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Most of the traditional and existing methods in lung cancer detection suffer from
challenges such as limited interpretability, delayed decision-making, limited diagnostic
assistance, scope of misinterpretations, and single modality processing models. To
address these, a hybrid deep learning model is required that consists of a 3 Dimensional
Convolutional Neural Network (3D-CNN), a Transformer, and an RNN-LSTM pipeline
for the identification of lung cancer. The hybrid model predicts the disease early and
alerts so that the mortality rate is reduced. In these, 3D-CNN is used for volumetric CT
images and nodules malignant processing, Transformer is used for processing genomics
sequences, and the RNN-LSTM pipeline is used for temporal clinical data
interpretation. The features from each section are fused using a multi-modal fusion layer
for efficient lung disease classification. The results obtained over the LIDC-IDRI
dataset (publicly available repository) of images, clinical/genomics data after
preprocessing, and hybrid model processing, in terms of AUC, sensitivity, and
specificity, are observed to be better than existing models used. The statistical test via
DeLong would determine the effectiveness of the model. The interpretability is

increased due to the usage of SHAP explainability by clinical and nodules features.

1. INTRODUCTION

Lung cancer is one of global cancer mortality affected
disease, due to a lack of advanced screening methods and
delayed decisions.

1.1 Background

Lung cancer results in the death of many people. In this,
specific parameters are noted that are useful in estimating the
risk, as well as rehabilitation would be preferred for recovery
and mental support. Detecting lung cancer in the last stage is a
high-risk scenario as well as the recovery rate is very low,
which increases the mortality rate. In this, CT scans support
clinical mechanisms for nodule detection, while genomics
provides complementary information on risk assessment.
Personalized treatments, as well as timely alerts, would
improve the health of the patient with early prediction and
accurate risk assessment. The available traditional methods
suffer from a single modality and are limited in diagnostic
power and interpretability.

1.2 Research gaps

The disadvantages of existing methods were demonstrated,
such as: (i) support only a single modality like CT or
genomics, which avoids rich information from cross-modality;
(i1) limited integration of heterogeneous datatypes, which
lacks advanced feature concatenation like multi-modal fusion;
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(iii) delayed decision-making due to dependent on radiologist
reports, which involve manual or semiautomated mechanisms;
(iv) insufficient interpretability, due to many DL methods
behave as back boxes, and lack of agnostic explainability; and
(v) limited statistical validation, due to not using statistical test
like DeLong tests for AUC comparison.

1.3 Objectives

The proposed hybrid model would overcome and ensure
objectives such as: (i) a hybrid architecture system that
supports CT, clinical, and genomic data for accurate
identification; (ii) use modality-specific models like 3
Dimensional Convolutional Neural Network (3D-CNN) for
CT, Transformer for genomics, and LSTM-RNN for clinical;
(iii) involve multimodal fusion that extracts cross-rich
information from CT, clinical, and genomic data, for
improvement of performance; and (iv) better interpretation
using SHAP explainability usage.

1.4 Contributions

The key contributions are highlighted, for example,
integration of a multi-modal architecture, which consists of
3D-CNN for CT image processing and nodule detection,
Transformer for genomic analysis, and LSTM-RNN for
temporal clinical data interpretation. The earlier significant
contributions are demonstrated for the understanding of lung
cancer identification. Although existing multimodal systems
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exist, they still suffer from unified training and a lack of
meaningful explainability. The existing DL models suffer
from weak interpretation, limited modality use, and inadequate
feature fusion support. Hence, a multi-architecture fusion with
3D-CNN, Transformer, and RNN-LSTM pipeline is to be
integrated for enhancing lung disease prediction and better
decision support. From a study made by Dritsas and Trigka
[1], an ML model was used on a single modality, with low
discrimination, hence requiring the motivation for
multimodality support and hybrid models. From Gao et al. [2],
although supporting clinical data and CT, the model suffers
from lower accuracy, lacks genomic data and XAI, which
motivates a hybrid approach that preserves all the positive
aspects.

