Z‘ I El' A International Information and

Engineering Technology Association

Mathematical Modelling of Engineering Problems
Vol. 12, No. 12, December, 2025, pp. 4435-4442

Journal homepage: http://iieta.org/journals/mmep

Optimized Multi-Factor Authentication Through Context-Aware Deep and Federated ]

Learning Approaches

Nomula Ashok">*®, T. Judgi'

Check for
updates

! Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology (Deemed to be

University), Chennai 600119, India

2 Department of CSE (AIML), Sreenidhi University, Hyderabad 501301, India

Corresponding Author Email: nomulaashoksrtist@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.121232

ABSTRACT

Received: 11 September 2025
Revised: 28 November 2025
Accepted: 9 December 2025
Available online: 31 December 2025

Keywords:

homomorphic encryption, privacy preservation,
context-aware  hashing, edge computing
security, MFA

Legacy password-based systems remain highly vulnerable to brute-force, replay, and
credential leak attacks. Existing multi-factor authentication (MFA) methods often lack
adaptability to dynamic user behavior and evolving contextual security needs. This
study presents an optimized, context-aware authentication framework that integrates
Dynamic Context-Aware Hashing (DCAH), Weighted Contextual Fusion for
Authentication (WCFA), deep learning, and federated learning to enhance both security
and adaptability. DCAH fortifies password protection through context-dependent
cryptographic hashing, significantly reducing replay and brute-force attack success
rates. WCFA dynamically fuses authentication signals to adjust security levels based
on contextual risk and behavioral deviations. Lightweight biometric verification and
behavior-driven anomaly detection are further employed to strengthen user validation.
A federated learning layer ensures privacy-preserving model updates without exposing
raw user data. The proposed system achieves 99.5% authentication accuracy, a 98%
true positive rate in anomaly detection, and a 40% improvement in resistance to brute-
force attacks while maintaining low computational overhead. These results demonstrate
the framework’s robustness, adaptability, and privacy preservation in modern
authentication environments.

1. INTRODUCTION

privacy preservation. The framework integrates six

Robust authentication mechanisms are essential for
ensuring the security and privacy of users and enterprises in an
era of rapid digital transformation. Traditional password-
based systems, reliant on static credentials, have proven
inadequate due to their vulnerability to brute-force, replay, and
credential leakage attacks. While two-factor authentication
(2FA) and biometric verification have emerged as stronger
alternatives, they are not immune to attacks such as spoofing
or sensor manipulation. Furthermore, environmental noise,
device inconsistencies, and usability constraints often degrade
the reliability of biometric systems.

Existing multi-factor authentication (MFA) schemes
struggle to balance security, adaptability, and usability,
particularly against evolving attack strategies. Conventional
anomaly detection mechanisms, built on fixed rules and
thresholds, lack the contextual and behavioral adaptability
required to respond to dynamic threats. This gap underscores
the need for an authentication framework that not only
integrates multiple modalities but also adapts intelligently to
user behavior and environmental context.

To address these challenges, this work proposes an
optimized multimodal authentication framework that
incorporates contextual awareness, behavioral learning, and
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complementary modules: Dynamic Context-Aware Hashing
(DCAH) for enhanced password security, Feature Extraction
with MobileNetV3 for Biometric Analysis (FEMBA) for
lightweight biometric authentication, Behavioral Anomaly
Detection using Attention-LSTM (BADAL) for behavioral
threat detection, Supervised Learning with Ensemble Models
(SLEM) for login anomaly detection, Weighted Contextual
Fusion for Authentication (WCFA) for intelligent decision
fusion, and Federated Authentication Learning with
Homomorphic Encryption (FALHE) for privacy-preserving
model updates.

The proposed system introduces a novel integration of
contextual hashing, federated learning, and multi-level
anomaly detection to achieve high authentication accuracy,
low latency, and enhanced privacy protection. By unifying
these technologies, the framework addresses the long-standing
tradeoff between security and usability, providing a scalable
and adaptive solution for next-generation authentication
systems.

