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Using the Homotopy Perturbation Laplace Transform Method (HPLTM), the objective 

of our current work is to find the analytical solution of the nonlinear fractional partial 

differential equations arising in the spatial diffusion model of biological populations. 

This is achieved by replacing the Caputo fractional derivative of the Riemann-Liouville 

model with the Catogambola fractional derivative represented in the Caputo type. 

Moreover, the homotopy perturbation transform technique integrates the Laplace 

transform with the homotopy perturbation method. In addition, the efficiency of the 

proposed method is verified through three test examples. Accordingly, the results 

obtained by applying the proposed method for different fractional orders are plotted, 

and a comparative analysis is performed between our results and those of previous 

studies.  
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1. INTRODUCTION

Fractional calculus is a fundamental branch of mathematics, 

used to calculate arbitrary derivatives and integrals. The 

proven applications of fractional differential equations in 

various scientific and technical fields have contributed to 

increasing their importance and popularity. In this respect, 

fractional derivatives may be utilized to describe nonlinear 

oscillations in signal processing, electrochemistry, 

earthquakes, electromagnetism, fluid mechanics, and in fact, 

diffusion processes. Further, a wide range of physics and 

engineering issues, including mathematical biology and 

various chemical process models are addressed using 

fractional differential equations [1-7]. Since most physical 

systems are nonlinear in nature, nonlinear problems have 

proven of great importance to mathematicians, physicists, and 

engineers. Although it is not always easy to solve nonlinear 

equations, they lead to interesting phenomena such as chaos 

and others. Furthermore, recent developments in numerical 

symbolic computing tools and computer technology in general 

have helped many scientists, whether mathematicians or 

physicists, to find numerical solutions to such equations. 

Numerous appropriate numerical and analytical techniques 

were used, like the homotopy analysis (HA) method [8, 9], 

homotopy perturbation (HP) method [10-14], residual power 

series (RPS) method [15-18], differential transform (DT) 

method [19-21], Adomian decomposition (AD) method [22-

24], and various other approaches. Nevertheless, further 

information on fractional differential equations can be found 

in references [25-27]. 

In this context, we note that the HP method, first developed 

by He [28-30] is one of the most widely applied analytical 

methods, because it directly addresses the problem without 

requiring any kind of transformation, linearization, or 

differentiation. However, the Laplace transform has shown to 

be a widely used mathematical technique for solving 

differential equations. Undoubtedly, transforms are useful in 

solving many mathematical problems, especially when 

reformulating the problem to facilitate its solution. 

Nevertheless, the inverse transformation is useful in finding a 

solution to the given problem. Furthermore, the Laplace 

transform and the AD method were combined under Caputo-

Katugampola memory [31] for the purpose of generating 

approximate solutions of the fractional Berger’s equation. As 

a consequence, numerous physical phenomena have been 

represented by means of nonlinear partial  differential 

equations, for instance, the partial differential equations 

arising from the geographic spread of biological  populations 

defined as: 

𝔻𝑡
𝐶𝐾

𝑎
𝛼,𝜌

𝑈(𝑥, 𝑦, 𝑡) =
𝜕2𝑈2

𝜕𝑥2
+

𝜕2𝑈2

𝜕𝑦2
+ 𝑓(𝑈) (1) 

where, 𝑡 ≥ 0, 𝑥, 𝑦 ∈ ℝ,  and 0 < 𝛼 ≤ 1, 𝜌 ∈ ℝ+.
Based on initial condition 𝑈(𝑥, 𝑦, 0) = 𝜓0(𝑥, 𝑦), where 𝑈

denotes the population density and 𝔻𝑡
𝐶𝐾

𝑎
𝛼,𝜌

=
𝑑𝛼

𝑑𝑡𝛼

Katugampola fractional derivative in Caputo type order α and 
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𝑓(𝑈) = 𝑙𝑈𝑎(1 − ℎ𝑈𝑏) represents the population supply due 

to births and deaths, where, 𝑙, 𝑎, ℎ, 𝑏 are real numbers, then Eq. 

(1) leads to Malthusian and Verhulst laws [32]. Specifically, 

for 𝛼 = 1, the generalized time-fractional biological 

population model equation reduces to the classical generalized 

biological population model equation. 

Definitely, the fractional biological equations may be 

resolved using a variety of techniques, including the HA 

method [33] along with the HP method [34]. For use, nonlinear 

problems have been solved using the optimum homotopy 

analysis (OHA) technique [35] and the generalized Laplace 

homotopy perturbation (GLHP) method under Caputo-

Katugampola memory to solve fractional Burger equation and 

fractional Schrodinger-KdV equation [36]. Inclusive of the 

HAT method, which stands for a combination of the Laplace 

transform (LT) and HA methods, for solving the generalized 

biological population  models [37]. Additionally, the Elzaki 

transform homotopy perturbation (ETHP) represents a 

combination of the HP and Elzaki  transform (ET) methods 

[38]. Likewise, AD method is presented for finding purpose of 

the exact solutions of more general  biological population 

models [1]. The solution of some  biological population 

models of non-integer order, a novel technique identified as 

iterative Laplace  transform (ILT) has been used [39]. In 

addition, generalized fractional  biological population model 

has been solved by using ILT method [40]. However, due to 

the challenges posed by nonlinear variables, a number of 

strategies have been applied; including the numerical Laplace 

transform approach for the approximate solution of a class of 

nonlinear  differential equations based on the decomposition 

method [41]. The variational iteration method and Adomian 

decomposition method have been used to solve the nonlinear 

partial differential equations arising in the biological 

populations [42]. The q-homotopy analysis generalized 

transforms method (q-HAGTM) and generalized Laplace 

decomposition (GLD) method by substituting the time 

derivative with the  Katugampola fractional [43], the Sumudu 

decomposition (SD) method [44], and the homotopy 

perturbation Sumudu  transform (HPST) method [45] have 

recently been put forth to address such nonlinearities. In light 

of which, these approaches have resulted in highly efficient 

methods for handling a wide range of nonlinear problems. 

In this study, we apply the Caputo-Katugampola fractional 

derivative for application purpose of the homotopy  

perturbation 𝜌 −Laplace transform (HPLT) method in order to 

obtain the numerical and analytical solutions of the fractional 

biological  population models. Besides, the HPLT method is 

the LTHP method, which represents a combined form of the 

LT and HP methods. The numerical results are then displayed 

through illustrations. The answer is given by the suggested 

methods in a rapidly converging series, which might 

eventually lead to an exact and approximate solution. On the 

other hand, these techniques have the benefit of combining 

two effective approaches for provision purpose of both precise 

and approximate solutions for nonlinear equations.  

The manuscript's structure is as follows: Section 2 covers 

the basic concepts related to the  Caputo-Katugampola 

fractional derivative and the ρ-Laplace transform, which are 

relevant to the problems under discussion. Section 3 explains 

the HPLT approach to deriving solutions to the fractional-time 

biological  population model. Section 3 is devoted to applying 

our approach to time-fractional  biological population  models 

to verify the accuracy and effectiveness of these models. In 

this context, we present the results through numerical and 

graphical  analyses. We end this study with some concluding 

remarks in Section 5. 

