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This paper investigates the impact of elasticity on two-layered peristaltic flow of
Newtonian fluids in a channel. The two-dimensional flow is considered with two
regions: the peripheral and core regions. A Newtonian fluid model is applied in both
regions to understand the characteristics of peristaltic transport in a channel with elastic
properties. The problem is solved analytically, and expressions for axial velocity and
flux are obtained. The variation in flux is studied under the influence of the channel
wall's elasticity. Expressions for the stream function in both peripheral and core regions
are presented. The interface, a key phenomenon in multi-phase flows, is analyzed, and
the corresponding equation is derived and explained through graphs. Elastic parameters
significantly affect the volume flow rate. As the elasticity of the channel wall increases,
the channel expands, leading to an increase in flow rate. The observed flow
characteristics suggest interesting behaviors that warrant further study of physiological
fluids in multi-phase flows with elasticity. The present work includes the elasticity of
the channel, which allows for a better understanding of physiological structures. This
inclusion opens up the possibility for further investigation into various biological
structures and physiological processes, where the elasticity of the channel plays a

crucial role.

1. INTRODUCTION

Generally the transmission of the mechanical waves along
the length of the flexible conduits or channels can be
considered as peristaltic flow of the fluids. The majority of
living things exhibit this kind of fluid movement such as
transport of chyme in small intestine, swallowing food via
oesophagus, vasomotion of blood invessels, etc. Due to many
physiological and industrial applications many research
groups have carried out research on peristaltic fluid flow and
published many articles by proposing different physical
models for analyze the mechanism and origin of fluid flow.
The first experimental study on peristaltic flow was made by
Latham [1].

In continuation of this, Shapiro et al. [2] have carried out the
hypothetical and experimental studies on the peristaltic flow
of fluids in different conditions and the observed results were
clearly explained using different physical models. Yin and
Fung [3] carried out the hypothetical studies on peristaltic flow
of fluids and the results were proved experimentally. To
understand the properties of the different fluid flow problems,
flow geometry plays an important role. But most of the
peristaltic flow of the fluids was considered in rigid tubes and
channels. In the study of Newtonian fluids, the Poiseuille law
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is taken into consideration since it provides an explanation for
the relation between flux and pressure difference. However,
because of elastic character of blood vessels, in most vascular
systems the relation between pressure and flow will be
nonlinear. This is due to the fact that the majority of
physiological structures are elastic in nature.

A systematic investigation on viscous fluid transport was
studied by Rubinow and Keller [4], and the observed results
were analyzed, which were helpful to understand other viscous
fluids, such as blood flow in an elastic tube. Shukla et al. [5]
have carried out intensive studies on physiological fluids and
the influence of viscosity at peripheral region on peristaltic
flow of the fluids. In continuation of this, Srivastava and
Srivastava [6] investigated peristaltic flow of a fluid in
irregular shaped tube by considering two fluid models.
Brasseur et al. [7] explored their results on peristaltic
movement of fluids in core and peripheral layers. The impact
on peripheral layer of viscous fluid flow was investigated by
Misra and Pandey [8]. Further, Sharma et al. [9] carried out an
investigation on blood transport in elastic arteries and different
models were proposed to explain the results.
Radhakrishnamacharya and Srinivasulu [10] analyzed wall
parameters effect on peristaltic flow of a fluid that is viscous
and incompressible and it was subjected to heat transfer.
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Vajravelu et al. [11] took into consideration the scenario in
which a catheter was inserted within an elastic conduit in order
to examine fluctuations in nature of blood flow by
incorporating H-B fluid model. Experimental findings on non-
Newtonian flow properties inelastic tubes were described in a
study by Nahar et al. [12]. The lubrication approach was used
by Sochi [13] in order to analyze flow characteristics of both
Newtonian and Power-law fluids as they move through elastic
tubes. This was accomplished by taking account ofthe
pressure-area constitutive relationship. H-B fluid flow inside
an elastic tube was explored by Vajravelu et al. [14], and the
impact of peristalsis on this flow was analyzed. Analytical
mathematical expressions for properties of Newtonian flow
were developed by Sochi [15] using cylindrical elastic tubes
as the geometry of interest. Using an elastic tube model that
accounted for the motion of the artery wall, Shen et al. [16]
investigated blood pulsatile flow characteristics. In addition,
Vajravelu et al. [17] investigated Casson fluid movement in a
stretchy tube, while the tube was subjected to peristalsis.
Tripathi and Sharma [18] have investigated the role of joule
heating effect and viscous dissipation of blood flow by
considering two-layered model and here the fluid flow is
happening through a stenosed artery and it is subjected by an
external magnetic effect.

