow of activities 

denoted in the order of their significance is demonstrated in 

Figure 2. From Table 3, the mixing of specific categories of 

attributes is considered, such as medical, demographic, 

environmental, behavioral, lifestyle, and socioeconomic 

aspects. The significant aspects that impact risk are behavioral 

and environmental. From Figure 1, the significant activities 

that must be prioritized in risk prediction over lung cancer are 

multi-modal adaptability, data preprocessing, model training, 

model evaluation, and applying the XAI technique. 

The steps involved in this methodology are demonstrated 

as:  

Step 1: Categorize the given data into 3 sets of features, like 

primary, secondary, and supporting factors. 

Step 2: Start processing the given dataset over modules such 

as data processing. Feature extraction, multimodal fusion, 

training and evaluation, and explainability support. 

Step 3: Call PS1 for multimodal fusion, which calls PS2 for 

3D-CNN, then calls PS3 for Genomic data, and calls PS4 for 

temporal clinical data. 
 

Table 3. Factors impacting the severity of risk 
 

Attribute Risk Factor Type 

Cigarette smoking Behavioral 

Secondhand smoke exposure Environmental/behavioral 

Family history of lung cancer Genetic/hereditary 

Occupational exposures Environmental 

Radon exposure Environmental 

Asbestos exposure Environmental 

Age (65 years and older) Demographic 

Chronic Obstructive Pulmonary 

Disease (COPD) 
Medical history 

Personal history of cancer Medical history 

Socioeconomic status Socioeconomic 

Diet and nutrition Lifestyle 

Physical inactivity Lifestyle 

Air pollution Environmental 

 

Step 4: Training and evaluation follow 70%, 15%, and 15%. 

It uses features such as Dropout and L2 regularization, cross 

entropy loss, early stopping, and back propagation. 

Step 5: Perform hyperparameter tuning using grid search 
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over layers, batch size, attention heads, epochs, learning rate, 

and cross-fold-validation, as well as L2 weight decay. 

 

 
 

Figure 1. Demonstration of proposed system modules 

 

 
 

Figure 2. Flow of activities of the hybrid approach 

 

The pseudo procedure for demonstration of a multi-

architecture approach for multi-modality is demonstrated as 

follows: 

 

PS1: Pseudo_Procedure Multi_architecture_multi_ 

modality(dataset1[][],dataset2[][],dataset3[][]) 

Input: Different Datasources for imaging, genomics, and 

clinical data, such as dataset1[][]: Imaging data, 

dataset2[][]: Genomic data, dataset3[][]: Clinical data  

Output: Accuracy 

Step 1: Apply data preprocessing 

           1.1 Apply uniform voxel spacing, Normalization, 

and augmentation for standardizing imaging 

           1.2 Apply one-hot encoding for encoding genomic 

data into numerical 

           1.3 Clean clinical by handling missing and 

categorical values using imputation, and min-max 

Step 2: Apply CNN 

           2.1 Extract spatial features from imaging 

           2.2 Capture sequential patterns using Transformers 

           2.3 Use CNN for clinical data 

           2.4 Apply PCA as a feature selection technique for 

extracting relevant features 

Step 3: For integrated data, combine features of imaging, 

genomics, and clinical data 

           3.1 For visualization and compatibility, apply 

UMAP on integrated data 

Step 4: Model design 

          4.1 For imaging, use CNN, call PS2 

          4.2 For genomic, use Transformer, call PS3 

          4.3 For clinical use Fully Connected neural network, 

call PS4 

          4.4 Use an attention mechanism over significant 

features from each modality with weight 

Step 5: Training  

          5.1 Split the integrated dataset into training, 

validation, and testing in a 70,15,15 fashion 

          5.2 For classification and feature representation, use 

a hybrid model to get trained 

          5.3 For classification, use cross entropy loss 

          5.4 To avoid overfitting, use dropout and L2 

regularization 

Step 6: Tuning hyperparameters 

          6.1 For tuning hyperparameters, use the grid search 

technique over learning rate, number of layers, 

batch size, dropout, epochs, etc. 