 

 

2. PRELIMINARIES  

 

This section  examines the primary definitions and 

properties of fractional  calculus theory, which have been 

utilized throughout this paper. 

Definition 2.1 [46]. Let 𝛼 ∈ ℂ, 𝜌 ∈ ℝ+, 𝑎 < 𝑡 < 𝑏,  and 

consider a finite (or infinite) interval on  the positive half-axis 
(0 < 𝑎 < 𝑏 < ∞) , within the real numbers  ℝ+ . The 

Katugampola fractional integrals of order 𝛼 are defined by: 

 

ℑ𝑎
𝛼;𝜌

𝜓(𝑡) =
1

𝛤(𝛼)
∫ (

𝑡𝜌 − 𝑥𝜌

𝜌
)

𝛼−1𝑡

𝑎

𝜓(𝑥)
𝑑𝑥

𝑥1−𝛼
 (2) 

 

ℑ𝑏
𝛼;𝜌

𝜓(𝑡) =
1

𝛤(𝛼)
∫ (

𝑥𝜌 − 𝑡𝜌

𝜌
)

𝛼−1𝑏

𝑡

𝜓(𝑥)
𝑑𝑥

𝑥1−𝛼
 (3) 

 

The Caputo-type modification  of left-sided and right-sided 

Katugampola fractional derivative is given by: 

Theorem 2.1 [47]. Let  ℜ(𝛼) ≥ 0, 𝑛 = [ℜ(𝛼)] + 1 , and 

consider (0 < 𝑎 < 𝑏 < ∞).  If 𝜓 ∈ 𝐴𝐶𝛿
𝑛([𝑎, 𝑏]) , where 

𝐴𝐶[𝑎, 𝑏]  represents the spaces of absolutely  continuous 

functions on [a, b], such that 

 

𝐴𝐶𝛿
𝑛([𝑎, 𝑏]) = {𝑔: [𝑎, 𝑏] → ℂ: 𝛿𝑛−1𝑔(𝑥) ∈ 𝐴𝐶[𝑎, 𝑏], 𝛿 = 𝑥1−𝜌

𝑑

𝑥
} 

 

Then, 𝔻𝑡
𝐾

𝑎
𝛼,𝜌

𝜓(𝑡) and 𝔻𝑡
𝐾

𝑏
𝛼,𝜌

𝜓(𝑡) exists in [a, b], and 

 

𝔻𝑡
𝐾

𝑎
𝛼,𝜌

𝜓(𝑡) = (𝛿)𝑛ℑ𝑎
𝑛−𝛼;𝜌

𝜓(𝑡) 

=  
(𝛿)𝑛

𝛤(𝑛 − 𝛼)
∫ (

𝑡𝜌 − 𝑥𝜌

𝜌
)

𝑛−𝛼−1𝑡

𝑎

𝜓(𝑥)
𝑑𝑥

𝑥1−𝜌
 

(4a) 

 

𝔻𝑡
𝐾

𝑏
𝛼,𝜌

𝜓(𝑡) = (−𝛿)𝑛ℑ𝑏
𝑛−𝛼;𝜌

𝜓(𝑡)

=  
(−𝛿)𝑛

𝛤(𝑛 − 𝛼)
∫ (

𝑥𝜌 − 𝑡𝜌

𝜌
)

𝑛−𝛼−1𝑏

𝑡

𝜓(𝑥)
𝑑𝑥

𝑥1−𝜌
 

(4b) 

 

Theorem 2.2 [47]. The Caputo-type fractional derivatives, 

both left and right-sided, with complex orderα, ℜ(α) ≥ 0 and 

𝜌 belonging to the set of positive real numbers, are provided 

as follows, respectively: 

 

𝔻𝑡
𝐶𝐾

𝑎
𝛼,𝜌

𝜓(𝑡) = ℑ𝑎
𝑛−𝛼;𝜌(𝛿)𝑛𝜓(𝑡)

=  
1

𝛤(𝑛 − 𝛼)
∫ (

𝑡𝜌 − 𝑥𝜌

𝜌
)

𝑛−𝛼−1

(𝛿)𝑛
𝑡

𝑎

𝜓(𝑥)
𝑑𝑥

𝑥1−𝜌
 

(5) 

 

𝔻𝑡
𝐶𝐾

𝑏
𝛼,𝜌

𝜓(𝑡) = ℑ𝑏
𝑛−𝛼;𝜌(−𝛿)𝑛𝜓(𝑡)

=  
1

𝛤(𝑛 − 𝛼)
∫ (

𝑥𝜌 − 𝑡𝜌

𝜌
)

𝑛−𝛼−1

(−𝛿)𝑛
𝑏

𝑡

𝜓(𝑥)
𝑑𝑥

𝑥1−𝜌
 

(6) 

 

Here, 𝛿 = 𝑡1−𝜌 𝑑

𝑡
 and ρ > 0.  

In particular, for 𝜌 = 1  and for 𝜌 → 0+,  we obtain the 

Riemman-Liouville  fractional derivative and the  Hadamard 

fractional derivative, respectively. 

Theorem 2.3 [47]. Let 𝜓 ∈ 𝐶([𝑎, 𝑏]), 𝛼 > 𝛽 > 0 and 𝜌 >
0, 𝑎 < 𝑡 < 𝑏, then 

 

𝔻𝑎+
𝛼

𝑡
𝐾 ℑ𝑎+

𝛼 𝜓(𝑡) = 𝜓(𝑡) (7) 
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As shown below, the Katugampola  fractional derivative 

does not act as the true inverse of the  Katugampola fractional 

integral. 

Theorem 2.4 [47]. Let ℑ𝑎+
𝑛−𝛼𝜓 ∈ 𝐴𝐶𝑛([𝑎, 𝑏]), and 𝑛 − 1 <

𝛼 ≤ 𝑛, 𝜌 > 0, 𝑛 ∈ ℕ, then  

 

ℑ𝑎+
𝛼,𝜌

𝔻𝑡
𝐾

𝑎
𝛼,𝜌

𝜓(𝑡) = 𝜓(𝑡) − ∑ 𝑐𝑘 (
𝑡𝜌 − 𝑎𝜌

𝜌
)

𝑘−𝑛+𝛼

 

𝑛−1

𝑘=0

 (8) 

 

with 𝑐𝑘 are real constants. 

Definition 2.2 [47]. Let  𝛼, 𝑚 > 0 . The one-parameter 

Mittag-Leffler function has the power series representation: 

 

𝛦𝛼,𝑚(𝑡) = ∑
𝑡𝑚

𝛤(𝑚𝛼 + 1)

∞

𝑚=0

 (9) 

 

with 𝛤(. ) is gamma function. 

Definition 2.3 [48]. The 𝜌 − Laplace  transform of the 

function 𝜓 is given by: 

 

𝐺(𝑠) = ℒ𝜌[𝜓(𝑡)] = ∫ 𝑒
−𝑠

𝑡𝜌

𝜌 𝜓(𝑡)
𝑑𝑡

𝑡1−𝜌 ,
+∞

0
𝜌 > 0  (10) 

 

where, 𝜓: [0, ∞) → ℝ is a real valued function. 

