
A Novel Swarm-Based Hybridization of Puma Optimizer and Crested Porcupine Algorithm

for Complex Handwriting Recognition in Writer Identification

Asmaa N. Khaleel1* , Raya Akram Hamdi2 , Husham Y. A. Alameen3

1 College of Electronics Engineering, Ninevah University, Mosul 41002, Iraq
2 College of Administration and Economics, University of Mosul, Mosul 41002, Iraq
3 College of Engineering, Mechatronics Engineering Department, University of Mosul, Mosul 41002, Iraq

Corresponding Author Email: asmaa.khaleel@uoninevah.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.121207 ABSTRACT

Received: 7 August 2025

Revised: 15 November 2025

Accepted: 21 November 2025

Available online: 31 December 2025

Accurate handwriting recognition is a challenging problem, owing to variability in

handwriting styles, distortions in writing patterns, and noise in handwritten documents.

These challenges are even more severe in scripts like Devanagari and Arabic, which

have complex character forms and high visual similarity among classes, requiring

strong feature extraction and semantic knowledge. To address these challenges, we have

developed a novel deep-learning-based handwriting recognition system that preserves

the intrinsic writing dynamics and recognizes hierarchical spatial cues through multi-

level abstraction and attention-driven encoding. Our framework synergistically

integrates a Residual Abstraction Block, Spatial Context Encoder, Spatial Attention

Generator, and Hierarchical Capsule Encoding Block to capture fine-grained spatial

dependencies and contextual semantics efficiently. To further improve efficiency, we

propose a hybrid puma-crested porcupine optimizer for Feature Reduction (FR), which

significantly reduces the model's complexity without compromising accuracy.

Extensive experiments on the Devanagari and KHATT datasets prove the effectiveness

of our method. Our proposed model achieves superior recognition accuracy of 98.94%

(with FR) and 93.28% (without FR) on Devanagari, and 97.36% (with FR) and 91.91%

(without FR) on KHATT, outperforming various baseline methods. These findings

demonstrate the robustness of our architecture in achieving high accuracy, compactness,

and resilience.

Keywords:

handwriting recognition, capsule networks,

feature reduction, puma-crested porcupine

optimizer, deep learning

1. INTRODUCTION

Handwritten Character Recognition (HCR) has become a

central field of study in pattern recognition and machine

learning due to its widespread applications in biometric

identification, document authentication, and forensic

examination [1]. Specifically, writer identification, or the

identification of an individual's distinctive handwriting style,

is essential for security systems, historical document analysis,

and criminal investigations [2]. However, intricate

handwriting styles, inconsistent writing patterns, and noise in

handwritten texts pose great challenges for reliable writer

identification [3].

Conventional methods were primarily based on handcrafted

local descriptors, such as Scale-Invariant Feature Transform

(SIFT), Speeded-Up Robust Features (SURF), Local Binary

Patterns (LBP), and Histogram of Oriented Gradients (HOG),

which are robust to small distortions, affine variations, and

slight overlaps; however, they fail to capture higher-level

semantic information and contextual meaning in handwriting

[4-8]. Deep learning techniques, particularly Convolutional

Neural Networks (CNNs), facilitated data-driven feature

learning by automatically extracting hierarchical

representations from raw handwriting images [9]. However,

traditional CNNs tend to fail to capture the dynamic, fine-

grained, and context-dependent nature of handwriting

variations [10]. They primarily emphasize local patterns and

lack an explicit mechanism to model spatial relationships and

salient regions, which are essential for distinguishing writing

styles [11, 12].

To overcome the limitations mentioned above, our study

aims to develop a hybrid deep learning architecture named

Curve-Aware Capsule Residual (CA-CapsResNet) CNN. The

model integrates three modules: (1) Residual Abstraction

Block (RAB), (2) Spatial Context Encoder (SCE), and (3)

Spatial Attention Generator (SAG), to extract, refine, and

boost the hierarchical and spatial nature of handwriting

features. First, the RAB employs a combination of zero-

padded convolutions and residual connections to preserve

fine-grained spatial locality while generating a shallow,

discriminative feature map. Then, the SCE utilizes depthwise

separable convolutions, lightweight channel attention, and

global context aggregation to refine local structures further

and selectively enhance semantically rich features. Lastly, the

SAG calculates a location-aware attention map that directs the

model to emphasize salient spatial areas in separating various

Mathematical Modelling of Engineering Problems
Vol. 12, No. 12, December, 2025, pp. 4173-4190

Journal homepage: http://iieta.org/journals/mmep

4173

https://orcid.org/0000-0001-8352-7884
https://orcid.org/0009-0006-9538-0756
https://orcid.org/0000-0002-2043-8953
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.121207&domain=pdf

handwriting styles. Finally, a hierarchical capsule network

[13] is introduced to extract high-dimensional fine-grained

spatial features from the extracted salient regions.

