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Modeling blood flow through a stenosed bifurcated artery is crucial in the biomedical 

field, as it provides valuable insights into how these conditions affect the body and 

contribute to the diagnosis, treatment, and prevention of cardiovascular diseases. The 

Marker and Cell (MAC) method is used to numerically solve the equations, and the 

code was created using MATLAB programming to obtain and analyze the flow 

characteristics—including velocity profiles, flow patterns, and pressure distribution—

that have not been thoroughly investigated in earlier studies in this field. The benefit of 

the MAC approach is that it eliminates the need for pressure boundary conditions at 

either the inlet or outflow. A graphic representation of these characteristics, along with 

relevant physical parameters, is provided in this study. The results indicate that the 

severity of the stenoses leads to an increase in the recirculation zones in the junction 

and the outer wall in the daughter artery, as well as the wall pressure rapidly drops at 

the throat of the stenosis. Also, as the blood passes through the stenosis, its flow is 

accelerated. Then, after the narrowest point of the stenosis, the artery returns to its 

normal, wider diameter. High-velocity flow stream, however, continues to move 

forward in a straight line, leaving a low-pressure region between the streaming blood 

and the artery wall. The blood in the low-pressure zone is pulled backward, and it starts 

to swirl in a circular motion to fill this space. This swirling motion generates the 

recirculation zones, which are widely recognized as a significant factor in the 

progression of cardiovascular disease. The current findings show good agreement with 

established results. 
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1. INTRODUCTION

Stenosis is a plaque that constricts the artery walls, resulting 

in significant modifications to the blood flow structure. Areas 

characterised by curvatures and bifurcations are the most 

encouraging locations for this plaque [1]. Thus, the 

investigation of blood circulation in the bifurcated artery is an 

important point of scientific interest regarding the diagnosis of 

atherosclerosis. This helps to gain a deeper comprehension of 

the pathogenic mechanism involved. Not only for researchers 

to gain a better understanding of how blood characteristics are 

altered through the bifurcated arteries, but it also assists 

physicians in making treatment predictions, which ultimately 

results in a more effective therapy for the patient. Moreover, 

in the narrow artery, the blood exhibits a non-Newtonian 

behaviour at low shear rates. When shear rates exceed 100 s-1 

(reciprocal seconds), which is common in big arteries, the 

Newtonian model is proven to be a good approximation [2]. 

Consequently, the current study provides an examination of 

blood flow in a stenosed bifurcated artery. The artery was 

presumed to be symmetric along its axis, and blood was 

modeled as Newtonian fluid.  

Assuming that there is a mild stenosis in the lumen of the 

parent aorta, Srinivasacharya and Rao [3] hypothesized that 

the stenosis had evolved in an axi-symmetric manner to study 

the flow phenomena in the bifurcated artery caused by a 

pulsatile pressure gradient. Considering the complex flow 

phenomena around the curvatures, junctions, and bifurcations 

of arteries, Zain and Ismail [4] proposed the flow phenomena 

in an overlapping stenosed bifurcated artery, which may have 

triggered the deposition of atherosclerotic plaque. In a 

bifurcated artery, the effect of various types of stenosis on 

blood flow is investigated, and results are obtained using 

COMSOL Multiphysics software for the generalised power 

law model [5] and for the Newtonian model [6, 7]. An 

investigation of the pulsatile flow occurring in a model of 

aortic bifurcation in the presence of a pressure gradient has 

been carried out by Chakravarty and Mandal [8]. The Carreau-

Yasuda biorheological blood model was utilized, and a finite 

element computation on the magnetohydrodynamic flow with 

heat transfer in a bifurcated artery has been done [9]. Within 

permeable bifurcated arteries that are subjected to a magnetic 

field, the influence of heat transfers on magnetohydrodynamic 

blood flow, observed and addressed as a Newtonian 

rheological model, was studied in reference [10]. In the rigid 

model of the carotid bifurcation under pulsatile flow 
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conditions, Meem et al. [11] explored the influence of the 

Biomagnetic field on pulsatile non-Newtonian features of 

blood. Specifically, they looked at how these features affected 

dynamics in the presence of an aneurysm. A study conducted 

by Shaw et al. [12] showed the impact of shear stress on the 

bifurcation angle of the Casson model to represent the non-

Newtonian characteristics of blood viscosity under pulsatile 

flow conditions. An investigation into the flow of blood via a 

bifurcated artery with minor stenosis under variation of gravity 

acceleration was carried out by considering blood as a 

micropolar fluid [13] and the couple stress model [14]. Fan et 

al. [15] studied the pulsatile non-Newtonian flow in the carotid 

artery bifurcation; they reported that the flow behaviour 

produced by the Casson model did not differ from the flow 

characterizations provided by the Newtonian model.  