In light of the studies mentioned above, an effort is made in
this chapter to study the impact of elasticity on two-layered
peristaltic motion of Newtonian fluid in a channel. The
analytical expressions for stream function, pressure difference
and flux as a function of pressure difference were obtained.
Pressure rise per wavelength and the association between flux
and pressure difference are discussed. The outcomes will not
only supplement the earlier works but also offer information
that is useful for industrial applications.

Previous studies were limited in their consideration of the
elastic nature of the channel. In the present work, this
limitation is addressed by incorporating the elasticity of the
channel, allowing for a more comprehensive analysis. This
inclusion opens up the possibility for further investigation into
various biological structures and physiological processes,
where the elasticity of the channel plays a crucial role.

2. MATHEMATICAL FORMULATION
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Figure 1. Physical model
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Figure 1 illustrates the two-dimensional peristaltic flow of
an incompressible Newtonian fluid in a channel with flexible
elastic walls of length L and half width a,. Here, it was
assumed that the channel consists of core and peripheral
regions. And also, it was considered that Newtonian fluids are
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propagating through both core and peripheral regions. Further,
the walls of the channel are elastic in nature and infinite wave
trains are produced and propagating along the length of the
channel with uniform velocity. The wall deformation is
represented by:

2
Y=a0+bsin7(X—ct) (D)

where, ay, b, 4, ¢ and t are symbols of the channel width in the
absence of elasticity, amplitude, wavelength, wave speed and
time, respectively. Y = H;(X,t) denotes the deformed
interface untying both the regions.

The fixed frame is associated to the wave frame by:

x=X-—-ct,y=Y,u(x,y) =U;(X —ct,Y) — ¢, } )
v y) = VX — ct, ), pi(x) = PCX, O, = w, - vS P

The velocity components, pressure, and stream functions in
the wave frame are denoted by u;, v;, p; and ;. The velocity
components, pressure, and stream functions in fixed frame are
U;, V; P; and ¥; respectively.

The following analysis is conducted utilizing the non-
dimensional variables as:

__x b __yf_ct . q . _a
X—A;ﬁb—a.y—a.z—l;q—ag, _/‘l'
- H H, a pc pa® - Y
h:—'h =—'R = , [ = ) P =,
a' TR Ay pt Ui Ac Vi ac 3)
W 0 vk _i K
e 9y’t ac  ox’ Uy

The core and peripheral flow regions are each referred to by
their corresponding superscript value in this case (i = 1,2).
The Reynolds number is small and long wavelength
approximation is considered (applicable in physiological
flows), so the curvature and inertia terms are negligible. As a
result, the equations of motion that regulate the fluid flow in
two layers reduces to the following form (removing bars).

6<6u1)_6p1f 0<v<h y
ay\ay ) = ox or0<y<m 4)
d / du, dap,
—u—=) = —= £ <y< 5
ay(uay) 2 fory <y < ax) (5)
op
-z 6
0 I (6)

The dimensionless boundary conditions that relate to the
above governing equations are:

Y, =0aty=0 @)
a2 0
621/) 621/)
ayzl =pu ayzz aty = hy 9)
0, .
W:—1;,1ty=a(x)=1+<j)st7rx (10)



Y,=qaty=akx)=1+¢sin2nx 11

Yr=¢,=qaty=n (12)

The total flux g in this case is the sum of the core layer
flux q; and the peripheral layer flux g, across any cross-
section in the wave frame. Furthermore, the shear stress and
velocity are continuous across the interface. Because of fluid
incompressibility and lubrication theory, the fluxes and are
independent of ¢, and g, are independent of x.

