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This paper investigates the impact of elasticity on two-layered peristaltic flow of 

Newtonian fluids in a channel. The two-dimensional flow is considered with two 

regions: the peripheral and core regions. A Newtonian fluid model is applied in both 

regions to understand the characteristics of peristaltic transport in a channel with elastic 

properties. The problem is solved analytically, and expressions for axial velocity and 

flux are obtained. The variation in flux is studied under the influence of the channel 

wall's elasticity. Expressions for the stream function in both peripheral and core regions 

are presented. The interface, a key phenomenon in multi-phase flows, is analyzed, and 

the corresponding equation is derived and explained through graphs. Elastic parameters 

significantly affect the volume flow rate. As the elasticity of the channel wall increases, 

the channel expands, leading to an increase in flow rate. The observed flow 

characteristics suggest interesting behaviors that warrant further study of physiological 

fluids in multi-phase flows with elasticity. The present work includes the elasticity of 

the channel, which allows for a better understanding of physiological structures. This 

inclusion opens up the possibility for further investigation into various biological 

structures and physiological processes, where the elasticity of the channel plays a 

crucial role. 
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1. INTRODUCTION

Generally the transmission of the mechanical waves along 

the length of the flexible conduits or channels can be 

considered as peristaltic flow of the fluids. The majority of 

living things exhibit this kind of fluid movement such as 

transport of chyme in small intestine, swallowing food via 

oesophagus, vasomotion of blood invessels, etc. Due to many 

physiological and industrial applications many research 

groups have carried out research on peristaltic fluid flow and 

published many articles by proposing different physical 

models for analyze the mechanism and origin of fluid flow. 

The first experimental study on peristaltic flow was made by 

Latham [1]. 

In continuation of this, Shapiro et al. [2] have carried out the 

hypothetical and experimental studies on the peristaltic flow 

of fluids in different conditions and the observed results were 

clearly explained using different physical models. Yin and 

Fung [3] carried out the hypothetical studies on peristaltic flow 

of fluids and the results were proved experimentally. To 

understand the properties of the different fluid flow problems, 

flow geometry plays an important role. But most of the 

peristaltic flow of the fluids was considered in rigid tubes and 

channels. In the study of Newtonian fluids, the Poiseuille law 

is taken into consideration since it provides an explanation for 

the relation between flux and pressure difference. However, 

because of elastic character of blood vessels, in most vascular 

systems the relation between pressure and flow will be 

nonlinear. This is due to the fact that the majority of 

physiological structures are elastic in nature. 

A systematic investigation on viscous fluid transport was 

studied by Rubinow and Keller [4], and the observed results 

were analyzed, which were helpful to understand other viscous 

fluids, such as blood flow in an elastic tube. Shukla et al. [5] 

have carried out intensive studies on physiological fluids and 

the influence of viscosity at peripheral region on peristaltic 

flow of the fluids. In continuation of this, Srivastava and 

Srivastava [6] investigated peristaltic flow of a fluid in 

irregular shaped tube by considering two fluid models. 

Brasseur et al. [7] explored their results on peristaltic 

movement of fluids in core and peripheral layers. The impact 

on peripheral layer of viscous fluid flow was investigated by 

Misra and Pandey [8]. Further, Sharma et al. [9] carried out an 

investigation on blood transport in elastic arteries and different 

models were proposed to explain the results. 

Radhakrishnamacharya and Srinivasulu [10] analyzed wall 

parameters effect on peristaltic flow of a fluid that is viscous 

and incompressible and it was subjected to heat transfer. 
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Vajravelu et al. [11] took into consideration the scenario in 

which a catheter was inserted within an elastic conduit in order 

to examine fluctuations in nature of blood flow by 

incorporating H-B fluid model. Experimental findings on non-

Newtonian flow properties inelastic tubes were described in a 

study by Nahar et al. [12]. The lubrication approach was used 

by Sochi [13] in order to analyze flow characteristics of both 

Newtonian and Power-law fluids as they move through elastic 

tubes. This was accomplished by taking account ofthe 

pressure-area constitutive relationship. H-B fluid flow inside 

an elastic tube was explored by Vajravelu et al. [14], and the 

impact of peristalsis on this flow was analyzed. Analytical 

mathematical expressions for properties of Newtonian flow 

were developed by Sochi [15] using cylindrical elastic tubes 

as the geometry of interest. Using an elastic tube model that 

accounted for the motion of the artery wall, Shen et al. [16] 

investigated blood pulsatile flow characteristics. In addition, 

Vajravelu et al. [17] investigated Casson fluid movement in a 

stretchy tube, while the tube was subjected to peristalsis. 

