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Legacy password-based systems remain highly vulnerable to brute-force, replay, and 

credential leak attacks. Existing multi-factor authentication (MFA) methods often lack 

adaptability to dynamic user behavior and evolving contextual security needs. This 

study presents an optimized, context-aware authentication framework that integrates 

Dynamic Context-Aware Hashing (DCAH), Weighted Contextual Fusion for 

Authentication (WCFA), deep learning, and federated learning to enhance both security 

and adaptability. DCAH fortifies password protection through context-dependent 

cryptographic hashing, significantly reducing replay and brute-force attack success 

rates. WCFA dynamically fuses authentication signals to adjust security levels based 

on contextual risk and behavioral deviations. Lightweight biometric verification and 

behavior-driven anomaly detection are further employed to strengthen user validation. 

A federated learning layer ensures privacy-preserving model updates without exposing 

raw user data. The proposed system achieves 99.5% authentication accuracy, a 98% 

true positive rate in anomaly detection, and a 40% improvement in resistance to brute-

force attacks while maintaining low computational overhead. These results demonstrate 

the framework’s robustness, adaptability, and privacy preservation in modern 

authentication environments. 
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1. INTRODUCTION

Robust authentication mechanisms are essential for 

ensuring the security and privacy of users and enterprises in an 

era of rapid digital transformation. Traditional password-

based systems, reliant on static credentials, have proven 

inadequate due to their vulnerability to brute-force, replay, and 

credential leakage attacks. While two-factor authentication 

(2FA) and biometric verification have emerged as stronger 

alternatives, they are not immune to attacks such as spoofing 

or sensor manipulation. Furthermore, environmental noise, 

device inconsistencies, and usability constraints often degrade 

the reliability of biometric systems. 

Existing multi-factor authentication (MFA) schemes 

struggle to balance security, adaptability, and usability, 

particularly against evolving attack strategies. Conventional 

anomaly detection mechanisms, built on fixed rules and 

thresholds, lack the contextual and behavioral adaptability 

required to respond to dynamic threats. This gap underscores 

the need for an authentication framework that not only 

integrates multiple modalities but also adapts intelligently to 

user behavior and environmental context. 

To address these challenges, this work proposes an 

optimized multimodal authentication framework that 

incorporates contextual awareness, behavioral learning, and 

privacy preservation. The framework integrates six 

complementary modules: Dynamic Context-Aware Hashing 

(DCAH) for enhanced password security, Feature Extraction 

with MobileNetV3 for Biometric Analysis (FEMBA) for 

lightweight biometric authentication, Behavioral Anomaly 

Detection using Attention-LSTM (BADAL) for behavioral 

threat detection, Supervised Learning with Ensemble Models 

(SLEM) for login anomaly detection, Weighted Contextual 

Fusion for Authentication (WCFA) for intelligent decision 

fusion, and Federated Authentication Learning with 

Homomorphic Encryption (FALHE) for privacy-preserving 

model updates. 

The proposed system introduces a novel integration of 

contextual hashing, federated learning, and multi-level 

anomaly detection to achieve high authentication accuracy, 

low latency, and enhanced privacy protection. By unifying 

these technologies, the framework addresses the long-standing 

tradeoff between security and usability, providing a scalable 

and adaptive solution for next-generation authentication 

systems. 

2. RELATED WORK

The rise of sophisticated cyber threats has led to the 
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evolution of authentication mechanisms, shifting from 

password-based methods to MFA, biometric systems, and 

cryptographic models for enhanced security. This review 

covers methodologies, frameworks, and optimizations in 

authentication, from lightweight cryptographic protocols to 

blockchain models. It will analyze these advancements in 

chronological order, focusing on their security, practical 

applicability, and limitations. Early research concentrated on 

cryptographic authentication, with Shukla and Patel [1] 

proposing ECC-based MFA for cloud environments. 

Rangwani and Om [2] introduced chaotic map-based 

authentication for underwater monitoring systems. 

Authentication in the Internet of Drones (IoD) was explored 

by de Jesus Sousa and Gondim [3], highlighting real-time 

security for airborne systems. Kumar Chaudhary and 

Chatterjee [4] focused on PUF-based authentication for smart 

healthcare. Kavita et al. [5] enhanced biometric authentication 

by optimizing multi-biometric systems against spoofing 

attacks [6]. 