The inverse modified 𝜌 −Laplace transform is given by: 

 

𝜓(𝑡) = ℒ𝜌
−1[𝐺(𝑠)] =

1

2𝜋𝑖
∫ 𝑒

−𝑠
𝑡𝜌

𝜌 𝐺(𝑠)
𝑑𝑠

𝑠

𝑐+𝑖∞

𝑐−𝑖∞

 (11) 

 

where, 𝑐 = ℜ(𝑠), 𝑡 ∈ (𝑎, ∞), 𝑎 > 0. 
Theorem 2.5 [48]. Let the function 𝜓 be continuous and of 

exponential  order 𝑒
−𝑐

𝑡𝜌

𝜌  such that 𝛿𝜓(𝑡) has shown to be 

piecewise continuous  over every single finite interval [0, t], 

subsequently, 𝜌 −Laplace transform of 𝛿𝜓(𝑡) exists for 𝑠 >
𝑐, and 

 

ℒ𝜌[𝛿𝜓(𝑡)](𝑠) = 𝑠ℒ𝜌[𝜓(𝑡)](𝑠) × 𝜓(0)  (12) 

 

Definition 2.4 [48].  The 𝜌 − Convolution of 𝜓  and 𝑔  is 

given by: 

 

𝜓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝜓 ((𝑡𝜌 − 𝑠𝜌)
1
𝜌) 𝑔(𝑠)

𝑑𝑠

𝑠1−𝜌

𝑡

0

 (13) 

 

Theorem 2.6 [48]. (𝜌 −Convolution theorem) 

 
ℒ𝜌{𝜓(𝑡) ∗ 𝑔(𝑡)} = ℒ𝜌[𝜓(𝑡), 𝑠]ℒ𝜌[𝑔(𝑡), 𝑠] = 𝐹(𝑠)𝐺(𝑠) (14) 

 

which equivalently to 

 

ℒ𝜌
−1{𝐹(𝑠)𝐺(𝑠), 𝑡} = 𝜓(𝑡) ∗ 𝑔(𝑡) (15) 

 

Theorem 2.7 [48]. Let  α >  0  and 𝜓  be a piecewise 

continuous  function on [0, t] and of 𝜌 − exponential 

order 𝑒
−𝑐

𝑡𝜌

𝜌 . Then 

 

ℒ𝜌{ℑ𝑎
𝛼;𝜌

𝜓(𝑡), 𝑠} =
ℒ𝜌[𝜓(𝑡)]

𝑠𝛼
, 𝑠 > 𝑐 (16) 

 

Theorem 2.8 [48]. Let 𝛼 > 0 and 𝜓 ∈ 𝐴𝐶𝛿
𝑛−1[0, 𝑎] for any 

𝑎 > 0,  and 𝛿𝑘𝜓, 𝑘 = 0,1,2, … , 𝑛 − 1 be of  𝜌 - exponential 

order 𝑒
−𝑐

𝑡𝜌

𝜌 . Then  

 

ℒ𝜌{( 𝔻𝑡
𝐶

𝑎
𝛼,𝜌

𝜓(𝑡), 𝑠)} 

= 𝑠𝛼 {ℒ𝜌{𝜓(𝑡)} − ∑ 𝑠−𝑘−1

𝑛−1

𝑘=0

(𝛿𝑘𝜓)(0)} 
(17) 

 

where, 𝑠 > 𝑐.  
The 𝜌 − Laplace  transform of the derived Caputo-

Catogambula  fraction is obtained using the 𝜌 − Laplace 

transform on both sides of Eq. (5) as follows: 

 

ℒ𝜌{( 𝔻𝑡
𝐶𝐾

𝑎
𝛼,𝜌

𝜓(𝑡), 𝑠)} 

=𝑠𝛼 {ℒ𝜌{𝜓(𝑡)}} − ∑ 𝑠𝛼−𝑘−1𝑛−1
𝑘=0 (𝛿𝑘𝜓)(0) 

(18) 

 

Lemma 1 [48, 49]. ℜ(𝛼) > 0 and |
𝜆

𝑠𝛼| < 1, the 𝜌 −Laplace 

transform of some special functions are:  

(a) ℒ𝜌{1} =
1

𝑠
, 𝑠 > 0. 

(b) ℒ𝜌{𝑡𝛼} =
𝛤(𝛼+1)

𝑠𝛼+1 . 

(c) ℒρ {Eα (λ (
tρ

ρ
)

α

)} =
sα−1

(sα−λ)
. 

(d) ℒρ {(
tρ

ρ
)

α−1

Eα,α (λ (
tρ

ρ
)

α

)} =
1

(sα−λ)
. 

 
 

3. EXPLANATIONS OF THE HPLT METHOD  

 

To illustrate the concept of the HPLT method, we consider 

the  following non-homogeneous fractional-order  nonlinear 

partial differential equation with its initial condition. 

 

𝔻𝑡
𝐶𝐾

0
𝛼,𝜌

𝜓(𝑥, 𝑦, 𝑡) + 𝑅𝜓(𝑥, 𝑦, 𝑡) + 𝑁𝜓(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦, 𝑡) (19) 

 

such that 0 < 𝛼 ≤ 1, 
 

𝜓(𝑥, 𝑦, 0) = ℎ(𝑥, 𝑦) (20) 

 

where, 𝔻0
𝛼

𝑡
𝐶𝐾 𝜓(𝑥, 𝑦, 𝑡)  is the derivative  of 𝜓(𝑥, 𝑦, 𝑡)  in the 

Caputo sense, where, R and N denote  linear and nonlinear 

differential  operators, respectively, and 𝑔(𝑥, 𝑦, 𝑡)  represents 

the source term. Additionally, when applying the LT method 

to both sides of Eq. (19), we get: 
 

ℒ𝜌{ 𝔻𝑡
𝐶𝐾

𝑎
𝛼,𝜌

𝜓(𝑥, , 𝑦, 𝑡) + 𝑅𝜓(𝑥, 𝑦, 𝑡) + 𝑁𝜓(𝑥, 𝑦, 𝑡)} 

               = ℒ𝜌{𝑔(𝑥, 𝑦, 𝑡)} 
(21) 

 

ℒ𝜌{ 𝔻𝑡
𝐶𝐾

𝑎
𝛼,𝜌

𝜓(𝑥, , 𝑦, 𝑡)}

= ℒ𝜌{−𝑅𝜓(𝑥, 𝑦, 𝑡) − 𝑁𝜓(𝑥, 𝑦, 𝑡)}

+ ℒ𝜌{𝑔(𝑥, 𝑦, 𝑡)} 

(22) 

 

Now, by using the differential  property of the 𝜌 −Laplace 

transform of the fractional derivative, we obtain: 
 

ℒ𝜌{ 𝔻𝑡
𝐶𝐾

𝑎
𝛼,𝜌

𝜓(𝑥, 𝑦, 𝑡)} 

= 𝑠𝛼 {ℒ𝜌{𝜓(𝑡)}} − ∑ 𝑠𝛼−𝑘−1

𝑛−1

𝑘=0

(𝛿𝑘𝜓)(0) 