Tripathi and Sharma [18] have investigated the role of joule 

heating effect and viscous dissipation of blood flow by 

considering two-layered model and here the fluid flow is 

happening through a stenosed artery and it is subjected by an 

external magnetic effect.  

In light of the studies mentioned above, an effort is made in 

this chapter to study the impact of elasticity on two-layered 

peristaltic motion of Newtonian fluid in a channel. The 

analytical expressions for stream function, pressure difference 

and flux as a function of pressure difference were obtained. 

Pressure rise per wavelength and the association between flux 

and pressure difference are discussed. The outcomes will not 

only supplement the earlier works but also offer information 

that is useful for industrial applications. 

Previous studies were limited in their consideration of the 

elastic nature of the channel. In the present work, this 

limitation is addressed by incorporating the elasticity of the 

channel, allowing for a more comprehensive analysis. This 

inclusion opens up the possibility for further investigation into 

various biological structures and physiological processes, 

where the elasticity of the channel plays a crucial role. 

2. MATHEMATICAL FORMULATION

Figure 1. Physical model 

Figure 1 illustrates the two-dimensional peristaltic flow of 

an incompressible Newtonian fluid in a channel with flexible 

elastic walls of length 𝐿  and half width 𝑎0 . Here, it was

assumed that the channel consists of core and peripheral 

regions. And also, it was considered that Newtonian fluids are 

propagating through both core and peripheral regions. Further, 

the walls of the channel are elastic in nature and infinite wave 

trains are produced and propagating along the length of the 

channel with uniform velocity. The wall deformation is 

represented by: 

𝑌 = 𝑎0 + 𝑏 𝑠𝑖𝑛
2𝜋

𝜆
(𝑋 − 𝑐𝑡) (1) 

where, 𝑎0, 𝑏, 𝜆, 𝑐 and 𝑡 are symbols of the channel width in the

absence of elasticity, amplitude, wavelength, wave speed and 

time, respectively. 𝑌 = 𝐻1(𝑋, 𝑡)  denotes the deformed

interface untying both the regions. 

The fixed frame is associated to the wave frame by: 

𝑥 = 𝑋 − 𝑐𝑡, 𝑦 = 𝑌, 𝑢𝑖(𝑥, 𝑦) = 𝑈𝑖(𝑋 − 𝑐𝑡, 𝑌) − 𝑐,

𝑣𝑖(𝑥, 𝑦) = 𝑉𝑖(𝑋 − 𝑐𝑡, 𝑌), 𝑝𝑖(𝑥) = 𝑃𝑖(𝑋, 𝑡), 𝜓𝑖 = 𝛹𝑖 − 𝑌
} (2) 

The velocity components, pressure, and stream functions in 

the wave frame are denoted by 𝑢𝑖, 𝑣𝑖 , 𝑝𝑖  and 𝜓𝑖 . The velocity

components, pressure, and stream functions in fixed frame are 

𝑈𝑖 , 𝑉𝑖,𝑃𝑖  and 𝛹𝑖  respectively.

The following analysis is conducted utilizing the non-

dimensional variables as: 

𝑥̄ =
𝑥

𝜆
, 𝜙 =

𝑏

𝑎
, 𝑦̄ =

𝑦

𝑎
, 𝑡̄ =

𝑐𝑡

𝜆
, 𝑞̄ =

𝑞

𝑎𝑐
, 𝛿 =

𝑎

𝜆
, 

ℎ̄ =
𝐻

𝑎
, ℎ̄1 =

𝐻1

𝑎
, 𝑅𝑒 =

𝑎2𝜌𝑐

𝜆𝜇1

, 𝑝𝑖 =
𝑝𝑖𝑎2

𝜇1𝜆𝑐
, 𝜓̄𝑖 =

𝜓𝑖

𝑎𝑐
, 

𝑢̄𝑖 =
𝑢𝑖

𝑐
=

𝜕𝜓𝑖

𝜕𝑦̄
, 𝑣̄𝑖 =

𝑣𝑖𝜆

𝑎𝑐
=

𝜕𝜓𝑖

𝜕𝑥̄
, 𝜇 =

𝜇2

𝜇1

(3) 

The core and peripheral flow regions are each referred to by 

their corresponding superscript value in this case (𝑖 = 1, 2). 

