International Information and
Engineering Technology Association

%Ef

Mathematical Modelling of Engineering Problems

Vol. 12, No. 12, December, 2025, pp. 4211-4224

Journal homepage: http://iieta.org/journals/mmep

Solving Time-Fractional Nonlinear Partial Differential Equations that Arise in the Biological
Populations’ Spatial Diffusion Under Caputo-Katugampola Memory

Omar Barkat?"¥, Hamza Mihoubi?3®, Awatif Muflih Alqahtani*

Check for
updates

! Department of Mathematics, University Center of Barika, Barika 05001, Algeria
2 Laboratory of Science for Mathematics, Computer Science and Engineering Applications, University Center of Barika, Barika

05001, Algeria

3 Department of Mathematics, University of M’sila, University Pole, M’sila 28000, Algeria
4 Department of Mathematics, Shaqra University, Riyadh 11972, Saudi Arabia

Corresponding Author Email: omar.barkat@cu-barika.dz

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.121210

ABSTRACT

Received: 2 October 2025

Revised: 19 November 2025
Accepted: 28 November 2025
Available online: 31 December 2025

Keywords:

Caputo-Katugampola  fractional  derivative,
Homotopy Perturbation Laplace Transform
Method, Mittag-Leffler function, fractional

biological population model studics,

Using the Homotopy Perturbation Laplace Transform Method (HPLTM), the objective
of our current work is to find the analytical solution of the nonlinear fractional partial
differential equations arising in the spatial diffusion model of biological populations.
This is achieved by replacing the Caputo fractional derivative of the Riemann-Liouville
model with the Catogambola fractional derivative represented in the Caputo type.
Moreover, the homotopy perturbation transform technique integrates the Laplace
transform with the homotopy perturbation method. In addition, the efficiency of the
proposed method is verified through three test examples. Accordingly, the results
obtained by applying the proposed method for different fractional orders are plotted,
and a comparative analysis is performed between our results and those of previous

1. INTRODUCTION

Fractional calculus is a fundamental branch of mathematics,
used to calculate arbitrary derivatives and integrals. The
proven applications of fractional differential equations in
various scientific and technical fields have contributed to
increasing their importance and popularity. In this respect,
fractional derivatives may be utilized to describe nonlinear
oscillations in  signal processing, electrochemistry,
earthquakes, electromagnetism, fluid mechanics, and in fact,
diffusion processes. Further, a wide range of physics and
engineering issues, including mathematical biology and
various chemical process models are addressed using
fractional differential equations [1-7]. Since most physical
systems are nonlinear in nature, nonlinear problems have
proven of great importance to mathematicians, physicists, and
engineers. Although it is not always easy to solve nonlinear
equations, they lead to interesting phenomena such as chaos
and others. Furthermore, recent developments in numerical
symbolic computing tools and computer technology in general
have helped many scientists, whether mathematicians or
physicists, to find numerical solutions to such equations.
Numerous appropriate numerical and analytical techniques
were used, like the homotopy analysis (HA) method [8, 9],
homotopy perturbation (HP) method [10-14], residual power
series (RPS) method [15-18], differential transform (DT)
method [19-21], Adomian decomposition (AD) method [22-
24], and various other approaches. Nevertheless, further
information on fractional differential equations can be found
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in references [25-27].

In this context, we note that the HP method, first developed
by He [28-30] is one of the most widely applied analytical
methods, because it directly addresses the problem without
requiring any kind of transformation, linearization, or
differentiation. However, the Laplace transform has shown to
be a widely used mathematical technique for solving
differential equations. Undoubtedly, transforms are useful in
solving many mathematical problems, especially when
reformulating the problem to facilitate its solution.
Nevertheless, the inverse transformation is useful in finding a
solution to the given problem. Furthermore, the Laplace
transform and the AD method were combined under Caputo-
Katugampola memory [31] for the purpose of generating
approximate solutions of the fractional Berger’s equation. As
a consequence, numerous physical phenomena have been
represented by means of nonlinear partial differential
equations, for instance, the partial differential equations
arising from the geographic spread of biological populations
defined as:

2u2 62 U2
CKy %P -
D U(x,y,t) = 5z T 3y + £ () (1)
where, t > 0,x,y ER, and0 < a < 1,p € R*.
Based on initial condition U(x,y, 0) = ,(x,y), where U

aa
the =—
at®

Katugampola fractional derivative in Caputo type order o and

denotes population density and ¢kKD5”
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f(U) = LU%(1 — hUP) represents the population supply due
to births and deaths, where, [, a, h, b are real numbers, then Eq.
(1) leads to Malthusian and Verhulst laws [32]. Specifically,
for a =1, the generalized time-fractional biological
population model equation reduces to the classical generalized
biological population model equation.

Definitely, the fractional biological equations may be
resolved using a variety of techniques, including the HA
method [33] along with the HP method [34]. For use, nonlinear
problems have been solved using the optimum homotopy
analysis (OHA) technique [35] and the generalized Laplace
homotopy perturbation (GLHP) method under Caputo-
Katugampola memory to solve fractional Burger equation and
fractional Schrodinger-KdV equation [36]. Inclusive of the
HAT method, which stands for a combination of the Laplace
transform (LT) and HA methods, for solving the generalized
biological population models [37]. Additionally, the Elzaki
transform homotopy perturbation (ETHP) represents a
combination of the HP and Elzaki transform (ET) methods
[38]. Likewise, AD method is presented for finding purpose of
the exact solutions of more general biological population
models [1]. The solution of some biological population
models of non-integer order, a novel technique identified as
iterative Laplace transform (ILT) has been used [39]. In
addition, generalized fractional biological population model
has been solved by using ILT method [40]. However, due to
the challenges posed by nonlinear variables, a number of
strategies have been applied; including the numerical Laplace
transform approach for the approximate solution of a class of
nonlinear differential equations based on the decomposition
method [41]. The variational iteration method and Adomian
decomposition method have been used to solve the nonlinear
partial differential equations arising in the biological
populations [42]. The g-homotopy analysis generalized
transforms method (q-HAGTM) and generalized Laplace
decomposition (GLD) method by substituting the time
derivative with the Katugampola fractional [43], the Sumudu
decomposition (SD) method [44], and the homotopy
perturbation Sumudu transform (HPST) method [45] have
recently been put forth to address such nonlinearities. In light
of which, these approaches have resulted in highly efficient
methods for handling a wide range of nonlinear problems.

In this study, we apply the Caputo-Katugampola fractional
derivative for application purpose of the homotopy
perturbation p —Laplace transform (HPLT) method in order to
obtain the numerical and analytical solutions of the fractional
biological population models. Besides, the HPLT method is
the LTHP method, which represents a combined form of the
LT and HP methods. The numerical results are then displayed
through illustrations. The answer is given by the suggested
methods in a rapidly converging series, which might
eventually lead to an exact and approximate solution. On the
other hand, these techniques have the benefit of combining
two effective approaches for provision purpose of both precise
and approximate solutions for nonlinear equations.

The manuscript's structure is as follows: Section 2 covers
the basic concepts related to the Caputo-Katugampola
fractional derivative and the p-Laplace transform, which are
relevant to the problems under discussion. Section 3 explains
the HPLT approach to deriving solutions to the fractional-time
biological population model. Section 3 is devoted to applying
our approach to time-fractional biological population models
to verify the accuracy and effectiveness of these models. In
this context, we present the results through numerical and
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graphical analyses. We end this study with some concluding
remarks in Section 5.

2. PRELIMINARIES

This section examines the primary definitions and
properties of fractional calculus theory, which have been
utilized throughout this paper.