The continuity of velocity across interface is given by Egs.
(8) and (9). The Egs. (10) and (11) represents no-slip condition
and the Eq. (7) implies that the velocity attains a maximum.
The condition (12) is the conservation of mass in core as well
as in the peripheral layer independently across any cross
section.

3. SOLUTION IN THE WAVE FRAME

Solving the Egs. (4)-(6) along with boundary conditions (7)-
(10), we get

p p
u =—1 +§(y2—hf)—ﬂ(a2—hf)
for0<y<n

(13)

u, = —1 +2%(y2—a2) for0 <y < a(x) (14)

The flux q is given by:

hq a
q =f uldx+f u,dx
0 h (15)

—a+ ipa3 [(1—wr3—1]
3u

ipa3 [(1—wr*-1]

Q3M

(16)

where, Q = q + a.

Eq. (15) is a representation of flux in a two—dimensional
channel with peristalsis and without elastic nature. To find out
the variation of flux, elasticity of the channel walls and
peristalsis are now taken in to account. The variation in
pressure that takes place between the surface of the wall and
it’s inside results in either an expansion or a contraction of the
channel width a(x). The flow is determined by the well-
known famous Poiseuille law.

The Eq. (15) connects the flux and the pressure gradient by

(— Z—Z) a(p — po)

Q (17)

g9(@a) =

1 . ; , ; ; 1 ; 1 ; , ; ,
+3a[t1a +§t2(2a6—9a5+15a4—10a3+3a)]+§t1a2+Et2(8a7—35a6+56a5—35a4+7a2)

From Egs. (16) and (17), we get:
1
o(p —py) = a®F where F = 3 [(u—D2+1] (18)

In addition to the peristaltic moment, taking the elasticity
property into account, the above Eq.(18) may be rewritten as:
a(p —po) = (a+a)’F (19)
where, the conductivity of the channel is denoted by
a(p — po) and a’ denotes pressure difference (p — p,), where
Do represents the pressure outside the channel and a(x) is the
wall movement due to peristalsis, which is denoted by and is
a(x) =1+ ¢Sin(2m x).
Integrating Eq. (17) with respect to x from x = 0, and by
using the condition at the inlet p; = p(0), we obtain:

1 P1—Po
f(q+a)dx=f
0 p(x)—Po

where, p’ = p(x) — po.
To find flux g, we set x = 1 and p(1) = p,, resulting in:

a(p)dp’ (20)

P1—Po
g=-1+ Ff (@®+a®+3a%a’ +3a%a)dp  (21)
P2—Po

If the function a'(p — p,) is known, we evaluate Eq. (21).
Applying the methodology established by Rubinow and Keller
[4], a'(p") can be determine from the equilibrium condition.
T(a") is tension in channel wall and is given by:

(@) 'T(a) =p —po (22)

It is now necessary to understand how the width of a channel
varies with pressure. Rubinow and Keller [4] presented the
following equation using the least square method for the
calculation of the tension versus length curve from the static
pressure-volume relationship.

T(a) = (a' — 1t; + (a' — 15, (23)
where, t; and t, represent the elastic parameters and their

values are taken as 13 and 300, respectively.
From Egs. (22) and (23), we have:

dp' =

[t;a™? + t,(4a® — 15a? + 20a' + a~2? — 10)]da’ 24

We get a flux of fluid after solving Eq. (21) and Eq. (24).

g=-1+F[g(a))-2(a;)] (25)

al[-tja"t +t,(a* —5a% +10a? — 10a' — a~1)] + 3a? [t1 loga +%t2(48a5 —225a* +400a® —300a? + 60 loga)]

(26)

ai = ai(pl — Po) and dz = aé(Pz — Po)
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The pressure rise per wavelength for Newtonian fluid flow
through a channel with elastic walls and peristalsis is obtained
with the use of Egs. (17) and (19).