The Reynolds number is small and long wavelength 

approximation is considered (applicable in physiological 

flows), so the curvature and inertia terms are negligible. As a 

result, the equations of motion that regulate the fluid flow in 

two layers reduces to the following form (removing bars). 

𝜕

𝜕𝑦
(

𝜕𝑢1

𝜕𝑦
) =

𝜕𝑝1

𝜕𝑥
 for 0 ≤ 𝑦 ≤ ℎ1 (4) 

𝜕

𝜕𝑦
(𝜇

𝜕𝑢2

𝜕𝑦
) =

𝜕𝑝2

𝜕𝑥
 for ℎ1 ≤ 𝑦 ≤ 𝑎(𝑥) (5) 

0 =
𝜕𝑝

𝜕𝑥
(6) 

The dimensionless boundary conditions that relate to the 

above governing equations are: 

𝜓1 = 0 at 𝑦 = 0 (7) 

𝜕𝜓1

𝜕𝑦
=

𝜕𝜓2

𝜕𝑦
 at 𝑦 = ℎ1 (8) 

𝜕2𝜓1

𝜕𝑦2
= 𝜇

𝜕2𝜓2

𝜕𝑦2
 at 𝑦 = ℎ1 (9) 

𝜕𝜓2

𝜕𝑦
= −1 at 𝑦 = 𝑎(𝑥) = 1 + 𝜙 𝑠𝑖𝑛 2 𝜋𝑥 (10) 
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𝜓2 = 𝑞 at 𝑦 = 𝑎(𝑥) = 1 + 𝜙 𝑠𝑖𝑛 2 𝜋𝑥 (11) 

𝜓1 = 𝜓2 = 𝑞1 at 𝑦 = ℎ1 (12) 

The total flux 𝑞 in this case is the sum of the core layer 

flux 𝑞1  and the peripheral layer flux 𝑞2  across any cross-

section in the wave frame. Furthermore, the shear stress and 

velocity are continuous across the interface. Because of fluid 

incompressibility and lubrication theory, the fluxes and are 

independent of 𝑞1 and 𝑞2 are independent of x.

The continuity of velocity across interface is given by Eqs. 

(8) and (9). The Eqs. (10) and (11) represents no-slip condition

and the Eq. (7) implies that the velocity attains a maximum.

The condition (12) is the conservation of mass in core as well

as in the peripheral layer independently across any cross

section.

3. SOLUTION IN THE WAVE FRAME

Solving the Eqs. (4)-(6) along with boundary conditions (7)-

(10), we get 

𝑢1 = −1 +
𝑝

2
(𝑦2 − ℎ1

2) −
𝑝

2𝜇
(𝑎2 − ℎ1

2) 

for 0 ≤ 𝑦 ≤ ℎ1

(13) 

𝑢2 = −1 +
𝑝

2𝜇
(𝑦2 − 𝑎2) for 0 ≤ 𝑦 ≤ 𝑎(𝑥) (14) 

The flux 𝑞 is given by: 

𝑞 = ∫ 𝑢1𝑑𝑥 + ∫ 𝑢2𝑑𝑥
𝑎

ℎ1

ℎ1

0

= −𝑎 +
1

3𝜇
𝑝𝑎3[(1 − 𝜇)𝜏3 − 1]

(15) 

𝑄 =
1

3𝜇
𝑝𝑎3[(1 − 𝜇)𝜏3 − 1] (16) 

where, 𝑄 = 𝑞 + 𝑎. 

Eq. (15) is a representation of flux in a two–dimensional 

channel with peristalsis and without elastic nature. To find out 

the variation of flux, elasticity of the channel walls and 

peristalsis are now taken in to account. The variation in 

pressure that takes place between the surface of the wall and 

it’s inside results in either an expansion or a contraction of the 

channel width 𝑎(𝑥) . The flow is determined by the well-

known famous Poiseuille law. 

The Eq. (15) connects the flux and the pressure gradient by 

𝑄 = (−
𝜕𝑝

𝜕𝑥
) 𝜎(𝑝 − 𝑝0) (17) 

From Eqs. (16) and (17), we get: 

𝜎(𝑝 − 𝑝0) = 𝑎3𝐹 where 𝐹 =
1

3𝜇
[(𝜇 − 1)𝜏3 + 1] (18) 

In addition to the peristaltic moment, taking the elasticity 

property into account, the above Eq.(18) may be rewritten as: 

𝜎(𝑝 − 𝑝0) = (𝑎 + 𝑎′)3𝐹 (19) 

where, the conductivity of the channel is denoted by 

𝜎(𝑝 − 𝑝0) and 𝑎′ denotes pressure difference (𝑝 − 𝑝0), where

𝑝0 represents the pressure outside the channel and 𝑎(𝑥) is the

wall movement due to peristalsis, which is denoted by and is 

𝑎(𝑥) = 1 + 𝜙𝑆𝑖𝑛(2𝜋 𝑥). 

