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Accurate handwriting recognition is a challenging problem, owing to variability in 

handwriting styles, distortions in writing patterns, and noise in handwritten documents. 

These challenges are even more severe in scripts like Devanagari and Arabic, which 

have complex character forms and high visual similarity among classes, requiring 

strong feature extraction and semantic knowledge. To address these challenges, we have 

developed a novel deep-learning-based handwriting recognition system that preserves 

the intrinsic writing dynamics and recognizes hierarchical spatial cues through multi-

level abstraction and attention-driven encoding. Our framework synergistically 

integrates a Residual Abstraction Block, Spatial Context Encoder, Spatial Attention 

Generator, and Hierarchical Capsule Encoding Block to capture fine-grained spatial 

dependencies and contextual semantics efficiently. To further improve efficiency, we 

propose a hybrid puma-crested porcupine optimizer for Feature Reduction (FR), which 

significantly reduces the model's complexity without compromising accuracy. 

Extensive experiments on the Devanagari and KHATT datasets prove the effectiveness 

of our method. Our proposed model achieves superior recognition accuracy of 98.94% 

(with FR) and 93.28% (without FR) on Devanagari, and 97.36% (with FR) and 91.91% 

(without FR) on KHATT, outperforming various baseline methods. These findings 

demonstrate the robustness of our architecture in achieving high accuracy, compactness, 

and resilience.  
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1. INTRODUCTION

Handwritten Character Recognition (HCR) has become a 

central field of study in pattern recognition and machine 

learning due to its widespread applications in biometric 

identification, document authentication, and forensic 

examination [1]. Specifically, writer identification, or the 

identification of an individual's distinctive handwriting style, 

is essential for security systems, historical document analysis, 

and criminal investigations [2]. However, intricate 

handwriting styles, inconsistent writing patterns, and noise in 

handwritten texts pose great challenges for reliable writer 

identification [3]. 

Conventional methods were primarily based on handcrafted 

local descriptors, such as Scale-Invariant Feature Transform 

(SIFT), Speeded-Up Robust Features (SURF), Local Binary 

Patterns (LBP), and Histogram of Oriented Gradients (HOG), 

which are robust to small distortions, affine variations, and 

slight overlaps; however, they fail to capture higher-level 

semantic information and contextual meaning in handwriting 

[4-8]. Deep learning techniques, particularly Convolutional 

Neural Networks (CNNs), facilitated data-driven feature 

learning by automatically extracting hierarchical 

representations from raw handwriting images [9]. However, 

traditional CNNs tend to fail to capture the dynamic, fine-

grained, and context-dependent nature of handwriting 

variations [10]. They primarily emphasize local patterns and 

lack an explicit mechanism to model spatial relationships and 

salient regions, which are essential for distinguishing writing 

styles [11, 12].  

To overcome the limitations mentioned above, our study 

aims to develop a hybrid deep learning architecture named 

Curve-Aware Capsule Residual (CA-CapsResNet) CNN. The 

model integrates three modules: (1) Residual Abstraction 

Block (RAB), (2) Spatial Context Encoder (SCE), and (3) 

Spatial Attention Generator (SAG), to extract, refine, and 

boost the hierarchical and spatial nature of handwriting 

features. First, the RAB employs a combination of zero-

padded convolutions and residual connections to preserve 

fine-grained spatial locality while generating a shallow, 

discriminative feature map. Then, the SCE utilizes depthwise 

separable convolutions, lightweight channel attention, and 

global context aggregation to refine local structures further 

and selectively enhance semantically rich features. Lastly, the 

SAG calculates a location-aware attention map that directs the 

model to emphasize salient spatial areas in separating various 
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handwriting styles. Finally, a hierarchical capsule network 

[13] is introduced to extract high-dimensional fine-grained 

spatial features from the extracted salient regions. 

To further enhance classification accuracy and minimize the 

risk of overfitting, a Hybrid Crested Porcupine-Puma 

Optimizer (HCPPO) is introduced for optimal feature 

selection. This approach synergistically combines the 

exploratory search scheme of Crested Porcupine [14] and the 

exploitative refinement technique of the Puma algorithm [15] 

to achieve a better exploration-exploitation balance than 

traditional feature selection techniques. Furthermore, the 

integration of phase-based decision-making, binary encoding, 

adaptive randomization, and a convergence-aware control 

strategy ensures that the optimizer effectively reduces the 

larger search space with an optimal feature set and higher 

accuracy. 

The main contributions of this work are briefly stated 

below: 

⚫ We introduce the CA-CapsResNet, which integrates an 

RAB, an SCE, and an SAG to extract and refine 

hierarchical handwriting features. 

⚫ The RAB retains fine-grained spatial information 

through zero-padded convolutions and residual 

connections, generating shallow, discriminative feature 

maps. 

⚫ The SCE enhances semantically dense features by 

applying depthwise separable convolutions and 

lightweight attention, and the SAG focuses on key 

handwriting areas. 

⚫ Our proposed HCPPO framework utilizes adaptive 

phase transitions, binary encoding, and convergence 

control policies to obtain minimal yet highly 

discriminative feature subsets, thereby enhancing 

classification accuracy while reducing complexity. 

⚫ We conduct extensive five-fold cross-validation 

experiments on the Devanagari Hindi and KHATT 

datasets to examine the robustness and generalization 

ability of the proposed framework. 

The rest of the paper is structured as follows: Section 2 

discusses relevant works on metaheuristic algorithms for 

handwriting recognition and hybrid optimization methods. 

Section 3 outlines the proposed methodology, including (1) 

Preprocessing, (2) Feature Extraction (CA-CapsResNet), (3) 

Optimal Feature Selection using the HCPPO algorithm, and 

(4) Classification. Section 4 presents the experimental setup, 

benchmark datasets, and experimental results, along with a 

comparative analysis of the results with previous methods. 

Lastly, Section 5 concludes the findings and proposes 

directions for future research. 

 

 

2. RELATED WORK 

 

This section provides an overview of recent research into 

handwritten character recognition and optimization-based 

learning. To begin, Subsection 2.1 surveys important baseline 

studies across capsule, CNN, and hybrid-based handwritten 

character recognition. In turn, Subsection 2.2 applies a 

comparative review based on the underlying principles and 

limitations of the two approaches. Finally, Subsection 2.3 

explains how the proposed CA-CapsResNet model with 

HCPPO converges the gaps outlined in previous studies and 

advances the field beyond the previous work.  

 

2.1 Baseline studies in capsule, CNN, and hybrid models 

 

Yao et al. [16] introduced FOD_DCNet, a deep capsule 

network for fully overlapping handwritten digit recognition 

and separation. The model implemented small convolutional 

kernels and an improved series dual dynamic routing 

collocation mechanism, increasing routing effectiveness. 

Accuracy was reported to be 93.53%, with almost half the 

number of parameters compared to a regular CapsNet. 

Parcham et al. [17] introduced CBCapsNet by integrating 

CNN with capsule networks to improve spatial feature 

learning in the signature verification task. The architecture 

employed a paired image scheme to reduce the training 

parameters by half, thereby avoiding the need for dual 

networks. The proposed network achieved a classification 

accuracy of 92.94% with a low Feature Acceptance Rate 

(FAR) and a high Feature Reduction Rate (FRR). Moudgil et 

al. [18] presented a CapsNet framework for identifying 

Devanagari characters, comprising 399 classes, with an 

accuracy of 94.6%, which outperformed conventional models 

such as CNN, MLP, and KNN.  

In handwriting recognition, feature selection has also 

received considerable attention. In a recent work, Abd Elaziz 

et al. [19] integrated the Freeman Chain Code (FCC) with the 

Whale Optimization Algorithm (WOA) to enhance the data 

representation of handwritten text images. This step improved 

the feature reduction and convergence rate of the WOA 

compared to the Flower Pollination Algorithm (FPA). Al-

Saffar et al. [20] merged a Dynamically Configurable 

Convolutional Recurrent Neural Network (DC-CRNN) with 

the Salp Swarm Optimization Algorithm (SSA) to minimize 

the complexity of the hyperparameter tuning process, 

achieving improved results on both English and Arabic 

datasets. 

Altwaijry and Al-Turaiki [21] presented the Hijja dataset, 

which contains 47,434 Arabic characters written by children 

aged 7 to 12. They trained a CNN architecture on the Hijja and 

AHCD datasets and reported 97% accuracy on AHCD and 

88% on Hijja, showing a promising approach for Arabic 

handwriting recognition. Kavitha and Srimathi [22] employed 

CNNs in the offline Handwritten Tamil Character Recognition 

(HTCR) problem, highlighting the networks' capacity for 

discriminative feature learning. Their CNN model, trained on 

a dataset generated by HP Labs India, achieved an accuracy of 

95.16%, outperforming baseline methods. Similarly, Assael et 

al. [23] introduced ITHACA, a deep-learning framework built 

for automating restoration and chronological accreditation of 

Greek historical inscriptions. Ithaca improved the restoration 

performance from 25% to 72%, surpassing state-of-the-art 

methods.  