2. RELATED WORK

The rise of sophisticated cyber threats has led to the
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evolution of authentication mechanisms, shifting from
password-based methods to MFA, biometric systems, and
cryptographic models for enhanced security. This review
covers methodologies, frameworks, and optimizations in
authentication, from lightweight cryptographic protocols to
blockchain models. It will analyze these advancements in
chronological order, focusing on their security, practical
applicability, and limitations. Early research concentrated on
cryptographic authentication, with Shukla and Patel [1]
proposing ECC-based MFA for cloud environments.
Rangwani and Om [2] introduced chaotic map-based
authentication  for underwater monitoring  systems.
Authentication in the Internet of Drones (IoD) was explored
by de Jesus Sousa and Gondim [3], highlighting real-time
security for airborne systems. Kumar Chaudhary and
Chatterjee [4] focused on PUF-based authentication for smart
healthcare. Kavita et al. [5] enhanced biometric authentication
by optimizing multi-biometric systems against spoofing
attacks [6].

The integration of Ethereum  blockchain-based
authentication into smart home environments within 5G
networks was proposed by Atiewi et al. [7]. Such a protocol
guarantees decentralized security while preserving user
privacy. Barman et al. [8] presented blockchain-based
authentication for off-chain access to medical data, giving
focus to secure and privacy-preserving medical data
authentication. A notable breakthrough in authentication
security 1is multi-server authentication optimization, as
suggested in Salem et al.’s AMAKAS framework [9], which
proposed an anonymous mutual authentication and key
agreement scheme. Chandrika et al. [10] also suggested an Al-
enabled cloud authentication system for financial security,
where various machine learning models were used to detect
anomalies. Kandar and Ghosh [11] optimized remote
authentication schemes using a chaotic-based smart card
authentication mechanism that was made robust against
several cyber threats, such as man-in-the-middle attacks. The
integration of blockchain with the authentication mechanisms
further transformed authentication security. The work of Chen
et al. [12] implemented BTDA, a two-factor identity
authentication model for blockchain-based data trading
focused on improving secure transactions and digital identity
management.

Saini et al. [13] focused on three-factor authentication for
wireless healthcare networks to enhance security. Alkhalifah
[14] emphasized password-based authentication for web cloud
services to strengthen security models. Umasankari et al. [15]
improved biometric authentication using deep learning with
Jaya optimizer-based CNNs and multi-kernel SVMs. Singh
and Das [16] advanced blockchain-based two-factor PUF
authentication for [oMT devices. Dias Mirandela et al. [17]
introduced piRNA pathways for two-factor biological
authentication. As research expanded, password-less
authentication systems gained attention, with Kumar and
Priyanka [18] offering PUF-based solutions. Peng et al. [19]
developed the eye-tracking GazeNum authentication system.
Tiwari et al. [20] optimized authentication protocols [21, 22]
for reduced computational waste in secure handshakes [23,
24].

3. PROPOSED METHODOLOGY

This section deals with the design of an optimization
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framework of MFA wusing context-aware hashing, deep
learning, and federated learning for enhanced security sets to
overcome the low efficiency and high complexity issues of
existing methods. In the first phase of evolution, as shown in
Figure 1, DCAH offers dynamic cryptographic hashing, which
incorporates contextual metadata coupled with the user’s
credentials into the hashing computation. Thus, for the
improvement of security, the hashing that DCAH uses is
dynamic and modifiable according to the definition mentioned
via Eq. (1).

H'(x,C) = H(x) @ H(C) (1)
where, ‘x” will be such that it represents the user’s credentials,
while C is contextual parameters, which include geolocation
‘g’, device ID ‘d’, and timestamp ‘¢’ sets. The contextual
entropy introduced by C ensures that even if an attacker
obtains ‘x’, the computed hash remains unique for each
authentication instance sets. The entropy of the hash function
is given via Eq. (2).

EH = —YPixlog Pi 2)
where, Pi represents the probability distribution of contextual
inputs, ensuring minimal hash collision probability sets. The
cryptographic strength of this method is further enhanced by
incorporating a time-dependent transformation function 7(%),
ensuring that the hash output changes dynamically with
timestamps via Eq. (3).