To further enhance classification accuracy and minimize the

risk of overfitting, a Hybrid Crested Porcupine-Puma

Optimizer (HCPPO) is introduced for optimal feature

selection. This approach synergistically combines the

exploratory search scheme of Crested Porcupine [14] and the

exploitative refinement technique of the Puma algorithm [15]

to achieve a better exploration-exploitation balance than

traditional feature selection techniques. Furthermore, the

integration of phase-based decision-making, binary encoding,

adaptive randomization, and a convergence-aware control

strategy ensures that the optimizer effectively reduces the

larger search space with an optimal feature set and higher

accuracy.

The main contributions of this work are briefly stated

below:

⚫ We introduce the CA-CapsResNet, which integrates an

RAB, an SCE, and an SAG to extract and refine

hierarchical handwriting features.

⚫ The RAB retains fine-grained spatial information

through zero-padded convolutions and residual

connections, generating shallow, discriminative feature

maps.

⚫ The SCE enhances semantically dense features by

applying depthwise separable convolutions and

lightweight attention, and the SAG focuses on key

handwriting areas.

⚫ Our proposed HCPPO framework utilizes adaptive

phase transitions, binary encoding, and convergence

control policies to obtain minimal yet highly

discriminative feature subsets, thereby enhancing

classification accuracy while reducing complexity.

⚫ We conduct extensive five-fold cross-validation

experiments on the Devanagari Hindi and KHATT

datasets to examine the robustness and generalization

ability of the proposed framework.

The rest of the paper is structured as follows: Section 2

discusses relevant works on metaheuristic algorithms for

handwriting recognition and hybrid optimization methods.

Section 3 outlines the proposed methodology, including (1)

Preprocessing, (2) Feature Extraction (CA-CapsResNet), (3)

Optimal Feature Selection using the HCPPO algorithm, and

(4) Classification. Section 4 presents the experimental setup,

benchmark datasets, and experimental results, along with a

comparative analysis of the results with previous methods.

Lastly, Section 5 concludes the findings and proposes

directions for future research.

2. RELATED WORK

This section provides an overview of recent research into

handwritten character recognition and optimization-based

learning. To begin, Subsection 2.1 surveys important baseline

studies across capsule, CNN, and hybrid-based handwritten

character recognition. In turn, Subsection 2.2 applies a

comparative review based on the underlying principles and

limitations of the two approaches. Finally, Subsection 2.3

explains how the proposed CA-CapsResNet model with

HCPPO converges the gaps outlined in previous studies and

advances the field beyond the previous work.

2.1 Baseline studies in capsule, CNN, and hybrid models

Yao et al. [16] introduced FOD_DCNet, a deep capsule

network for fully overlapping handwritten digit recognition

and separation. The model implemented small convolutional

kernels and an improved series dual dynamic routing

collocation mechanism, increasing routing effectiveness.

Accuracy was reported to be 93.53%, with almost half the

number of parameters compared to a regular CapsNet.

Parcham et al. [17] introduced CBCapsNet by integrating

CNN with capsule networks to improve spatial feature

learning in the signature verification task. The architecture

employed a paired image scheme to reduce the training

parameters by half, thereby avoiding the need for dual

networks. The proposed network achieved a classification

accuracy of 92.94% with a low Feature Acceptance Rate

(FAR) and a high Feature Reduction Rate (FRR). Moudgil et

al. [18] presented a CapsNet framework for identifying

Devanagari characters, comprising 399 classes, with an

accuracy of 94.6%, which outperformed conventional models

such as CNN, MLP, and KNN.

In handwriting recognition, feature selection has also

received considerable attention. In a recent work, Abd Elaziz

et al. [19] integrated the Freeman Chain Code (FCC) with the

Whale Optimization Algorithm (WOA) to enhance the data

representation of handwritten text images. This step improved

the feature reduction and convergence rate of the WOA

compared to the Flower Pollination Algorithm (FPA). Al-

Saffar et al. [20] merged a Dynamically Configurable

Convolutional Recurrent Neural Network (DC-CRNN) with

the Salp Swarm Optimization Algorithm (SSA) to minimize

the complexity of the hyperparameter tuning process,

achieving improved results on both English and Arabic

datasets.