Shifting towards multilingual and multimodal 

environments, Das et al. [24] introduced a hybrid deep 

learning framework combining a transfer-learning-based CNN 

and a Random Forest classifier for the recognition of Bangla 

Sign Language (BSL). This model was validated on the Ishara-

Bochon and Ishara-Lipi datasets, achieving 91% accuracy for 

characters and 97% accuracy for digits across both datasets, 

respectively. Chauhan et al. [25] leveraged transfer learning to 

develop HCR-Net, a lightweight, script-agnostic model to 

realize both faster convergence and better generalization. The 

performance of HCR-Net was compared with 26 baseline 

methods on 40 public datasets, with up to 11% higher accuracy 

and 99% first-epoch convergence.  

In parallel, optimization-driven techniques have gained 
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traction for improving feature selection and convergence 

behavior. Hadadi and Arabani [26] developed a deep learning-

based method utilizing various handwritten samples for 

Parkinson’s diagnosis, which was optimized using the Harris 

Hawks Optimization (HHO) algorithm. This model achieved 

94.12% accuracy, outperforming five pre-trained networks, 

and converged to a cost function value of 0.0084746 in just 10 

iterations. Mohammad et al. [27] proposed a metaheuristic 

method based on the Honey Badger Algorithm (HBA) with the 

Freeman Chain Code (FCC) for HCR feature extraction, 

achieving efficient route length and computational time on the 

CEDAR dataset. However, dependency on the FCC’s initial 

points influences the consistency of extraction. To counter 

this, the suggested HB-FCC effectively balanced exploration 

and exploitation dynamically, increasing the robustness of 

feature extraction. 

The baseline studies on capsule, CNN, and hybrid models 

are summarised in Table 1, along with their datasets, 

performance levels, and limitations, which served as 

motivation for the proposed CA-CapsResNet and HCPPO 

framework. 
 

2.2 Synthesis and comparative analysis 

 

The given related work can be CATEGORIZED into three 

research areas: (1) CNN-based, (2) Capsule-based, and (3) 

hybrid or optimization-based approaches. CNN architectures 

[21, 22, 24, 25] have effectively demonstrated hierarchical 

learning capabilities and generalizability across scripts; 

however, their lack of spatial awareness has limited their 

ability to model detailed relationships among handwriting 

strokes adequately. Capsule networks [16-18] were motivated 

to address the issue of spatial awareness by retaining spatial 

hierarchies and establishing part-whole relationships using 

dynamic routing. Capsule networks demonstrated a greater 

representation of local dependencies than CNNs; they were 

computationally heavy and do not inherently provide the 

possibility for adaptive decrease in features. Hybrid and 

optimization approaches [19, 20, 26, 27] aim to balance 

recognition accuracy and computational effectiveness by 

integrating deep models with bio-inspired algorithms, such as 

WOA, SSA, HHO, and HBA. Despite this, the majority of 

these approaches focus on optimization and feature selection, 

without considering context-sensitive spatial refinement, a 

crucial aspect of complex handwriting styles. 
 

2.3 Comparative advantage of the proposed work 
 

Compared to existing CNN, capsule, and hybrid 

handwriting recognition approaches, our CA-CapsResNet 

with HCPPO is improved at both the architectural and 

optimization stages. Conventional CNNs process only local 

features, resulting in a loss of spatial hierarchy. Capsule 

networks, on the other hand, maintain spatial relationships but 

have significant architecture routing complexity and limited 

adaptability. Our proposed CA-CapsResNet with HCPPO 

addresses these challenges through residual abstraction, 

spatial context encoding, and attention-guided refinement, 

enabling it to model the continuity of curves, stroke dynamics, 

and contextual dependencies in handwriting more effectively. 

Furthermore, unlike previous hybrid or metaheuristic 

optimizer techniques, such as WOA, SSA, HHO, and HBA, 

the HCPPO selects compact yet highly discriminative feature 

subsets by employing adaptive phase transitions to optimize 

the balance between exploration and exploitation, thereby 

reducing computational load. In summary, the CA-

CapsResNet and HCPPO form an integrated pipeline, 

resulting in a richer encoding of spatial representations with 

minimal feature redundancy and improved classification 

accuracy compared to baseline methods. 

 

Table 1. Summary of the related works done for handwriting character recognition 
 

Study Model/Technique Datasets Novelty Accuracy Limitations 

Yao et al. [16] FOD_DCNet 
Overlapping digit 

dataset 

Dual dynamic routing 

for capsule efficiency 
93.53% 

Limited adaptability, 

parametric heavy 

Parcham et al. 

[17] 

CBCapsNet 

(CNN + CapsNet) 
Signature dataset Paired-image scheme 

92.94%  

(low FAR/FRR) 

Lacks attention-based 

refinement 

Moudgil et al. 

[18] 
CapsNet Devanagari dataset 

Capsule routing across 

399 classes 
94.6% 

Lacks feature 

optimization 

Abd Elaziz et al. 

[19] 
WOA + FCC Handwritten text 

Whale Optimization 

for FCC representation 

Improved path 

length 

No spatial learning, 

dependent on FCC 

initialization 

Al-Saffar et al. 

[20] 
DC-CRNN + SSA IAM, IFN/ENIT 

SSA for CRNN 

structure learning 

Outperformed 

conventional CRNN 

Limited contextual 

refinement; high 

parameter count 

Altwaijry and 

Al-Turaiki [21] 
CNN AHCD, Hijja 

CNN trained on a new 

Arabic dataset 

97% (AHCD),  

88% (Hijja) 

Poor generalization on 

noisy data 

Kavitha and 

Srimathi [22] 
CNN 

HP Labs Tamil 

dataset 

CNN trained from 

scratch 
95.16% 

No spatial hierarchy 

modeling; limited 

robustness 

Assael et al. 

[23] 
Ithaca (DL) Greek inscriptions 

Restoration and dating 

model 
62% (restoration) 

Limited handwriting 

variability 

Das et al. [24] 
CNN + Random 

Forest 

Ishara-Bochon, 

Ishara-Lipi 

Hybrid model with 

background removal 

91% (chars),  

97% (digits) 

Weak spatial consistency; 

dual-stage complexity 

Chauhan et al. 

[25] 

HCR-Net 

(transfer learning) 
40 datasets 

Lightweight, script-

independent 
+11% vs. baselines 

Limited fine-grained 

spatial encoding 

Hadadi and 

Arabani [26] 
DL + HHO 

Parkinson’s 

handwriting 

HHO-optimized DL 

model 
94.12% 

Focused on diagnosis; 

lacks feature-level 

optimization 

Mohamad et al. 

[27] 

HB-FCC (HBA + 

FCC) 
CEDAR dataset 

Honey Badger 

optimization for FCC 

features 

Improved route 

length 

Sensitive to initial points; 

limited context-awareness 
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3. PROPOSED METHODOLOGY 

 

In this section, we briefly cover the proposed methodology 

in four categories: (1) Image preprocessing, (2) Multi-

dimensional handwriting feature extraction, (3) Feature 

reduction using the proposed PO-CPA approach, and (4) 

Classification using various machine learning classifiers. Our 

proposed classification model is illustrated in Figure 1.  

 

 
 

Figure 1. Flowchart of the proposed handwriting recognition and writer's classification framework 
 

3.1 Image preprocessing 

 

Preprocessing is essential for enhancing the quality of 

handwriting images and preparing them for feature extraction. 

The operations are carried out step by step, following the 

mathematical equation. 
 

3.1.1 Image resizing 

The input handwriting image is resized to a size of 224 × 

224 pixels to maintain uniformity across the dataset. This 

standardization ensures that all images have the same 

dimensions for consistent processing. The resized images are 

then stored for further preprocessing steps, such as noise 

removal and normalization. The resized sample images are 

illustrated in Figure 2. 
 

 
 

Figure 2. Sample writing samples after performing the 

resizing operation in 224 × 224 pixels 

3.1.2 Noise removal 

We apply noise removal methods to remove unwanted 

artifacts, such as salt-and-pepper noise, providing a clean, 

binarized image. A median filter is used:  

 

𝐼′(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛 {(𝑥 + 𝑖, 𝑦 + 𝑗)|(𝑖, 𝑗) ∈ 𝑁} (1) 

 

where, N represents the neighborhood window (3 × 3). This 

step enhances image clarity for further processing. The clean 

sample images are illustrated in Figure 3. 