Integrating Eq. (17) with respect to 𝑥 from 𝑥 = 0, and by 

using the condition at the inlet 𝑝1 = 𝑝(0), we obtain:

∫ (𝑞 + 𝑎)
1

0

𝑑𝑥 = ∫ 𝜎(𝑝′)𝑑𝑝′
𝑝1−𝑝0

𝑝(𝑥)−𝑝0

 (20) 

where, 𝑝′ = 𝑝(𝑥) − 𝑝0.

To find flux 𝑞, we set 𝑥 = 1 and 𝑝(1) = 𝑝2, resulting in:

𝑞 = −1 + 𝐹 ∫ (𝑎3 + 𝑎′3 + 3𝑎2𝑎′ + 3𝑎′2𝑎)
𝑝1−𝑝0

𝑝2−𝑝0

𝑑𝑝′ (21) 

If the function 𝑎′(𝑝 − 𝑝0) is known, we evaluate Eq. (21).

Applying the methodology established by Rubinow and Keller 

[4], 𝑎′(𝑝′) can be determine from the equilibrium condition. 

𝑇(𝑎′) is tension in channel wall and is given by: 

(𝑎′)−1𝑇(𝑎′) = 𝑝 − 𝑝0 (22) 

It is now necessary to understand how the width of a channel 

varies with pressure. Rubinow and Keller [4] presented the 

following equation using the least square method for the 

calculation of the tension versus length curve from the static 

pressure-volume relationship. 

𝑇(𝑎′) = (𝑎′ − 1)𝑡1 + (𝑎′ − 1)5𝑡2 (23) 

where, 𝑡1  and 𝑡2  represent the elastic parameters and their

values are taken as 13 and 300, respectively. 

From Eqs. (22) and (23), we have: 

𝑑𝑝′ = 

[𝑡1𝑎′−2 + 𝑡2(4𝑎′3 − 15𝑎′2 + 20𝑎′ + 𝑎′−2 − 10)]𝑑𝑎′ (24) 

We get a flux of fluid after solving Eq. (21) and Eq. (24). 

( ) ( ) 
1 2

1q F g a g a = − + − (25) 

𝑔(𝑎′) = {
𝑎3[−𝑡1𝑎′−1 + 𝑡2(𝑎′4 − 5𝑎′3 + 10𝑎′2 − 10𝑎′ − 𝑎′−1)] + 3𝑎2 [𝑡1 𝑙𝑜𝑔 𝑎′ +

1

60
𝑡2(48𝑎′5 − 225𝑎′4 + 400𝑎′3 − 300𝑎′2 + 60 𝑙𝑜𝑔 𝑎′)]

+3𝑎 [𝑡1𝑎′ +
1

3
𝑡2(2𝑎′6 − 9𝑎′5 + 15𝑎′4 − 10𝑎′3 + 3𝑎′)] +

1

2
𝑡1𝑎′2 +

1

14
𝑡2(8𝑎′7 − 35𝑎′6 + 56𝑎′5 − 35𝑎′4 + 7𝑎′2)

} 

𝑎1
′ = 𝑎1

′ (𝑝1 − 𝑝0) and 𝑎2
′ = 𝑎2

′ (𝑝2 − 𝑝0)

(26) 
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The pressure rise per wavelength for Newtonian fluid flow 

through a channel with elastic walls and peristalsis is obtained 

with the use of Eqs. (17) and (19).  

𝛥𝑃 = ∫
𝑑𝑝

𝑑𝑥

1

0

𝑑𝑥 = ∫ (
−3𝜇(𝑄 − 1 + 𝑎)

(𝜇 − 1)ℎ1
3 + 𝑎3 + 𝑘1

)
1

0

𝑑𝑥 (27) 

where, 𝑘1 = 𝑎′3 + 3𝑎𝑎′2 + 3𝑎2𝑎′.