Definition 2.1 [46]. Let a € C,p € RT,a <t < b, and
consider a finite (or infinite) interval on the positive half-axis
(0<a<b< o), within the real numbers R* . The
Katugampola fractional integrals of order « are defined by:

a-1

. 1 [(ttP —xP d
SO = [ () v @
« 1 (PP —tP @t dx
prw(t)_F(a)ft( ; ) tl)(x)xl_a (3)

The Caputo-type modification of left-sided and right-sided
Katugampola fractional derivative is given by:

Theorem 2.1 [47]. Let R(a) = 0,n = [R(a)] + 1, and
consider (0 <a<b< ). If e AC;([a,b]) , where
ACla,b] represents the spaces of absolutely continuous
functions on [a, b], such that

d
o

ACF([a,b]) = {g: [a,b] » C:6™1g(x) € AC[a,b], 6 = x*~P
Then, ¥Dg 1 (t) and KD}, *1(¢) exists in [a, b], and

Da p(®) = (6", PPt

n—-a-1

Ok P — xP dx (4a)
T I'(n—a) a ( p ) l/)(x)xl‘f’
KDy (t) = (—5)"312_‘1;’)1/)(0
(=" PxP =\ dx (4b)
T I'(n-—a) ¢ ( p ) l/)(x)xl‘f’

Theorem 2.2 [47]. The Caputo-type fractional derivatives,
both left and right-sided, with complex ordera, R(a) = 0 and
p belonging to the set of positive real numbers, are provided
as follows, respectively:

DY) =I5 (&M

SRR E
DR () = 3, P (=8)"P(®)

_ r(nl_ - ftb (xp ; tP)n—a—l (=8) 1 (x) x(f)—Cp (6)

Here, § = t1~° % and p > 0.

In particular, for p = 1 and for p —» 0%, we obtain the
Riemman-Liouville fractional derivative and the Hadamard
fractional derivative, respectively.

Theorem 2.3 [47]. Lety € C([a,b]),a > > 0and p >
0,a <t < b, then

Ii]]))ngSngl/)(t) =P(t) (7



As shown below, the Katugampola fractional derivative
does not act as the true inverse of the Katugampola fractional
integral.

Theorem 2.4 [47]. Let 3%:%Y € AC™([a, b]),andn — 1 <
a<np>0n€N,then

k-n+a

with ¢, are real constants.
Definition 2.2 [47]. Let a,m > 0. The one-parameter
Mittag-Leffler function has the power series representation:

tP —af

DL = p(©) - Z e (— ®)

oo tm
Eam(®) = ;m ©

with I'(.) is gamma function.
Definition 2.3 [48]. The p — Laplace transform of the
function v is given by:

(10)

+o —sg dat
LT e )55, >0
where, ¥: [0, 0) — R is a real valued function.

The inverse modified p —Laplace transform is given by:

G(s) = L[] =

1 c+ioo d
P(©) = £, [G(s)] —f e ﬂG(s)— (11)

where, ¢ = R(s),t € (a,»), a > 0.

Theorem 2.5 [48]. Let the function Y be continuous and of
tP

exponential order e 2 such that 6y(t) has shown to be
piecewise continuous over every single finite interval [0, t],
subsequently, p —Laplace transform of 8§y (t) exists for s >
¢, and
L, [69(©)](s) = sL[Y(0)](s) x $(0) (12)
Definition 2.4 [48]. The p — Convolution of ¥ and g is
given by:

t 1
W@ 9@ = [ w(w-5))g (13)
0
Theorem 2.6 [48]. (p —Convolution theorem)
L) » g(©O} = L, [Y(0), s1L,[g (@), s] = F(s)G(s)  (14)
which equivalently to
L, HE($)G(s),t} = (t) * g(¢) (15)

Theorem 2.7 [48]. Let « > 0 and ¥ be a piecewise

continuous function on [0, t] and of p — exponential
tP

_te
ordere P.Then

[IP( )]

s>c¢ (16)

£,(3

Theorem 2.8 [48]. Leta > 0 and ¢ € AC} [0, a] for any

(o), s} =
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a>0, and 6%y, k =0,1,2,..,n—1 be of p- exponential
p

_C%. Then
£ (D5 90.)
= s [Lp{ll}(t)} - Z sk (8%y) (0)}
k=0

order e

(17

where, s > c.