= ℒ𝜌{−𝑅𝜓(𝑥, 𝑦, 𝑡) − 𝑁𝜓(𝑥, 𝑦, 𝑡)} + ℒ𝜌{𝑔(𝑥, 𝑦, 𝑡)} 

(23) 

 

By simplifying Eq. (23), then 
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ℒ𝜌{𝜓(𝑥, 𝑦, 𝑡)} = ∑ 𝑠−𝑘−1

𝑛−1

𝑘=0

(𝛿𝑘𝜓)(0) + 

1

𝑠𝛼 {ℒ𝜌{𝑔(𝑥, 𝑦, 𝑡)} − ℒ𝜌{𝑅𝜓(𝑥, 𝑦, 𝑡) + 𝑁𝜓(𝑥, 𝑦, 𝑡)}} 

(24) 

 

By using the inverse 𝜌 −Laplace  transform on both sides in 

Eq. (24), we find: 

 

𝜓(𝑥, 𝑦, 𝑡) = 𝐺(𝑥, 𝑦, 𝑡) − 

ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌{𝑅𝜓(𝑥, 𝑦, 𝑡) + 𝑁𝜓(𝑥, 𝑦, 𝑡)}}] 

(25) 

 

where, G(𝑥, 𝑦, 𝑡)  denotes the term  derived from the initial 

condition and source term. 

By applying the HP method to Eq. (25), we get: 

 

𝜓(𝑥, 𝑦, 𝑡) = 𝐺(𝑥, 𝑦, 𝑡)

+  𝑝 (ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌{𝑅𝜓(𝑥, 𝑦, 𝑡)

+ 𝑁𝜓(𝑥, 𝑦, 𝑡)}}]) 

(26) 

 

The homotopy parameter 𝑝 is utilized to extend the solution 

as:  

 

𝜓(𝑥, 𝑦, 𝑡) = ∑ 𝑝𝑛𝜓𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

 (27) 

 

The nonlinear term is analysed as: 

 

𝑁𝜓(𝑥, 𝑦, 𝑡) = ∑ 𝑝𝑛𝐻𝑛(𝜓)

∞

𝑛=0

 (28) 

 

where, 𝐻𝑛(𝜓) is He’s polynomials which is given by: 

 

𝐻𝑛(𝜓0, 𝜓1, 𝜓2, … 𝜓𝑛) =
1

𝑛!

𝜕

𝜕𝑝𝑛
[𝑁 ∑ 𝑝𝑛𝜓𝑛

∞

𝑛=0

] (29) 

 

By substituting Eqs. (27) and (28) in Eq. (26), we obtain:  

 

∑ 𝑝𝑛𝜓𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

= 𝐺(𝑥, 𝑦, 𝑡) 

+𝑝 (ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌 {𝑅 ∑ 𝑝𝑛𝜓𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

+ 𝑁 ∑ 𝑝𝑛𝐻𝑛(𝜓)

∞

𝑛=0

}}]) 

(30) 

 

Comparing the  coefficients of the identical powers of p on 

both sides of the  equation above allows us to derive the 

following equations: 

 

𝑝0: 𝜓0(𝑥, 𝑦, 𝑡) = 𝐺(𝑥, 𝑦, 𝑡) (31) 

 

𝑝1: 𝜓1(𝑥, 𝑦, 𝑡) 

= ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌{𝑅𝜓0(𝑥, 𝑦, 𝑡) + 𝐻0(𝜓)}}] 

(32) 

 

𝑝2: 𝜓2(𝑥, 𝑦, 𝑡) 

= ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌{𝑅𝜓1(𝑥, 𝑦, 𝑡) + 𝐻1(𝜓)}}] 

(33) 

 

  ⋮           ⋮ 

𝑝𝑛: 𝜓𝑛(𝑥, 𝑦, 𝑡) 

= ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌{𝑅𝜓𝑛−1(𝑥, 𝑦, 𝑡) + 𝐻𝑛−1(𝜓)}}] 

(34) 

 

Finally, we find the solution 𝜓𝑛(𝑥, 𝑦, 𝑡)  in this manner, 

which can be written as: 

 

𝜓(𝑥, 𝑦, 𝑡) = 𝜓0(𝑥, 𝑦, 𝑡) + 𝜓1(𝑥, 𝑦, 𝑡) 

+𝜓2(𝑥, 𝑦, 𝑡)+𝜓3(𝑥, 𝑦, 𝑡) + ⋯ 
(35) 

 

The following theorems have proven that the HP method is 

gaining convergence towards a solution for the time-fractional 

generalized  biological population model equation, as well as 

the accuracy estimate of the HP method. Consider an opened 

and  bounded domain 𝛺 ∈ ℝ𝑛, and let T be a positive  constant 

with 0 < 𝑇 ≤ ∞. To illustrate the idea of biological 

population reproduction, let us consider the equation of a 

partial biological population model, for any  (𝑥, 𝑦, 𝑡) ∈ 𝛺 ×
[0, 𝑇].  

Theorem 3.1 [49]. Let  𝜓𝑛(𝑥, 𝑦, 𝑡) be the function in a 

Banach space 𝐶(𝛺 × [0, 𝑇]) = {𝑢 / 𝑢 is continuous on 𝛺 ×
[0, 𝑇]} defined by Eq. (35) for any 𝑛 ∈ ℕ. The infinite series 

∑ 𝜓𝑘(𝑥, 𝑦, 𝑡)∞
𝑘=0  converges to  the solution 𝜓  of Eq. (19) if 

there exists a  constant 0 < 𝜇 < 1 such that 𝜓𝑛(𝑥, 𝑦, 𝑡) ≤
𝜇𝜓𝑛−1(𝑥, 𝑦, 𝑡) for all 𝑛 ∈ ℕ. Therefore, {𝑆𝑛}𝑛=0

∞  is a Cauchy 

sequence in the  Banach space  𝐶𝑛([𝑎, 𝑏], ℝ). Consequently, 

the solution ∑ 𝜓𝑘(𝑥, 𝑦, 𝑡)∞
𝑘=0  converges to 𝜓.  

To reduce the approximate solution, we use the theorem 

below. 

Theorem 3.2 [49]. The maximum absolute error of the 

series solution, defined in Eq. (35) is assessed as follows: 

 

|𝜓(𝑥, 𝑦, 𝑡) − ∑ 𝜓𝑘(𝑥, 𝑦, 𝑡)∞
𝑘=0 | ≤ (

𝜇𝑚+1

1−𝜇
) ‖𝜓0‖  (36) 

 

 

4. APPLICATION OF HPLT METHOD ON TIME-

FRACTIONAL GENERALIZED BIOLOGICAL 

POPULATION MODEL EQUATION  

 

Through this section, we apply the homotopy  perturbation 

𝜌 −Laplace transform (HPLT) method for the solving time-

fractional generalized biological population model of Eq. (1). 