2. LITERATURE REVIEW

There are studies on the severity of lung cancer. The
accurate prediction depends on the risks involved. The
categories of parameters, if they are involved, would
experience serious lung cancer. If they are in a smaller portion,
it would help with expenditure forecasting. Existing systems
face several key challenges: a lack of standardization, the need
to handle large data volumes, and the requirement for multi-
modal input support to enable efficient processing.
Furthermore, they often exhibit limited external validation
across diverse populations and provide inadequate support for
low-resource settings in lung cancer detection.

From Dritsas and Trigka [1], various machine learning
models are demonstrated on the risk impact on lung cancer.
The Rotation Forest is considered the most accurate detection
approach in this domain of detection. The hyperparameters
play the severity of risk prediction. Pathan et al. [3]
demonstrated lung cancer disease prediction using various
machine learning models such as Random Forest, decision
tree, and SVM. The focus is on hyperparameter tuning, which
results in better accuracy. Gao et al. [2] demonstrated two
models compared with the Brock model, and noticed that the
performance of the co-learning model on both images and
CDEs is far better than individuals alone, such as images only
or CDEs only. Hong Kong men's lung cancer was taken as a
study, and the multivariate Logistic Regression was used for
risk prediction with cross-validation regression by Tse et al.
[4]. The performance is estimated via AUC, Confusion matrix,
and ROCC in this study. As shown by Azhdarpoor et al. [5],
there is a low impact and low effect of radon exposure on
Iranians, in both the home living segment and the workers
segment. This study observed 3 platforms, such as cutting
stone, residents, and plant processing, as a base, and concluded
that no impact on these due to environmental conditions.

Issanov et al. [6] demonstrated two review frameworks,
such as PROBAST and CHARMS tools, for assessing the
accuracy and performance of the model. The risk is high in the
screening of smoking habits patients over lung cancer
prediction (LCP). Feng et al. [7] demonstrated nine models in
European countries, from which LLP has a lower risk
performance, and the rest 8 are slightly different from the other
8 models but used for lung cancer risk prediction. Liao et al.
[8] demonstrated the seven models, such as LLP and its
versions, LC RAT, Bach, Pittsburgh, and PLCO approaches.
The feature CanPredict() is assessed using these 7 models.
Two significant factors, such as smoking, and the model's
criteria in the evaluation of performance. Maurya et al. [9]
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demonstrated various ML models that are used for predicting
the accuracy. These focused on classification and correlation.
The clinical approach is a significant approach to take action
at each stage for quick recovery. The two methods identified
as K-nearest neighbor and Bernouli Bayes approaches produce
better accuracy. Zhang et al. [10] demonstrated 4 models:
Random Forest, Naive Bayes, Gradient Boosting, and Logistic
Regression, in which performance and accuracy are assessed.
The visualization is depicted using Shapley Additive
Interpretation. Ostrowski et al. [11] demonstrated MOLTEST
BIS people using three models, such as Back, LLP, and PLCO,
in which another model called Tammemagi's risk model
recommends that patients with minimal loss. Howell et al. [12]
made a risk assessment over 16 factors covering aspects such
as lifestyle, socioeconomic, demographic, clinical, and health
data. The methodology used is linear regression to estimate the
risk score. Feng et al. [13] demonstrated two risk models, such
as smoking-based and proteomics-based, in terms of proteins.
Based on 6 cohort studies, the protein-based risk model
provides a standard model and is identified as a better risk
prediction. Huang et al. [14] demonstrated many
advancements in metabolism therapies, immunotherapies,
radio therapies, etc. The need for Al and its importance were
explored to help in plan preparation and personalized drug
discovery for patient health recovery. Al predicts the
immunoreactivity of patients and makes breakthroughs in lung
cancer recovery. Yang et al. [15] demonstrated machine
learning models in which decision trees and tree-based models
are explored. The data of cell carcinoma and adenocarcinoma
are integrated with clinical, genetic, and demographic details
for determining the health status. It enables experts to make
decisions on timeline, personalized care, and recovery plans.
A study made by Rubin et al. [16] demonstrated the
Denmark population between specific years and applied
Logistic Regression. By taking that specific dataset, an
emerged model is derived that considers socio-demographic
parameters and diagnostic parameters to determine the risk of
patients' health stage. Chen et al. [17] demonstrated 4
European countries and their air pollution influence on lung
cancer incidence. The components involved are particulate
matter concentration, Nitrogen oxides, and black carbon are
positive aspects, and negative aspects of ozone. The mortality
rate and incidence rate based on demographics are compared
and analyzed. Xue et al. [18] focused on using Al methods and
deep learning models to improve the accuracy of the model for
tumor detection. The application of radiomics is one of the
accurate screening and diagnostic methods, with the
collaboration of advanced centers, which would result in a
breakthrough in accurate tumor detection. Elia et al. [19]
focused on reducing false positives and the incidence of the
disease. The lesions are initially benign, but they may turn into
malignant ones, and surgeons would have a challenge in
removing them accurately. The 3 ML models were used, in
which J48 was found to be better in the prediction. Makubhai
et al. [20] focused on lifestyle and medical diagnostic
parameters as a basis for predictions. It uses XAl methods such
as partial plots, feature significance, and decision trees to
provide a clear and interpretable framework with the support
of machine learning models. Kothari et al. [21] demonstrated
a web application in which input is given and outputs a
detailed description of the disease. In this, XAI is used to
produce an understandable and transparent framework with
descriptions of many aspects. The need of storing data, and
retrieving the details on load balancing is demonstrated