The integration of Ethereum blockchain-based 

authentication into smart home environments within 5G 

networks was proposed by Atiewi et al. [7]. Such a protocol 

guarantees decentralized security while preserving user 

privacy. Barman et al. [8] presented blockchain-based 

authentication for off-chain access to medical data, giving 

focus to secure and privacy-preserving medical data 

authentication. A notable breakthrough in authentication 

security is multi-server authentication optimization, as 

suggested in Salem et al.’s AMAKAS framework [9], which 

proposed an anonymous mutual authentication and key 

agreement scheme. Chandrika et al. [10] also suggested an AI-

enabled cloud authentication system for financial security, 

where various machine learning models were used to detect 

anomalies. Kandar and Ghosh [11] optimized remote 

authentication schemes using a chaotic-based smart card 

authentication mechanism that was made robust against 

several cyber threats, such as man-in-the-middle attacks. The 

integration of blockchain with the authentication mechanisms 

further transformed authentication security. The work of Chen 

et al. [12] implemented BTDA, a two-factor identity 

authentication model for blockchain-based data trading 

focused on improving secure transactions and digital identity 

management.  

Saini et al. [13] focused on three-factor authentication for 

wireless healthcare networks to enhance security. Alkhalifah 

[14] emphasized password-based authentication for web cloud

services to strengthen security models. Umasankari et al. [15]

improved biometric authentication using deep learning with

Jaya optimizer-based CNNs and multi-kernel SVMs. Singh

and Das [16] advanced blockchain-based two-factor PUF

authentication for IoMT devices. Dias Mirandela et al. [17]

introduced piRNA pathways for two-factor biological

authentication. As research expanded, password-less

authentication systems gained attention, with Kumar and

Priyanka [18] offering PUF-based solutions. Peng et al. [19]

developed the eye-tracking GazeNum authentication system.

Tiwari et al. [20] optimized authentication protocols [21, 22]

for reduced computational waste in secure handshakes [23,

24].

3. PROPOSED METHODOLOGY

This section deals with the design of an optimization 

framework of MFA using context-aware hashing, deep 

learning, and federated learning for enhanced security sets to 

overcome the low efficiency and high complexity issues of 

existing methods. In the first phase of evolution, as shown in 

Figure 1, DCAH offers dynamic cryptographic hashing, which 

incorporates contextual metadata coupled with the user’s 

credentials into the hashing computation. Thus, for the 

improvement of security, the hashing that DCAH uses is 

dynamic and modifiable according to the definition mentioned 

via Eq. (1). 

𝐻′(𝑥, 𝐶) =  𝐻(𝑥) ⊕ 𝐻(𝐶) (1) 

where, ‘x’ will be such that it represents the user’s credentials, 

while C is contextual parameters, which include geolocation 

‘g’, device ID ‘d’, and timestamp ‘t’ sets. The contextual 

entropy introduced by C ensures that even if an attacker 

obtains ‘x’, the computed hash remains unique for each 

authentication instance sets. The entropy of the hash function 

is given via Eq. (2). 

𝐸𝐻 =  − ∑𝑃𝑖 ∗ 𝑙𝑜𝑔 𝑃𝑖 (2) 

where, Pi represents the probability distribution of contextual 

inputs, ensuring minimal hash collision probability sets. The 

cryptographic strength of this method is further enhanced by 

incorporating a time-dependent transformation function T(t), 

ensuring that the hash output changes dynamically with 

timestamps via Eq. (3). 

𝐻′′(𝑥, 𝐶, 𝑡) =  𝐻′(𝑥, 𝐶) ⊕  𝐻(𝑇(𝑡)) (3) 

For T(t) follows a non-linear function derived from a 

pseudo-random sequence to prevent predictability in repeated 

login attempts. A contextual weighting function W(C) is 

introduced to adjust the hashing intensity depending on the 

detected security sensitivity of the environment. 

The absence of a contextual weight function W(C), 

adjusting hash complexity according to real-time security 

needs, is expressed via Eq. (4). 

𝐻𝑓𝑖𝑛𝑎𝑙 =  𝐻′′(𝑥, 𝐶, 𝑡) ×  𝑊(𝐶) (4) 

Thus, ensuring that higher security requirements 

dynamically increase hash complexity while maintaining 

computational efficiency sets. Iteratively, Next, as per Figure 

2, Biometric authentication using deep learning (FEMBA) 

employs MobileNetV3 for feature extraction from biometric 

inputs such as fingerprints or facial recognition data samples. 