 

 
 

Figure 3. Sample writing samples after performing the 

denoising operation using median filtering 

 

3.1.3 Morphological processing 

We apply morphological operations, including dilation and 

erosion, to smooth the boundaries of handwriting. Dilation 

fills small gaps in strokes using Eq. (2): 

 

( )D I I K=   (2) 
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where, 𝐾  is a structuring element. Erosion removes small 

noises and refines character edges using Eq. (3): 

 

𝐸(𝐼) = 𝐼 ⊝ 𝐾 (3) 

 

These tasks strengthen stroke cohesion while maintaining 

writing characteristics. The processed sample images are 

illustrated in Figure 4. 
 

 
 

Figure 4. Sample writing samples after performing the 

morphological operation 

 

3.1.4 Slant normalization 

Writer-dependent variations of stroke orientation are 

removed by correction through slant normalization via shear 

transformation using Eq. (4): 

 

1

0 1i

K xx

yy

     
=     
    

 (4) 

 

where, 𝐾  is the corrected slant factor. It standardizes the 

handwriting to achieve a uniform appearance across various 

writers. The processed sample images are illustrated in Figure 

5. 

 

 
 

Figure 5. Sample writing samples after performing the slant 

normalization 

 

3.1.5 Size normalization 

We apply size normalization to standardize handwriting 

sizes, ensuring uniform input for recognition models. The 

rescaling transformation is defined by: 

 

( ), ( . , . )I x y I x y    =  (5) 

 

where, α and β are scale factors calculated according to the 

standard character size. The processed sample images are 

illustrated in Figure 6. 

 

 
 

Figure 6. Sample writing samples after performing the size 

normalization 
 

3.2 Proposed model architecture 

 

Handwriting recognition for author identification is highly 

challenging because handwriting style, stroke dynamics, and 

non-regular spatial features are very difficult to handle due to 

the presence of intricate intra-personal and inter-personal 

variability. To address this complexity, we introduce the 

hybrid CA-CapsResNet, which incorporates curvature-aware 

adaptive convolutions, residual propagation of features, and 

capsule-style spatial encoding to enhance the robustness of 

features while preserving hierarchical structuring for 

handwriting. The architecture's mathematical formulation is 

outlined below, with a description of each significant 

computational stage. 

 

Algorithm 1. Pseudocode for RAB 

function Residual Abstraction Block (X): 

# Input: X ∈ ℝH×W×C: original preprocessed image tensor 

# Output: X0 ∈ ℝH×W×C : shallow feature map 

# Step 1: Apply Zero Padding 

X_ZP = ZeroPad (X, padding=1) # Pad with 1 pixel on all  
sides 

# Step 2: First Layer 

Conv1 = Conv2D (X_ZP, kernel_size=3x3, stride=1, 

padding='valid') 

Res1 = Conv2D (X_ZP, kernel_size=1x1, stride=1, 

padding='valid') 

Out1 = Conv1 + Res1 

# Step 3: Second Layer (Residual Repeat) 

Conv2 = Conv2D (Out1, kernel_size=3x3, stride=1, 

padding='same') 

Res2 = Conv2D (Out1, kernel_size=1x1, stride=1, 

padding='same') 

Out2 = Conv2 + Res2 

# Step 4: Third Layer (Residual Repeat) 

Conv3 = Conv2D (Out2, kernel_size=3x3, stride=1, 

padding='same') 

Res3 = Conv2D (Out2, kernel_size=1x1, stride=1, 

padding='same') 

Out3 = Conv3 + Res3 

# Step 5: Batch Normalization and ReLU 

BN = Batch Normalization (Out3) 

X_0 = ReLU (BN) 

return X0  
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3.2.1 RAB 

Initially, the preprocessed image is transformed into a 3D 

tensor representation: 𝑋 ∈ 𝑅𝐻×𝑊×𝐶 , where H, W, and C refer 

to height, width, and the number of channels, respectively. A 

convolution layer of size 3 × 3, preceded by a zero-padding 

operation, is applied to the input tensor to preserve the spatial 

locality. Further, a residual operation with a convolution 

window of size 1 × 1 is applied between the original tensor and 

the convoluted tensor. This step is repeated in the second and 

third layers. Finally, the output is passed through a Batch 

Normalization (BN) and ReLU activation layer to compute the 

shallow feature map: 𝑋0 ∈ 𝑅𝐻×𝑊×𝐶  can be represented as 

follows: 

 

( )( )( )( )0 1 1 3 3( )BN ZP ZPX ReLu F Res Conv X X =   (6) 

 

where, 𝑋𝑍𝑃  shows zero-padding operation on input tensor 𝑋 

and 𝐹𝐵𝑁(.) stands for BN. The pseudocode of this substep is 

given in Algorithm 1. 

 

3.2.2 SCE 

To more finely adjust the spatial representations and 

enhance global contextual perception, the SCE plays a critical 

role in the proposed architecture. It aims to capture spatial 

relationships at various scales without compromising 

computational efficiency. The input of this block is the feature 

map obtained from Eq. (1), and a depthwise separable 

convolution using a 3 × 3 kernel is utilized channel-wise to 

enable the network to extract subtle local patterns separately 

within each channel. Mathematically, the depthwise 

convolution operation can be described as: 

 

( )3 3 0dF DWConv X=  (7) 

 

where, 𝐷𝑊𝐶𝑜𝑛𝑣3×3 (𝑋0)  represents the depthwise 

convolution operator that is used to minimize the number of 

hyperparameters while preserving spatial specificity and local 

structural integrity. Further, BN and ReLU operations are 

applied. Next, a Global Average Pooling (GAP) is 

implemented to 𝐹𝑑  for incorporating global context into the 

local descriptors. This step yields a condensed channel-wise 

descriptor 𝑧 ∈ 𝑅𝑐  using Eq. (8): 

 

1 1

1
( , , ), (1,2, )

H W

c d

i j

z F i j c c N
H W

 

 
= =

=   


  (8) 

 

This descriptor captures the worldwide spatial distribution 

of every channel and is an input to a light channel attention 

module. The attention mechanism is a two-layer fully 

connected (FC) bottleneck network with a reduction ratio r, 

ReLU activation, and a final sigmoid gate: 

 

2 1( . ( ))cW W z  =  (9) 

 

where, 𝑊1  and 𝑊2  are learnable weights, 𝛿(⋅)  is the ReLU 

activation function, and 𝜎(⋅)  is the sigmoid function that 

outputs the final attention weights 𝛼 ∈ [0,1]𝐶 . The attention 

vector α is transmitted over spatial dimensions and used on the 

depthwise convoluted features 𝐹𝑑, resulting in improved 

context-aware output 𝐹𝑠
′ ∈ 𝑅𝐻′×𝑊′×𝐶 . This step is 

mathematically represented in Eq. (10): 

( ) ,, , ( , , )s c dF i j c F i j c =  (10) 

 

This selective boost of informative channels enables the 

network to amplify semantically relevant spatial features and 

filter out irrelevant or noisy elements. The pseudocode of this 

substep is given in Algorithm 2. 

 

Algorithm 2. Pseudocode for SCE 

function Spatial Context Encoder (X0 ): 

# Input: X0 ∈ ℝH×W×C, feature map from previous block 

# Output: Fs
′  ∈  ℝH×W×C , context-aware spatially refined 

output 

# Step 1: Depthwise Separable Convolution 

Fd = DWConv3×3(X0, kernelsize = 3 × 3, stride
= 1, padding = ′same′) 

# Step 2: Batch Normalization and ReLU Activation 

Fd= BatchNormalization (Fd) 

Fd= ReLU (Fd) 

# Step 3: Global Average Pooling to obtain channel 

descriptor z ∈ ℝC 

z = GlobalAveragePooling (Fd) 

# Step 4: Lightweight Channel Attention via 2-layer 

Fully Connected Network 

hidden_dim = C // r # r is the reduction ratio 

FC1 = Fully Connected (z, out_dim=hidden_dim) 

FC1 = ReLU (FC1 ) 

FC2 = FullyConnected (FC1, out_dim=C) 

α = Sigmoid (FC2) 

# Step 5: Contextual Reweighting over Spatial 

Dimensions 

Fs
′  = ElementWiseMultiply (Fd, α) 

return Fs
′   

 

3.2.3 SAG 

Although the channel attention mechanism emphasizes the 

importance of each feature channel uniformly, it lacks spatial 

discrimination. To address this gap, the SAG is proposed to 

encode location-aware feature importance, enabling the 

network to focus more attention on salient areas in the spatial 

domain. 

The input to SAG is the contextually enhanced feature map 

𝐹𝑠
′ ∈ 𝑅𝐻′×𝑊′×𝐶  derived from the previous encoder module. 

The spatial attention is built through a channel-wise 

compression approach and a convolutional spatial gating 

mechanism. 

(1). Channel squeezing aggregation 

To calculate spatial saliency, a compound summary of 

feature information is retrieved by performing average pooling 

and max pooling operations over the channel dimension: 

 

( )Avg channel sF AvgPool F =  (11) 

 

( )Max channel sF MaxPool F =  (12) 

 

where, 𝐹𝐴𝑣𝑔  and 𝐹𝑀𝑎𝑥 ∈ 𝑅𝐻′×𝑊′×1 . Both maps encode 

different spatial clues from the global average and global max 

activations. 