          6.2 For robustness, use K-fold cross-validation 

          6.3 Use early stopping, use L2 weight decay  

Step 7: Apply SHapley Additive exPlanations (SHAP) to 

interpret model predictions and identify key features 

 

In PS1, three datasets are used, like imaging, genomics, and 

clinical. Data preprocessing is applied to make a quality 

dataset by removing noise if it exists. Apply multi-

architectures like 3D-CNN for imaging, Transformer for 

genomics, and RNN+LSTM for the clinical set. The extracted 

features are integrated in processing models in the further step, 

and analyze interpretation is analyzed using Shapley as an XAI 

technique. 

 

PS2: Pseudo_Procedure 3D_CNN(dataset1[][]) 

Input: Dataset1: Imaging 

Output: Prediction1 

Step 1: Resample volumes into consistent resolution 

          1.1 Apply augmentation for data diversity 

Step 2: Construct 3D CNN using layers such as  

           2.1 Input layer, contains 3D volumes 

           2.2 3D CNN, used to extract spatial features 

           2.3 3D Pooling, to reduce dimensionality 

           2.4 Fully Connected layers, to combine the features 

           2.5 Based on significant factor values, the higher the 

value, the higher the risk. Based on binary 

classification, risk is outputted as Low or High 

Step 3: In training, use the categorical cross-entropy loss 

for classification and Dice loss for segmentation 

          3.1 Use Adam optimizer 

          3.2 Iterate till convergence is reached 
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Step 4: Use early stopping to avoid overfitting 

Step 5: Compute accuracy, precision, recall, and F1-

Score 

Step 6: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑎𝑠𝑒𝑠
 

where, 

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃))
 

 
Recall (Sensitivity)

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁))
 

 

F1 Score =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

From PS2, 3D CNN is constructed using Inut, CNN, 

Pooling, Fully Connected, and Output layers. Based on hyper 

parameter tuning, classified the sample as High risk or Low 

risk. 

 

PS3: Pseudo_Procedure Transfomer(dataset2[][]) 

Input: Dataset2: Genomics 

Output: Prediction2 

Step 1: Convert the genomic into the required format 

            1.1 Use K-mer embeddings for DNA sequences 

            1.2 Use pre-trained embeddings like DNABERT 

            1.3 Combine this genomic with clinical if the 

complete suite of input is required 

Step 2: The Transformer model is constructed 

            2.1 Input layer in which genomics is to be auto-

encoded 

            2.2 For long-range dependencies and relational 

mapping, use techniques such as  

                   2.2.1 multi-head self-attention mechanism 

                   2.2.2 Positional encoding for retaining the 

sequences 

            2.3 Use Fully Connected layers 

            2.4 Output layer for prediction, such as High or 

Low 

Step 3: Model training 

           3.1 Cross-entropy loss for classification and MSE 

for regression 

           3.2 Appy AdamW optimizer 

           3.3 Iterate for some epochs till convergence is 

reached 

Step 4: For hyperparameter tuning, use the number of 

layers, no of attention heads, the batch size, and learning 

rate 

Step 5: Compute measures for classification 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑎𝑠𝑒𝑠
 

where,  

 

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃))
 

 
Recall (Sensitivity)

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁))
 

 

From PS2, specific and pre-trained embeddings are used for 

encoding, then a Transformer model with input uses positional 

encoding and multi-head self-attention for contextual 

relationship, Fully Connected layers, and output layers. The 

model is trained, then fusion the significant parameters, and 

evaluate the model performance. 

 

PS4: Pseudo_Procedure RNN+LSTM(dataset23][]) 

Input: Dataset3: Clinicaldata 

Output: Prediction3 

Step 1: Convert clinical data into a time-series format 

            1.1 Use embedding layers to denote categorial data 

into a dense vector space 

            1.2 Combine the statistical data with time-series 

details if the complete suite of input is required 

Step 2: The Transformer model is constructed 

            2.1 Input layer in which the preprocessed data is 

accepted 

            2.2 For temporal dependencies, an RNN is used 

            2.3 For enhancing the model’s capability, use an 

LSTM layer 

            2.3 Use Fully Connected layers, for combined 

features regarding classification 

            2.4 Output layer for prediction, such as High or 

Low 

Step 3: Model training 

           3.1 Binary cross entropy loss for classification and 

MSE for regression 

           3.2 Appy Adam optimizer 

           3.3 Iterate for some epochs till convergence is 

reached 

Step 4: For hyperparameter tuning, use the number of 

RNN, LSTM layers, no of hidden units, batch size, and 

learning rate 

Step 5: Compute measures for classification 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑎𝑠𝑒𝑠
 

 

where,  

 

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃))
 

 

Recall (Sensitivity)

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁))
 

 

 

From PS3, convert clinical data into time-series data, then 

construct the required model using RNN and LSTM layers, 

then train the model, then fine-tune the model, and evaluate 

the model's performance. 