td Oo=3u@—-1+
M:f_ﬁwzf< M% )
o dx o \(u—Dhi+a3+k

where, k; = a® + 3aa? + 3a%a.
By solving Egs. (13) and (14) along with Egs. (11) and (12),
we get:

)dx (27)

b=yl [u(3h§y —-y*) +3(a® = i)y + 2k1]
1=y (- DI +a +k, (28)
forO<y<hnh
(= DA} +5Ba® = y2y + 1y
Y, =-y+0Q

(u—1n +a®+k, (29)

forh; <y < a(x)

As a — 0, it is observed that the outcomes derived from
Egs. (28) and (29) coincide with the outcomes reported by
Brasseur et al. [7].

4. DETERMINATION OF THE INTERFACE

The expression for at the interface is derived by using
condition Eq. (12). The interface s, (x) is governed by a
fourth-degree algebraic equation, which is given by:

2(u — DAY + [2¢:(u — 1) — (g + @) (2 — 3)]4}
+[2k; — a?(a + 3q)]hy
+2q,(@®+ k) —2(q+adk; =0

(30)

Since q and q; are independent of x, we can solve for q;
using Eq. (30) by setting h; = a atx = 0, k, = a® +3a? +
3a.

5. OUTCOMES AND ANALYSIS

In the present study, the influence of elasticity on two-
layered peristaltic flow of Newtonian fluids in a channel is
investigated. The expressions for axial velocity, stream
function, flux and interface are obtained. The effects of various
physical parameters such as elastic parameters t;, t, ,
viscosity ratio u, amplitude ratio ¢, inlet and outlet elastic
widths a; and a, on the flow rate q and pressure rise are
studied graphically. In addition, the variation in the shape of
interface due to elasticity nature also discussed.

The significance of elasticity on two-layered flow is
expressed in terms the shape of interface. The variation in the
shape of interface for the change in different parameters is
illustrated in Figures 2-4. It is observed that for increasing
values of viscosity ratio, amplitude ratio and elasticity nature
of the channel, the crest part of the peripheral region result in
a thinner peripheral layer, whereas the trough part of the
peripheral layer exhibits the opposite behavior. Also, the
higher values of amplitude ratio show the significant
difference in crest and trough part of peripheral region which
is clearly evident from Figure 3.
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Figure 2. Behavior of interface for various values of u with
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Figure 3. Behavior of interface for various values of ¢ with
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Figure 4. Behavior of interface for various values of a' with
¢=050Q=01,u=05

The change in pressure rise along with mean flow rate for
different values of viscosity ratio p, amplitude ratio ¢ and
width of the elastic channel are presented in Figures 5-7. The
effect of viscosity ratio u on pressure rise for given mean flow
rate is shown in Figure 5. It is clear that the pressure rise
increases with increasing amplitude ratio in pumping region
and shows opposite nature in co pumping region. Figure 6
illustrates that the pressure rise enhances for higher values of
amplitude ratio but the reverse is noticed in the case of
different higher values of elastic width of the channel. That is
pressure rise reduces with increasing elastic width of the
channel which is represented in Figure 7.
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Figure 6. The pumping characteristics Q vs. AP on ¢ with
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Figure 7. The pumping characteristics Q vs. AP on a' with
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The variation of flux along with width of the elastic channel
for various parameters is depicted in Figures 8-11. The flow
rate decreases as viscosity ratio y increases, as shown in
Figure 8. As viscosity ratio of the fluid increases then the fluid
velocity reduces consequently and therefore the flux
decreases. From Figure 9, we observe that the flux increases
with higher values of amplitude ratio ¢p. Due to an increase in
amplitude ratio, fluid velocity rises, which causes an increase
of fluid flow rate. Figure 10 and Figure 11 represent the
influence elastic parameters t; and t,. The increase in elastic
parameter results the increase of elastic nature of channel
walls. The channel walls become more flexible and hence,
there exist an increase in the width of the channel. Therefore,
the flux enhances due to higher values of elastic parameters,
as represented in Figure 10 and Figure 11.
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Figure 12. Variation of ¢ on flux vs. x with 7 = 0.5, ¢ =
0.5,a; = 0.2,a, = 0.3,t; = 13,t, = 300
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Figure 13. Variation of ¢ on flux vs. x with7 = 0.5, 4 =
0.5,a; = 0.2,a, = 0.3,t; = 13,t, = 300
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Figure 14.Variation of t; on flux vs. x witht = 0.5,¢ =
0.5,a; = 0.2,a, = 0.3, = 0.5,t, = 300