Altwaijry and Al-Turaiki [21] presented the Hijja dataset,

which contains 47,434 Arabic characters written by children

aged 7 to 12. They trained a CNN architecture on the Hijja and

AHCD datasets and reported 97% accuracy on AHCD and

88% on Hijja, showing a promising approach for Arabic

handwriting recognition. Kavitha and Srimathi [22] employed

CNNs in the offline Handwritten Tamil Character Recognition

(HTCR) problem, highlighting the networks' capacity for

discriminative feature learning. Their CNN model, trained on

a dataset generated by HP Labs India, achieved an accuracy of

95.16%, outperforming baseline methods. Similarly, Assael et

al. [23] introduced ITHACA, a deep-learning framework built

for automating restoration and chronological accreditation of

Greek historical inscriptions. Ithaca improved the restoration

performance from 25% to 72%, surpassing state-of-the-art

methods.

Shifting towards multilingual and multimodal

environments, Das et al. [24] introduced a hybrid deep

learning framework combining a transfer-learning-based CNN

and a Random Forest classifier for the recognition of Bangla

Sign Language (BSL). This model was validated on the Ishara-

Bochon and Ishara-Lipi datasets, achieving 91% accuracy for

characters and 97% accuracy for digits across both datasets,

respectively. Chauhan et al. [25] leveraged transfer learning to

develop HCR-Net, a lightweight, script-agnostic model to

realize both faster convergence and better generalization. The

performance of HCR-Net was compared with 26 baseline

methods on 40 public datasets, with up to 11% higher accuracy

and 99% first-epoch convergence.

In parallel, optimization-driven techniques have gained

4174

traction for improving feature selection and convergence

behavior. Hadadi and Arabani [26] developed a deep learning-

based method utilizing various handwritten samples for

Parkinson’s diagnosis, which was optimized using the Harris

Hawks Optimization (HHO) algorithm. This model achieved

94.12% accuracy, outperforming five pre-trained networks,

and converged to a cost function value of 0.0084746 in just 10

iterations. Mohammad et al. [27] proposed a metaheuristic

method based on the Honey Badger Algorithm (HBA) with the

Freeman Chain Code (FCC) for HCR feature extraction,

achieving efficient route length and computational time on the

CEDAR dataset. However, dependency on the FCC’s initial

points influences the consistency of extraction. To counter

this, the suggested HB-FCC effectively balanced exploration

and exploitation dynamically, increasing the robustness of

feature extraction.

The baseline studies on capsule, CNN, and hybrid models

are summarised in Table 1, along with their datasets,

performance levels, and limitations, which served as

motivation for the proposed CA-CapsResNet and HCPPO

framework.

2.2 Synthesis and comparative analysis

The given related work can be CATEGORIZED into three

research areas: (1) CNN-based, (2) Capsule-based, and (3)

hybrid or optimization-based approaches. CNN architectures

[21, 22, 24, 25] have effectively demonstrated hierarchical

learning capabilities and generalizability across scripts;

however, their lack of spatial awareness has limited their

ability to model detailed relationships among handwriting

strokes adequately. Capsule networks [16-18] were motivated

to address the issue of spatial awareness by retaining spatial

hierarchies and establishing part-whole relationships using

dynamic routing. Capsule networks demonstrated a greater

representation of local dependencies than CNNs; they were

computationally heavy and do not inherently provide the

possibility for adaptive decrease in features. Hybrid and

optimization approaches [19, 20, 26, 27] aim to balance

recognition accuracy and computational effectiveness by

integrating deep models with bio-inspired algorithms, such as

WOA, SSA, HHO, and HBA. Despite this, the majority of

these approaches focus on optimization and feature selection,

without considering context-sensitive spatial refinement, a

crucial aspect of complex handwriting styles.

2.3 Comparative advantage of the proposed work

Compared to existing CNN, capsule, and hybrid

handwriting recognition approaches, our CA-CapsResNet

with HCPPO is improved at both the architectural and

optimization stages. Conventional CNNs process only local

features, resulting in a loss of spatial hierarchy. Capsule

networks, on the other hand, maintain spatial relationships but

have significant architecture routing complexity and limited

adaptability. Our proposed CA-CapsResNet with HCPPO

addresses these challenges through residual abstraction,

spatial context encoding, and attention-guided refinement,

enabling it to model the continuity of curves, stroke dynamics,

and contextual dependencies in handwriting more effectively.

Furthermore, unlike previous hybrid or metaheuristic

optimizer techniques, such as WOA, SSA, HHO, and HBA,

the HCPPO selects compact yet highly discriminative feature

subsets by employing adaptive phase transitions to optimize

the balance between exploration and exploitation, thereby

reducing computational load. In summary, the CA-

CapsResNet and HCPPO form an integrated pipeline,

resulting in a richer encoding of spatial representations with

minimal feature redundancy and improved classification

accuracy compared to baseline methods.

Table 1. Summary of the related works done for handwriting character recognition

Study Model/Technique Datasets Novelty Accuracy Limitations

Yao et al. [16] FOD_DCNet
Overlapping digit

dataset

Dual dynamic routing

for capsule efficiency
93.53%

Limited adaptability,

parametric heavy

Parcham et al.