(2). Spatial attention convolution 

The stacked maps are concatenated along the channel axis 

and sent through a convolutional attention filter using Eqs. 

(13) and (14), respectively. 
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𝐹𝐶𝑜𝑛𝑐𝑎𝑡 = [𝐹𝐴𝑣𝑔; 𝐹𝑀𝑎𝑥] ∈ 𝑅𝐻′×𝑊′×2 (13) 

 

7 7( ( )) H W

concatConv F R 
 

=   (14) 

 

Here: 

 𝐶𝑜𝑛𝑣7×7 (.) is a convolution layer with a 7 × 7 kernel, 

capturing a wider spatial context. 

 (⋅)  is the sigmoid activation function that outputs the 

spatial attention map 𝛽. 

(3). Attention mechanism 

Finally, the spatial attention map is broadcast to all the 

channels and element-wise multiplied with the input feature 

map 𝐹𝑠
′ , which gives rise to the spatially attended output: 

𝐹𝑆𝐴 = 𝑅𝐻′×𝑊′×𝐶 computed according to Eq. (15): 

 

( ), , ( , ) ( , , )SA SAF i j c i j F i j c=  (15) 

 

Spatial reweighting in this manner highlights areas in the 

feature map that are more informative for recognition and 

dampens less informative areas, thus enhancing the spatial 

localization ability of the network. 

 

3.3 Feature extraction using hierarchical capsule encoding 

block 

 

3.3.1 Curve-aware convolution and curvature-guided pooling 

Let 𝑋∈ 𝑅𝐻×𝑊×𝐶 denote the size of the input image patch, 

where, 𝐻 ,  𝑊 , and 𝐶  refer to height, width, and number of 

channels, respectively. Initially, we introduced a curvature-

awareness-oriented convolution operator by computing the 

local curvature tensor 𝜅(𝑖, 𝑗)  using the Gaussian curvature 

margin of the Hessian of the input image (I). It can be 

mathematically formulated in Eq. (16): 

 
2 2 2

2

2 2
( , ) * ( )

I I I
i j

x yx y


  
= −

  
 (16) 

 

This curvature estimates scales the convolutional weights in 

a specially designed curve-aware convolution (CAC) 

operation. The convolution response at the pixel. 

 

𝐹𝐶𝐴𝐶(𝑖, 𝑗) 

= ∑ 𝜅 (𝑖 + 𝑚, 𝑗 + 𝑛) ∗ 𝜅𝑚,𝑛,𝑐 ∗ 𝑋(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐)

𝑚,𝑛,𝑐

 (17) 

 

where, κ is a learned convolution kernel from Eq. (16). 

 

3.3.2 Normalized residual mapping 

To maintain the spatial semantics and enable deep feature 

learning, the CAC output is added back to the input in a 

residual setup, followed by BN and activation: 

 

( )( ( , ))Res CACF ReLU F i j X= +  (18) 

 

where, ℬ(. )  refers to the BN procedure, and ReLU is the 

rectified linear unit activation function. 

 

3.3.3 Hierarchical capsule encoding block 

(1) Primary capsule equation  

The preprocessed image, represented as 𝑋 ∈ 𝑅224∗224∗3 is 

passed to a sequence of convolutional operations to derive 

low-level spatial features. The Hierarchical Dense Capsule 

Network (HDCN) architecture is designed with four capsule 

layers with progressively coarser spatial resolution. The 

topmost capsule layer is a grid with 8 × 8 (64 capsules), which 

ultimately learns low-level handwriting features, such as 

stroke curvature and edge flow. The next capsule layer is a 4 

× 4 grid (16 capsules) that uses the localized activations from 

the previous layer to learn mid-level structure and continuity 

in the patterning of writing strokes. The additional capsule 

layer is 2 × 2 (4 capsules), which learns features that represent 

higher-level abstractions of the characters in terms of their 

subcomponents or strokes (typed formation). The fourth and 

final capsule layer is a 1 × 1 (1 capsule), representing the style 

of the user’s handwriting by combining all features of the 

spatially distributed capsules into a small, global 

representation of the handwritten style. 

Each capsule produces a pose vector 𝑢𝑖,𝑗
l ∈ 𝑅𝑑, where (𝑖, 𝑗) 

refers to the location of the individual capsule. The pose 

vectors are mapped to a higher-level feature space by learning 

transformation matrices, 𝑊𝑝,(𝑖,𝑗)
l ∈ 𝑅𝑑′×𝑑 realizing the 

positional vector (Eq. (12)) for the next layers.  
 

(2) (1) (1)

| , | , ,
ˆˆ *p i j p i j i ju W u=  (19) 

 

These predictions are routed to the second layer through a 

dynamic routing-by-agreement process.  
 

( )
( 1) ( ) ( 1)

, ( , )|( , ), , ( , )
( , )

ˆl l l

m n m n i ji j m n
i j

s c u+ +=  (20) 
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+
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 (21) 

 

The routing coefficients 𝑐(𝑖,𝑗),(𝑚,𝑛)
(l)

 are iteratively refined 

based on the agreement scores between capsules. This process 

continues hierarchically through all four capsule layers, 

resulting in a global identity capsule 𝑣(4)  representing the 

writer’s distinctive handwriting signature. Furthermore, to 

refine identity cues, 𝑣(4) is fed into a secondary spatial capsule 

network comprising three capsule layers (4 × 4, 2 × 2, 1 × 1). 

The input capsule grid is initialized as: 
 

( )4(1 )

( , ) , ,( )i j i j i ju ReLU A v b


=  +  (22) 

 

where, 𝐴𝑖,𝑗 ∈ 𝑅𝑑′×𝑑 and 𝑏𝑖,𝑗 are training parameters. To guide 

dynamic routing more effectively, attention coefficients 

𝛼(𝑖,𝑗),𝑝
1′

 are introduced to modulate the contribution of each 

lower capsule based on learned spatial saliency calculated in 

Eq. (20). 
 

( )

( )
( )( )

( )
( )( )

1 (1 )

|( , ),
1

, ,
1 (1 )

|( , ),

ˆexp( , )

ˆ, )

p i ji j

i j p

p i ji j
q

score u W

u W



 



 

=


 (23) 

 

where, 

 

( ), ( )T

ascore u W a tanh W u=   (24) 

 

The final attention-weighted routing input is computed as: 
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( ) ( )

) )(2 (1 ) (1 (2 )

| ,, , , ,
ˆ

p p i ji j p i j p
s c u

   

=   (25) 

 
This attention-guided capsule routing enhances robustness 

to local distortions and selectively amplifies salient spatial 

regions crucial for handwriting identity. The final capsule 

output 𝑣(3′)  encodes a compact, discriminative embedding 

that merges local and global characteristics for reliable author 

identification. The detailed architecture of the proposed CA-

CapsResNet is shown in Figure 7. 
 

 
 

Figure 7. The architecture of the proposed CA-CASResNet 
 

 
 

Figure 8. Flowchart of the proposed HCPPO algorithm for feature reduction 
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3.4 Feature optimization using hybrid puma-crested 

porcupine optimizer 

 

Feature optimization is crucial for reducing overlapping 

features while preserving discriminative information. In this 

paper, we propose a HCPPO to optimize the extracted feature 

set of Hybrid CA-CapsResNet. This algorithm integrates 

defence-guided exploration from CPO with intelligence-

driven exploitation and adaptive phase transition from PO. The 

combination of these two strong metaheuristics enables 

HCPPO to achieve a good balance between exploration and 

exploitation, thereby determining optimal subsets of features. 

The flowchart of the proposed algorithm is given in Figure 8. 

The suggested improvements are discussed in the subsequent 

steps. 

 

3.4.1 Problem formulation for feature selection 

Let 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑛 , 𝑦𝑛)}  be a dataset 

consisting of 𝑛 samples and 𝑚 features where 𝑥𝑖 ∈ ℝ𝑚 and 𝑦𝑖  

∈ 𝑅. The objective is to find the best subset of features 𝑆 ⊆
(𝑓1, 𝑓2, … 𝑓𝑛)  that achieves maximum model performance 

while minimizing the number of selected features. Define a 

binary solution vector: 

 

 1 2, , , 0,1n iX x x x x=    (26) 

 

where, 𝑥𝑖 = 0  if the feature is rejected and 𝑥𝑖 = 1  if the 

feature is selected. The objective function (𝑓(𝑥)) for feature 

optimization is modelled as a weighted sum of classification 

accuracy error and the relative number of features selected. 

Symbolically, it can be represented in Eq. (42).  

 

( )
.