 

4.1 The first application  

 

Consider the equation of the time-fractional  generalized 

biological population model given by: 

 

𝔻𝑡
𝐶𝐾

𝑎
𝛼,𝜌

𝑈(𝑥, 𝑦, 𝑡) =
𝜕2𝑈2

𝜕𝑥2
+

𝜕2𝑈2

𝜕𝑦2
− 𝑈(1 + ℎ𝑈) (37) 

 

where, 0 < α ≤ 1, 𝜌 > 0, 𝑡 ≥ 0, 𝑥, 𝑦 ∈ ℝ, IC:  𝑈(𝑥, 𝑦, 0) =

𝑒
[

1

2
√

ℎ

2
(𝑥+𝑦)]

. 
By applying the LT method on both sides of Eq. (37), we 

get: 

 

ℒρ{𝑈(𝑥, 𝑦, 𝑡)} =
1

s
e

[
1
2

√h
2

(x+y)]
 

+
1

sα
{ℒρ {

∂2U2

∂x2
+

∂2U2

∂y2
− U(1 + hU)}}  

(38) 
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The inverse 𝜌 −Laplace transform of Eq. (38) implies that: 
 

𝑈(𝑥, 𝑦, 𝑡) = 𝑒
[
1
2

√ℎ
2

(𝑥+𝑦)]
 

+ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌 {

𝜕2𝑈2

𝜕𝑥2
+

𝜕2𝑈2

𝜕𝑦2
− 𝑈(1 + ℎ𝑈)}}] 

(39) 

 

Through simplification of Eq. (39), we obtain: 

 

U(x, y, t) = e
[
1
2

√h
2

(x+y)]
 

+ℒρ
−1 [

1

sα
{ℒρ {

∂2U2

∂x2
+

∂2U2

∂y2
− U − hU2}}] 

(40) 

 

Now, applying the HP method, we obtain: 

 

∑ 𝑝𝑛𝑈𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

= 𝑒
[
1
2

√ℎ
2

(𝑥+𝑦)]
 

+𝑝 [ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌 {𝑁 ∑ 𝑝𝑛𝐻𝑛(𝑈)

∞

𝑛=0

− ∑ 𝑝𝑛𝑈𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

}}]] 

(41) 

 

where, 𝐻𝑛(𝑈) are He’s polynomials  that signify the nonlinear 

terms. 

 

𝐻𝑛(𝑈) = 𝐻𝑛(𝑈0, 𝑈1, 𝑈2, … 𝑈𝑛)

=
1

𝑛!

𝜕

𝜕𝑝𝑛
[𝑁 ∑ 𝑝𝑛𝑈𝑛

∞

𝑛=0

] 

n = 0, 1, 2, 3, ... 

(42) 

 

Below, we present the He  polynomials, whose first 

components are listed as: 

 

𝐻0(𝑈) =
𝜕2𝑈0

2

𝜕𝑥2
+

𝜕2𝑈0
2

𝜕𝑦2
− ℎ𝑈0

2 

𝐻1(𝑈) = 2
𝜕2(𝑈0𝑈1)

𝜕𝑥2
+ 2

𝜕2(𝑈0𝑈1)

𝜕𝑦2
− 2ℎ(𝑈0𝑈1) 

𝐻2(𝑈) = 2
𝜕2(𝑈0𝑈2)

𝜕𝑥2
+

𝜕2𝑈1
2

𝜕𝑥2
+ 2

𝜕2(𝑈0𝑈2)

𝜕𝑦2
+

𝜕2𝑈1
2

𝜕𝑦2

− 2ℎ(𝑈0𝑈2) − ℎ𝑈1
2 

 

  ⋮           ⋮ 
 

By calculating the coefficients of the same power of on both 

sides in Eq. (41), we obtain the results below: 

 

𝑝0: 𝑈0(𝑥, 𝑦, 𝑡) = 𝑒
[
1
2

√ℎ
2

(𝑥+𝑦)]
 

𝑝1: 𝑈1(𝑥, 𝑦, 𝑡) = ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌{𝐻0(𝑈) − 𝑈0}}] 

= ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌 {

𝜕2𝑈0
2

𝜕𝑥2
+

𝜕2𝑈0
2

𝜕𝑦2
− ℎ𝑈0

2 − 𝑈0}}] 

= −𝑒
[
1
2

√ℎ
2

(𝑥+𝑦)] (
𝑡𝜌 − 𝑎𝜌

𝜌
)

𝛼

𝛤(𝛼 + 1)
 

𝑝2: 𝑈2(𝑥, 𝑦, 𝑡) 

= ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌{𝐻1(𝑈) − 𝑈1}}] 

= ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌 {2

𝜕2(𝑈0𝑈1)

𝜕𝑥2
+ 2

𝜕2(𝑈0𝑈1)

𝜕𝑦2
− 2ℎ(𝑈0𝑈1)

− 𝑈1}}] 

= 𝑒
[
1
2

√ℎ
2

(𝑥+𝑦)]
(

𝑡𝜌 − 𝑎𝜌

𝜌
)

2𝛼

𝛤(2𝛼 + 1)
 

 

𝑝3: 𝑈3(𝑥, 𝑦, 𝑡) 

= ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌{𝐻2(𝑈) − 𝑈2}}] 

= ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌 {2

𝜕2(𝑈0𝑈2)

𝜕𝑥2
+

𝜕2𝑈1
2

𝜕𝑥2
+ 2

𝜕2(𝑈0𝑈2)

𝜕𝑦2
+

𝜕2𝑈1
2

𝜕𝑦2

− 2ℎ(𝑈0𝑈2) − ℎ𝑈1
2 − 𝑈2}}] 

= −𝑒
[
1
2

√ℎ
2

(𝑥+𝑦)] (
𝑡𝜌  − 𝑎𝜌

𝜌
)

3𝛼

𝛤(3𝛼 + 1)
 

 

Consequently, the solutions 𝑈(𝑥, 𝑦, 𝑡)  are written in the 

form: 

 

𝑈(𝑥, 𝑦, 𝑡) = 𝑈0(𝑥, 𝑦, 𝑡) + 𝑈1(𝑥, 𝑦, 𝑡) + 𝑈2(𝑥, 𝑦, 𝑡) 

                     +𝑈3(𝑥, 𝑦, 𝑡) + ⋯ 

                     = 𝑒
[
1
2

√ℎ
2

(𝑥+𝑦)]
𝑒

−(
𝑡𝜌−𝑎𝜌

𝜌
)

𝛼

 

(43) 

 

Next, we end by formulating  infinite sums using the Mittag-

Leffler function, the Eq. (9) becomes: 

 

𝑈(𝑥, 𝑦, 𝑡) = 𝑒
[
1
2

√ℎ
2

(𝑥+𝑦)]
𝔼𝛼,1 (− (

𝑡𝜌 − 𝑎𝜌

𝜌
)

𝛼

) (44) 

 

These solutions have shown to be consistent with the 

solutions found  by Devi and Jakhar [38], applying ETHP 

method and operator the Riemann–Liouville  fractional. 

Besides, the plots of Eq. (43) are depicted in Figures 1-3, for 

different values of 𝛼 = 1, 0.95, 0.55, 0.2, 𝜌 = 1,0.9,0.4,2,4,

ℎ =
8

9
. 