The biometric feature vector F is obtained using a 

convolutional transformation function via Eq. (5). 

𝐹 =  𝑓(𝑊, 𝑋) =  𝜎(𝑊 ⋅  𝑋 +  𝑏) (5) 

where, W is the trainable weight matrices, X denotes the 

biometric input tensor, and b is the bias term for the process. 

The extracted feature vector is mapped to an embedding space 

through a non-linear projection that is realized via Eq. (6). 

These features are projected into a compact embedding 

space as 

𝐹′ =  𝑡𝑎𝑛ℎ(𝑉 ⋅  𝐹 +  𝑏′) (6) 

where, V in Eq. (6) ensures reduction in dimension while to 
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transform into an embedding space. Matching with the stored 

templates is done using cosine similarity, which is expressed 

via Eq. (7). 

𝑆(𝐹1, 𝐹2) =
𝐹1 ⋅  𝐹2

||𝐹1||||𝐹2||
(7) 

where, F1 and F2 are the extracted and stored biometric 

feature vectors, respectively, in this process. Authentication 

will be granted if S(F1, F2) ≥ τ, where τ is an adaptive 

threshold based on real-time environmental conditions. The 

next one, on a continuous basis, depending on Figure 2 

Sequential Pattern Analysis for Behavioral Anomaly 

Detection (BADAL), employs for detecting anomalies in user 

behavior, an attention-based Long Short-Term Memory 

(LSTM) network process. To detect suspicious behavioral 

patterns, the BADAL module models temporal dependencies 

using an attention-based LSTM network. 

The probability distribution of user sequences is modeled 

via Eq. (8). 

𝑃(𝑌|𝑋)  =  ∏ 𝑃(𝑦𝑡 | 𝑦(𝑡 − 1), 𝑋) (8) 

where, yt is the behavioral state at timestamp t, and X is the 

input feature sequence for this process. It enhances the 

anomaly detection of relevance scores αt assigned behavioral 

patterns via Eq. (9). 

𝛼𝑡 =
𝑒𝑥𝑝(𝑊𝑎 ℎ𝑡)

∑𝑒𝑥𝑝(𝑊𝑎 ℎ𝑡′)
(9) 

where, Wa is the trainable weight matrix and ht denotes the 

LSTM hidden state at timestamp ‘t’ sets. The final anomaly 

score ‘A’ is thus obtained via Eq. (10), computed as an integral 

over the weighted sequence probability distributions. 

𝐴 =  ∫ 𝛼𝑡 𝑃(𝑦𝑡 | 𝑋) 𝑑𝑡 (10) 

Figure 1. Model architecture of the proposed analysis process 

Figure 2. Overall flow of the proposed analysis process 
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Anomaly Detection in Login Metadata (SLEM): Anomaly 

Detection in Login Metadata harnesses the power of an 

ensemble learning approach, combining SVM and Random 

Forest classifiers simultaneously SVM has a specific manner 

for classifying the input feature sets such that if X = {x1, x2, ..., 

xn} is an input feature set, a hyperplane defined via Eq. (11) 

will be constructed for that feature to categorize binary classes. 

SLEM combines Support Vector Machines (SVM) and 

Random Forests to identify anomalies in login metadata. SVM 

constructs a hyperplane for classification. 

𝑤 ⋅  𝑥 +  𝑏 =  0 (11) 

where, w is the normal vector and ‘b’ is the bias term for this 

process. The classification margin M is maximized via Eq. 

(12). 

𝑀 =
1

||𝑤||
(12) 

Ensuring optimal separation of normal and anomalous login 

patterns. Random Forests complement SVM by aggregating 

decision trees Ti(X) to generate a final prediction via Eq. (13). 

𝑃𝑅𝐹(𝑋) =  (
1

𝑁
) ∑𝑇𝑖(𝑋) (13) 

where, N is the number of trees in the ensemble process. The 

combined anomaly score is determined via Eq. (14). 

𝐴𝑆𝐿𝐸𝑀 =  𝜆𝑃𝑆𝑉𝑀 +  (1 −  𝜆)𝑃𝑅𝐹 (14) 

where, λ is an adaptive weighting factor ensuring robustness, 

Multi-Factor Authentication and Fusion (WCFA) dynamically 

integrates the output of DCAH, FEMBA, BADAL, and SLEM 

to produce the final authentication decision. Given individual 

authentication probabilities via Eq. (15). 