. (1 ).Error

No of selected features
f x Class

Original features
 = + −  (27) 

 

where, 𝐶𝑙𝑎𝑠𝑠𝐸𝑟𝑟𝑜𝑟  refers to errors in classification accuracy, 

and 𝛼 is a weight balancing the tradeoff between classification 

accuracy and selected features.  

 

3.4.2 Initialization phase  

The algorithm begins by generating a population of 𝑁 

binary agents 𝑋𝑖 ∈ {0, 1}𝑚, representing different subsets of 

features. Let the features generated by CA-CASResNet be 

defined by  

 
0 0 0 0

1 2, , ,i mX X X X=   (28) 

 

The fitness score of each feature is calculated by 𝑓(𝑋𝑖
0). 

 

3.4.3 Intelligent phase switching mechanism 

The PO-inspired adaptive phase transition adaptively 

chooses between exploration and exploitation phases based on 

scoring mechanisms, as outlined in Eqs. (22) and (23), 

respectively. 

 

1 1 2 2

explore explore

ExploreScore f f = +  (29) 

 

1 1 2 2

exploit exploit

ExploitScore f f = +  (30) 

 

𝑓2 = 𝑚𝑒𝑎𝑛 (∆𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑙𝑎𝑠𝑡 𝑘) (31) 
 

The phase is selected as follows: 

Explore ExploitExploration if Score Score
Phase

Exploitation Otherwise


= 


 (32) 

 

Algorithm 3. Pseudocode of proposed HCPPO for feature 

reduction 

Input: 

- Extracted feature set  

F = {(x1, y1), (x2, y2), … (xn, yn)} from CA-CapsResNet 

- Population size Nmax, minimum population size Nmin 

- Maximum iterations Tmax  

- Objective function  

f(x) = α. ClassError + (1 −  α).
No. of selected features

Original features
 

- Convergence parameters: γ  (convergence rate), Tf 

(tradeoff factor) 

- Random coefficients r1, r2, r3 

- λ1, λ2 (phase weight factors) 

 

Output: 

- Optimized feature subset Xbest  

For t = 1 to Tmax do: 

 

Step 1: Initialization 

1.1 Initialize population agent: X = {X1, X2  , ..., XNmax
} 

randomly  

1.2 Evaluate fitness for each candidate solution using fmax  

1.3. Calculate ScoreExplore and ScoreExploit using Eq. (22), 

respectively. 

 

Step 2: Phase Selection Process 

Select phase based on Eq. (25): 

If ScoreExplore > ScoreExplore then 

Phase ← Exploration 

Else 

Phase ← Exploitation 

 

Step 3: Decision Step 1 

If Phase == Exploration then 

Randomly select one of the following phases 

- Visual Awareness (Eq. (26)): 

- Auditory Defense (Eq. (27)): 

 

Step 4: Decision Step 2 

Else if Phase == Exploitation then: 

Randomly select one of the following phases 

- Odor Mechanism (Eq. (28)): 

- Puma Memory Attack (Eq. (29)): 

Step 5: Apply Binary Encoding using Eq. (30): 

Step 6: Evaluate fitness f (𝐗𝐢) 

If 𝒇(𝑿𝒊)  <  𝒇(𝑿𝒃𝒆𝒔𝒕), then update 

𝐗𝐛𝐞𝐬𝐭 ← 𝐗𝐢 

Else 

Do nothing 

Step 7: End For 

Step 8: Return Xbest 

End 

 

3.4.4 Exploration phase  

The CPO model utilizes defensive strategies to diversify the 

search using two substeps: (1) Visual Awareness and (2) 

Auditory Defense. The working of both substeps is formulated 

in Eqs. (33)-(37). 
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(1) Visual awareness  

The visual awareness step in the HCPO algorithm is 

analogous to the sight defense mechanism of the Crested 

Porcupine. It facilitates extensive exploratory search through 

the simulation of far-away threat detection, wherein agents 

execute random Gaussian walks over the solution space to find 

new, unexplored areas. This step is formulated in Eq. (33): 

 
1 (0,1)t t

i iX X + = +   (33) 

 

where, γ controls the degree of perturbation, and 𝒩(0,1) 

introduces random Gaussian noise. 

 

(2) Auditory defense 

Agents create echo signals based on fitness, affecting others 

through: 

 
1 ( . ( ))t t t

i i best iX X rand X X+ = + −  (34) 

 

3.4.5 Exploitation phase 

At the exploitation phase, intelligent puma strategies are 

utilized for local intensification: 

A. Odor (CPO) mechanism: 

 

( )1 . . | ( ) |t t t t n

i i best i best iX X sign X X X X+ = + − −  (35) 

 

where, 𝛽 ∈ (0,1) and 𝜂 controls the learning rate.  

B. Puma memory attack: The agent selects the best 

historical region using the criteria discussed in Eq. (36): 

 
1 ( , , )t t

i best history best iX mean X X X+

−=  (36) 

 

Further, 𝑋𝑖
𝑡+1 is binary-encoded using Eq. (37): 

 

( )
( )( )1

1

otherwise

1

0

t

it

i

if X j r
X j

 +

+
 

= 


 (37) 

 

where, 𝜎(. )  is a sigmoid function. The pseudocode of the 

proposed HCPPO is given in Algorithm 3. 

 

3.5 Non-linear projection and classification 

 

After the hierarchical capsule encoding and subsequent 

feature reduction through the HCPPO, the selected feature set 

𝐹̂𝑆𝑒𝑙 ∈ ℝ𝑁×𝑑, where, N is the number of samples and 𝑑 is the 

optimized feature dimension. In order to increase nonlinearity 

and enhance the separability of classes in the acquired 

manifold, we introduce a nonlinear projection module that 

maps these projected features to a latent discriminative 

subspace 𝑅 ∈ 𝑁𝑁×𝑑′
 where 𝑑′ < 𝑑. Mathematically, we can 

formulate this step according to Eq. (38): 

 

( )2 1 1 2
ˆ( . . )Proj SelF Tanh W ReLU W F b b= + +  (38) 

 

where, 𝑊1  and 𝑊2  are learnable weight matrices, 𝑏1  and 𝑏2 

are bias terms. The projected features are then normalized and 

passed to a Softmax classifier for final prediction, as shown in 

Eq. (39): 

 

ˆ ( . )c norm cy Softmax W F b= +  (39) 

where, 𝑊𝑐 and 𝑏𝑐 are learning parameters of the output layer. 

The output vector 𝑦̂ ∈ 𝑅𝑁×𝐶 holds the class probabilities for 

all samples.  

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

This section provides an overall assessment of the proposed 

feature extraction using the Capsule Encoding Block and 

feature optimization using HCPPO from multiple dimensions. 

Sections 4.1 and 4.2 describe the experimental setup, including 

the datasets used and the model's implementation details. In 

Sections 4.3 and 4.4, we compare the performance of the 

model by evaluating its classification accuracy and parameter 

efficiency against several state-of-the-art approaches on 

various image datasets. Additionally, Section 4.5 presents a 

detailed ablation study to examine the contribution of different 

architectural components and configurations to the overall 

performance of the proposed framework. 

 

4.1 Experimental setup 

 

All experiments were conducted on a high-performance 

workstation equipped with an Intel Core i9-12900K processor 

at 3.20 GHz and an NVIDIA GeForce RTX 3090 graphics 

card. Model training and development were performed using 

PyTorch 1.13.1, a deep learning library that leverages CUDA 

11.7 and cuDNN 8.5 to take advantage of GPU acceleration.  

 

4.2 Datasets details 

 

Two benchmark handwriting datasets, the Devnagari 

Character Dataset and the KHATT dataset, were used in 

experiments to validate the robustness and generalization 

ability of the proposed handwriting recognition framework. 

They were chosen owing to their diversity in script style, 

linguistic content, and writing complexity. A crisp detail of 

both datasets is given below: 

(1). Devanagari Hindi MNIST dataset 

The Devnagari Hindi Character Dataset (DHCD) [28, 29] 

comprises 92000 scans [32 × 32 pixels] stored in 8-bit 

grayscale format. It is uniformly distributed over 46 balanced 

classes, comprising 36-character classes (vowels and 

consonants) and 10 numeral classes. Each class includes 

approximately 2,000 samples, ensuring equitable 

representation and preventing class imbalance during model 

training and evaluation. 

The data set has significant intra-class variability, including 

variations in handwriting style, skew, and character 

connectivity, making it an appropriate challenge for testing the 

spatial sensitivity of our model. The sample images are 

attached in Figure 9. 

 

 
 

Figure 9. Sample images of the Devanagari Hindi MNIST 

dataset 
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(2). KHATT dataset 

The KFUPM Handwritten Arabic Text (KHATT) [30] 

Database is one of the largest databases of unconstrained 

handwritten Arabic text, comprising 9,850 handwritten forms 

contributed by 1,000 diverse authors. The dataset comprises 

2,000 similar-text paragraph images and 2,000 unique-text 

paragraph images, uniformly distributed across all 1,000 

classes. Each page was scanned at a resolution of 300 dpi and 

saved as grayscale TIFF files. All the images are followed by 

manually authenticated ground truth annotations, both in 

Arabic text and Latin transliteration. The sample images are 

attached in Figure 10. 