Substituting into Eq. (44) for 𝜌 = 𝛼 = 1, 𝑎 = 0, the exact 

solution of classical biological population model equation is: 

 

𝑈(𝑥, 𝑦, 𝑡) = 𝑒
[
1
2

√ℎ
2

(𝑥+𝑦)]−𝑡
 

(45) 

 

In the model discussed, we performed a simulation analysis 

to solve the time-fractional generalized biological population 

model of Eq. (37) via HPLT. Different values of fractional 

order are taken  into consideration for this model such as 𝛼 =
1, 0.95, 0.55, 0.2  for the parameters 𝜌 = 1, 0.9, 0.4, 2, 4 . 

Figures 1-3 explain how 𝑈 varies with change in fractional 

order 𝛼 and 𝜌 time 𝑡. It evidently demonstrates that with an 

increase in time 𝑡 or a decrease in the value of the fractional 

parameter 𝛼  and an increase in the value of the fractional 

parameter 𝜌, a sharp decrease in population density occurs. 
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Figure 1. The graphs of Eq. (43) for the values of parameter 𝜌, with ℎ =
8

9
, 𝑎 = 0, 𝛼 = 1, 0.95, 0.55, 0.25 

 

 
 

Figure 2. The graphs of Eq. (43) for the values of parameter 𝛼, with ℎ =
8

9
, 𝑎 = 0, 𝜌 = 1, 0.9, 0.4, 2, 4 
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Figure 3. Surface shows the behavior of solution 𝑈(𝑥, 𝑦, 𝑡) of the first  application using Eq. (43) with respect to 𝑡 and 𝑥, 

with (𝜌 = 2, 𝛼 = 0.55), (𝜌 = 1, 𝛼 = 1), (𝜌 = 4, 𝛼 = 0.95), (𝜌 = 0.4, 𝛼 = 0.25), and 𝑦 = 0.5, 𝑥 = 𝑡 = 0, 0.01, 1 
 

4.2 The second application 
 

Consider the following  generalized biological population 

model 

 

𝔻𝑡
𝐶𝐾

𝑎
𝛼,𝜌

𝑈(𝑥, 𝑦, 𝑡) =
𝜕2𝑈2

𝜕𝑥2
+

𝜕2𝑈2

𝜕𝑦2
+ 𝑙𝑈 

0 < 𝛼 ≤ 1, 𝜌 > 0, 𝑡 ≥ 0, 𝑥, 𝑦 ∈ ℝ 

(46) 

 

Using LT method on both sides of Eq. (46), we obtain: 
 

ℒ𝜌{𝑈(𝑥, 𝑦, 𝑡)} =
1

𝑠
√𝑥𝑦 

+
1

𝑠𝛼
{ℒ𝜌 {

𝜕2𝑈2

𝜕𝑥2
+

𝜕2𝑈2

𝜕𝑦2
+ 𝑙𝑈}} 

(47) 

 

The inverse 𝜌 −Laplace transform of Eq. (47) implies that: 
 

𝑈(𝑥, 𝑦, 𝑡) = √𝑥𝑦 

+ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌 {

𝜕2𝑈2

𝜕𝑥2
+

𝜕2𝑈2

𝜕𝑦2
+ 𝑙𝑈}}] 

(48) 

 

At this time, through applying the HP method, we get: 
 

∑ 𝑝𝑛𝑈𝑛(𝑥, 𝑦, 𝑡) = √𝑥𝑦

∞

𝑛=0

+ 𝑝 [ℒ𝜌
−1 [

1

𝑠𝛼 {ℒ𝜌 {𝑁 ∑ 𝑝𝑛𝐻𝑛(𝑈)

∞

𝑛=0

+ 𝑙 ∑ 𝑝𝑛𝑈𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

}}]] 

(49) 

where, 𝐻𝑛(𝑈) are He’s polynomials  which indicate the 

nonlinear terms. 

 

𝐻𝑛(𝑈) = 𝐻𝑛(𝑈0, 𝑈1, 𝑈2, … 𝑈𝑛) 

=
1

𝑛!

𝜕

𝜕𝑝𝑛
[𝑁 ∑ 𝑝𝑛𝑈𝑛

∞

𝑛=0

] 

n = 0, 1, 2, 3, ... 

(50) 

 

Below, we present the He  polynomials, whose first 

components are listed as: 
 

𝐻0(𝑈) =
𝜕2𝑈0

2

𝜕𝑥2
+

𝜕2𝑈0
2

𝜕𝑦2
 

𝐻1(𝑈) = 2
𝜕2(𝑈0𝑈1)

𝜕𝑥2
+ 2

𝜕2(𝑈0𝑈1)

𝜕𝑦2
 

𝐻2(𝑈) = 2
𝜕2(𝑈0𝑈2)

𝜕𝑥2
+

𝜕2𝑈1
2

𝜕𝑥2
+ 2

𝜕2(𝑈0𝑈2)

𝜕𝑦2
+

𝜕2𝑈1
2

𝜕𝑦2
 

 

  ⋮           ⋮ 
 

By calculating the  coefficients of the same  power of on both 

sides in Eq. (49), we obtain the results below: 
 

𝑝0: 𝑈0(𝑥, 𝑦, 𝑡) = √𝑥𝑦, 

𝑝1: 𝑈1(𝑥, 𝑦, 𝑡) = ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌{𝐻0(𝑈) + 𝑙𝑈0}}] 

= ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌 {

𝜕2𝑈0
2

𝜕𝑥2
+

𝜕2𝑈0
2

𝜕𝑦2
+ 𝑙𝑈0}}] 

= 𝑙√𝑥𝑦
(

𝑡𝜌 − 𝑎𝜌

𝜌
)

𝛼

𝛤(𝛼 + 1)
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𝑝2: 𝑈2(𝑥, 𝑦, 𝑡) = ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌{𝐻1(𝑈) + 𝑙𝑈1}}] 

= ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌 {2

𝜕2(𝑈0𝑈1)

𝜕𝑥2
+ 2

𝜕2(𝑈0𝑈1)

𝜕𝑦2
+ 𝑙𝑈1}}] 

= 𝑙2√𝑥𝑦
(

𝑡𝜌 − 𝑎𝜌

𝜌
)

2𝛼

𝛤(2𝛼 + 1)
 

𝑝3: 𝑈3(𝑥, 𝑦, 𝑡) = ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌{𝐻2(𝑈) + 𝑙𝑈2}}] 

= ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌 {2

𝜕2(𝑈0𝑈2)

𝜕𝑥2
+

𝜕2𝑈1
2

𝜕𝑥2
+ 2

𝜕2(𝑈0𝑈2)

𝜕𝑦2
+

𝜕2𝑈1
2

𝜕𝑦2

+ 𝑙𝑈2}}] = 𝑙3√𝑥𝑦
(

𝑡𝜌 − 𝑎𝜌

𝜌
)

3𝛼

𝛤(3𝛼 + 1)
 

 

Consequently, the  solutions 𝑈(𝑥, 𝑦, 𝑡)  can be formulated 

as: 

 