Finally, WCFA aggregates outputs from all modules to 

produce the final authentication decision. 

𝑃𝑊𝐶𝐹𝐴 =  𝑤1 𝑃𝐷𝐶𝐴𝐻 +  𝑤2 𝑃𝐹𝐸𝑀𝐵𝐴 +
 𝑤3 𝑃𝐵𝐴𝐷𝐴𝐿 +  𝑤4 𝑃𝑆𝐿𝐸𝑀… 

(15) 

where, wi are contextual weights satisfying ∑wi = 1, ensuring 

adaptive decision-making based on security sensitivity sets. 

The final authentication decision is granted if the identity 

represented via Eq. (16) is satisfied as follows: 

𝑃𝑊𝐶𝐹𝐴 ≥  𝜃 (16) 

where, θ is in processing dynamical security thresholds. The 

proposed framework guarantees optimal authentication 

accuracy, resilience against cyber threats, and real-time 

adaptiveness by integrating cryptographic hashing, deep 

learning, anomaly detection, and ensemble-based security 

models in a unified authentication paradigm setting. Next, the 

efficiency of the proposed model with respect to different 

metrics is discussed and compared with the existing ones 

under different scenarios. 

4. RESULTS AND ANALYSIS

The proposed authentication framework was tested using a 

high-performance computing cluster with Intel Xeon E5-2698 

v4 processors, 128 GB RAM, and NVIDIA Tesla V100 GPUs. 

The backend server ran Python 3.8 with TensorFlow 2.6, 

Scikit-Learn, and OpenCV for biometric processing and 

anomaly detection. Real-world authentication logs included 

timestamps, device fingerprints, geolocation data, IP 

addresses, and typing speed variations. Key parameters 

analyzed were geolocation shifts (up to 500 km), device 

change frequency (0.5/day), and login timestamp deviations 

(over 4 hours). Biometric authentication used fingerprints and 

facial recognition with 512-dimensional feature vectors per 

user. Attack simulations included credential stuffing (1,000 

requests/hour), replay attacks (IP changes), and biometric 

spoofing (3D facial masks). Figure 3 represents a heatmap of 

authentication accuracy. 

Figure 3. Model’s integrated result analysis 

The dataset included both public and private authentication 

data to ensure diversity. Cipher and Dieh used CASIA-

FingerprintV5, VGGFace2, and MIT Lincoln Laboratory’s 

Cybersecurity Dataset for fingerprint, facial recognition, and 

login metadata analysis. Contextual data came from real-world 

logs across VPNs, mobile data, and Wi-Fi. About 3 million 

authentication requests were recorded, with 70% for training 

and 30% for testing. DCAH used 256-bit cryptographic hash 

transformation, FEMBA leveraged MobileNetV3 (batch size 

= 64, Adam optimizer, learning rate = 0.0005), and BADAL 

relied on Attention-LSTM (128 hidden units) for behavioral 

anomaly detection. SLEM combined Random Forest (100 

trees) and SVM (RBF kernel) to classify login anomalies. 

WCFA assigned dynamic weights based on security risks, 

while FALHE encrypted updates for federated learning. The 

framework achieved 99.5% authentication accuracy, as shown 

in Table 1, a 40% improvement in brute-force attack defense, 

and 98% resilience to replay attacks, with an equal error rate 

of 0.03. The model outperformed Method [3], Method [8], and 

Method [25] in accuracy, attack resistance, and efficiency, 

excelling in biometric (99.2%) and MFA (99.5%). 

The proposed model outperforms existing authentication 

methods, with the highest gains in DCAH and BADAL, 

reducing false positives and replay attacks. Brute-force 

resistance testing showed that WCFA detected unauthorized 

access after just two failed attempts, compared to 14, 9, and 17 

for other methods. DCAH limited brute-force success to 12 

failed attempts, as shown in Table 2, by dynamically varying 

hash tokens. FEMBA detected impersonation attempts within 

five failures, significantly lower than competing models. The 
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model’s superior resistance stems from WCFA’s fusion of 

multiple authentication factors, preventing repeated login 

attempts. 