[17]

CBCapsNet

(CNN + CapsNet)
Signature dataset Paired-image scheme

92.94%

(low FAR/FRR)

Lacks attention-based

refinement

Moudgil et al.

[18]
CapsNet Devanagari dataset

Capsule routing across

399 classes
94.6%

Lacks feature

optimization

Abd Elaziz et al.

[19]
WOA + FCC Handwritten text

Whale Optimization

for FCC representation

Improved path

length

No spatial learning,

dependent on FCC

initialization

Al-Saffar et al.

[20]
DC-CRNN + SSA IAM, IFN/ENIT

SSA for CRNN

structure learning

Outperformed

conventional CRNN

Limited contextual

refinement; high

parameter count

Altwaijry and

Al-Turaiki [21]
CNN AHCD, Hijja

CNN trained on a new

Arabic dataset

97% (AHCD),

88% (Hijja)

Poor generalization on

noisy data

Kavitha and

Srimathi [22]
CNN

HP Labs Tamil

dataset

CNN trained from

scratch
95.16%

No spatial hierarchy

modeling; limited

robustness

Assael et al.

[23]
Ithaca (DL) Greek inscriptions

Restoration and dating

model
62% (restoration)

Limited handwriting

variability

Das et al. [24]
CNN + Random

Forest

Ishara-Bochon,

Ishara-Lipi

Hybrid model with

background removal

91% (chars),

97% (digits)

Weak spatial consistency;

dual-stage complexity

Chauhan et al.

[25]

HCR-Net

(transfer learning)
40 datasets

Lightweight, script-

independent
+11% vs. baselines

Limited fine-grained

spatial encoding

Hadadi and

Arabani [26]
DL + HHO

Parkinson’s

handwriting

HHO-optimized DL

model
94.12%

Focused on diagnosis;

lacks feature-level

optimization

Mohamad et al.

[27]

HB-FCC (HBA +

FCC)
CEDAR dataset

Honey Badger

optimization for FCC

features

Improved route

length

Sensitive to initial points;

limited context-awareness

4175

3. PROPOSED METHODOLOGY

In this section, we briefly cover the proposed methodology

in four categories: (1) Image preprocessing, (2) Multi-

dimensional handwriting feature extraction, (3) Feature

reduction using the proposed PO-CPA approach, and (4)

Classification using various machine learning classifiers. Our

proposed classification model is illustrated in Figure 1.

Figure 1. Flowchart of the proposed handwriting recognition and writer's classification framework

3.1 Image preprocessing

Preprocessing is essential for enhancing the quality of

handwriting images and preparing them for feature extraction.

The operations are carried out step by step, following the

mathematical equation.

3.1.1 Image resizing

The input handwriting image is resized to a size of 224 ×

224 pixels to maintain uniformity across the dataset. This

standardization ensures that all images have the same

dimensions for consistent processing. The resized images are

then stored for further preprocessing steps, such as noise

removal and normalization. The resized sample images are

illustrated in Figure 2.

Figure 2. Sample writing samples after performing the

resizing operation in 224 × 224 pixels

3.1.2 Noise removal

We apply noise removal methods to remove unwanted

artifacts, such as salt-and-pepper noise, providing a clean,

binarized image. A median filter is used:

𝐼′(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛 {(𝑥 + 𝑖, 𝑦 + 𝑗)|(𝑖, 𝑗) ∈ 𝑁} (1)

where, N represents the neighborhood window (3 × 3). This

step enhances image clarity for further processing. The clean

sample images are illustrated in Figure 3.

Figure 3. Sample writing samples after performing the

denoising operation using median filtering

3.1.3 Morphological processing

We apply morphological operations, including dilation and

erosion, to smooth the boundaries of handwriting. Dilation

fills small gaps in strokes using Eq. (2):

()D I I K=  (2)

4176

where, 𝐾 is a structuring element. Erosion removes small

noises and refines character edges using Eq. (3):

𝐸(𝐼) = 𝐼 ⊝ 𝐾 (3)

These tasks strengthen stroke cohesion while maintaining

writing characteristics. The processed sample images are

illustrated in Figure 4.

Figure 4. Sample writing samples after performing the

morphological operation

3.1.4 Slant normalization

Writer-dependent variations of stroke orientation are

removed by correction through slant normalization via shear

transformation using Eq. (4):

1

0 1i

K xx

yy

     
=     
    

 (4)

where, 𝐾 is the corrected slant factor. It standardizes the

handwriting to achieve a uniform appearance across various

writers. The processed sample images are illustrated in Figure

5.