through the studies by Dey and Sangaraju [22, 23], in which
the study [22] demonstrated the issues of using local, global
load balancing strategies for the distribution of workload
among the available entities over the cloud and the study [23]
demonstrated effective mechanisms for evaluating the
performance of load balancing involved over the cloud usage.
Kumar and Raju [24] showed that identification of fraud using
a combination of models, such as CNN, LSTM, and XGBoost,
for quick processing and yielding of outcomes. From Basheer
Ahmed [25], the study explored the risks of DR at an early
stage in predicting diabetic surge during the COVID-19
pandemic, using a fuzzy logic mechanism with an aggregated

operator called OWA. Ali et al. [26] demonstrated that blood
vessel failure towards the brain results in brain stroke, which
would be detected using various ML and NN models, in which
K-means performs better than other models. Tables 1 and 2
demonstrate the methods used in LCP.

In Table 1, traditional methods lack complex interactions,
ML and DL methods offer more accuracy but require complex
datasets and expensive processing, multi-modal approaches
lack training design, and XAI mechanisms would enhance
interpretability and suffer from overhead.

Table 2 demonstrates specific deep-learning models whose
description and demerits are mentioned.

Table 1. Assessment methodologies

Methodology Models Used Description Demerits
Statistical and LLP risk model, Bach model, and Clinical, demographic, and Lack of complex interactions, and
traditional PLCOm2012 behavioral less accurate
ML models Random Forests, Logistic Regression, Identify patterns and improve Require high-dimensional datasets,
SVM, LightGBM, and XGBoost prediction accuracy and less interpretable
Expensive, requires large datasets,
DL models CNN, RNN, and Transformers Complex datatypes and is difficult to interpret
Multimodal . . . Requires preprocessing and is
methods Late, early, and hybrid fusions Integrate multiple datatypes complex to design and train
XAI LIME, SHAP, GRAD-CAM Int_erpretable explanatlops adopt Overhead 1nv01ved,. qnd simply
technique clinical support and build trust complex decisions
Clinical risk NLST, USPSTF, and Al-based ngh-.rlsk 1nd_1v1duals use Limited quality, gnd may not
assessment screening and interventions generalize
Table 2. Specific DL methods
DL Method Description Demerits

Ensures accuracy for imaging activities such as nodule

3D CNNs detection and predicting the malignancy Requires large volumetric data and is expensive
Transformers Suitable for genomic data bué;:t;lulres fine-tuning for clinical Expensive to train, and limited interpretability
Ensures accuracy for segmentation activities and is less Pixel-level annotation is time-consuming, and can't handle
U-Net . . . . :
suitable for classification other types except imaging
GNNs Suitable for structured data and requires graphs for analysis Computationally expensive for. 1arge graphs, with less
interpretability
1D CNNs Suitable for genomic data and sequential data May struggle with complex pattems and require careful
parameter tuning
3. METHODOLOGY 3D-CNN, then calls PS3 for Genomic data, and calls PS4 for

In this, the description of the dataset in the sense of primary,
secondary, and significant in the risk prediction over lung
cancer in Table 3. The modules identified for lung cancer
detection are demonstrated in Figure 1. The flow of activities
denoted in the order of their significance is demonstrated in
Figure 2. From Table 3, the mixing of specific categories of
attributes is considered, such as medical, demographic,
environmental, behavioral, lifestyle, and socioeconomic
aspects. The significant aspects that impact risk are behavioral
and environmental. From Figure 1, the significant activities
that must be prioritized in risk prediction over lung cancer are
multi-modal adaptability, data preprocessing, model training,
model evaluation, and applying the XAl technique.