By solving Eqs. (13) and (14) along with Eqs. (11) and (12), 

we get: 

𝜓1 = −𝑦 +
𝑄

2
[
𝜇(3ℎ1

2𝑦 − 𝑦3) + 3(𝑎2 − ℎ1
2)𝑦 + 2𝑘1

(𝜇 − 1)ℎ1
3 + 𝑎3 + 𝑘1

] 

for 0 ≤ 𝑦 ≤ ℎ1

(28) 

𝜓2 = −𝑦 + 𝑄 [
(𝜇 − 1)ℎ1

3 +
𝑦
2

(3𝑎2 − 𝑦2)𝑦 + 𝑘1

(𝜇 − 1)ℎ1
3 + 𝑎3 + 𝑘1

] 

for ℎ1 ≤ 𝑦 ≤ 𝑎(𝑥)

(29) 

As 𝑎′ → 0, it is observed that the outcomes derived from 

Eqs. (28) and (29) coincide with the outcomes reported by 

Brasseur et al. [7]. 

4. DETERMINATION OF THE INTERFACE

The expression for at the interface is derived by using 

condition Eq. (12). The interface ℎ1(𝑥)  is governed by a

fourth-degree algebraic equation, which is given by: 

2(𝜇 − 1)ℎ1
4 + [2𝑞1(𝜇 − 1) − (𝑞 + 𝑎)(2𝜇 − 3)]ℎ1

3

+[2𝑘1 − 𝑎2(𝑎 + 3𝑞)]ℎ1

+2𝑞1(𝑎3 + 𝑘1) − 2(𝑞 + 𝑎)𝑘1 = 0
(30) 

Since 𝑞 and 𝑞1  are independent of x, we can solve for 𝑞1

using Eq. (30) by setting ℎ1 = 𝛼 at 𝑥 = 0, 𝑘2 = 𝑎′3 + 3𝑎′2 +
3𝑎′. 

5. OUTCOMES AND ANALYSIS

In the present study, the influence of elasticity on two-

layered peristaltic flow of Newtonian fluids in a channel is 

investigated. The expressions for axial velocity, stream 

function, flux and interface are obtained. The effects of various 

physical parameters such as elastic parameters 𝑡1,  𝑡2 ,

viscosity ratio 𝜇 , amplitude ratio 𝜙 , inlet and outlet elastic 

widths 𝑎1
′  and 𝑎2

′  on the flow rate 𝑞  and pressure rise are 

studied graphically. In addition, the variation in the shape of 

interface due to elasticity nature also discussed. 

The significance of elasticity on two-layered flow is 

expressed in terms the shape of interface. The variation in the 

shape of interface for the change in different parameters is 

illustrated in Figures 2-4. It is observed that for increasing 

values of viscosity ratio, amplitude ratio and elasticity nature 

of the channel, the crest part of the peripheral region result in 

a thinner peripheral layer, whereas the trough part of the 

peripheral layer exhibits the opposite behavior. Also, the 

higher values of amplitude ratio show the significant 

difference in crest and trough part of peripheral region which 

is clearly evident from Figure 3. 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

y

x

  = 

  = 

  = 
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Figure 2. Behavior of interface for various values of 𝜇 with 

𝜙 = 0.5, 𝑄 = 0.1, 𝑎′ = 0.25 
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Figure 3. Behavior of interface for various values of 𝜙 with 

𝜇 = 0.5, 𝑄 = 0.1, 𝑎′ = 0.25 
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Figure 4. Behavior of interface for various values of 𝑎′ with 

𝜙 = 0.5, 𝑄̄ = 0.1, 𝜇 = 0.5 

The change in pressure rise along with mean flow rate for 

different values of viscosity ratio 𝜇 , amplitude ratio 𝜙  and 

width of the elastic channel are presented in Figures 5-7. The 

effect of viscosity ratio 𝜇 on pressure rise for given mean flow 

rate is shown in Figure 5. It is clear that the pressure rise 

increases with increasing amplitude ratio in pumping region 

and shows opposite nature in co pumping region. Figure 6 

illustrates that the pressure rise enhances for higher values of 

amplitude ratio but the reverse is noticed in the case of 

different higher values of elastic width of the channel. That is 

pressure rise reduces with increasing elastic width of the 

channel which is represented in Figure 7. 