 

4.3 Architectural composition and parametric overview 

 

The proposed handwriting recognition architecture relies on 

CA-CapsResNet for discriminative and robust feature 

extraction and HCPPO for effective feature reduction and 

dimensionality compression. The CA-CapsResNet is designed 

at the architectural level to encode fine-grained handwriting 

features by synergistically combining curve-aware adaptive 

convolutions, residual propagation, and capsule-like spatial 

encoding, thereby retaining the handwriting's inherent spatial 

hierarchy and direction variances. Coupling this, HCPPO 

leverages the search-oriented advantages of Crested Porcupine 

motion and the Puma optimizer's behavior of exploitation to 

eliminate redundant features while retaining critical 

descriptors. Tables 2-4 provide in-depth parametric 

descriptions of the constituent blocks in the architecture, 

focusing on kernel sizes, layer-wise compositions, activation 

modalities, and optimization methods. 

 

 
 

Figure 10. Sample images of the KHATT dataset 

 

Table 2. Components-wise parametric details used in the CA-CapsResNet model 

 

Module Key Components Kernel Size 
Parameters 

Counts 
Activation Normalization 

RAB 3 × 3 Conv, 1 × 1 Residual Conv (× 3 layers), ReLU, BN 3 × 3, 1 × 1 ~35 K ReLU BatchNorm 

SCE 
Depthwise Separable Conv, GAP, FC × 2 (Attention), 

ReLU, Sigmoid 

3 × 3 DW 

Conv, FC 
~28 K ReLU BatchNorm 

SAG Avg & Max Pooling (channel-wise), 7 × 7 Conv, Sigmoid 7 × 7 Conv ~10 K Sigmoid - 

 

Table 3. Training configuration and hyperparameter setting of the CA-CapsResNet model 

 
Training Parameter Value/ Setting 

Optimizer AdamW (Weight Decoupling) 

Learning Rate 0.001 

Learning Rate Schedule Cosine Annealing with Warm Restarts (T₀ = 10 epochs, ηmin = 1e-5) 

Number of Epochs 150 

Batch Size 64 

Loss Function Categorical Cross-Entropy with Focal Weighting (γ = 2.0) 

Regularization DropBlock (p = 0.1), L2 weight decay (λ = 1e-4) 

Early Stopping Patience = 20 epochs based on validation loss 

Validation Split Five-fold (80:20) 

 

4.4 Performance on Devnagari character and KHATT 

dataset 

 

In this section, classification accuracy and the number of 

trainable parameters is used as the primary metrics for model 

evaluation (Table 4). Since the samples in the Devnagari 

Character Dataset and KHATT datasets are 28 × 28 grayscale 

images of a single channel, the parameter count is the same for 

all models. The performance of the proposed framework is 

compared with six non-capsule network-based handwriting 

recognition frameworks: (1) R-CSNN [30], (2) WaveMix 

[31], (3) Threshold-Gabor CNN [32], (4) Fast Keypoints with 

Harris Corner Detection (FKHCD) [33], (5) Hybrid CNN with 

SVM [34], (6) Deep Transfer Learning with Random Forest 

(DTL-RF) [24], and six capsule network-based methods: (1) 

CapsNet [35], (2) Kernalized Deep Capsule Networks (K-

DCN) [16], (3) Deep Hybrid Capsule Networks (DHCN) [36], 

(4) Dense Capsule Networks (DCN) [37], (5) Deep Multi-

prototype Capsule Networks [38], and (6) Modified Part 

Capsule Auto-encoder (MPCAE) [39]. The experimental 

outcomes demonstrate a strong performance benefit of the 

proposed technique over both standard and capsule-based 

methods on the Devnagari and KHATT datasets (Table 5). 

In the case of methods not based on capsules, including R-

CSNN, WaveMix, Threshold-Gabor CNN, FKHCD, Hybrid 

CNN with SVM, and DTL-RF, the accuracy increased by 15–

21% in all instances on both datasets when feature reduction 

was applied. These models, typically characterized by a 

relatively shallow depth and linear backends for classification, 

appear to be more susceptible to noise and redundancy in the 

feature space. For instance, FKHCD increased from 58.75% 

to 74.40% on the Devnagari dataset, an increase of more than 

21%, the best in this set.  

Capsule-based models exhibit more complex behavior. 
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Although they typically begin with higher baseline accuracy 

due to their built-in routing-by-agreement, they still 

experience improvements in the range of 11–18% when 

features are reduced. CapsNet, for example, increases from 

70.86% to 86.44% on Devnagari with feature reduction. 

Interestingly, state-of-the-art capsule networks, such as 

MPCAE and Deep Multi-Prototype CapsNet, exhibit 

relatively smaller gains, suggesting that these models already 

incorporate some implicit feature selection or compression 

during training. The proposed method consistently performs 

the best on both datasets, achieving 98.94% and 97.36% 

accuracy on the Devnagari and KHATT datasets, respectively, 

when feature reduction is applied. Even without feature 

reduction, it retains a high performance, beating all other 

approaches with a substantially reduced parameter number. 

The reduction in performance in the absence of feature 

reduction is nominal, at 5.7% and 5.6%, respectively. It proves 

the inherent strength of the architecture and the reduced 

reliance on extrinsic preprocessing stages. 

Traditional non-capsule networks have a lower parameter 

count, ranging from 0.7 million to 1.1 million. While they are 

easy to implement, the models lack the performance of more 

complex capsule-based methods, especially without feature 

reduction. Capsule networks, although they offer better 

performance, are computationally more costly, with 

parameters ranging from 6.5 million to over 8.2 million. 

Surprisingly, our proposed approach deviates from this trend 

by achieving greater accuracy with only 2.87 M parameters, 

which is significantly lower than those in any capsule-based 

model.  

Overall, we can summarize the performance of our method 

on both datasets in the following points: 

 Key Findings on Devnagri Datasets 

(1) The proposed framework achieved 98.94% accuracy 

with feature reduction and 93.28% without it, marking a 5.7% 

improvement. 

(2) Outperformed all other non-capsule (R-CSNN, 

WaveMix, FKHCD, etc.) and capsule-based methods 

(CapsNet, MPCAE, Deep Multi-Prototype CapsNet). 

(3) CapsNet improved from 70.86% to 86.44% (18% gain), 

yet remained significantly below the proposed model. 

(4) Traditional non-capsule networks showed 15–21% 

improvement with feature reduction but achieved notably 

lower absolute accuracies. 

 Key Findings on KHATT Datasets 

(1) The proposed framework achieved 97.36% accuracy 

with feature reduction and 91.91% without it, representing a 

5.45% improvement in accuracy. 

(2) Consistently outperformed all competing models on the 

KHATT dataset, maintaining robustness across language 

scripts. 

(3) CapsNet accuracy increased from 68.02% to 83.82% 

(18.9% gain), while Deep Multi-Prototype CapsNet rose from 

75.26% to 88.04% (14.5% gain), but lower than the proposed 

model. 

(4) Non-capsule networks exhibited similar 15–21% 

relative improvements, but still lower than in the final 

accuracy levels. 

 

Table 4. Details of optimal hyperparameters used in the feature reduction step using Puma-CPO 

 
Hyperparameter Symbol Optimal Value Description 

Population Size (Initial) 𝑁𝑚𝑎𝑥 Dataset dependent The initial number of candidate solutions 

Minimum Population Size 𝑁𝑚𝑖𝑛 Dataset dependent Lower bound for dynamic population reduction 

Maximum Iterations 𝑇𝑚𝑎𝑥 500 Stopping criterion for optimization 

Convergence Rate 𝛾 0.13 Controls the balance between global and local search 

Tradeoff Factor 𝑇𝑓 0.87 Probability of selecting the third or fourth defense mechanisms in CPO 

Exploration Factor 𝑟1 0.19 Adjusts the impact of global best in the Puma search step 

Exploitation Factor 𝑟2 0.81 Controls the refinement of feature selection 

Perturbation Strength S 0.03 Stochastic perturbation for local search in CPO 

Adaptive Memory Weight 𝑈1 0.7 Weight factor for personal best solution updates 

Adaptive Step Size 𝑌𝑡 0.17 Determines search step variation in CPO 

Selection Weight 𝑈2 0.8 Influences decision-making in feature selection 

Objective Function Weight 1 𝛼1 0.37 Weight for classification accuracy error 

Objective Function Weight 2 𝛼2 0.63 Weight for the number of selected features 

 