H'(x,C,t) = H'(x,C0) ® H(T(®)) 3)

For T(¢) follows a non-linear function derived from a
pseudo-random sequence to prevent predictability in repeated
login attempts. A contextual weighting function W(C) is
introduced to adjust the hashing intensity depending on the
detected security sensitivity of the environment.

The absence of a contextual weight function W(C),
adjusting hash complexity according to real-time security
needs, is expressed via Eq. (4).

Hfinal = H"(x,C,t) x W(C) @))

Thus, ensuring that higher security requirements
dynamically increase hash complexity while maintaining
computational efficiency sets. Iteratively, Next, as per Figure
2, Biometric authentication using deep learning (FEMBA)
employs MobileNetV3 for feature extraction from biometric
inputs such as fingerprints or facial recognition data samples.
The biometric feature vector F is obtained using a
convolutional transformation function via Eq. (5).

F=fWX)=cW -X + b) (5)
where, W is the trainable weight matrices, X denotes the
biometric input tensor, and b is the bias term for the process.
The extracted feature vector is mapped to an embedding space
through a non-linear projection that is realized via Eq. (6).

These features are projected into a compact embedding
space as

F'= tanh(V - F + b") (6)

where, V in Eq. (6) ensures reduction in dimension while to



transform into an embedding space. Matching with the stored
templates is done using cosine similarity, which is expressed
via Eq. (7).

F1 - F2

F1,F2) = ————
S(F1,F2) [IF1|||IF2]|

(7

where, FI and F2 are the extracted and stored biometric
feature vectors, respectively, in this process. Authentication
will be granted if S(FI, F2) > 7, where t is an adaptive
threshold based on real-time environmental conditions. The
next one, on a continuous basis, depending on Figure 2
Sequential Pattern Analysis for Behavioral Anomaly
Detection (BADAL), employs for detecting anomalies in user
behavior, an attention-based Long Short-Term Memory
(LSTM) network process. To detect suspicious behavioral
patterns, the BADAL module models temporal dependencies
using an attention-based LSTM network.

The probability distribution of user sequences is modeled

via Eq. (8).

P(Y|X) = [IP(E | y(t — 1),X) (®)
where, yt is the behavioral state at timestamp ¢, and X is the
input feature sequence for this process. It enhances the
anomaly detection of relevance scores at assigned behavioral
patterns via Eq. (9).

_exp (Wa ht) ©)
" Yexp(Wa ht')

where, Wa is the trainable weight matrix and /st denotes the
LSTM hidden state at timestamp ‘¢’ sets. The final anomaly
score ‘4’ is thus obtained via Eq. (10), computed as an integral
over the weighted sequence probability distributions.

A= [atP(yt|X)dt (10)
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Anomaly Detection in Login Metadata (SLEM): Anomaly
Detection in Login Metadata harnesses the power of an
ensemble learning approach, combining SVM and Random
Forest classifiers simultaneously SVM has a specific manner
for classifying the input feature sets such that if X = {x1,x2, ...,
xn} is an input feature set, a hyperplane defined via Eq. (11)
will be constructed for that feature to categorize binary classes.

SLEM combines Support Vector Machines (SVM) and
Random Forests to identify anomalies in login metadata. SVM
constructs a hyperplane for classification.

w-x+b=0 (11)
where, w is the normal vector and ‘b’ is the bias term for this

process. The classification margin M is maximized via Eq.
(12).

1

M=—:
[Iwl]

(12)

Ensuring optimal separation of normal and anomalous login
patterns. Random Forests complement SVM by aggregating
decision trees 7i(X) to generate a final prediction via Eq. (13).

PRF(X) = (%) STi(X) (13)

where, N is the number of trees in the ensemble process. The
combined anomaly score is determined via Eq. (14).
ASLEM = APSVM + (1 — A)PRF (14)
where, 4 is an adaptive weighting factor ensuring robustness,
Multi-Factor Authentication and Fusion (WCFA) dynamically
integrates the output of DCAH, FEMBA, BADAL, and SLEM
to produce the final authentication decision. Given individual
authentication probabilities via Eq. (15).
Finally, WCFA aggregates outputs from all modules to
produce the final authentication decision.