From Figure 2, the activities mentioned in the order such as 

data sources are loaded, then preprocessing such sources for 

quality, then feature extraction, then combining the significant 

features for model training based on data source type, then 

hyperparameter tuning, then model evaluation, and providing 

interpretation using the SHAP model. 

 

 

4. RESULTS 

 

This section is decomposed into four aspects: analysis of 

evaluated factors (accuracy, robustness, interpretability), 

4358



 

analysis of performance measurement, assessment of tools for 

lung cancer diagnosis, and analysis of statistical tests. The 

evaluation of the proposed multi-architecture model against 

existing models, such as ML, DL methods, medical diagnostic 

tools, multimodal approaches, and other models. In this, the 

significant factors considered, such as accuracy, robustness, 

interpretability, and performance (precision and recall), are 

demonstrated in Table 4, in which such measures are 

compared and visualized in Figure 3, which highlights the best 

values for the multi-architecture model on multi-modalities. 

Table 5 demonstrates the AUC, sensitivity, and specificity 

values against the considered methods against the multi-

architecture modal. Table 6 demonstrates the key features, the 

type of domain/specialization, and accepted input. When it 

transforms the multi-architecture into a UI tool, input the 

values, it produces a risk that is high or Low after processing 

the combined data. Table 7 demonstrates the accuracy of the 

tools considered against the proposed model tool, in which 

specific measures such as sensitivity, specificity, and AUC are 

evaluated for the analysis in the future.  

 

4.1 Analysis of evaluated factors (accuracy, robustness, 

interpretability)  

 

Table 4 demonstrates accuracy, robustness, interpretability, 

and performance (precision and recall), which determines the 

effectiveness of the models. 

Table 4 and Figure 3 demonstrate the effectiveness of the 

models in terms of accuracy, performance, robustness, and 

interpretability. The multi-architecture model (hybrid model) 

is observed to have better computed values than other 

considered methods. 

 

Table 4. Evaluated factors against the considered models 

 
Method Accuracy Performance Robustness Interpretability 

Statistical and traditional models 85 85 75 100 

ML models 90 90 80 80 

DL models 95 95 85 30 

Multimodal methods 97 97 95 85 

XAI technique 85 85 90 100 

Clinical risk assessment 85 85 75 100 

3D CNNs 95 95 85 30 

Transformers 90 90 90 85 

U-Net 95 95 90 80 

GNNs 85 90 75 80 

1D CNNs 85 85 80 80 

Multi-architecture model 98 98 95 100 

 

 
 

Figure 3. Effectiveness of the methods considered against the multi-architecture model 

 

4.2 Analysis of performance measurement 

 

Table 5 explores that traditional and ML-based models 

achieve moderate AUC (0.85–0.90), DL and multimodal 

architectures exhibit significantly better discriminative ability 

(0.94–0.96), and 3D-CNNs and Transformer models 

independently achieve high AUC (0.95–0.96). The proposed 

multi-architecture model ensures superior performance arises 

from combining spatial features from CT imaging, sequence 

patterns from genomic data, and temporal dependencies from 

clinical histories. 

 

4.3 Assessment of tools for lung cancer diagnosis 

 

The existing diagnostic tools, Lung-RADS, NLST, 

PLCOm2012, Brock University, LCP, DL tools, and CAD 

systems, are explored in terms of data input and type of 

prediction method. 

Table 6 demonstrates tools in categories such as risk 

prediction, diagnostic aid, and risk assessment, the type of 

modality supported, and the domain of technique used for 

processing. 

From Table 7, the tools listed along with their accuracies are 

demonstrated, in which the multi-architecture model sustains 
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better and satisfactory accuracy than other models. 

From Figure 4, the order of tools that ensure better accuracy 

is multi-architecture models as the first, outperforming tool 

than other considered models.  