Table 5. Accuracy and number of parameters across various methods on Devnagri and KHATT datasets with and without feature 

reduction 

 
Method Devnagari Accuracy (%) KHATT Accuracy (%) Parameters 

 With FR Without FR With FR Without FR  

Non-Capsule Methods 

R-CSNN 78.15 65.42 (-16.4%) 74.80 63.00 (-15.8%) ~0.8M 

WaveMix 82.60 68.42 (-17.2%) 80.50 67.44 (-16.3%) 0.7M 

Threshold-Gabor CNN 75.88 62.14 (-18.2%) 72.95 61.30 (-16.0%) ~1.0M 

FKHCD 74.40 58.75 (-21.0%) 71.23 59.12 (-17.0%) ~0.9M 

Hybrid CNN + SVM 81.76 67.33 (-17.6%) 79.01 65.40 (-17.2%) ~0.85M 

DTL-RF 85.33 70.61 (-17.2%) 82.19 69.40 (-15.6%) ~1.1M 

Capsule-Based Methods 

CapsNet 86.44 70.86 (-18.0%) 83.82 68.02 (-18.9%) 8.2M 

K-DCN 87.55 73.06 (-16.6%) 84.90 70.88 (-16.5%) 7.9M 

DHCN 88.41 74.02 (-16.2%) 85.75 72.48 (-15.5%) 6.5M 

DCN 89.67 75.38 (-15.9%) 86.91 73.63 (-15.3%) 7.2M 

Deep Multi-Prototype CapsNet 90.38 78.03 (-13.6%) 88.04 75.26 (-14.5%) 7.6M 

MPCAE 91.74 81.03 (-11.7%) 89.66 77.74 (-13.3%) 6.9M 

Proposed Method (Ours) 98.94 93.28 (-5.7%) 97.36 91.91 (-5.6%) 2.87M 
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4.5 Effect of feature selection on classification accuracy 

 

Figure 11 shows the comparison of validation accuracy 

between various baseline methods and the proposed approach 

on the Devanagari dataset after applying feature selection. It is 

clear that the feature selection significantly improves 

classification performance for all the methods. The proposed 

algorithm consistently outperforms all baselines, achieving 

more than 80% validation accuracy in the initial 50 epochs, 

with performance peaking at approximately 99.5% after 145 

epochs. By comparison, the nearest competing approaches, 

MPCaE and Deep Multi-prototype CapsNet, achieve their 

highest validation accuracy of approximately 91% and 89%, 

respectively, which converge at slower rates. Baseline 

strategies without feature fine-tuning, such as R-CSNN and 

Hybrid CNN + SVM, plateau at much lower accuracy ranges, 

from 70% to 85%. The improved performance of the 

introduced method demonstrates how selecting the most 

informative features optimizes learning effectiveness, reduces 

overfitting, and accelerates convergence speed. 

Figure 12 illustrates the loss for various baselines and the 

proposed method on the Devanagari dataset. The proposed 

method exhibits the lowest and most stable validation loss 

during training, and it rapidly dips below 0.2 at around 70 

epochs, while maintaining improved convergence. Baseline 

methods converge at a higher loss value of about 0.3 to 0.5, 

indicating inferior learning. The sharp decline of the proposed 

approach's loss curve also affirms the strength of feature 

selection in enabling faster and robust optimization. 

 

 
 

Figure 11. Epoch-wise validation accuracy comparison 

between various baseline methods and our approach on the 

Devanagari dataset with feature reduction 

 

 
 

Figure 12. Epoch-wise loss comparison between various 

baseline methods and our approach on the Devanagari dataset 

with feature reduction 

 
 

Figure 13. Epoch-wise validation accuracy comparison 

between various baseline methods and our approach on the 

Devanagari dataset without feature reduction 

 

 
 

Figure 14. Epoch-wise loss comparison between various 

baseline methods and our approach on the Devanagari dataset 

without feature reduction 

 

Figure 13 presents the epoch-by-epoch comparison of 

validation accuracies for the proposed method and various 

baselines on the Devanagari dataset, without feature reduction. 

While the proposed method still far surpasses every other 

competing methodology, its validation accuracy peak slides 

down to near 88% compared to ~99.5% when a feature 

selection criterion is used (Figure 11).  

Other alternatives, such as MPCaE and deep multi-

prototype CapsNet, boast maximum accuracies of around 82% 

and 78%, respectively. By contrast, conventional baselines 

such as R-CSNN and Threshold-Gabor CNN tend to plateau 

at lower accuracy levels, ranging from 65% to 70%.  

Figure 14 illustrates the epoch-wise comparison of 

validation loss for different baseline models and the proposed 

approach on the Devanagari dataset, without feature reduction. 

Even though the suggested approach still has the lowest 

validation loss among all models, its convergence is slightly 

less sharp and smooth than when feature selection is used (as 

shown in Figure 12). The proposed approach converges to a 

loss of ~0.08, whereas other competing approaches, such as 

MPCaE and Deep Multi-prototype CapsNet, converge 

towards losses of ~0.15 and 0.18, respectively. The remaining 

baseline approaches, such as R-CSNN and Threshold-Gabor 

CNN, converge at much higher loss values of approximately 

0.3–0.45, reflecting poorer generalization performance.  

Figure 15 shows the epoch-wise comparison of validation 

accuracy among different baseline techniques and the 

suggested technique on the KHATT dataset with feature 

reduction. The suggested technique outperforms all baselines 

throughout the epochs, achieving a validation accuracy of 

around 96–97%, which indicates a prominent margin of 8–

12% over the second-best rival, such as MPCaE and Deep 

4185



 

Multi-prototype CapsNet. Other approaches, such as DTL-RF 

and Hybrid CNN+SVM, plateau at lower accuracies of 80–

85%, while traditional baselines, including R-CSNN and 

Threshold-Gabor CNN, stabilize at accuracies below 75%. 

The faster and higher convergence of the proposed approach 

demonstrates the strength of feature selection in retaining the 

most discriminative patterns and eliminating redundant 

information, resulting in improved generalization ability and 

training stability. 

 

 
 

Figure 15. Epoch-wise validation accuracy comparison 

between various baseline methods and our approach on the 

KHATT dataset with feature reduction 

 

 
 

Figure 16. Epoch-wise loss comparison between various 

baseline methods and our approach on the KHATT dataset 

with feature reduction 

 

 
 

Figure 17. Epoch-wise validation accuracy comparison 

between various baseline methods and our approach on the 

KHATT dataset without feature reduction 

 

Figure 16 depicts the validation loss curves for the same 

experimental configuration on the KHATT dataset with 

feature reduction. Not only does the proposed method yield the 

lowest validation loss, which stabilizes at 0.10, but it also has 

a smoother and quicker convergence than all other models. On 

the other hand, baselines such as MPCaE and Deep Multi-

prototype CapsNet remain at higher losses of 0.20–0.25, 

whereas conventional approaches, including R-CSNN and 

Threshold-Gabor CNN, remain above 0.4. The steeper drop 

and lower final loss values of the proposed approach validate 

its better learning dynamics, effective optimization, and low 

overfitting behavior. 

In Figure 17, the accuracy progression with feature 

selection for validation clearly shows the better learning 

ability of the proposed method compared to baseline models. 

The proposed method exhibits a steep increase in accuracy 

during the first 40 epochs, reaching above 80% early on, and 

gradually increases to approximately 95–97% as training 

continues. By contrast, baseline approaches like R-CSNN, 

WaveMix, and Threshold-Gabor CNN have slower 

convergence and plateau at much lower accuracies (~70–

85%). Feature reduction has significantly enhanced the 

discriminative power of the input representations, leading to 

faster convergence and more stable performance.  

 

 
 

Figure 18. Epoch-wise validation accuracy comparison 

between various baseline methods and our approach on the 

KHATT dataset without feature reduction 

 

Figure 18 shows the respective validation loss curves, 

where the proposed approach records the steepest and most 

convergent drop in loss. At around 60 epochs, the proposed 

approach's validation loss is already less than 0.2 and remains 

low throughout with no significant oscillations for the 

remainder of training. All other approaches plateau at much 

higher levels of loss (~0.3–0.5), recording slower optimization 

and less convergent stability. The gradual and smooth decline 

in the loss curve for the proposed approach suggests efficient 

training, quality fit to the data, and no overfitting. 

Figure 19 presents a comprehensive comparison of 

precision, recall, and F1-score between different baseline 

models and the proposed method, with and without feature 

selection, on the Devanagari dataset. On all metrics, it is 

evident that feature selection consistently improves 

performance across different models. Interestingly, the 

proposed method (ours) produced the best performance, with 

a precision of 0.91, a recall of 0.91, and an F1-score of 0.91 

when feature selection was used, compared to 0.81, 0.82, and 

0.81, respectively, without feature selection. Similarly, 

conventional techniques such as Thresholder-Gabor CNN and 

Hybrid CNN + SVM exhibit significant improvements 

following feature selection, with precision values rising from 
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0.61 to 0.71 and from 0.63 to 0.71, respectively. In addition, 

the baselines of deep learning models, such as DTCN and 

DCN, also improved, with the F1-score of DTCN increasing 

from 0.72 to 0.83 and that of DCN from 0.74 to 0.85.  