Figure 5. Sample writing samples after performing the slant

normalization

3.1.5 Size normalization

We apply size normalization to standardize handwriting

sizes, ensuring uniform input for recognition models. The

rescaling transformation is defined by:

(), (. , .)I x y I x y    = (5)

where, α and β are scale factors calculated according to the

standard character size. The processed sample images are

illustrated in Figure 6.

Figure 6. Sample writing samples after performing the size

normalization

3.2 Proposed model architecture

Handwriting recognition for author identification is highly

challenging because handwriting style, stroke dynamics, and

non-regular spatial features are very difficult to handle due to

the presence of intricate intra-personal and inter-personal

variability. To address this complexity, we introduce the

hybrid CA-CapsResNet, which incorporates curvature-aware

adaptive convolutions, residual propagation of features, and

capsule-style spatial encoding to enhance the robustness of

features while preserving hierarchical structuring for

handwriting. The architecture's mathematical formulation is

outlined below, with a description of each significant

computational stage.

Algorithm 1. Pseudocode for RAB

function Residual Abstraction Block (X):

Input: X ∈ ℝH×W×C: original preprocessed image tensor

Output: X0 ∈ ℝH×W×C : shallow feature map

Step 1: Apply Zero Padding

X_ZP = ZeroPad (X, padding=1) # Pad with 1 pixel on all
sides

Step 2: First Layer

Conv1 = Conv2D (X_ZP, kernel_size=3x3, stride=1,

padding='valid')

Res1 = Conv2D (X_ZP, kernel_size=1x1, stride=1,

padding='valid')

Out1 = Conv1 + Res1

Step 3: Second Layer (Residual Repeat)

Conv2 = Conv2D (Out1, kernel_size=3x3, stride=1,

padding='same')

Res2 = Conv2D (Out1, kernel_size=1x1, stride=1,

padding='same')

Out2 = Conv2 + Res2

Step 4: Third Layer (Residual Repeat)

Conv3 = Conv2D (Out2, kernel_size=3x3, stride=1,

padding='same')

Res3 = Conv2D (Out2, kernel_size=1x1, stride=1,

padding='same')

Out3 = Conv3 + Res3

Step 5: Batch Normalization and ReLU

BN = Batch Normalization (Out3)

X_0 = ReLU (BN)

return X0

4177

3.2.1 RAB

Initially, the preprocessed image is transformed into a 3D

tensor representation: 𝑋 ∈ 𝑅𝐻×𝑊×𝐶 , where H, W, and C refer

to height, width, and the number of channels, respectively. A

convolution layer of size 3 × 3, preceded by a zero-padding

operation, is applied to the input tensor to preserve the spatial

locality. Further, a residual operation with a convolution

window of size 1 × 1 is applied between the original tensor and

the convoluted tensor. This step is repeated in the second and

third layers. Finally, the output is passed through a Batch

Normalization (BN) and ReLU activation layer to compute the

shallow feature map: 𝑋0 ∈ 𝑅𝐻×𝑊×𝐶 can be represented as

follows:

()()()()0 1 1 3 3()BN ZP ZPX ReLu F Res Conv X X =  (6)

where, 𝑋𝑍𝑃 shows zero-padding operation on input tensor 𝑋

and 𝐹𝐵𝑁(.) stands for BN. The pseudocode of this substep is

given in Algorithm 1.

3.2.2 SCE

To more finely adjust the spatial representations and

enhance global contextual perception, the SCE plays a critical

role in the proposed architecture. It aims to capture spatial

relationships at various scales without compromising

computational efficiency. The input of this block is the feature

map obtained from Eq. (1), and a depthwise separable

convolution using a 3 × 3 kernel is utilized channel-wise to

enable the network to extract subtle local patterns separately

within each channel. Mathematically, the depthwise

convolution operation can be described as:

()3 3 0dF DWConv X= (7)

where, 𝐷𝑊𝐶𝑜𝑛𝑣3×3 (𝑋0) represents the depthwise

convolution operator that is used to minimize the number of

hyperparameters while preserving spatial specificity and local

structural integrity. Further, BN and ReLU operations are

applied. Next, a Global Average Pooling (GAP) is

implemented to 𝐹𝑑 for incorporating global context into the

local descriptors. This step yields a condensed channel-wise

descriptor 𝑧 ∈ 𝑅𝑐 using Eq. (8):

1 1

1
(, ,), (1,2,)

H W

c d

i j

z F i j c c N
H W

 

 
= =

=   


 (8)

This descriptor captures the worldwide spatial distribution

of every channel and is an input to a light channel attention

module. The attention mechanism is a two-layer fully

connected (FC) bottleneck network with a reduction ratio r,

ReLU activation, and a final sigmoid gate:

2 1(. ())cW W z  = (9)

where, 𝑊1 and 𝑊2 are learnable weights, 𝛿(⋅) is the ReLU

activation function, and 𝜎(⋅) is the sigmoid function that

outputs the final attention weights 𝛼 ∈ [0,1]𝐶 . The attention

vector α is transmitted over spatial dimensions and used on the

depthwise convoluted features 𝐹𝑑, resulting in improved

context-aware output 𝐹𝑠
′ ∈ 𝑅𝐻′×𝑊′×𝐶 . This step is

mathematically represented in Eq. (10):

() ,, , (, ,)s c dF i j c F i j c = (10)

This selective boost of informative channels enables the

network to amplify semantically relevant spatial features and

filter out irrelevant or noisy elements. The pseudocode of this

substep is given in Algorithm 2.

Algorithm 2. Pseudocode for SCE

function Spatial Context Encoder (X0):

Input: X0 ∈ ℝH×W×C, feature map from previous block

Output: Fs
′ ∈ ℝH×W×C , context-aware spatially refined

output

Step 1: Depthwise Separable Convolution

Fd = DWConv3×3(X0, kernelsize = 3 × 3, stride
= 1, padding = ′same′)

Step 2: Batch Normalization and ReLU Activation

Fd= BatchNormalization (Fd)

Fd= ReLU (Fd)

Step 3: Global Average Pooling to obtain channel

descriptor z ∈ ℝC

z = GlobalAveragePooling (Fd)

Step 4: Lightweight Channel Attention via 2-layer

Fully Connected Network

hidden_dim = C // r # r is the reduction ratio

FC1 = Fully Connected (z, out_dim=hidden_dim)

FC1 = ReLU (FC1)

FC2 = FullyConnected (FC1, out_dim=C)

α = Sigmoid (FC2)

Step 5: Contextual Reweighting over Spatial

Dimensions

Fs
′ = ElementWiseMultiply (Fd, α)

return Fs
′

3.2.3 SAG

Although the channel attention mechanism emphasizes the

importance of each feature channel uniformly, it lacks spatial

discrimination. To address this gap, the SAG is proposed to

encode location-aware feature importance, enabling the

network to focus more attention on salient areas in the spatial

domain.

The input to SAG is the contextually enhanced feature map

𝐹𝑠
′ ∈ 𝑅𝐻′×𝑊′×𝐶 derived from the previous encoder module.

The spatial attention is built through a channel-wise

compression approach and a convolutional spatial gating

mechanism.

(1). Channel squeezing aggregation

To calculate spatial saliency, a compound summary of

feature information is retrieved by performing average pooling

and max pooling operations over the channel dimension:

()Avg channel sF AvgPool F = (11)

()Max channel sF MaxPool F = (12)

where, 𝐹𝐴𝑣𝑔 and 𝐹𝑀𝑎𝑥 ∈ 𝑅𝐻′×𝑊′×1 . Both maps encode

different spatial clues from the global average and global max

activations.

(2). Spatial attention convolution

The stacked maps are concatenated along the channel axis

and sent through a convolutional attention filter using Eqs.

(13) and (14), respectively.

4178

𝐹𝐶𝑜𝑛𝑐𝑎𝑡 = [𝐹𝐴𝑣𝑔; 𝐹𝑀𝑎𝑥] ∈ 𝑅𝐻′×𝑊′×2 (13)

7 7(()) H W

concatConv F R 
 

=  (14)

Here:

 𝐶𝑜𝑛𝑣7×7 (.) is a convolution layer with a 7 × 7 kernel,

capturing a wider spatial context.

 (⋅) is the sigmoid activation function that outputs the

spatial attention map 𝛽.

(3). Attention mechanism

Finally, the spatial attention map is broadcast to all the

channels and element-wise multiplied with the input feature

map 𝐹𝑠
′ , which gives rise to the spatially attended output:

𝐹𝑆𝐴 = 𝑅𝐻′×𝑊′×𝐶 computed according to Eq. (15):

(), , (,) (, ,)SA SAF i j c i j F i j c= (15)

Spatial reweighting in this manner highlights areas in the

feature map that are more informative for recognition and

dampens less informative areas, thus enhancing the spatial

localization ability of the network.

3.3 Feature extraction using hierarchical capsule encoding

block

3.3.1 Curve-aware convolution and curvature-guided pooling

Let 𝑋∈ 𝑅𝐻×𝑊×𝐶 denote the size of the input image patch,

where, 𝐻 , 𝑊 , and 𝐶 refer to height, width, and number of

channels, respectively. Initially, we introduced a curvature-

awareness-oriented convolution operator by computing the

local curvature tensor 𝜅(𝑖, 𝑗) using the Gaussian curvature

margin of the Hessian of the input image (I). It can be

mathematically formulated in Eq. (16):

2 2 2

2

2 2
(,) * ()

I I I
i j

x yx y


  
= −

  
 (16)

This curvature estimates scales the convolutional weights in

a specially designed curve-aware convolution (CAC)

operation. The convolution response at the pixel.