The p — Laplace transform of the derived Caputo-
Catogambula fraction is obtained using the p — Laplace
transform on both sides of Eq. (5) as follows:

LA(DE"$ ()5}

s (@) - st e Y

transform of some spe01al functions are:

(@) L,{1}= i,s > 0.
(b) Lty =",
© £ {Ea (7‘ (%)a)} = (:::;)
P\ o1 P\ & 1
@ £{(5) Eee ()=

3. EXPLANATIONS OF THE HPLT METHOD

To illustrate the concept of the HPLT method, we consider
the following non-homogeneous fractional-order nonlinear
partial differential equation with its initial condition.

Do Y (x,y,t) + Rp(x,y,t) + Np(x, y,t) = g(x,y,t)  (19)
suchthat 0 < a < 1,
Y(x,y,0) = h(x,y) (20)

where, “KD%(x,v,t) is the derivative of ¥(x,y,t) in the
Caputo sense, where, R and N denote linear and nonlinear
differential operators, respectively, and g(x,y,t) represents
the source term. Additionally, when applying the LT method
to both sides of Eq. (19), we get:

L{Dg P (x,,y,6) + RY(x,y, ) + Np(x,y,0)} on
=L,{g(x,y,t)}
L{EDg P (x,,y,0)}
= Lp{_Rlp(x! Y, t) - Nl/)(x! Y, t)}
+ L,{g(x,y,t)}

(22)

Now, by using the differential property of the p —Laplace
transform of the fractional derivative, we obtain:

L{“iDg Y (x,y, O}

n-1

= s {L, O} - ) sH 1 @ PO

k=0
= L,{—RY(x,y,t) = Np(x,y,)} + L,{g(x,y,t)}

(23)

By simplifying Eq. (23), then



n-1
LGy, 0} = ) s (S P)(0) +
. ’ sz; (24)
= {Lpla (e, 03 = L (RY Gy, ©) + N, , 03]

By using the inverse p —Laplace transform on both sides in
Eq. (24), we find:

w(x:y,t) = G(xlyvt) -

L™ [sia {£,(RY (3,0 + Ny (x,y, t)}}] -

where, G(x,y,t) denotes the term derived from the initial
condition and source term.
By applying the HP method to Eq. (25), we get:

Yyt = 6x,y,0)
I1
A e A LI 0 JE
+Np(x,y,0)}])

The homotopy parameter p is utilized to extend the solution
as:

Yy 0 = ) Py, @7)
n=0

The nonlinear term is analysed as:

Ny, = ) prHa ) (8)

where, H, (1) is He’s polynomials which is given by:

oo s ) = i I ZO pnwnl (29)
By substituting Egs. (27) and (28) in Eq. (26), we obtain:
Z P Yy, 1) = G(x, y,)

+p<£ [ {{ Zp"wn(xyt)wzpw (w)]}b

Comparing the coefficients of the identical powers of p on
both sides of the equation above allows us to derive the
following equations:

(30)

poil/’o(x,yrt)=6(x:y,t) (31)
1 P1:¢1(x'y,t)

=1, [t o rmw)] Y
pzilpz(x,)’: t)

(33)

= £, [ (o R eyt + Hi )|

p i n(x,y,t)

=4 [si“ {2y Rn1 G0, 0) + Ho o ] (34)

Finally, we find the solution ¥, (x,y,t) in this manner,
which can be written as:

Y,y t) =P, y,t) + Y. (x,y,0) 55)
+lzb2(x! }’; t)+l/)3(x,y, t) + .-

The following theorems have proven that the HP method is
gaining convergence towards a solution for the time-fractional
generalized biological population model equation, as well as
the accuracy estimate of the HP method. Consider an opened
and bounded domain 2 € R™, and let T be a positive constant
with 0 <T < oo. To illustrate the idea of biological
population reproduction, let us consider the equation of a
partial biological population model, for any (x,y,t) € 2 X
[0,T].

Theorem 3.1 [49]. Let ¥, (x,y,t) be the function in a
Banach space C(2 % [0,T]) = {u / u is continuous on 2 X
[0, T]} defined by Eq. (35) for any n € N. The infinite series
Yreo Wi (x,y,t) converges to the solution i of Eq. (19) if
there exists a constant 0 < u < 1 such that ¥, (x,y,t) <
U1 (x,y,t) for all n € N. Therefore, {S,}meo is a Cauchy
sequence in the Banach space C™([a, b], R). Consequently,
the solution Y, ¥, (x, v, t) converges to .