Limited numerical works have been performed, which 

employed bifurcated arteries, and all these works used 

software programs or given equations of pressure gradient; 

these software programs are typically quite pricey and difficult 

to acquire in terms of availability [16-20]. Furthermore, the 

pressure distribution in the arterial segment is an unknown 

parameter that requires an appropriate method for calculating 

and to provide this, the current work investigates the effect of 

stenosis on the blood flow pattern in parent artery and main 

bronchi under laminar Newtonian fluid conditions using the 

Marker and Cell (MAC) method is advantageous because it 

eliminates the requirement for pressure boundary conditions at 

both the inlet and the outflow. The vector representing the 

velocity is determined, and the results of wall pressure and 

blood streamline are obtained with the requisite level of 

precision.  
 

 

2. GOVERNING EQUATIONS  
 

A 2-dimensional, unsteady, incompressible, laminar, 

Newtonian model examines blood flow in the arterial lumen. 

In the system of cylindrical polar coordinates (r, x), the 

axisymmetric blood flow's governing momentum and 

continuity equations in dimensionless form are expressed as 

follows: 
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Figure 1. Axisymmetric geometry for a bifurcated stenosed 

artery 

where, the Reynolds number 𝑅𝑒 =
𝜌𝑈0𝑅0

𝜇
,  and 

𝑡, 𝜌, 𝜇, 𝑝, 𝑈0, 𝑅0 respectively are the time, density, viscosity of 

blood, pressure, the velocity of blood at the inlet, and the 

radius of the artery. The axial and radial equations of 

momentum (2), (3) are imposed [13]. The geometry model of 

this study is a segment of a bifurcated artery with mild stenosis 

occurred as proposed by studies [7, 8, 12, 13]. The functions 

R1(x) and R2(x), which stand for the artery's inner and outer 

walls, respectively (see Figure 1), are provided by: 
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2.1 Initial and boundary conditions 

 

Due to the rigid wall, a no-slip condition is applied, meaning 

the blood flow velocity components are zero at the wall. The 

inlet is assumed to have a fully developed parabolic velocity 

profile, indicating maximum velocity at the center. 
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The problem's boundary and initial conditions are 

established as follows: 
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2.2 Radical transformation 

 

The radical transformation is introduced: 
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where, the arterial wall is immobilized in the transformed 

coordinate by R1(x) and R2(x). Applying Eq. (10), 

consequently, Eqs. (1)-(3) have the following form: 
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Similarly, Eq. (10) is used to transform the initial and 

boundary conditions (6)-(9) appropriately with 𝜉 ∈ [0,1]. 
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The MAC method is used to discretize the aforementioned 

unsteady governing Eqs. (11)-(13) [21]. At various points, the 

pressure and velocities are calculated. By defining 𝜁 =
𝑗𝛥𝜁, 𝑥 = 𝑖𝛥𝑥, 𝑡 = 𝑛𝛥𝑡  and 𝑝(𝜁, 𝑥, 𝑡) = 𝑝(𝑗𝛥𝜁, 𝑖𝛥𝑥, 𝑛𝛥𝑡) =
𝑝𝑖,𝑗

𝑛 , where, t is the time, 𝛥𝑡 is the increment of t, and 𝛥𝜁, 𝛥𝑥 

represent the length and width of the control volume cell (i, j) 

respectively.  