𝐹𝐶𝐴𝐶(𝑖, 𝑗)

= ∑ 𝜅 (𝑖 + 𝑚, 𝑗 + 𝑛) ∗ 𝜅𝑚,𝑛,𝑐 ∗ 𝑋(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐)

𝑚,𝑛,𝑐

 (17)

where, κ is a learned convolution kernel from Eq. (16).

3.3.2 Normalized residual mapping

To maintain the spatial semantics and enable deep feature

learning, the CAC output is added back to the input in a

residual setup, followed by BN and activation:

()((,))Res CACF ReLU F i j X= + (18)

where, ℬ(.) refers to the BN procedure, and ReLU is the

rectified linear unit activation function.

3.3.3 Hierarchical capsule encoding block

(1) Primary capsule equation

The preprocessed image, represented as 𝑋 ∈ 𝑅224∗224∗3 is

passed to a sequence of convolutional operations to derive

low-level spatial features. The Hierarchical Dense Capsule

Network (HDCN) architecture is designed with four capsule

layers with progressively coarser spatial resolution. The

topmost capsule layer is a grid with 8 × 8 (64 capsules), which

ultimately learns low-level handwriting features, such as

stroke curvature and edge flow. The next capsule layer is a 4

× 4 grid (16 capsules) that uses the localized activations from

the previous layer to learn mid-level structure and continuity

in the patterning of writing strokes. The additional capsule

layer is 2 × 2 (4 capsules), which learns features that represent

higher-level abstractions of the characters in terms of their

subcomponents or strokes (typed formation). The fourth and

final capsule layer is a 1 × 1 (1 capsule), representing the style

of the user’s handwriting by combining all features of the

spatially distributed capsules into a small, global

representation of the handwritten style.

Each capsule produces a pose vector 𝑢𝑖,𝑗
l ∈ 𝑅𝑑, where (𝑖, 𝑗)

refers to the location of the individual capsule. The pose

vectors are mapped to a higher-level feature space by learning

transformation matrices, 𝑊𝑝,(𝑖,𝑗)
l ∈ 𝑅𝑑′×𝑑 realizing the

positional vector (Eq. (12)) for the next layers.

(2) (1) (1)

| , | , ,
ˆˆ *p i j p i j i ju W u= (19)

These predictions are routed to the second layer through a

dynamic routing-by-agreement process.

()
(1) () (1)

, (,)|(,), , (,)
(,)

ˆl l l

m n m n i ji j m n
i j

s c u+ += (20)

()

(1) 2 (1)

, ,(1)

(,) (1) 2 1
, ,

|| ||
*

1 || || | |

l l

m n m nl

m n l l
m n m n

s s
v

s s

+ +

+

+ +
=

+
 (21)

The routing coefficients 𝑐(𝑖,𝑗),(𝑚,𝑛)
(l)

 are iteratively refined

based on the agreement scores between capsules. This process

continues hierarchically through all four capsule layers,

resulting in a global identity capsule 𝑣(4) representing the

writer’s distinctive handwriting signature. Furthermore, to

refine identity cues, 𝑣(4) is fed into a secondary spatial capsule

network comprising three capsule layers (4 × 4, 2 × 2, 1 × 1).

The input capsule grid is initialized as:

()4(1)

(,) , ,()i j i j i ju ReLU A v b


=  + (22)

where, 𝐴𝑖,𝑗 ∈ 𝑅𝑑′×𝑑 and 𝑏𝑖,𝑗 are training parameters. To guide

dynamic routing more effectively, attention coefficients

𝛼(𝑖,𝑗),𝑝
1′

 are introduced to modulate the contribution of each

lower capsule based on learned spatial saliency calculated in

Eq. (20).

()

()
()()

()
()()

1 (1)

|(,),
1

, ,
1 (1)

|(,),

ˆexp(,)

ˆ,)

p i ji j

i j p

p i ji j
q

score u W

u W



 



 

=


 (23)

where,

(), ()T

ascore u W a tanh W u=  (24)

The final attention-weighted routing input is computed as:

4179

() ()

))(2 (1) (1 (2)

| ,, , , ,
ˆ

p p i ji j p i j p
s c u

   

=  (25)

This attention-guided capsule routing enhances robustness

to local distortions and selectively amplifies salient spatial

regions crucial for handwriting identity. The final capsule

output 𝑣(3′) encodes a compact, discriminative embedding

that merges local and global characteristics for reliable author

identification. The detailed architecture of the proposed CA-

CapsResNet is shown in Figure 7.