Table 1. Authentication accuracy comparison (%) 

Proposed 

Model 

Method 

[3] 

Method 

[8] 

Method 

[25] 

Password-Based 

(DCAH) 
97.8 91.2 93.5 89.7 

Biometric 

(FEMBA) 
99.2 94.8 96.1 92.3 

Behavioral 

(BADAL) 
98.4 92.7 94.9 90.1 

Contextual 

(SLEM) 
96.9 89.5 91.8 88.2 

Multi-Factor 

(WCFA) 
99.5 95.1 96.8 94 

Table 2. Number of failed attempts before detection 

Proposed 

Model 

Method 

[3] 

Method 

[8] 

Method 

[25] 

Password-Based 

(DCAH) 
12 230 158 295 

Biometric 

(FEMBA) 
5 18 12 21 

Behavioral 

(BADAL) 
7 32 19 41 

Contextual 

(SLEM) 
10 45 26 59 

Multi-Factor 

(WCFA) 
2 14 9 17 

Table 3. Replay attack mitigation (%) 

Proposed 

Model 

Method 

[3] 

Method 

[8] 

Method 

[25] 

Password-Based 

(DCAH) 
98.1 85.7 91.2 80.3 

Biometric 

(FEMBA) 
97.4 89.5 93.8 84.6 

Behavioral 

(BADAL) 
96.9 87.2 90.4 81.1 

Contextual 

(SLEM) 
97.8 88.1 92 83.2 

Multi-Factor 

(WCFA) 
98.9 90.3 94.7 86.5 

The proposed model detects brute-force attacks faster, 

denying access after just two failed attempts via WCFA. 

Replay attack tests showed superior prevention, with DCAH 

achieving 98.1% mitigation from Table 3 by incorporating 

geolocation, device ID, and timestamps into hash 

computations. WCFA further improved mitigation to 98.9% 

by dynamically adjusting authentication weights based on risk 

levels. FEMBA’s deep learning-based feature extraction 

blocked 97.4% of replay attacks by detecting spoofed 

biometric inputs. Unlike static authentication tokens, the 

proposed model enhances security by preventing credential 

reuse. 

DCAH and multi-factor fusion improve security by 

rendering weak tokens unusable after hijacking. False Positive 

Rate (FPR) and False Negative Rate (FNR) measure 

authentication accuracy, where lower values indicate better 

performance. Table 4 compares FPR and FNR across different 

methods. WCFA achieves the lowest FPR (0.1%) and FNR 

(0.2%), enhancing precision while minimizing false 

rejections. FEMBA also performs well with an FPR of 0.1% 

and FNR of 0.2%, outperforming Method [3], Method [8], and 

Method [25]. BADAL and SLEM further reduce false 

classifications through adaptive learning. The proposed model 

cuts FPR and FNR by 50–80% compared to baseline models. 

Table 4. FPR/FNR (%) 

Proposed 

Model 

Method 

[3] 

Method 

[8] 

Method 

[25] 

Password-Based 

(DCAH) 
0.2/0.4 1.5/3.2 1.1/2.6 2.0/3.8 

Biometric 

(FEMBA) 
0.1/0.2 0.9/1.4 0.5/1.1 1.2/1.9 

Behavioral 

(BADAL) 
0.3/0.6 1.8/2.9 1.2/2.3 2.5/3.5 

Contextual 

(SLEM) 
0.4/0.7 2.1/3.8 1.5/2.9 2.9/4.2 

Multi-Factor 

(WCFA) 
0.1/0.2 0.7/1.5 0.5/1.0 1.0/2.1 

Figure 4. Model’s latency analysis 

Figure 5. Model’s false positive analysis 

The proposed architecture reduces false-positive and false-

negative rates using deep learning and context-aware 

techniques. Authentication response time is critical for real-

time applications. Table 5 compares authentication latency, 

where lower values indicate faster performance. DCAH 

achieves a hashing latency of 10 ms, outperforming Method 

[3] (24 ms), Method [8] (18 ms), and Method [25] (30 ms).

FEMBA’s biometric authentication latency is 20 ms,

optimized for real-time processing with MobileNetV3.

BADAL (25 ms) and SLEM (15 ms) take longer due to

behavioral analysis, while WCFA has the highest latency (30
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ms) due to multi-factor integration. Figures 4 and 5 represent 

the model’s latency analysis and false positive rate of existing 

and proposed models. 