4458



0.0 0.2 0.4 0.6 0.8 1.0

-6

-4

-2

0

2

4

6


P

  = 

  = 

  = 

Q

Figure 5. The pumping characteristics 𝑄̄ vs. 𝛥𝑃 on 𝜇 with 

𝜙 = 0.5, 𝑎1 = 0.25
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Figure 6. The pumping characteristics 𝑄̄ vs. 𝛥𝑃 on 𝜙 with 

𝜇 = 0.5, 𝑎1 = 0.25

Figure 7. The pumping characteristics 𝑄̄ vs. 𝛥𝑃 on 𝑎1 with

𝜇 = 0.5, 𝜙 = 0.5 

The variation of flux along with width of the elastic channel 

for various parameters is depicted in Figures 8-11. The flow 

rate decreases as viscosity ratio 𝜇  increases, as shown in 

Figure 8. As viscosity ratio of the fluid increases then the fluid 

velocity reduces consequently and therefore the flux 

decreases. From Figure 9, we observe that the flux increases 

with higher values of amplitude ratio 𝜙. Due to an increase in 

amplitude ratio, fluid velocity rises, which causes an increase 

of fluid flow rate. Figure 10 and Figure 11 represent the 

influence elastic parameters 𝑡1 and  𝑡2. The increase in elastic

parameter results the increase of elastic nature of channel 

walls. The channel walls become more flexible and hence, 

there exist an increase in the width of the channel. Therefore, 

the flux enhances due to higher values of elastic parameters, 

as represented in Figure 10 and Figure 11. 
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Figure 8. Effect of 𝜇 on width of the channel vs. flux with 

𝜏 = 0.5, 𝑥 = 0.1, 𝜙 = 0.5, 𝑡1 = 13, 𝑡2 = 300
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Figure 9. Effect of 𝜙 on width of the channel vs. flux with 

𝜏 = 0.5, 𝑥 = 0.1, 𝜇 = 0.5, 𝑡1 = 13, 𝑡2 = 300
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Figure 10. Effect of 𝑡1 on width of the channel vs. flux with

𝜏 = 0.5, 𝑥 = 0.1, 𝜙 = 0.5, 𝜇 = 0.5, 𝑡2 = 300
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Figure 11. Effect of 𝑡2 on width of the channel vs. flux with

𝜏 = 0.5, 𝑥 = 0.1, 𝜙 = 0.5, 𝑡1 = 13, 𝜇 = 0.5
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Figure 12. Variation of 𝜇 on flux vs. 𝑥 with 𝜏 = 0.5, 𝜙 =
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′ = 0.2, 𝑎2
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Figure 13. Variation of 𝜙 on flux vs. 𝑥 with 𝜏 = 0.5, 𝜇 =
0.5, 𝑎1

′ = 0.2, 𝑎2
′ = 0.3, 𝑡1 = 13, 𝑡2 = 300
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Figure 14.Variation of 𝑡1 on flux vs. 𝑥 with 𝜏 = 0.5, 𝜙 =
0.5, 𝑎1

′ = 0.2, 𝑎2
′ = 0.3, 𝜇 = 0.5, 𝑡2 = 300
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Figure 15. Variation of 𝑡2 on flux vs. 𝑥 with of

𝜏 = 0.5, 𝜙 = 0.5, 𝑎1
′ = 0.2, 𝑎2

′ = 0.3, 𝑡1 = 13, 𝜇 = 0.5

0.0 0.5 1.0 1.5 2.0

0

500

1000

1500

2000

2500

3000

3500

4000

F
lu

x

x

 a
1

1
 = 0.1

 a
1

1
 = 0.2

 a
1

1
 = 0.3

 a
1

1
 = 0.4

Figure 16. Variation of 𝑎1
′  on flux vs. 𝑥 with 𝜏 = 0.5, 𝜙 =

0.5, 𝑎2
′ = 0.3, 𝜇 = 0.5, 𝑡1 = 13, 𝑡2 = 300
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Figure 17. Variation of 𝑎2
′  on flux vs. 𝑥 with 𝜏 = 0.5, 𝜙 =

0.5, 𝜇 = 0.5, 𝑎1
′ = 0.2, 𝑡1 = 13, 𝑡2 = 300
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Figure 18. Effect of 𝑝2 − 𝑝0 on flux vs. 𝑝1 − 𝑝0 with 𝜏 =
0.5, 𝜙 = 0.5, 𝜇 = 0.5, 𝑡1 = 13, 𝑡2 = 300, 𝑥 = 0.1
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Figure 19. Effect of 𝑝1 − 𝑝0 on flux vs. 𝑝2 − 𝑝0 with 𝜏 =
0.5, 𝜙 = 0.5, 𝜇 = 0.5, 𝑡1 = 13, 𝑡2 = 300, 𝑥 = 0.1
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Eq. (25) represents that flux 𝑞  is a function of axial 

coordinate 𝑥. The variation of flux against 𝑥 for the different 

physical parameters is shown in Figures 12-17. In Figure 12, 

the influence of the viscosity ratio 𝜇 on flow rate 𝑞 is depicted. 