𝑈(𝑥, 𝑦, 𝑡) = 𝑈0(𝑥, 𝑦, 𝑡) + 𝑈1(𝑥, 𝑦, 𝑡) +

𝑈2(𝑥, 𝑦, 𝑡) + 𝑈3(𝑥, 𝑦, 𝑡) + ⋯ = √𝑥𝑦 𝑒
𝑙(

𝑡𝜌−𝑎𝜌

𝜌
)

𝛼

 
(51) 

 

Next, we end by formulating infinite sums using the Mittag-

Leffler function, the Eq. (9) becomes: 

 

𝑈(𝑥, 𝑦, 𝑡) = √𝑥𝑦𝔼𝛼,1 (𝑙 (
𝑡𝜌 − 𝑎𝜌

𝜌
)

𝛼

) (52) 

 

In fact, these solutions agree with the solutions obtained by 

Liu et al. [34], using HP method and the Riemann-Liouville 

fractional  integration operator. The plots of Eq. (51) are 

depicted in  Figures 4-6, for different values of  𝛼 =

 1, 0.95, 0.55, 0.2 ,  𝜌 = 1,0.9,0.4,2,4, 𝑙 =
1

5
. By substituting 

into Eq. (52) for 𝜌 = 𝛼 = 1, 𝑎 = 0, the exact solution to the 

classical generalized biological population model equation is 

as follows: 

 

𝑈(𝑥, 𝑦, 𝑡) = √𝑥𝑦𝑒𝑙𝑡 (53) 

 

Similarly, in the model discussed, we conducted a 

simulation analysis to solve the time-fractional generalized 

biological population model of Eq. (46) via HPLT. Various 

values of fractional order are taken into account for this model 

such as 𝛼 = 1, 0.95, 0.55, 0.2  for the parameters  𝜌 =

1,0.9,0.4,2,4, 𝑙 =
1

5
. Figures 4-6 show that the population 

density increases steeply with increasing values of time t and 

receding values of 𝛼 and increasing fractional parameter 𝜌. 
 

4.3 The third application  

 

Consider the following  generalized biological  population 

model 
 

𝔻𝑡
𝐶𝐾

𝑎
𝛼,𝜌

𝑈(𝑥, 𝑦, 𝑡) =
𝜕2𝑈2

𝜕𝑥2
+

𝜕2𝑈2

𝜕𝑦2
+ 𝑈 

0 < 𝛼 ≤ 1, 𝜌 > 0, 𝑡 ≥ 0, 𝑥, 𝑦 ∈ ℝ, 

(54) 

 

with IC: 𝑈(𝑥, 𝑦, 0) = √𝑠𝑖𝑛𝑥. 𝑠𝑖𝑛ℎ𝑦. 

Applying the LT method on both sides of Eq. (54), we 

obtain: 
 

ℒ𝜌{𝑈(𝑥, 𝑦, 𝑡)} 

=
1

𝑠
√𝑠𝑖𝑛𝑥. 𝑠𝑖𝑛ℎ𝑦 + 

1

𝑠𝛼
{ℒ𝜌 {

𝜕2𝑈2

𝜕𝑥2
+

𝜕2𝑈2

𝜕𝑦2
+ 𝑈}} 

(55) 

 
 

Figure 4. The graphs of Eq. (51) for the values of parameter 𝜌, with 𝑙 =
1

5
, 𝑎 = 0, 𝛼 = 1, 𝛼 = 0.95, 𝛼 = 0.55, 𝛼 = 0.25 
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Figure 5. The graphs of Eq. (51) for the values of parameter 𝛼, with 𝑙 =
1

5
, 𝑎 = 0, 𝜌 = 1, 0.9, 0.4, 2, 4 

 

 
 

Figure 6. The surface shows the behavior of solution 𝑈(𝑥, 𝑦, 𝑡) of application 2, using Eq. (51) with regard to 𝑡 and 𝑥 such 

that (𝜌 = 2, 𝛼 = 0.55), (𝜌 = 1, 𝛼 = 1), (𝜌 = 4, 𝛼 = 0.95), (𝜌 = 0.4, 𝛼 = 0.25), 𝑦 = 1.5, 𝑥 = 𝑡 = 0, 0.01, 1 

 

  

4219



 

The inverse 𝜌 −Laplace transform of Eq. (55) implies that: 

 

𝑈(𝑥, 𝑦, 𝑡) = √𝑠𝑖𝑛𝑥. 𝑠𝑖𝑛ℎ𝑦 

+ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌 {

𝜕2𝑈2

𝜕𝑥2
+

𝜕2𝑈2

𝜕𝑦2
+ 𝑈}}] 

(56) 

 

At this time, using the HP method, we get 

 

∑ 𝑝𝑛𝑈𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

= √𝑠𝑖𝑛𝑥. 𝑠𝑖𝑛ℎ𝑦 

+𝑝 [ℒ𝜌
−1 [

1

𝑠𝛼 {ℒ𝜌{𝑁 ∑ 𝑝𝑛𝐻𝑛(𝑈) +∞
𝑛=0

∑ 𝑝𝑛𝑈𝑛(𝑥, 𝑦, 𝑡)∞
𝑛=0 }}]]  

(57) 

 

where, 𝐻𝑛(𝑈) are He’s polynomials  which represent the 

nonlinear terms. 

 

𝐻𝑛(𝑈) = 𝐻𝑛(𝑈0, 𝑈1, 𝑈2, … 𝑈𝑛) 

=
1

𝑛!

𝜕

𝜕𝑝𝑛
[𝑁 ∑ 𝑝𝑛𝑈𝑛

∞

𝑛=0

] 

n = 0, 1, 2, 3, … 

(58) 

 

In this application, the first components of He  polynomials 

are listed below: 
 

𝐻0(𝑈) =
𝜕2𝑈0

2

𝜕𝑥2
+

𝜕2𝑈0
2

𝜕𝑦2
 

𝐻1(𝑈) = 2
𝜕2(𝑈0𝑈1)

𝜕𝑥2
+ 2

𝜕2(𝑈0𝑈1)

𝜕𝑦2
 

𝐻2(𝑈) = 2
𝜕2(𝑈0𝑈2)

𝜕𝑥2
+

𝜕2𝑈1
2

𝜕𝑥2
+ 2

𝜕2(𝑈0𝑈2)

𝜕𝑦2
+

𝜕2𝑈1
2

𝜕𝑦2
 

  ⋮           ⋮ 
 

By calculating the  coefficients of the same power of on  both 

sides in Eq. (57), we obtain the results below:  

 

𝑝0: 𝑈0(𝑥, 𝑦, 𝑡) = √𝑠𝑖𝑛𝑥. 𝑠𝑖𝑛ℎ𝑦, 

𝑝1: 𝑈1(𝑥, 𝑦, 𝑡) = ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌{𝐻0(𝑈) + 𝑈0}}] 

= ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌 {

𝜕2𝑈0
2

𝜕𝑥2
+

𝜕2𝑈0
2

𝜕𝑦2
+ 𝑈0}}] 

= √𝑠𝑖𝑛𝑥. 𝑠𝑖𝑛ℎ𝑦
(

𝑡𝜌 − 𝑎𝜌

𝜌
)

𝛼

𝛤(𝛼 + 1)
 