To reduce the approximate solution, we use the theorem
below.

Theorem 3.2 [49]. The maximum absolute error of the
series solution, defined in Eq. (35) is assessed as follows:

W0y, 6) - B b, 01 < (S) Igoll - (36)

4. APPLICATION OF HPLT METHOD ON TIME-
FRACTIONAL GENERALIZED BIOLOGICAL
POPULATION MODEL EQUATION

Through this section, we apply the homotopy perturbation
p —Laplace transform (HPLT) method for the solving time-
fractional generalized biological population model of Eq. (1).

4.1 The first application

Consider the equation of the time-fractional generalized
biological population model given by:

0%U%* 09%U*
ap _
KDyPU(x,y,t) —W-FW—U(l-I-hU) 37

where, 0<a<1,p>0,t=0,x,y€ER, IC: U(x,y,0) =
e[%ﬁ(xm]

By applying the LT method on both sides of Eq. (37), we
get:

LUGy, O} =~ L it

1 62U2 62 2 (38)
+S_°‘[Lp {W + 9y? -U@+ hU)}}




The inverse p —Laplace transform of Eq. (38) implies that:

ot = ol

! 92> OZUZ 39)
+L, e Lp{ EPD 6y2 -U@+ hU)}
Through simplification of Eq. (39), we obtain:
1|[h
S BGH)
UGk y,t) = o530
NE 92U%  92U2 (40)
L7 |=3Lp == —U—-hU
+ p g« P{aXZ + ay }
Now, applying the HP method, we obtain:
had 1[n
S {aCr+y)
anun(x.y,t) - i)
n=0
-1
+p (£, { Zp Ha(U) m

- Z p"Un(x,y, t)]
n=0

where, H, (U) are He’s polynomials that signify the nonlinear
terms.

Hn(U) H (UO! Ull UZ: .

n
n'ap [ Zp Un

n=0,1,2, 3

(42)

Below, we present the He polynomials, whose first

components are listed as:

62U0 0%U¢ 5
Ho(U) = —— dy? — hUj
0 (U0U1) 9%(UoUy)
H,(U) =2 7 3y 2h(UyU,)
9% (UyU. 02U? 0% (UU 02U}
Hy(U) = 2 (UyU>) i, (oz)+ 1
0x? dx? dy? dy?

— 2h(U,U,) — hU?

By calculating the coefficients of the same power of on both
sides in Eq. (41), we obtain the results below:

1 [
S5+ y)
pO: Uo(x,y. t) = 6[2\/;

LU, (x t)—L-ﬂi{Lufw) U}]
pUuix,y,t) = sa =pto 0
1 92U2  9%U2
—r, ==+

0x? dy?

_ -1
- LP sa
tP —aP\*
1] (555)
—el? NP T

— hUZ -

7(x+y)
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p%: Uy (x, %1, t)
= 2,7 [ {L,tmw) - v
1 62(U0U1)

o 25
b

e (555)

ra+1)

az(UoUl)

P |
_‘Cp az

— 2h(U,Uy)

p3:Us(x, {’ t)
= 1,7 [ S {e, ) - )]
1 0*Woly) |

5@ [L" {2 0x?

a

e (55)

rGa+1)

0%U?
L+

, 92(UyU,) . 92U2
0x2

=Lt
P ayZ ayZ

Consequently, the solutions U(x,y,t) are written in the
form:

U(x!yt t) = UO(X, Y, t) + Ul(x' Y, t) + UZ(x' Y, t)
+U;(x,y,t) + -

= e [%Jg(x*-y) e_(

Next, we end by formulating infinite sums using the Mittag-
Leffler function, the Eq. (9) becomes:
)

tP —af
IEoz,l <_( p

These solutions have shown to be consistent with the
solutions found by Devi and Jakhar [38], applying ETHP
method and operator the Riemann-Liouville fractional.
Besides, the plots of Eq. (43) are depicted in Figures 1-3, for
different values of @ = 1,0.95,0.55,0.2, p = 1,0.9,0.4,2,4,