The steps involved in this methodology are demonstrated
as:

Step 1: Categorize the given data into 3 sets of features, like
primary, secondary, and supporting factors.

Step 2: Start processing the given dataset over modules such
as data processing. Feature extraction, multimodal fusion,
training and evaluation, and explainability support.

Step 3: Call PS1 for multimodal fusion, which calls PS2 for
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temporal clinical data.

Table 3. Factors impacting the severity of risk

Attribute Risk Factor Type
Cigarette smoking Behavioral
Secondhand smoke exposure Environmental/behavioral
Family history of lung cancer Genetic/hereditary
Occupational exposures Environmental
Radon exposure Environmental
Asbestos exposure Environmental
Age (65 years and older) Demographic
Chronic Obstructive Pulmonary . .
Disease (COPD) Medical history
Personal history of cancer Medical history
Socioeconomic status Socioeconomic
Diet and nutrition Lifestyle
Physical inactivity Lifestyle
Air pollution Environmental

Step 4: Training and evaluation follow 70%, 15%, and 15%.
It uses features such as Dropout and L2 regularization, cross
entropy loss, early stopping, and back propagation.

Step 5: Perform hyperparameter tuning using grid search



over layers, batch size, attention heads, epochs, learning rate,
and cross-fold-validation, as well as L2 weight decay.
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Modal Training

Figure 1. Demonstration of proposed system modules
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Figure 2. Flow of activities of the hybrid approach

The pseudo procedure for demonstration of a multi-
architecture approach for multi-modality is demonstrated as
follows:

PS1: Pseudo_Procedure Multi_architecture_multi_
modality(dataset1[][],dataset2[][],dataset3[][])

Input: Different Datasources for imaging, genomics, and
clinical data, such as datasetl[][]: Imaging data,
dataset2[][]: Genomic data, dataset3[][]: Clinical data

Output: Accuracy

Step 1: Apply data preprocessing
1.1 Apply uniform voxel spacing, Normalization,
and augmentation for standardizing imaging

1.2 Apply one-hot encoding for encoding genomic
data into numerical
1.3 Clean clinical by handling missing and
categorical values using imputation, and min-max
Step 2: Apply CNN
2.1 Extract spatial features from imaging
2.2 Capture sequential patterns using Transformers
2.3 Use CNN for clinical data
2.4 Apply PCA as a feature selection technique for
extracting relevant features
Step 3: For integrated data, combine features of imaging,
genomics, and clinical data
3.1 For visualization and compatibility, apply
UMAP on integrated data
Step 4: Model design
4.1 For imaging, use CNN, call PS2
4.2 For genomic, use Transformer, call PS3
4.3 For clinical use Fully Connected neural network,
call PS4
4.4 Use an attention mechanism over significant
features from each modality with weight
Step 5: Training
5.1 Split the integrated dataset into training,
validation, and testing in a 70,15,15 fashion
5.2 For classification and feature representation, use
a hybrid model to get trained
5.3 For classification, use cross entropy loss
54 To avoid overfitting, use dropout and L2
regularization
Step 6: Tuning hyperparameters
6.1 For tuning hyperparameters, use the grid search
technique over learning rate, number of layers,
batch size, dropout, epochs, etc.
6.2 For robustness, use K-fold cross-validation
6.3 Use early stopping, use L2 weight decay
Step 7: Apply SHapley Additive exPlanations (SHAP) to
interpret model predictions and identify key features

In PS1, three datasets are used, like imaging, genomics, and
clinical. Data preprocessing is applied to make a quality
dataset by removing noise if it exists. Apply multi-
architectures like 3D-CNN for imaging, Transformer for
genomics, and RNN+LSTM for the clinical set. The extracted
features are integrated in processing models in the further step,
and analyze interpretation is analyzed using Shapley as an XAI
technique.