It is clear that as the viscosity ratio 𝜇 is reduced, the flow rate 

decreases. The significance of the amplitude ratio 𝜙  on 

volumetric flow rate is shown in Figure 13. The flow rate 

increases as the parameter 𝜙 increases due to an increase in 

velocity of the fluid. The significance of elastic parameters 

𝑡1,  𝑡2 on flow rate along axial coordinate is shown in Figure

14 and Figure 15, respectively. As a result of increasing elastic 

nature of the channel width, the flow rate increases with higher 

values of elastic parameters. 

Figure 16 and Figure 17 represent the effects of inlet and 

outlet elastic widths 𝑎1
′  and 𝑎2

′  on volume flow rate, 

respectively. The flow rate in an elastic channel decreases with 

increasing values of 𝑎1
′  with a fixed value for 𝑎2

′  which is 

shown in Figure 16. In the case of increasing 𝑎2
′  for a given 

value of 𝑎1
′  the opposite behavior occurs, i.e., increasing outlet 

width increases the flux of Newtonian fluid flow in an elastic 

channel, as shown in Figure 17. The significance of inlet and 

outlet pressure on volumetric flow rate is explained by the 

plotting flux vs. 𝑝1 − 𝑝0 for different values 𝑝2 − 𝑝0 and flux

vs. 𝑝2 − 𝑝0 for different values 𝑝1 − 𝑝0, respectively shown in

Figure 18 and Figure 19. The inlet and outlet pressures show 

the opposite behavior in the flux. 

6. CONCLUSIONS

The present paper investigates how elasticity has 

remarkable effect on peristaltic flow of two immiscible 

Newtonian fluids in a two dimensional channel. The analytical 

solution is obtained and the results are interpreted through 

graphs. The remarkable effect of physical parameters on 

interface equation, pressure rise and flow rate are explained 

graphically.  

● The elasticity nature of channel walls has significant

effect on the shape of interface and interface is more

extended in core region comparing to peripheral due to

elasticity of channel walls.

● The pressure rise increases along mean flow rate as the

amplitude ratio and viscosity ratio increases where the

reverse nature is noticed in the case of 𝑎′.

● The elastic channel's inlet and outlet radiuses have

opposing effects on the volumetric flow rate.

● The elastic parameters 𝑡1 and 𝑡2 have significant effect

on volume flow rate. That is when elastic nature of

channel wall increases then the channel extends and

consequently flow rate increases.

Future research can build on the present work by addressing 

the limitations of earlier studies that overlooked channel 

elasticity. Incorporating elasticity enables a more thorough 

analysis of peristaltic flow and opens opportunities to explore 

biological structures and physiological processes where 

channel elasticity is crucial. 

REFERENCES 

[1] Latham T.W. (1966). Fluid motion in peristaltic pump.

Doctoral dissertation, Massachusetts Institute of

Technology, USA.

[2] Shapiro, A.H., Jaffrin, M.Y., Weinberg, S.L. (1969).

Peristaltic pumping with long wavelengths at low 

Reynolds number. Journal of Fluid Mechanics, 37(4): 

799-825. https://doi.org/10.1017/S0022112069000899

[3] Yin, F.C.P., Fung, Y.C. (1971). Comparison of theory

and experiment in peristaltic transport. Journal of Fluid

Mechanics, 47(1): 93-112.

https://doi.org/10.1017/S0022112071000958

[4] Rubinow, S.I., Keller, J.B. (1972). Flow of a viscous

fluid through an elastic tube with applications to blood

flow. Journal of Theoretical Biology, 35(2): 299-313.

https://doi.org/10.1016/0022-5193(72)90041-0

[5] Shukla, J.B., Parihar, R.S., Rao, B.R.P., Gupta, S.P.

(1980). Effects of peripheral-layer viscosity on peristaltic

transport of a bio-fluid. Journal of Fluid Mechanics,

97(2): 225-237.

https://doi.org/10.1017/S0022112080002534

[6] Srivastava, L.M., Srivastava, V.P. (1982). Peristaltic

transport of a two-layered model of physiological fluid.