 

2.3 Discretization of governing equations 

 

At the (i, j) th cell, the continuity and momentum equations 

are discretized to yield: 
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with 𝑢𝑐𝑑𝑖,𝑗
𝑛  and Diff𝑢𝑖,𝑗

𝑛  stand for equation's convective and 

diffusive terms at the nth time level in the cell (i, j). The terms 

are differences in a similar manner to the w- equation of 

momentum. The entire numerical process and stability 

restriction have already been covered in references [22-24]. 
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3. RESULTS AND DISCUSSIONS  

 

The numerical calculation has been carried out to 

quantitatively estimate the velocity profiles and wall pressure 

at the parent and daughter arteries for varying degrees of 

stenosis severity. For a comprehensive quantitative 

examination of how Newtonian blood rheology affects the 

phenomenon of stenotic bifurcated artery flow, the 

dimensional data for validation purpose have been taken from 

references [7, 8]: R0 = 0.0075 m, L0 = 0.015 m, d = 0.005 m, ρ 

= 105 kgm⁻3, µ = 0.0035 Pas⁻1, β = 30° (angle of branching 

between left branch and daughter artery), r1 = 0.51 R0 (radius 

of bronchi), x1 = 0.092 m, δ = 0.0 R0, δ = 0.25 R0, δ = 0.37 R0 

(0.00%, 0.4375% and 0.6031% areal occlusions), 𝛥𝑥  = 0.1 

and 𝛥𝜉  = 0.025. The Reynolds number is taken to be 155. 

Additionally, an arterial finite length xmax = 0.14 m is used to 

determine the streamlines pattern. The solutions are generated 

by using a staggered grid of size 1400 × 40 at constant, Re = 

300 and U0 = 0.5 × 10⁻2 m·s⁻¹.  

The MAC, a finite-difference method, is used to solve the 

unsteady governing PDE equations of motion. When the 

simulation reaches a steady state with dimensionless t = 60, 

the results are determined. After solving the momentum 

equations, the pressure is used to figure out the velocity 

profile. 

 

3.1 Grid independence 

 

The grid independence study simulations were run in order 

to investigate the error related to the grid and time step. Figure 

2 shows how the profiles for the three different grid sizes 

nearly overlap with each other. In the current numerical 

simulation context, the grid independence study is therefore 

crucial to proving the accuracy of the outcomes. 

 

 
 

Figure 2. Axial velocity profile variation at Re = 300 for 

various grid sizes 

 

3.2 Numerical validation 
 

For the purpose of numerical validation, it is done by 

comparing results with Jamali and Zuhail [7], and also 

Chakravarty and Mandal [8]. Figure 3 indicates the result of 

dimensionless axial velocity profile achieved using MAC 

method, which at the maximum constriction. The outcome 

shows that they are in good agreement after it was brought to 

the same platform as studies [7, 8]. When the Reynolds 

number was set to 155, the current method produced the 

desired result. All results returned parabolic curves at the z-

axis, with the highest value roughly. Because of the various 

methods and inlet velocities used to solve the problem, there 

is an error between the results, which is very small (Table 1). 

 

 
 

Figure 3. Validation of the dimensionless axial velocity [7, 

8] at (Re = 155, δ = 0.4375) 

 

Table 1. Comparison of numerical results of maximum 

velocity and their errors 

 
Authors Maximum Velocity Error 

Jamali and Zuhail [7] 0.07194 0.00276 

Chakavarty and Mandal [8] 0.06918 - 

Present study (MAC) 0.07053 0.00135 

 

3.3 Pressure loss 

 

For the pressure loss, Figure 4 illustrates how the wall 

pressure varies along the x-axis.  

 

 
 

Figure 4. Wall pressure variation with axial position for 

various δ 

 

For stenosis severity (δ = 0 normal artery, δ = 0.4375 

occlusion and δ = 0.6031 occlusion) at Re = 300. As the 

severity of the stenosis increases, the wall pressure decreases, 

in other words, due to flow acceleration (velocity increasing), 
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at the location of the stenosis' throat, the wall pressure rapidly 

drops. Following this position, flow deceleration (velocity 

decreasing) tends to cause the pressure to recover, but it does 

not get as high as the starting points. The fact that the wall 

pressure stays negative on both sides of the apex is an 

important finding. This happens as a result of secondary flow 

close to the daughter artery's apex and backflow of blood at 

the lateral junction. Additionally, as the severity of stenosis 

increases, the narrowing of the stenotic region prevents blood 

from passing through the daughter artery, causing the velocity 

profile to increase up to its peak value. This means the impact 

of stenosis on pressure losses because there is not enough 

pressure to keep the lumen open, and the artery may collapse 

at the throat [25], resulting in a serious pathological state from 

a clinical standpoint. The heart may have to work harder to 

maintain a sufficient blood supply if the pressure drop is too 

large because there might not be enough pressure downstream 

to perfuse essential organs and tissues. Serious cardiovascular 

issues, such as heart muscle hypertrophy and ultimately heart 

failure, may result from this over time. 