PS2: Pseudo_Procedure 3D _CNN(dataset1[][])
Input: Datasetl: Imaging
Output: Predictionl

Step 1: Resample volumes into consistent resolution
1.1 Apply augmentation for data diversity
Step 2: Construct 3D CNN using layers such as
2.1 Input layer, contains 3D volumes
2.2 3D CNN, used to extract spatial features
2.3 3D Pooling, to reduce dimensionality
2.4 Fully Connected layers, to combine the features
2.5 Based on significant factor values, the higher the
value, the higher the risk. Based on binary
classification, risk is outputted as Low or High
Step 3: In training, use the categorical cross-entropy loss
for classification and Dice loss for segmentation
3.1 Use Adam optimizer
3.2 Tterate till convergence is reached
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Step 4: Use early stopping to avoid overfitting
Step 5: Compute accuracy, precision, recall, and F1-
Score

Step 6:
4 _ True Positives + True Negatives
ceuracy = Total Number of Cases
where,
. True Positives (TP)
Precision =

(True Positives (TP) + False Positives (FP))

Recall (Sensitivity)
True Positives (TP)

- (True Positives (TP) + False Negatives (FN))

2 X (Precision X Recall)
F1 Score =

Precision + Recall

From PS2, 3D CNN is constructed using Inut, CNN,
Pooling, Fully Connected, and Output layers. Based on hyper
parameter tuning, classified the sample as High risk or Low
risk.

PS3: Pseudo Procedure Transfomer(dataset2[][])
Input: Dataset2: Genomics
Output: Prediction2
Step 1: Convert the genomic into the required format
1.1 Use K-mer embeddings for DNA sequences
1.2 Use pre-trained embeddings like DNABERT
1.3 Combine this genomic with clinical if the
complete suite of input is required
Step 2: The Transformer model is constructed
2.1 Input layer in which genomics is to be auto-
encoded
2.2 For long-range dependencies and relational
mapping, use techniques such as
2.2.1 multi-head self-attention mechanism
2.2.2 Positional encoding for retaining the
sequences
2.3 Use Fully Connected layers
2.4 Output layer for prediction, such as High or
Low
Step 3: Model training
3.1 Cross-entropy loss for classification and MSE
for regression
3.2 Appy AdamW optimizer
3.3 Iterate for some epochs till convergence is
reached
Step 4: For hyperparameter tuning, use the number of
layers, no of attention heads, the batch size, and learning
rate
Step 5: Compute measures for classification

True Positives + True Negatives

A =
ceuracy Total Number of Cases

where,

True Positives (TP)
(True Positives (TP) + False Positives (FP))

Precision =

Recall (Sensitivity)
True Positives (TP)

B (True Positives (TP) + False Negatives (FN))

From PS2, specific and pre-trained embeddings are used for
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encoding, then a Transformer model with input uses positional
encoding and multi-head self-attention for contextual
relationship, Fully Connected layers, and output layers. The
model is trained, then fusion the significant parameters, and
evaluate the model performance.

PS4: Pseudo Procedure RNN+LSTM(dataset23][])
Input: Dataset3: Clinicaldata
Output: Prediction3

Step 1: Convert clinical data into a time-series format
1.1 Use embedding layers to denote categorial data
into a dense vector space
1.2 Combine the statistical data with time-series
details if the complete suite of input is required
Step 2: The Transformer model is constructed
2.1 Input layer in which the preprocessed data is
accepted
2.2 For temporal dependencies, an RNN is used
2.3 For enhancing the model’s capability, use an
LSTM layer
2.3 Use Fully Connected layers, for combined
features regarding classification
2.4 Output layer for prediction, such as High or
Low
Step 3: Model training
3.1 Binary cross entropy loss for classification and
MSE for regression
3.2 Appy Adam optimizer
3.3 Iterate for some epochs till convergence is
reached
Step 4: For hyperparameter tuning, use the number of
RNN, LSTM layers, no of hidden units, batch size, and
learning rate
Step 5: Compute measures for classification

True Positives + True Negatives

Accuracy =
Y Total Number of Cases

where,

True Positives (TP)
(True Positives (TP) + False Positives (FP))

Precision =

Recall (Sensitivity)
True Positives (TP)

- (True Positives (TP) + False Negatives (FN))

From PS3, convert clinical data into time-series data, then
construct the required model using RNN and LSTM layers,
then train the model, then fine-tune the model, and evaluate
the model's performance.