𝑝2: 𝑈2(𝑥, 𝑦, 𝑡) = ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌{𝐻1(𝑈) + 𝑈1}}] 

= ℒρ
−1 [

1

sα
{ℒρ {2

∂2(U0U1)

∂x2
+ 2

∂2(U0U1)

∂y2
+ U1}}] 

= √𝑠𝑖𝑛𝑥. 𝑠𝑖𝑛ℎ𝑦
(

𝑡𝜌 − 𝑎𝜌

𝜌
)

2𝛼

𝛤(2𝛼 + 1)
 

𝑝3: 𝑈3(𝑥, 𝑦, 𝑡) = ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌{𝐻2(𝑈) + 𝑈2}}] 

= ℒ𝜌
−1 [

1

𝑠𝛼
{ℒ𝜌 {2

𝜕2(𝑈0𝑈2)

𝜕𝑥2
+

𝜕2𝑈1
2

𝜕𝑥2
+ 2

𝜕2(𝑈0𝑈2)

𝜕𝑦2
+

𝜕2𝑈1
2

𝜕𝑦2

+ 𝑈2}}] = √𝑠𝑖𝑛𝑥. 𝑠𝑖𝑛ℎ𝑦
(

𝑡𝜌 − 𝑎𝜌

𝜌
)

3𝛼

𝛤(3𝛼 + 1)
 

 

 
 

Figure 7. The graphs of Eq. (59) for the values of parameter 𝜌 with , 𝑎 = 0, 𝛼 = 1, 𝛼 = 0.95, 𝛼 = 0.55, 𝛼 = 0.25 
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Figure 8. The graphs of Eq. (59) for the values of parameter 𝛼, with 𝑙 =
1

5
, 𝑎 = 0𝜌 = 1, 𝜌 = 0.9, 𝜌 = 0.4, 𝜌 = 2, 𝜌 = 4 

 

 
 

Figure 9. The surface shows the behaviour of solution 𝑈(𝑥, 𝑦, 𝑡) of the third application using Eq. (59) with regard to 𝑡 and 𝑥 

such that (𝜌 = 2, 𝛼 = 0.55), (𝜌 = 1, 𝛼 = 1), (𝜌 = 4, 𝛼 = 0.95), (𝜌 = 0.4, 𝛼 = 0.25), 𝑦 = 1.6, 𝑥 = 𝑡 = 0: 0.01: 1 
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Consequently, the  solutions 𝑈(𝑥, 𝑦, 𝑡)  can be formulated 

as: 

 

𝑈(𝑥, 𝑦, 𝑡) = 𝑈0(𝑥, 𝑦, 𝑡) + 𝑈1(𝑥, 𝑦, 𝑡) + 𝑈2(𝑥, 𝑦, 𝑡)
+ 𝑈3(𝑥, 𝑦, 𝑡) + ⋯ 

= √𝑠𝑖𝑛𝑥. 𝑠𝑖𝑛ℎ𝑦 𝑒
(

𝑡𝜌−𝑎𝜌

𝜌
)

𝛼

 

(59) 

 

Next, we end by formulating infinite sums using the Mittag-

Leffler function, the Eq. (9) becomes: 

 

𝑈(𝑥, 𝑦, 𝑡) = √𝑠𝑖𝑛𝑥. 𝑠𝑖𝑛ℎ𝑦𝔼𝛼,1 ((
𝑡𝜌 − 𝑎𝜌

𝜌
)

𝛼

) (60) 

 

Actually, these solutions have shown to be consistent with 

those found by the study by Sharma and Bairwa [39], applying 

ILT method and operator the Riemann–Liouville fractional 

integral. The plots of Eq. (59) are shown in Figures 7-9, for the 

values of 𝛼 =  1, 0.95, 0.55, 0.25 ,  𝜌 = 1,0.9,0.4,2,4 , and 

substituting into Eq. (60) for 𝜌 = 𝛼 = 1 ,  a = 0,  the exact 

solution to the classical generalized, biological population 

model equations is as follows: 

 

𝑈(𝑥, 𝑦, 𝑡) = √𝑠𝑖𝑛𝑥. 𝑠𝑖𝑛ℎ𝑦𝑒𝑡 (61) 

 

 

5. DISCUSSION 

 

A careful review and comparison lead us to the following: 

In contrast to most existing studies, the present work uses 

the Caputo- Katugampola derivative, a generalized operator 

that unifies and combines many classical fractional derivatives 

with the HPLT method. This combined approach preserves 

analytical tractability and introduces greater modeling 

flexibility through the parameter ρ, which regulates the 

system’s memory dynamics. In addition, we derive exact 

closed-form solutions and provide a convergence analysis that 

both complements and extends previous investigations, 

particularly those reported in studies [34, 38, 39].  

The analytical solutions to the time-fractional generalized 

biological population model, presented in Eqs. (44), (52), and 

(60), are obtained via the HPLT method and expressed 

explicitly in terms of the parameter 𝜌.  Consequently, the 

population density is influenced jointly by the fractional order 

𝛼  and the parameter 𝜌  associated with the Katugampola 

fractional derivative in the Caputo sense. Variations in these 

parameters lead to observable changes in the qualitative 

behavior of the population density, as detailed in the Section 

4. 

 

 

6. CONCLUSION 

 

The results presented in this manuscript demonstrate the 

effectiveness of applying the HPLT method using the 

fractional Kabuto-Katogambola derivative to solve nonlinear 

fractional partial differential equations that appear in the 

spatial diffusion of a biological population model. This study 

includes three examples to illustrate the reliability and 

applicability of the method. Moreover, the findings indicate 

that the HPLT method is both powerful and efficient in 

determining exact and approximate solutions for nonlinear 

fractional partial differential equations. The solutions are in 

excellent agreement with those obtained through the study by 

Liu et al. [34] using the HP method, and the study by Devi and 

Jakhar [38] using the ETHP method, in addition to the study 

by Khuri [40] using the ILT method. Note that this method 

reduces computational effort while maintaining high accuracy 

of the numerical results when compared to conventional 

methods. This reduction in scale leads to improved 

performance of the approach.  

In conclusion, the HPLT method, which incorporates the 

fractional derivative of Caputo-Katugampola, can be 

considered a major advancement over current numerical 

methods and has great potential for a wide range of 

applications. 
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NOMENCLATURE 

 

ℒ𝜌 𝜌 −Laplace transform 

𝑈(𝑥, 𝑡) the population density 

Γ(. ) gamma function 

ℑ𝑎
𝛼;𝜌

 fractional integration operator 

𝔻𝑡
𝐶𝐾

𝑎
𝛼,𝜌

 Katugampola fractional derivative in 

Caputo type order α 

𝔻𝑎
𝛼

𝑡
𝐶𝐾 𝜓(𝑥, 𝑦), 𝑡) derivative of 𝜓(𝑥, 𝑦, 𝑡) in the Caputo sense 

R and N linear and nonlinear differential operators 

𝛼 and 𝜌 order derivative 

𝑔(𝑥, 𝑡) stands for the source term 

𝐻𝑛(𝑢) He’s polynomials 

𝑥, 𝑦, 𝑙, 𝑎, 𝑏, ℎ real numbers 
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