Table 5. Authentication latency (ms) 

Proposed 

Model 

Method 

[3] 

Method 

[8] 

Method 

[25] 

Password-Based 

(DCAH) 
10 24 18 30 

Biometric 

(FEMBA) 
20 55 35 67 

Behavioral 

(BADAL) 
25 68 45 75 

Contextual 

(SLEM) 
15 42 30 50 

Multi-Factor 

(WCFA) 
30 75 50 82 

Table 6. Federated learning communication overhead 

reduction (%) 

Proposed 

Model 

Method 

[3] 

Method 

[8] 

Method 

[25] 

Privacy-

Preserving 

Update 

(FALHE) 

25.3 10.8 15.6 8.7 

Table 5 represents the authentication latency. The proposed 

model achieves low authentication latency, especially in 

DCAH and FEMBA, ensuring security without sacrificing 

user experience. Federated learning updates were optimized to 

reduce communication overhead while preserving privacy. 

Table 6 shows a 25.3% reduction in overhead, outperforming 

Method [3] (10.8%), Method [8] (15.6%), and Method [25] 

(8.7%). This efficiency is achieved through model 

compression and homomorphic encryption, minimizing 

exchanged data while securing sensitive information. The 

approach ensures scalable, privacy-preserving authentication 

without excessive communication costs. 

The experimental analysis confirms that the proposed 

authentication framework surpasses traditional methods in 

accuracy, attack resistance, efficiency, and privacy. It 

integrates DCAH, FEMBA, BADAL, SLEM, WCFA, and 

FALHE to create a secure and adaptive system against modern 

cybersecurity threats. FALHE minimizes network overhead 

while preserving privacy in federated learning updates. The 

model excels in authentication accuracy, anomaly detection, 

low latency, and secure model updates. By combining context-

aware hashing, deep learning biometrics, and anomaly 

detection, it ensures robust authentication. An upcoming 

Iterative Validation Use Case will further illustrate its 

effectiveness. 

DCAH hash validations, represented in Table 7, raise the 

flag for much time difference in geolocation changes, using 

different devices, and replay attacks. In the event of mismatch, 

the hash validity would sink below a set point, thereby denying 

unauthorized access. Biometric inputs through fingerprint 

recognition and facial recognition are matched against stored 

templates using MobileNetV3 process. The authenticity 

confidence score is determined from the cosine similarity 

rating. Biometric matching performance is shown in Table 8. 

Table 7. DCAH hash validation based on contextual parameters 

Geolocation 

(km) 

Device ID 

Match 

Timestamp Deviation 

(hrs) 

Generated Hash 

Match 

Hash Validity 

(%) 

User A (Normal Login) 0 Yes 0.5 Yes 99.9 

User A (Suspicious 

Location) 
500 Yes 0.5 No 45.2 

User A (Different Device) 0 No 0.5 No 31.7 

User A (Time-Based 

Replay) 
0 Yes 6 No 28.5 

Unauthorized Access 

Attempt 
700 No 8 No 9.8 

Table 8. Biometric authentication matching scores 

Input Type Feature Vector Similarity Authentication Confidence (%) Decision 

User A (Valid Fingerprint) Fingerprint 0.92 99.1 Accepted 

User A (Partial Fingerprint) Fingerprint 0.75 85.4 Accepted 

User A (Valid Face Scan) Face 0.94 99.5 Accepted 

User A (Altered Face Angle) Face 0.68 72.3 Accepted (Low Risk) 

Spoofed Face (Photo Attack) Face 0.32 23.4 Rejected 

Table 9. Behavioral anomaly detection analysis 

Login Timestamp 

(hrs) 

Avg. Typing Speed 

(wpm) 

Login 

Frequency 

Anomaly 

Score 
Classification 

User A (Office Hours) 10:00 AM 45 2 0.03 Normal 

User A (Unusual Timing) 2:00 AM 46 1 0.65 
Moderate 

Anomaly 

User A (Rapid Login 

Attempts) 
10:05 AM 50 5 0.81 Suspicious 

Unauthorized User 3:00 AM 30 10 0.98 
High-Risk 

Anomaly 

The model of deep learning-based biometric mainly distinguishes between legitimate and spoofed biometrics input 
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so that robust authentication can be performed with a lesser 

ratio of false rejection during the process. BADAL analyzes 

consecutive authentications on a time-base, frequency and 

typing speed using Attention-LSTM model in such a process 

to give anomaly scoring in deviating from normal behavior. 