Journal of Biomechanics, 15(4): 257-265.

https://doi.org/10.1016/0021-9290(82)90172-5

[7] Brasseur, J.G., Corrsin, S., Lu, N.Q. (1987). The

influence of a peripheral layer of different viscosity on

peristaltic pumping with Newtonian fluids. Journal of

Fluid Mechanics, 174: 495-519.

https://doi.org/10.1017/S0022112087000211

[8] Misra, J.C., Pandey, S.K. (1999). Peristaltic transport of

a non-Newtonian fluid with a peripheral layer.

International Journal of Engineering Science, 37(14):

1841-1858. https://doi.org/10.1016/S0020-

7225(99)00005-1

[9] Sharma, G.C., Jain, M., Kumar, A. (2004). Performance

modeling and analysis of blood flow in elastic arteries.

Mathematical and Computer Modelling, 39(13): 1491-

1499. https://doi.org/10.1016/j.mcm.2004.07.006

[10] Radhakrishnamacharya, G., Srinivasulu, C. (2007).

Influence of wall properties on peristaltic transport with

heat transfer. Comptes Rendus Mecanique, 335(7): 369-

373. https://doi.org/10.1016/j.crme.2007.05.002

[11] Vajravelu, K., Sreenadh, S., Saravana, R. (2017).

Influence of velocity slip and temperature jump

conditions on the peristaltic flow of a Jeffrey fluid in

contact with a Newtonian fluid. Applied Mathematics &

Nonlinear Sciences, 2(2): 429-442.

https://doi.org/10.21042/AMNS.2017.2.00034

[12] Nahar, S., Jeelani, S.A.K., Windhab, E.J. (2013).

Prediction of velocity profiles of shear thinning fluids

flowing in elastic tubes. Chemical Engineering

Communications, 200(6): 820-835.

https://doi.org/10.1080/00986445.2012.722150

[13] Sochi, T. (2014). The flow of Newtonian and power law

fluids in elastic tubes. International Journal of Non-

Linear Mechanics, 67: 245-250.

https://doi.org/10.1016/j.ijnonlinmec.2014.09.013

[14] Vajravelu, K., Sreenadh, S., Devaki, P., Prasad, K.V.

(2011). Mathematical model for a Herschel-Bulkley fluid

flow in an elastic tube. Central European Journal of

Physics, 9(5): 1357-1365.

https://doi.org/10.2478/s11534-011-0034-3

[15] Sochi T. (2015). Navier-Stokes flow in cylindrical elastic

tubes. Journal of Applied Fluid Mechanics, 8(2): 181-

188. https://doi.org/10.18869/acadpub.jafm.67.221.2280

[16] Shen, H., Zhu, Y., Qin, K.R. (2016). A theoretical

computerized study for the electrical conductivity of

arterial pulsatile blood flow by an elastic tube model.

4461



Medical Engineering & Physics, 38(12): 1439-1448. 

https://doi.org/10.1016/j.medengphy.2016.09.013 

[17] Vajravelu, K., Sreenadh, S., Devaki, P., Prasad, K.V.

(2016). Peristaltic pumping of a Casson fluid in an elastic

tube. Journal of Applied Fluid Mechanics, 9(4): 1897-

1905.

https://doi.org/10.18869/acadpub.jafm.68.235.24695

[18] Tripathi, B., Sharma, B.K. (2020). Influence of heat and

mass transfer on two-phase blood flow with Joule heating

and variable viscosity in the presence of variable

magnetic field. International Journal of Computational

Methods, 17(3): 1850139.

https://doi.org/10.1142/S0219876218501396

NOMENCLATURE 

𝐿 length of elastic wall 

𝑎0 half-width of the channel 
𝑏 amplitude 
𝜆 wavelength 
𝑐 wave speed 

𝑡 time 

𝜙 amplitude ratio 

𝑡1, 𝑡2 elastic parameters 
𝜓 stream function 
𝑝1 inlet pressure 
𝑝2 outlet pressure 
𝑝0 external pressure 
𝑞 total flux 
𝑞1 flux in core region 
𝑞2 flux in peripheral region 
ℎ1(𝑥) interface 
𝑎(𝑥) the wall movement due to peristalsis 
𝑎′(𝑥) the wall movement due to elasticity 
𝜇 viscosity ratio 

𝑇(𝑎) tension of the channel 
𝜎 conductivity of the channel 
𝑢, 𝑣 velocity components in wave frame 
𝑈, 𝑉 velocity components in fixed frame 
𝛼 the initial value of the interface 
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