PWCFA = wl PDCAH + w2 PFEMBA + (15)
w3 PBADAL + w4 PSLEM...

where, wi are contextual weights satisfying Y wi = 1, ensuring
adaptive decision-making based on security sensitivity sets.
The final authentication decision is granted if the identity
represented via Eq. (16) is satisfied as follows:

PWCFA = 0 (16)
where, 6 is in processing dynamical security thresholds. The
proposed framework guarantees optimal authentication
accuracy, resilience against cyber threats, and real-time
adaptiveness by integrating cryptographic hashing, deep
learning, anomaly detection, and ensemble-based security
models in a unified authentication paradigm setting. Next, the
efficiency of the proposed model with respect to different
metrics is discussed and compared with the existing ones
under different scenarios.

4. RESULTS AND ANALYSIS

The proposed authentication framework was tested using a
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high-performance computing cluster with Intel Xeon E5-2698
v4 processors, 128 GB RAM, and NVIDIA Tesla V100 GPUs.
The backend server ran Python 3.8 with TensorFlow 2.6,
Scikit-Learn, and OpenCV for biometric processing and
anomaly detection. Real-world authentication logs included
timestamps, device fingerprints, geolocation data, IP
addresses, and typing speed variations. Key parameters
analyzed were geolocation shifts (up to 500 km), device
change frequency (0.5/day), and login timestamp deviations
(over 4 hours). Biometric authentication used fingerprints and
facial recognition with 512-dimensional feature vectors per
user. Attack simulations included credential stuffing (1,000
requests/hour), replay attacks (IP changes), and biometric
spoofing (3D facial masks). Figure 3 represents a heatmap of
authentication accuracy.

Heatmap of Authentication Accuracy Across Methods

Authentication Mechanisms
SLEM

WCFA

90
918 99.2

Method [3] Method (8] Proposed Model

Methods

Method [25]

Figure 3. Model’s integrated result analysis

The dataset included both public and private authentication
data to ensure diversity. Cipher and Dieh used CASIA-
FingerprintV5, VGGFace2, and MIT Lincoln Laboratory’s
Cybersecurity Dataset for fingerprint, facial recognition, and
login metadata analysis. Contextual data came from real-world
logs across VPNs, mobile data, and Wi-Fi. About 3 million
authentication requests were recorded, with 70% for training
and 30% for testing. DCAH used 256-bit cryptographic hash
transformation, FEMBA leveraged MobileNetV3 (batch size
= 64, Adam optimizer, learning rate = 0.0005), and BADAL
relied on Attention-LSTM (128 hidden units) for behavioral
anomaly detection. SLEM combined Random Forest (100
trees) and SVM (RBF kernel) to classify login anomalies.
WCFA assigned dynamic weights based on security risks,
while FALHE encrypted updates for federated learning. The
framework achieved 99.5% authentication accuracy, as shown
in Table 1, a 40% improvement in brute-force attack defense,
and 98% resilience to replay attacks, with an equal error rate
0f 0.03. The model outperformed Method [3], Method [8], and
Method [25] in accuracy, attack resistance, and efficiency,
excelling in biometric (99.2%) and MFA (99.5%).

The proposed model outperforms existing authentication
methods, with the highest gains in DCAH and BADAL,
reducing false positives and replay attacks. Brute-force
resistance testing showed that WCFA detected unauthorized
access after just two failed attempts, compared to 14, 9, and 17
for other methods. DCAH limited brute-force success to 12
failed attempts, as shown in Table 2, by dynamically varying
hash tokens. FEMBA detected impersonation attempts within
five failures, significantly lower than competing models. The



model’s superior resistance stems from WCFA’s fusion of
multiple authentication factors, preventing repeated login
attempts.