Figure 15. Variation of t, on flux vs. x with of
7=0.5,¢ =0.5,a; =0.2,a, =0.3,t; =13,u = 0.5
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Figure 16. Variation of a; on flux vs. x with T = 0.5, ¢ =
0.5,a, = 0.3,u = 0.5,t;, = 13,t, = 300
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Eq. (25) represents that flux q is a function of axial
coordinate x. The variation of flux against x for the different
physical parameters is shown in Figures 12-17. In Figure 12,
the influence of the viscosity ratio u on flow rate q is depicted.
It is clear that as the viscosity ratio p is reduced, the flow rate
decreases. The significance of the amplitude ratio ¢ on
volumetric flow rate is shown in Figure 13. The flow rate
increases as the parameter ¢ increases due to an increase in
velocity of the fluid. The significance of elastic parameters
t;, t, on flow rate along axial coordinate is shown in Figure
14 and Figure 15, respectively. As a result of increasing elastic
nature of the channel width, the flow rate increases with higher
values of elastic parameters.

Figure 16 and Figure 17 represent the effects of inlet and
outlet elastic widths a; and a, on volume flow rate,
respectively. The flow rate in an elastic channel decreases with
increasing values of a; with a fixed value for a, which is
shown in Figure 16. In the case of increasing a, for a given
value of a; the opposite behavior occurs, i.e., increasing outlet
width increases the flux of Newtonian fluid flow in an elastic
channel, as shown in Figure 17. The significance of inlet and
outlet pressure on volumetric flow rate is explained by the
plotting flux vs. p; — p, for different values p, — p, and flux
vs. p, — po for different values p; — p,, respectively shown in
Figure 18 and Figure 19. The inlet and outlet pressures show
the opposite behavior in the flux.

6. CONCLUSIONS

The present paper investigates how elasticity has
remarkable effect on peristaltic flow of two immiscible
Newtonian fluids in a two dimensional channel. The analytical
solution is obtained and the results are interpreted through
graphs. The remarkable effect of physical parameters on
interface equation, pressure rise and flow rate are explained
graphically.

e The elasticity nature of channel walls has significant
effect on the shape of interface and interface is more
extended in core region comparing to peripheral due to
elasticity of channel walls.

The pressure rise increases along mean flow rate as the
amplitude ratio and viscosity ratio increases where the
reverse nature is noticed in the case of a'.

The elastic channel's inlet and outlet radiuses have
opposing effects on the volumetric flow rate.

The elastic parameters t; and t, have significant effect
on volume flow rate. That is when elastic nature of
channel wall increases then the channel extends and
consequently flow rate increases.

Future research can build on the present work by addressing
the limitations of earlier studies that overlooked channel
elasticity. Incorporating elasticity enables a more thorough
analysis of peristaltic flow and opens opportunities to explore
biological structures and physiological processes where
channel elasticity is crucial.
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NOMENCLATURE
L length of elastic wall
ag half-width of the channel
b amplitude
A wavelength
c wave speed
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t
tl, tz

P1
D2
bo

q1

qz
hy(x)
a(x)
a’(x)

T(a)

u,v
uv

time

amplitude ratio

elastic parameters

stream function

inlet pressure

outlet pressure

external pressure

total flux

flux in core region

flux in peripheral region

interface

the wall movement due to peristalsis
the wall movement due to elasticity
viscosity ratio

tension of the channel

conductivity of the channel
velocity components in wave frame
velocity components in fixed frame
the initial value of the interface