 

Table 5. Performance against considered approaches 

 
Model/Method AUC Specificity Sensitivity 

Statistical, traditional models 0.85 85 80 

ML models 0.90 90 85 

DL models 0.95 95 90 

Multimodal methods 0.96 95 90 

XAI techniques 0.92 90 85 

Clinical risk assessment 0.80 80 75 

3D CNNs 0.96 95 90 

Transformers 0.95 95 90 

U-Net 0.94 95 90 

GNNs 0.93 90 85 

1D CNNs 0.88 85 80 

Multi-architecture models 0.98 97 92 

 

Table 6. Tools for lung cancer against specific aspects 

 
Tool Name Type Input Data Prediction Method 

Lung-RADS 
Assessment system for 

risk 
Images (CT scan) Categorization 

NLST risk prediction tool Calculator for risk 
Smoking history, 

demographics 
Statistical model 

PLCOm2012 Prediction model for risk 
Smoking history, 

demographics 
Logistic Regression 

Brock University model Prediction model for risk Demographics and CT scans Logistic Regression 

Deep learning models Prediction using AI Clinical data, MRI/CT images 
Convolutional Neural Networks 

(CNNs) 

LCP model Prediction model for risk 
Smoking history, 

demographics 

Machine learning (e.g., Random 

Forest) 

Computer-Aided Diagnosis 

(CAD) 
Diagnostic aid Images (CT scan) Image processing algorithms 

Multi-model approach Prediction model for risk Multi-type inputs Deep learning techniques and AI 

 

 
 

Figure 4. Accuracy of the tools considered 

 

Table 7. Accuracies of tools against our proposed approach 

 
Tool Name Accuracy Evaluation Metric Observation 

Lung-RADS 90 Sensitivity, specificity High specificity but lower sensitivity for small nodules 

NLST risk prediction tool 80 
Area Under Curve 

(AUC) 
Based on demographic and smoking history 

PLCOm2012 85 AUC 
Validated in multiple cohorts for 6-year lung cancer risk 

prediction 

Brock University model 90 AUC 
Strong performance in predicting malignancy based on nodule 

characteristics 

Deep learning models 95 
AUC, sensitivity, 

specificity 

High accuracy in research settings, but dependent on training 

data 

LCP model 90 AUC 
Incorporates genetic and environmental factors, still under 

research 

CAD 90 Sensitivity, specificity Assists radiologists; accuracy depends on nodule size and image 
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quality 

Lung cancer decision support 

tools 
85 AUC Rule-based systems, accuracy varies with input data quality 

Radiomics-based tools 95 
AUC, sensitivity, 

specificity 
High accuracy in research, but requires high-quality imaging data 

Multi-model approach 98 
AUC, sensitivity, 

specificity 
Ensures the highest accuracy due to multiple types of input 

 

4.4 Analysis of statistical tests 

 

The statistical significance of the proposed model against 

traditional, ML, and DL for only image type models was tested 

using DeLong’s method and observed over p-value, based on 

Table 4, and are listed in Table 8. The p-value is increased for 

a multi-architecture model. 

 

Table 8. P-values against the considered models 

 
Method AUC CI P-Value 

Traditional 0.85 0.82 – 0.88 < 0.001 

ML 0.90 0.87 – 0.92 < 0.001 

DL (image) 0.95 0.93 – 0.96 0.004 

Proposed 0.98 0.97 – 0.99 < 0.05 

 

 

5. CONCLUSION 

 

To overcome delayed decision-making, insufficient 

handling of multiple modalities, and limited performance, 

there is a need to detect lung cancer with better performance 

and accuracy. The input data sources are categorized into 

imaging, genomics, and clinical data. In this process, data 

preprocessing is applied, features are extracted using feature 

extraction, then a 3D CNN is applied for imaging analysis, 

Transformers for genomics interpretation, and RNN+LSTM is 

used for temporal clinical data. The significant features are 

extracted and combined for better evaluation of lung cancer 

risk. The activities in the construction of 3D CNN, 

Transformer, and RNN+LSTM involve modal training, 

hyperparameter fine-tuning, and modal evaluation are 

demonstrated in PS1, PS2, PS3, and PS4. The predictions are 

more accurate due to a combination of important features, for 

instance, such as smoking history, nodule size, and EGFR 

mutations. The effectiveness of the hybrid method and UI tool 

of the proposed method is determined as better than other 

models. In the future, the work might extend to different 

populations and look for a lightweight interface for easy 

classification. It also expects expanding the model to 

incorporate additional biomarkers like proteomics and 

radiogenomics, with federated learning for multi-institutional 

privacy-preserving training. 
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