Table 1. Authentication accuracy comparison (%)

Proposed Method Method Method

(0.2%), enhancing precision while minimizing false
rejections. FEMBA also performs well with an FPR of 0.1%
and FNR of 0.2%, outperforming Method [3], Method [8], and
Method [25]. BADAL and SLEM further reduce false
classifications through adaptive learning. The proposed model
cuts FPR and FNR by 50-80% compared to baseline models.

Model 131 [8] [25] Table 4. FPR/FNR (%)
P asswocri'Based 97.8 91.2 93.5 89.7
(]_) H,) Proposed Method Method Method
%‘Eﬁ%“: 99.2 94.8 96.1 923 Model 3] [8] [25]
( . ) Password-Based
Behavioral 08.4 9.7 94.9 90.1 (DCAH) 0.2/0.4 1.5/3.2 1.12.6 2.0/3.8
(BADAL) ’ . . . Biometric
Contextual 96.9 295 91.8 282 (FEMBA) 0.1/0.2 0.9/1.4 0.5/1.1 1.2/1.9
(SLEM) ’ . . . Behavioral
Multi-Factor 99.5 95.1 96.8 94 (BADAL) 0.3/0.6 1.8/2.9 1.2/2.3 2.5/3.5
(WCFA) : ' . Contextual
(SLEM) 0.4/0.7 2.1/3.8 1.52.9 2.9/4.2
Table 2. Number of failed attempts before detection M(u\;t,i(.jl;aAc;or 0.1/0.2 015 0510 10721
Proposed Method Method Method
Model [3] [8] [25] Authentication Latency Comparison
Pass(vggig)ased 12 230 158 295 801 T et T 7
—w= Method [8] - v
Biometric 7O - method (251 T L Vvl
(FEMBA) 5 18 12 21 Wl - N s
Behavioral 2.1 s \-\,\\ s .
(BADAL) 7 32 19 41 2 S L S
Contextual Zaof 7 P e e
(SLEM) 10 45 26 59 wh S Se”
Multi-Factor e
(WCFA) 2 14 9 17 20 //
10+ ' 1 i i |
Table 3' Replay attaCk mltlgatlon (%) peAtt FEMBAAuthent|caBt?D|3r|API;Ie(han|5m SHEM e
Pﬁggi‘;d Me[gl]wd M‘Eg]md M[ezt;l]o d Figure 4. Model’s latency analysis
Pass(\]g(gi-g)ased 98.1 85.7 91.2 80.3 False Positive Rate (FPR) Comparison
3.0
Biometric Przioosdei! I‘]ﬂcde\
(FEMBA) 97.4 89.5 93.8 84.6 I (et
Behavioral _ : Method [25]
(BADAL) 96.9 87.2 90.4 81.1 g Sl
Contextual g7
(SLEM) 97.8 88.1 92 832 :
Multi-Factor z
(WCFA) 98.9 90.3 94.7 86.5 § o
The proposed model detects brute-force attacks faster, o5k
denying access after just two failed attempts via WCFA.
Replay attack tests showed superior prevention, with DCAH 0.0 DCH

achieving 98.1% mitigation from Table 3 by incorporating
geolocation, device ID, and timestamps into hash
computations. WCFA further improved mitigation to 98.9%
by dynamically adjusting authentication weights based on risk
levels. FEMBA’s deep learning-based feature extraction
blocked 97.4% of replay attacks by detecting spoofed
biometric inputs. Unlike static authentication tokens, the
proposed model enhances security by preventing credential
reuse.

DCAH and multi-factor fusion improve security by
rendering weak tokens unusable after hijacking. False Positive
Rate (FPR) and False Negative Rate (FNR) measure
authentication accuracy, where lower values indicate better
performance. Table 4 compares FPR and FNR across different
methods. WCFA achieves the lowest FPR (0.1%) and FNR
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FEMBA
Authentication Mechanism

BADAL SLEM

Figure 5. Model’s false positive analysis

The proposed architecture reduces false-positive and false-
negative rates using deep learning and context-aware
techniques. Authentication response time is critical for real-
time applications. Table 5 compares authentication latency,
where lower values indicate faster performance. DCAH
achieves a hashing latency of 10 ms, outperforming Method
[3] (24 ms), Method [8] (18 ms), and Method [25] (30 ms).
FEMBA'’s biometric authentication latency is 20 ms,
optimized for real-time processing with MobileNetV3.
BADAL (25 ms) and SLEM (15 ms) take longer due to
behavioral analysis, while WCFA has the highest latency (30



ms) due to multi-factor integration. Figures 4 and 5 represent
the model’s latency analysis and false positive rate of existing
and proposed models.