Table 9 presents the outputs of behavioral analysis. 

BADAL detects suspicious login behavior, including login 

attempts that are excessive and access outside office hours, 

ensuring that behavioral anomaly detection remains effective 

in the process. An ensemble learning method (Random Forest 

& SVM) is utilized by SLEM for anomaly detection in login 

metadata, including IP changes, devices used to access, and 

access patterns. Anomaly detection scores are presented in 

Table 10. 

Table 10. Anomaly detection in login metadata (SLEM) analysis 

IP Change 

(Yes/No) 

Device ID Change 

(Yes/No) 

Login Location 

Consistency 

Anomaly Score 

(%) 
Classification 

User A (Trusted 

Network) 
No No High 1.2 Normal 

User A (New IP) Yes No Medium 55.3 Suspicious 

User A (New Device) No Yes High 62.7 
Moderate 

Risk 

Table 11. Accuracy, t-value, p-value, and std dev comparison 

Model Accuracy (%) Std. Dev. 95% CI t-Value p-Value Remarks 

Proposed Framework 99.5 ±0.21 [99.1–99.8] – – Reference 

Baseline A (CNN+SVM) 97.3 ±0.35 [96.7–97.9] 8.43 < 0.001 Statistically significant 

Baseline B (ResNet+RF) 96.8 ±0.40 [96.0–97.6] 9.17 < 0.001 Statistically significant 

Baseline C (Traditional MFA) 94.5 ±0.52 [93.5–95.5] 11.82 < 0.001 Highly significant 

In adaptive authentication, instinctively allowing legitimate 

users unhindered access while deterring unauthorized login 

attempts on-the-fly based on real-time security risks is what 

this comprehensive model supports. Through such a complete 

validation process, robust performance and precision are 

evidenced while demonstrating applicability of such a model 

in real-world scenarios related to strong protection 

mechanisms in the authentication process. 

The statistical validation results presented in Table 11 

demonstrate the superior performance of the proposed 

authentication framework compared to baseline models. The 

proposed framework achieved an accuracy of 99.5% with a 

low standard deviation (±0.21), indicating high consistency 

and reliability [26]. Its 95% confidence interval ([99.1–99.8]) 

shows tight performance stability across repeated trials. In 

contrast, Baseline A (CNN+SVM) and Baseline B 

(ResNet+RF) achieved accuracies of 97.3% and 96.8%, 

respectively, with higher variability, reflected by their 

standard deviations and wider confidence intervals. The t-

values for both models (8.43 and 9.17) and p-values (< 0.001) 

confirm statistically significant differences when compared to 

the proposed model. The Traditional MFA system performed 

the weakest, achieving 94.5% accuracy with the largest 

variance (±0.52), and the highest t-value (11.82), further 

reinforcing the substantial improvement achieved by the 

proposed framework. Overall, the statistical tests validate that 

the proposed model’s performance enhancements are not due 

to random variation but are highly significant and consistently 

reproducible. 

5. CONCLUSION AND FUTURE SCOPE

The proposed authentication framework integrates DCAH, 

FEMBA, BADAL, SLEM, WCFA, and FALHE for a highly 

secure and adaptive system. It achieves 99.5% authentication 

accuracy, surpassing traditional models. DCAH limits brute-

force attacks to 12 failed logins, significantly reducing 

vulnerability. FEMBA detects spoofing in just five failed 

scans, outperforming baseline models. BADAL and SLEM 

reduce false positive rates to 0.1%–0.4%, enhancing anomaly 

detection. WCFA achieves 98.9% replay attack prevention, 

making stolen credentials ineffective. DCAH and FEMBA 

provide low authentication latencies of 10ms and 20ms, 

ensuring real-time security. FALHE reduces communication 

overhead by 25.3%, enhancing privacy preservation. The 

model improves brute-force resistance by 40% and replay 

attack mitigation by 98%. Future advancements will focus on 

adversarial attack detection and optimizing FALHE for IoT 

and edge computing. 

The proposed framework, while demonstrating high 

accuracy and robustness, may face practical challenges in 

large-scale deployment due to computational overhead, cross-

platform compatibility, and real-time synchronization issues. 

Additionally, integrating the model into heterogeneous IoT or 

cloud environments may require hardware optimization and 

secure communication protocols. Future work should address 

these scalability and implementation barriers to ensure 

sustainable performance in real-world applications. 
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