From Figure 2, the activities mentioned in the order such as
data sources are loaded, then preprocessing such sources for
quality, then feature extraction, then combining the significant
features for model training based on data source type, then
hyperparameter tuning, then model evaluation, and providing
interpretation using the SHAP model.

4. RESULTS

This section is decomposed into four aspects: analysis of
evaluated factors (accuracy, robustness, interpretability),



analysis of performance measurement, assessment of tools for
lung cancer diagnosis, and analysis of statistical tests. The
evaluation of the proposed multi-architecture model against
existing models, such as ML, DL methods, medical diagnostic
tools, multimodal approaches, and other models. In this, the
significant factors considered, such as accuracy, robustness,
interpretability, and performance (precision and recall), are
demonstrated in Table 4, in which such measures are
compared and visualized in Figure 3, which highlights the best
values for the multi-architecture model on multi-modalities.
Table 5 demonstrates the AUC, sensitivity, and specificity
values against the considered methods against the multi-
architecture modal. Table 6 demonstrates the key features, the
type of domain/specialization, and accepted input. When it
transforms the multi-architecture into a Ul tool, input the
values, it produces a risk that is high or Low after processing

the combined data. Table 7 demonstrates the accuracy of the
tools considered against the proposed model tool, in which
specific measures such as sensitivity, specificity, and AUC are
evaluated for the analysis in the future.

4.1 Analysis of evaluated factors (accuracy, robustness,
interpretability)

Table 4 demonstrates accuracy, robustness, interpretability,
and performance (precision and recall), which determines the
effectiveness of the models.

Table 4 and Figure 3 demonstrate the effectiveness of the
models in terms of accuracy, performance, robustness, and
interpretability. The multi-architecture model (hybrid model)
is observed to have better computed values than other
considered methods.

Table 4. Evaluated factors against the considered models

Method Accuracy Performance Robustness Interpretability
Statistical and traditional models 85 85 75 100
ML models 90 90 80 80
DL models 95 95 85 30
Multimodal methods 97 97 95 85
XAI technique 85 85 90 100
Clinical risk assessment 85 85 75 100
3D CNNs 95 95 85 30
Transformers 90 90 90 85
U-Net 95 95 90 80
GNNs 85 90 75 80
1D CNNs 85 85 80 80
Multi-architecture model 98 98 95 100

Effectiveness

100

.
& &

Q\O

ch}‘: (p"‘

&

W Accuracy

m Performance

m Robustness

m Interpretability

&

3

Figure 3. Effectiveness of the methods considered against the multi-architecture model

4.2 Analysis of performance measurement

Table 5 explores that traditional and ML-based models
achieve moderate AUC (0.85-0.90), DL and multimodal
architectures exhibit significantly better discriminative ability
(0.94-0.96), and 3D-CNNs and Transformer models
independently achieve high AUC (0.95-0.96). The proposed
multi-architecture model ensures superior performance arises
from combining spatial features from CT imaging, sequence
patterns from genomic data, and temporal dependencies from
clinical histories.
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4.3 Assessment of tools for lung cancer diagnosis

The existing diagnostic tools, Lung-RADS, NLST,
PLCOmM2012, Brock University, LCP, DL tools, and CAD
systems, are explored in terms of data input and type of
prediction method.

Table 6 demonstrates tools in categories such as risk
prediction, diagnostic aid, and risk assessment, the type of
modality supported, and the domain of technique used for
processing.

From Table 7, the tools listed along with their accuracies are
demonstrated, in which the multi-architecture model sustains



better and satisfactory accuracy than other models. is multi-architecture models as the first, outperforming tool
From Figure 4, the order of tools that ensure better accuracy than other considered models.