h=2
5
Substituting into Eq. (44) for p = a = 1, a = 0, the exact
solution of classical biological population model equation is:

e[%\/g(xﬂ/) -t

In the model discussed, we performed a simulation analysis
to solve the time-fractional generalized biological population
model of Eq. (37) via HPLT. Different values of fractional
order are taken into consideration for this model such as @ =
1,0.95,0.55,0.2 for the parameters p =1,0.9,0.4,2,4 .
Figures 1-3 explain how U varies with change in fractional
order a and p time t. It evidently demonstrates that with an
increase in time t or a decrease in the value of the fractional
parameter @ and an increase in the value of the fractional
parameter p, a sharp decrease in population density occurs.

(43)

tp_ap)“
p

1 |h
Uy, t) = e[fg(“” (44)

Ux,y,t) = (45)



a=1 — =095 —
14 —p=09 14 — =09
e P04
= 2
12 —P2 —
p=4 2 ~
1,0 1.0
4 B
0,8 =08
s 3
= 5

0,4 04
0,2 02
0,0 0,0
=035 =025
1,4 —p= 14 —
— p=i9 — =59
P4 04

14 s —_ =
— =095
0,55
1,2 — =025

04
p=2
14 — o=
— =095
a=0,55
— =025
1,2
3
=
=10
= 0o
S
08
06

Figure 2. The graphs of Eq. (43) for the values of parameter a, with h = g, a=0,p=109,04,24
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,CFI o=1

Figure 3. Surface shows the behavior of solution U(x, y, t) of the first application using Eq. (43) with respect to t and x,
with (p = 2, = 0.55),(p =1, a =1),(p =4, = 0.95),(p = 0.4, = 0.25),andy = 0.5,x =t = 0,0.01,1

4.2 The second application

Consider the following generalized biological population
model

aZUZ aZUZ
CKmy %P —
t]Da U(x;y,t)— a 2 +lU (46)

0<aSl,p>0,t20xyE]R

Using LT method on both sides of Eq. (46), we obtain:

1
L,{UCx,y,0) = =%y
1 92U?  92U? 47)
—L, = u
+S“ P{ax2+ay2+ }
The inverse p —Laplace transform of Eq. (47) implies that:
Ulx,y,t) = xy

1 92U*? 6 U?
pr L, o 6 —— tw

At this time, through applying the HP method, we get:

|

+1 p"U,(x,y, t)}

48
e, (48)

Z p"Un(x,y,t) = \/xy
n=0

+p[L, ZpH(U) @9)

where, H,(U) are He’s polynomials which indicate the
nonlinear terms.

Hn(U) =H (U(), Ull U2, n)

n
n'ap [ Zp Un

0,1,2 3

(50)

Below, we present the He polynomials, whose first
components are listed as:

92U2  02UR
Hy(U) = 7 dy2
02(UpUy) | 0%(UyUy)
Hl(U) = 2 axz a 2
H,(U) = 292(U0U2)+62U12 0? (UoUz) 02U?
) =

dx? dx? dy? 6y2

By calculating the coefficients of the same power of on both
sides in Eq. (49), we obtain the results below:

p°:Uo(x,y,t) = \/x_y,
41
ph UG, 8) = £, | (£, (o) + W

1 92U2  92U2
S_aLp ax2+az+lU0

(=)
p

= lxy I(a+1)

_ -1
_['p




p2:Uy(x,y,0) = £, [sia {L (1, ) + lUl}}]

4|1 0*(UyUy) 0% (UpUy)
= £, s_a{L” {2 R +lU1}
(tp_ap)Za
_ 12 14
= NY raa T D

P UaCoy,0) = £, [ (£, () + 1]

1 02(U,U,) 02%U? 02(U,U,) 0%U?
_ -1t () 1 oUz 1
=L, Sa{LP {2 92 + 92 + 2 dy? + 3y
(tp_ap)Ba
_ 3 P
+lU2}} =1 1/xy—r(3a+1)

Consequently, the solutions U(x,y,t) can be formulated
as:

Ulx,y,t) = Ug(x,y,t) + U (x,y,t) +

(M)“ (51)
Uy(x,y,0) + Us(x,y,8) + - = Jxye

p

Next, we end by formulating infinite sums using the Mittag-
Leffler function, the Eq. (9) becomes:
)

In fact, these solutions agree with the solutions obtained by

tP —a’

(52)

U(x!y' t) = \/EEC(,I (l (

1,0.95,0.55,0.2, p = 1,0.9,0.4,2,4,1 = §
into Eq. (52) forp = a = 1, a = 0, the exact solution to the
classical generalized biological population model equation is
as follows:

By substituting

Ux,y,t) = Jxye' (53)

Similarly, in the model discussed, we conducted a
simulation analysis to solve the time-fractional generalized
biological population model of Eq. (46) via HPLT. Various
values of fractional order are taken into account for this model
such as a =1,0.95,0.55,0.2 for the parameters p =

1,0.9,04,2,4,1 = % Figures 4-6 show that the population

density increases steeply with increasing values of time ¢ and
receding values of a and increasing fractional parameter p.

4.3 The third application

Consider the following generalized biological population
model
92U? 92U
CK;]DZJPU(X, v, t) = W + W +U
0<a<1p>0t=0,x,y€ER,

with IC: U(x,y,0) = ,/sinx. sinhy.
Applying the LT method on both sides of Eq. (54), we
obtain:

(54)

L,{U(x,y,0)}

Liu et al. [34], using HP method and the Riemann-Liouville 1 1 92U%  92U? (55)
fractional integration operator. The plots of Eq. (51) are = ;w/Sinx. sinhy + 5z L, {W + 502 U }
depicted in Figures 4-6, for different values of a = Y
26 e a0.95
— p=1 2,4 — p=l1
— p=09 — p=0,9
24 — ;3 4 ﬁ‘j;”
2,2 ~ * ;I
=3 E 2,0
—2,0 - .
el 0.z 0.4 06 0.8 1,0 = 0Jo 0.2 04 06 08 1.0
= 3 [
'-j1 2 1.8
16 /// 1,6 //
1.4-I 1,4
a=0.55 a=0.25

Figure 4. The graphs of Eq. (51) for the values of parameter p, with [ = %, a=0,a=1a=095a=0.55a=0.25
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Figure 5. The graphs of Eq. (51) for the values of parameter a, with | = é, a=0,p=10904,24

FLoml

-t

207055

Ufr,1.5,1)

Figure 6. The surface shows the behavior of solution U(x, y, t) of application 2, using Eq. (51) with regard to t and x such
that (o = 2, = 0.55),(p =1, a =1),(p =4, =0.95),(p = 0.4, = 0.25),y = 1.5,x =t = 0,0.01, 1
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The inverse p —Laplace transform of Eq. (55) implies that:

U(x,y,t) = /sinx.sinhy

o N P A i (56)
ol e Y Y
At this time, using the HP method, we get
Z p"U,(x,y,t) = |/sinx.sinhy
n=0
(57)

+p £, [,V S ) +

S0P Un 3,03

where, H,(U) are He’s polynomials which represent the
nonlinear terms.

Hn(U) = Hn(UO' gll U2' U‘n)

1 0
N U,
n=0

n=0,1,2,3, ...

In this application, the first components of He polynomials
are listed below:

02(UoUy)  92UE _9%(UyUy)  9%U?
(02)+ 1_|_2 (02)+ 1

Hy(U) =2 dx? dx? dy? dy?

By calculating the coefficients of the same power of on both
sides in Eq. (57), we obtain the results below:

p°:Uy(x,y,t) = /sinx.sinhy,
11
phU(x,y,t) =L, I:S_a{Lp{HO(U) + Uo}}]
1( (9203 o*u?
bl oyt U
— )
= sinx.sinhyﬁ

1
P30 = £, | {0 ) + U
1 [ ‘ {2 0*(UgUy) , 02 (Uoly) U}H

_ -1
=L,

_ -1
=L s 0x? dy?