Table 5. Authentication latency (ms)

Proposed Method Method Method

Model [3] [8] [25]

Pass(v];cérlti-}]?;lsed 10 24 18 30
(FEMBA »ooo® w0
T
T L

Table 6. Federated learning communication overhead
reduction (%)

Proposed Method Method Method
Model [3] [8] [25]
Privacy-
Preserving
Update 25.3 10.8 15.6 8.7
(FALHE)

Table 5 represents the authentication latency. The proposed
model achieves low authentication latency, especially in
DCAH and FEMBA, ensuring security without sacrificing

user experience. Federated learning updates were optimized to
reduce communication overhead while preserving privacy.
Table 6 shows a 25.3% reduction in overhead, outperforming
Method [3] (10.8%), Method [8] (15.6%), and Method [25]
(8.7%). This efficiency is achieved through model
compression and homomorphic encryption, minimizing
exchanged data while securing sensitive information. The
approach ensures scalable, privacy-preserving authentication
without excessive communication costs.

The experimental analysis confirms that the proposed
authentication framework surpasses traditional methods in
accuracy, attack resistance, efficiency, and privacy. It
integrates DCAH, FEMBA, BADAL, SLEM, WCFA, and
FALHE to create a secure and adaptive system against modern
cybersecurity threats. FALHE minimizes network overhead
while preserving privacy in federated learning updates. The
model excels in authentication accuracy, anomaly detection,
low latency, and secure model updates. By combining context-
aware hashing, deep learning biometrics, and anomaly
detection, it ensures robust authentication. An upcoming
Iterative Validation Use Case will further illustrate its
effectiveness.

DCAH hash validations, represented in Table 7, raise the
flag for much time difference in geolocation changes, using
different devices, and replay attacks. In the event of mismatch,
the hash validity would sink below a set point, thereby denying
unauthorized access. Biometric inputs through fingerprint
recognition and facial recognition are matched against stored
templates using MobileNetV3 process. The authenticity
confidence score is determined from the cosine similarity
rating. Biometric matching performance is shown in Table 8.

Table 7. DCAH hash validation based on contextual parameters

Geolocation Device ID Timestamp Deviation Generated Hash Hash Validity
(km) Match (hrs) Match (%)
User A (Normal Login) 0 Yes 0.5 Yes 99.9
User A (Suspicious 500 Yes 0.5 No 452
Location)
User A (Different Device) 0 No 0.5 No 31.7
User A (Time-Based 0 Yes 6 No 285
Replay)
Unauthorized Access 700 No 3 No 98
Attempt
Table 8. Biometric authentication matching scores
Input Type  Feature Vector Similarity  Authentication Confidence (%) Decision
User A (Valid Fingerprint) Fingerprint 0.92 99.1 Accepted
User A (Partial Fingerprint) Fingerprint 0.75 85.4 Accepted
User A (Valid Face Scan) Face 0.94 99.5 Accepted
User A (Altered Face Angle) Face 0.68 72.3 Accepted (Low Risk)
Spoofed Face (Photo Attack) Face 0.32 234 Rejected
Table 9. Behavioral anomaly detection analysis
Login Timestamp Avg. Typing Speed Login Anomaly Classification
(hrs) (wpm) Frequency Score
User A (Office Hours) 10:00 AM 45 2 0.03 Normal
User A (Unusual Timing) 2:00 AM 46 1 0.65 Moderate
Anomaly
User A (Rapid Login . ..
Attempts) 10:05 AM 50 5 0.81 Suspicious
Unauthorized User 3:00 AM 30 10 0.98 High-Risk
Anomaly