 

 
 

Figure 19. Epoch-wise validation accuracy comparison 

between various baseline methods and our approach on the 

Devanagari dataset without feature reduction 

 

Figure 20 compares the precision, recall, and F1-score of 

some baseline models and the proposed method, tested on the 

KHATT dataset under both feature selection and non-feature 

selection conditions. There is a common trend here where 

feature selection greatly improves the performance of the 

models in all measures. The proposed approach achieves better 

performance, with accuracy, recall, and F1-scores of 0.90, 

0.90, and 0.90, respectively, when feature selection is used, 

compared to 0.79, 0.80, and 0.79, respectively, without feature 

selection. Baseline approaches, such as Thresholded-Gabor 

CNN and Hybrid CNN + SVM, yield moderate gains; for 

example, precision values increase from 0.53 to 0.72 and from 

0.53 to 0.73, respectively, when feature selection is employed. 

More complex models, such as DTCN and DCN, also 

benefited significantly, with the F1-score of DTCN increasing 

from 0.71 to 0.81 and that of DCN from 0.74 to 0.84 through 

feature selection. Likewise, MPCFE and Deep Multi-Stage 

Cascaded Networks showed considerable improvement, 

achieving F1-scores of 0.86 and 0.85, respectively, which 

reflects the success of feature selection in deep models. 

 

 
 

Figure 20. Epoch-wise validation accuracy comparison 

between various baseline methods and our approach on the 

KHATT dataset without feature reduction 

 

4.6 Ablation study 

 

In an ablation study, we need to determine how our 

proposed components contribute to the verification model by 

comparing the model with each component included to the 

model without it. Thus, to conduct the ablation analysis, we 

employed five varying models by excluding each of the 

suggested components from the original CA-CapsResNet 

architecture. These models were constructed as follows: 

 Model 1: The original proposed CA-CapsResNet without 

the RAB 

 Model 2: The original proposed CA-CapsResNet without 

the SCE module (Removing spatial attention modeling) 

 Model 3: The proposed architecture without the Channel 

Attention sub-module inside SCE (Only spatial attention is 

preserved) 

 Model 4: The proposed CA-CapsResNet without Capsule 

Encoding (Only curvature-aware CNN and SCE without the 

capsule layer)  

 Model 5: The original proposed CA-CapsResNet without 

the Curvature-Aware Convolutions (Using standard 

convolutions instead). 

 

Table 6. Comparison of the proposed method with the five models used in the ablation study 

 

Model 
Devnagari Accuracy (%) KHATT Accuracy (%) 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

Method 1 92.80% 89.10% 87.32% 88.20% 89.67% 86.44% 84.00% 85.20% 

Method 2 91.45% 88.05% 85.13% 86.56% 88.40% 84.20% 82.75% 83.47% 

Method 3 93.92% 91.11% 88.79% 89.94% 91.02% 87.58% 85.41% 86.48% 

Method 4 89.63% 86.23% 84.56% 85.38% 87.24% 83.12% 80.90% 81.99% 

Method 5 90.71% 87.32% 85.07% 86.18% 88.56% 84.77% 82.50% 83.62% 

Full Model 98.94% 97.66% 96.33% 97.00% 97.36% 94.80% 93.44% 94.05% 

Model 1 is also very strong on both datasets, achieving 

accuracies of 92.80% for Devnagari and 89.67% for KHATT. 

The precision, recall, and F1-score values all indicate similar 

strengths, with the highest precision and recall being 89.10% 

and 87.32%, respectively, for Devnagari. For KHATT, the 

corresponding precision and recall values are 86.44% and 

84.00%. Even as a strong runner-up, Method 1 is still behind 

the full model on all metrics. Model 2 has slightly weaker 
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performance than Method 1, with accuracies of 91.45% 

(Devnagari) and 88.40% (KHATT). Precision and recall 

scores also follow the same trend of decrease, with Devnagari 

precision at 88.05% and recall at 85.13%, whereas KHATT 

scores fall to 84.20% for precision and 82.75% for recall. The 

F1-scores overall also decrease, which means that Method 2's 

performance is slightly weaker than Method 1. The Model 3 is 

the most accurate method in terms of both accuracy and 

overall performance. It achieves the best accuracy of 93.92% 

for Devnagari and 91.02% for KHATT, surpassing both 

Method 1 and Method 2. It also has the best improvements in 

precision, recall, and F1-score, especially for Devnagari 

(91.11%, 88.79%, and 89.94%, respectively) and for KHATT 

(87.58%, 85.41%, and 86.48%, respectively). These findings 

indicate that Method 3 achieves a more optimal balance 

between recall and precision than the earlier methods (Table 

6). 

 

4.7 Research limitations 

 

Although our proposed model for handwriting recognition 

has demonstrated promising results, several limitations need 

to be addressed. A list of five key limitations and their 

potential solutions is discussed below:  

1). The model can be challenged by extreme handwriting 

changes, specifically inconsistent handwriting styles, which 

can be detrimental to feature extraction and compromise 

performance. This problem can be addressed by utilizing 

adaptive normalization for domain alignment, which 

standardizes handwriting styles during the training procedure 

to improve style robustness and reduce variation between 

writers. 

2). The hybrid CA-CapsResNet exhibits high computational 

requirements, making real-time or resource-constrained 

deployment challenging. To mitigate this issue, developers 

can investigate model compression methods, such as pruning, 

quantization, and knowledge distillation, aiming to reduce the 

computational burden while maintaining acceptable 

recognition performance. 

3). The model's stability can be compromised when exposed 

to noisy or low-quality images, as its ability to extract 

significant features can be adversely affected. In the future, 

this can be reduced by using noise-robust preprocessing 

modules, such as denoising autoencoders and contrastive 

regularization, to extract stable features under challenging 

imaging conditions.  

4). Limited generalization ability may occur, particularly 

when training on datasets with insufficient diversity in 

handwriting samples, resulting in a decline in performance 

when applied to unseen data. Future work may focus on 

increasing data variability through synthetic augmentation, 

cross-domain adaptation, and style transfer to enhance model 

generalization to unseen scripts and writing conditions. 

5). Handwriting types with distinctive or excessively ornate 

characteristics, such as calligraphy or stylized cursive, may 

cause difficulties for the model, as their distinctive traits may 

not align well with the feature extraction approaches, thereby 

reducing accuracy. This challenge can be alleviated by 

utilizing multi-scale spatial transformer networks or semantic 

regularisation mechanisms that can dynamically respond to 

structural deformations and the utilization of complex stroke 

structures. 

 

 

5. CONCLUSION AND FUTURE SCOPE 

 

In this paper, a new handwriting recognition system is 

introduced that integrates RABs, SCE, SAG, hierarchical 

capsule encoding, and a hybrid puma-crested porcupine 

optimizer for feature reduction. This hybrid model can better 

maintain hierarchies of features in both local and global 

contexts while also improving the spatial integration of those 

feature structures and learning hierarchical representations. 

Quantitatively, the framework achieved an accuracy of 

98.94% and 97.36% (with feature reduction) on the 

Devanagari and KHATT datasets, respectively, compared 

with an accuracy of 93.28% and 91.91% without feature 

reduction, representing improvements of 5.66% and 5.45% 

(Table 5). These results differ significantly from two 

traditional capsule-based models, where CapsNet improved by 

almost 18% or Multi-Prototype CapsNet by 13 to 14%, but 

with reduced accuracy, as their accuracies remained in the 86 

to 90% range. 

Therefore, the described framework represents a new state-

of-the-art for handwriting recognition tasks, combining high 

accuracy, parameter efficiency, and stability through feature 

reduction. Nonetheless, several potential avenues exist for 

extending this work. One of these is to investigate cross-

lingual handwriting recognition, where the model can be 

adapted and fine-tuned to recognize handwriting in various 

languages and scripts, including Chinese and Japanese. 

Future research can aim to extend this model to cross-

lingual handwriting recognition, enabling the model to 

generalize to different writing systems (e.g., Arabic, Chinese, 

or Japanese) through transfer learning or domain adaptation. 

Another avenue is to optimize this model for real-time 

implementation on edge and mobile devices, which would 

reduce latency and the computational burden on educational, 

document authentication, and banking digitization 

applications. In addition, the feature selection based on hybrid 

optimization could be enhanced through adaptive or dynamic 

feature selection, which would enable the neural network to 

dynamically focus on a smaller subset of important features 

depending on the characteristics of the input. Ultimately, this 

system is adaptable for commercial and forensic applications, 

including automated document verification, writer 

identification, and handwriting-based behavioral analysis. 
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