(tp _ ap)Z(I
_\/% P
= ,/sinx. smhyir(za D

3 -1 1

P UG8 = £, | (£, () + U3}

9*(Uply)  9%UZ  _9%(UpU,)  9°U7
(WUly) | 0°UF  0*(UoUy) | 9V}

1
=L, |=1£,12
P sa P 0x2 0x2 ayz ayz
02U 0%U}

Ho(U) = =+ — tP — aP\**
T
0%(UgU,) | _0%(UyUy) + U, tt| = /sinx. sinhy ~——-—

H,(U) =2 — +2 > rGa+1)

ox dy
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Figure 7. The graphs of Eq. (59) for the values of parameter p with,a = 0, = 1,a = 0.95,a¢ = 0.55,a = 0.25
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Consequently, the solutions U(x,y,t) can be formulated
as:

U(xl:)/! t) = UO(x!Yl t) + Ul(x!Yf t) + UZ(xfyv t)
+ Us(x,y,t) + -
tP—agP\*
5

(59)

= |[sinx.sinhy e(

Next, we end by formulating infinite sums using the Mittag-
Leffler function, the Eq. (9) becomes:

tP — aP\“*
U(x,y,t) = y/sinx.sinhyE, ; << ’ ) ) (60)

Actually, these solutions have shown to be consistent with
those found by the study by Sharma and Bairwa [39], applying
ILT method and operator the Riemann—Liouville fractional
integral. The plots of Eq. (59) are shown in Figures 7-9, for the
values of @ = 1,0.95,0.55,0.25, p =1,09,0.4,24, and
substituting into Eq. (60) for p = a =1, a =0, the exact
solution to the classical generalized, biological population
model equations is as follows:

U(x,y,t) = /sinx.sinhye’ (61)

5. DISCUSSION

A careful review and comparison lead us to the following:

In contrast to most existing studies, the present work uses
the Caputo- Katugampola derivative, a generalized operator
that unifies and combines many classical fractional derivatives
with the HPLT method. This combined approach preserves
analytical tractability and introduces greater modeling
flexibility through the parameter p, which regulates the
system’s memory dynamics. In addition, we derive exact
closed-form solutions and provide a convergence analysis that
both complements and extends previous investigations,
particularly those reported in studies [34, 38, 39].

The analytical solutions to the time-fractional generalized
biological population model, presented in Egs. (44), (52), and
(60), are obtained via the HPLT method and expressed
explicitly in terms of the parameter p. Consequently, the
population density is influenced jointly by the fractional order
a and the parameter p associated with the Katugampola
fractional derivative in the Caputo sense. Variations in these
parameters lead to observable changes in the qualitative
behavior of the population density, as detailed in the Section
4.

6. CONCLUSION

The results presented in this manuscript demonstrate the
effectiveness of applying the HPLT method using the
fractional Kabuto-Katogambola derivative to solve nonlinear
fractional partial differential equations that appear in the
spatial diffusion of a biological population model. This study
includes three examples to illustrate the reliability and
applicability of the method. Moreover, the findings indicate
that the HPLT method is both powerful and efficient in
determining exact and approximate solutions for nonlinear
fractional partial differential equations. The solutions are in
excellent agreement with those obtained through the study by
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Liu et al. [34] using the HP method, and the study by Devi and
Jakhar [38] using the ETHP method, in addition to the study
by Khuri [40] using the ILT method. Note that this method
reduces computational effort while maintaining high accuracy
of the numerical results when compared to conventional
methods. This reduction in scale leads to improved
performance of the approach.

In conclusion, the HPLT method, which incorporates the
fractional derivative of Caputo-Katugampola, can be
considered a major advancement over current numerical
methods and has great potential for a wide range of
applications.
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NOMENCLATURE

Ly

U(x,t)

r'C)

~ap

a
CKy) %P
t]Da

ADGY(x,y), t

p —Laplace transform

the population density

gamma function

fractional integration operator
Katugampola fractional derivative
Caputo type order a

derivative of 1(x, y, t) in the Caputo sense

in

Rand N linear and nonlinear differential operators
aand p order derivative

glx,t) stands for the source term

H,(uw) He’s polynomials

x,v,l,a,b,h real numbers
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