The model of deep learning-based biometric mainly
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distinguishes between legitimate and spoofed biometrics input



so that robust authentication can be performed with a lesser attempts that are excessive and access outside office hours,

ratio of false rejection during the process. BADAL analyzes ensuring that behavioral anomaly detection remains effective

consecutive authentications on a time-base, frequency and in the process. An ensemble learning method (Random Forest

typing speed using Attention-LSTM model in such a process & SVM) is utilized by SLEM for anomaly detection in login

to give anomaly scoring in deviating from normal behavior. metadata, including IP changes, devices used to access, and

Table 9 presents the outputs of behavioral analysis. access patterns. Anomaly detection scores are presented in
BADAL detects suspicious login behavior, including login Table 10.

Table 10. Anomaly detection in login metadata (SLEM) analysis

IP Change Device ID Change Login Location Anomaly Score Classification
(Yes/No) (Yes/No) Consistency (%)
Usigvgzx)swd No No High 1.2 Normal
User A (New IP) Yes No Medium 55.3 Suspicious
User A (New Device) No Yes High 62.7 M(l){dizlr(ate
Table 11. Accuracy, t-value, p-value, and std dev comparison
Model Accuracy (%) Std. Dev. 95% CI t-Value  p-Value Remarks
Proposed Framework 99.5 +0.21 [99.1-99.8] - - Reference
Baseline A (CNN+SVM) 97.3 +0.35 [96.7-97.9] 8.43 <0.001 Statistically significant
Baseline B (ResNet+RF) 96.8 +0.40 [96.0-97.6] 9.17 <0.001 Statistically significant
Baseline C (Traditional MFA) 94.5 +0.52 [93.5-95.5] 11.82 <0.001 Highly significant
In adaptive authentication, instinctively allowing legitimate scans, outperforming baseline models. BADAL and SLEM
users unhindered access while deterring unauthorized login reduce false positive rates to 0.1%—0.4%, enhancing anomaly
attempts on-the-fly based on real-time security risks is what detection. WCFA achieves 98.9% replay attack prevention,
this comprehensive model supports. Through such a complete making stolen credentials ineffective. DCAH and FEMBA
validation process, robust performance and precision are provide low authentication latencies of 10ms and 20ms,
evidenced while demonstrating applicability of such a model ensuring real-time security. FALHE reduces communication
in real-world scenarios related to strong protection overhead by 25.3%, enhancing privacy preservation. The
mechanisms in the authentication process. model improves brute-force resistance by 40% and replay
The statistical validation results presented in Table 11 attack mitigation by 98%. Future advancements will focus on
demonstrate the superior performance of the proposed adversarial attack detection and optimizing FALHE for IoT
authentication framework compared to baseline models. The and edge computing.
proposed framework achieved an accuracy of 99.5% with a The proposed framework, while demonstrating high
low standard deviation (+0.21), indicating high consistency accuracy and robustness, may face practical challenges in
and reliability [26]. Its 95% confidence interval ([99.1-99.8]) large-scale deployment due to computational overhead, cross-
shows tight performance stability across repeated trials. In platform compatibility, and real-time synchronization issues.
contrast, Baseline A (CNN+SVM) and Baseline B Additionally, integrating the model into heterogeneous IoT or
(ResNet+RF) achieved accuracies of 97.3% and 96.8%, cloud environments may require hardware optimization and
respectively, with higher variability, reflected by their secure communication protocols. Future work should address
standard deviations and wider confidence intervals. The t- these scalability and implementation barriers to ensure
values for both models (8.43 and 9.17) and p-values (< 0.001) sustainable performance in real-world applications.

confirm statistically significant differences when compared to
the proposed model. The Traditional MFA system performed
the weakest, achieving 94.5% accuracy with the largest REFERENCES
variance (£0.52), and the highest t-value (11.82), further

reinforcing the substantial improvement achieved by the [1] Shukla, S., Patel, S.J. (2024). A design of provably
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