 

3.4 Streamlines 

 

The understanding of blood flow patterns through the parent 

and daughter arteries is essential for understanding localized 

cardiac diagnostic disorders and aerosolized drug delivery 

mechanisms. Figures 5-7 show how blood flow streamlines 

behave based on their axial position for different levels of 

stenosis with Re = 300. The streamline patterns for blood flow 

through parent and daughter arteries in Figure 5 are based on 

a normal artery (δ = 0%). No recirculation zones appear for the 

straight artery (parent artery). Furthermore, it is observed that 

the recirculation zones increased in the junction and the outer 

wall of the daughter artery. This happens as a result of 

secondary flow in the daughter artery close to the apex and 

backflow (an increase in velocity) of the streaming blood at 

the lateral junction's onset. 

Figures 6 and 7 show the effect of the severity of the 

stenosis (δ = 0.4375 and δ = 0.6031 areal reduction) on the 

streamlines behavior of blood flow at Re = 300. The velocity 

of blood increases as the severity of stenosis escalates, with no 

recirculation zones downstream of the stenosis for δ = 0.4375 

areal occlusion in a straight artery. Moreover, the elevated 

values of vortices occurred in the parent and daughter artery 

with increasing stenosis for δ = 0.6031 areal occlusion, which 

aligns well with the experimental results obtained by Ahmed 

and Giddens [25]. The formation of the eddy depended on the 

severity of the stenosis. In other words, these recirculation 

zones are augmented in the outer wall of the artery as the 

severity of stenosis increases. It is important to pay attention 

to flow separation and recirculation zones that appear on 

downstream constrictions. The blood in the low-pressure zone 

is pulled backward, and it starts to swirl in a circular motion to 

fill this space. This swirling motion is what forms the 

recirculation zones. The more severe the stenosis, the faster 

the blood jet has to move to get through the narrow opening. 

This higher velocity causes a more pronounced separation 

from the wall and a larger, more intense low-pressure region. 

This, in turn, leads to the formation of a larger and more 

powerful recirculation zone. 

These zones can cause the disease to get worse and cause 

new intimal thickening.  

 
 

Figure 5. Streamlining of blood flow through the main and a 

single bifurcated artery for δ = 0.0 

 

 
 

Figure 6. Streamlining of blood flow through the main and a 

single bifurcated artery for (Re = 300 and δ = 0.4375 

occlusion) 

 

 
 

Figure 7. Streamlining of blood flow through the main and a 

single bifurcated artery for (Re = 300 and δ = 0.6031 

occlusion) 
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4. CONCLUSION 

 

This paper presents a mathematical model to simulate 

Newtonian blood flow through a bifurcated rigid artery with 

varying degrees of stenosis. The MAC method is developed in 

MATLAB code to numerically solve the governing unsteady, 

nonlinear, two-dimensional equations, which were discretized 

on a uniform staggered grid. The model computed blood flow 

characteristics, including velocity profiles, pressure loss, and 

streamlines. The results showed good agreement with previous 

numerical studies for mild stenosis. A key finding was that 

pressure loss decreases with increasing stenosis severity, a 

phenomenon linked to secondary flow and backflow. As 

stenosis becomes more severe, the increased narrowing leads 

to a higher peak velocity and the amplification of recirculation 

zones. The formation of these backflow regions may have 

significant implications for cardiovascular diseases.  

Standard diagnostic tools like angiography or ultrasound 

provide images, but mathematical models can take these 

images and calculate precise metrics that are invisible to the 

naked eye. This includes pressure drop, flow velocity, a 

streamline across a stenosis. A clinician can use this data to 

determine the severity of a blockage with greater accuracy 

than visual inspection alone. By simulating flow patterns, 

models can identify areas at risk of disease progression even 

before significant anatomical changes are visible. This can 

help clinicians intervene earlier to prevent a severe event like 

a heart attack or stroke. 

Ultimately, this model can be extended to be non-

Newtonian involves replacing a single, constant parameter 

(dynamic viscosity) with a more complex relationship that 

accounts for how blood viscosity changes with flow conditions 

or by considering the mass transfer equation to investigate 

aerosolized drug delivery mechanisms in bifurcated arteries. 
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