Table 5. Performance against considered approaches

Model/Method AUC Specificity _ Sensitivity
Statistical, traditional models  0.85 85 80
ML models 0.90 90 85
DL models 0.95 95 90
Multimodal methods 0.96 95 90
XAI techniques 0.92 90 85
Clinical risk assessment 0.80 80 75
3D CNNs 0.96 95 90
Transformers 0.95 95 90
U-Net 0.94 95 90
GNNs 0.93 90 85
1D CNNs 0.88 85 80
Multi-architecture models 0.98 97 92

Table 6. Tools for lung cancer against specific aspects

Tool Name Type Input Data Prediction Method
Lung-RADS Assessmerr;'éliystem for Images (CT scan) Categorization
NLST risk prediction tool Calculator for risk Smoking h1st.ory, Statistical model
demographics
PLCOm2012 Prediction model for risk Smoking hlst_ory, Logistic Regression
demographics
Brock University model Prediction model for risk Demographics and CT scans Logistic Regression
Deep learning models Prediction using Al Clinical data, MRI/CT images ConVOIunon(%E;gal Networks
LCP model Prediction model for risk Smoking h1st.ory, Machine learning (e.g., Random
demographics Forest)
Computer-(léll(i%d) Diagnosis Diagnostic aid Images (CT scan) Image processing algorithms
Multi-model approach Prediction model for risk Multi-type inputs Deep learning techniques and Al
Accuracy
120
100
80
60
40
20
0
% > o > . & > o >
. Q\Q OQ:\OG (\(15;» Q\@e Q\o&‘g \0“\0 \,5?5& Qjc..\c’\o ‘\°§; Q\dg}
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Figure 4. Accuracy of the tools considered
Table 7. Accuracies of tools against our proposed approach
Tool Name Accuracy Evaluation Metric Observation
Lung-RADS 90 Sensitivity, specificity High specificity but lower sensitivity for small nodules
NLST risk prediction tool 80 Area l(J:{'lJeé)Curve Based on demographic and smoking history
PLCOmM2012 85 AUC Validated in multiple cohor’Fs for 6-year lung cancer risk
prediction
Brock University model 90 AUC Strong performance in predlctlng.mgllgnancy based on nodule
characteristics
Deep learning models 95 AUC, sensitivity, High accuracy in research settings, but dependent on training
specificity data
LCP model 90 AUC Incorporates genetic and environmental factors, still under
research
CAD 90 Sensitivity, specificity Assists radiologists; accuracy depends on nodule size and image
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Lung cancer decision support

85 AUC
tools
Radiomics-based tools 95 AUC, Se.nSI.t Ly,
specificity
Multi-model approach 98 AUC, sensitivity,

specificity

quality

Rule-based systems, accuracy varies with input data quality
High accuracy in research, but requires high-quality imaging data

Ensures the highest accuracy due to multiple types of input

4.4 Analysis of statistical tests

The statistical significance of the proposed model against
traditional, ML, and DL for only image type models was tested
using DeLong’s method and observed over p-value, based on
Table 4, and are listed in Table 8. The p-value is increased for
a multi-architecture model.

Table 8. P-values against the considered models

Method AUC CI P-Value
Traditional 0.85 0.82-0.88 <0.001
ML 0.90 0.87-092 <0.001
DL (image) 0.95 0.93-0.96 0.004
Proposed 098 097-0.99 <0.05
5. CONCLUSION

To overcome delayed decision-making, insufficient
handling of multiple modalities, and limited performance,
there is a need to detect lung cancer with better performance
and accuracy. The input data sources are categorized into
imaging, genomics, and clinical data. In this process, data
preprocessing is applied, features are extracted using feature
extraction, then a 3D CNN is applied for imaging analysis,
Transformers for genomics interpretation, and RNN+LSTM is
used for temporal clinical data. The significant features are
extracted and combined for better evaluation of lung cancer
risk. The activities in the construction of 3D CNN,
Transformer, and RNN+LSTM involve modal training,
hyperparameter fine-tuning, and modal evaluation are
demonstrated in PS1, PS2, PS3, and PS4. The predictions are
more accurate due to a combination of important features, for
instance, such as smoking history, nodule size, and EGFR
mutations. The effectiveness of the hybrid method and UI tool
of the proposed method is determined as better than other
models. In the future, the work might extend to different
populations and look for a lightweight interface for easy
classification. It also expects expanding the model to
incorporate additional biomarkers like proteomics and
radiogenomics, with federated learning for multi-institutional
privacy-preserving training.
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