Figure 7. The architecture of the proposed CA-CASResNet

Figure 8. Flowchart of the proposed HCPPO algorithm for feature reduction

4180

3.4 Feature optimization using hybrid puma-crested

porcupine optimizer

Feature optimization is crucial for reducing overlapping

features while preserving discriminative information. In this

paper, we propose a HCPPO to optimize the extracted feature

set of Hybrid CA-CapsResNet. This algorithm integrates

defence-guided exploration from CPO with intelligence-

driven exploitation and adaptive phase transition from PO. The

combination of these two strong metaheuristics enables

HCPPO to achieve a good balance between exploration and

exploitation, thereby determining optimal subsets of features.

The flowchart of the proposed algorithm is given in Figure 8.

The suggested improvements are discussed in the subsequent

steps.

3.4.1 Problem formulation for feature selection

Let 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑛 , 𝑦𝑛)} be a dataset

consisting of 𝑛 samples and 𝑚 features where 𝑥𝑖 ∈ ℝ𝑚 and 𝑦𝑖

∈ 𝑅. The objective is to find the best subset of features 𝑆 ⊆
(𝑓1, 𝑓2, … 𝑓𝑛) that achieves maximum model performance

while minimizing the number of selected features. Define a

binary solution vector:

 1 2, , , 0,1n iX x x x x=   (26)

where, 𝑥𝑖 = 0 if the feature is rejected and 𝑥𝑖 = 1 if the

feature is selected. The objective function (𝑓(𝑥)) for feature

optimization is modelled as a weighted sum of classification

accuracy error and the relative number of features selected.

Symbolically, it can be represented in Eq. (42).

()
.

. (1).Error

No of selected features
f x Class

Original features
 = + − (27)

where, 𝐶𝑙𝑎𝑠𝑠𝐸𝑟𝑟𝑜𝑟 refers to errors in classification accuracy,

and 𝛼 is a weight balancing the tradeoff between classification

accuracy and selected features.

3.4.2 Initialization phase

The algorithm begins by generating a population of 𝑁

binary agents 𝑋𝑖 ∈ {0, 1}𝑚, representing different subsets of

features. Let the features generated by CA-CASResNet be

defined by

0 0 0 0

1 2, , ,i mX X X X=  (28)

The fitness score of each feature is calculated by 𝑓(𝑋𝑖
0).

3.4.3 Intelligent phase switching mechanism

The PO-inspired adaptive phase transition adaptively

chooses between exploration and exploitation phases based on

scoring mechanisms, as outlined in Eqs. (22) and (23),

respectively.

1 1 2 2

explore explore

ExploreScore f f = + (29)

1 1 2 2

exploit exploit

ExploitScore f f = + (30)

𝑓2 = 𝑚𝑒𝑎𝑛 (∆𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑙𝑎𝑠𝑡 𝑘) (31)

The phase is selected as follows:

Explore ExploitExploration if Score Score
Phase

Exploitation Otherwise


= 


 (32)

Algorithm 3. Pseudocode of proposed HCPPO for feature

reduction

Input:

- Extracted feature set

F = {(x1, y1), (x2, y2), … (xn, yn)} from CA-CapsResNet

- Population size Nmax, minimum population size Nmin

- Maximum iterations Tmax

- Objective function

f(x) = α. ClassError + (1 − α).
No. of selected features

Original features

- Convergence parameters: γ (convergence rate), Tf

(tradeoff factor)

- Random coefficients r1, r2, r3

- λ1, λ2 (phase weight factors)

Output:

- Optimized feature subset Xbest

For t = 1 to Tmax do:

Step 1: Initialization

1.1 Initialize population agent: X = {X1, X2 , ..., XNmax
}

randomly

1.2 Evaluate fitness for each candidate solution using fmax

1.3. Calculate ScoreExplore and ScoreExploit using Eq. (22),

respectively.

Step 2: Phase Selection Process

Select phase based on Eq. (25):

If ScoreExplore > ScoreExplore then

Phase ← Exploration

Else

Phase ← Exploitation

Step 3: Decision Step 1

If Phase == Exploration then

Randomly select one of the following phases

- Visual Awareness (Eq. (26)):

- Auditory Defense (Eq. (27)):

Step 4: Decision Step 2

Else if Phase == Exploitation then:

Randomly select one of the following phases

- Odor Mechanism (Eq. (28)):

- Puma Memory Attack (Eq. (29)):

Step 5: Apply Binary Encoding using Eq. (30):

Step 6: Evaluate fitness f (𝐗𝐢)

If 𝒇(𝑿𝒊) < 𝒇(𝑿𝒃𝒆𝒔𝒕), then update

𝐗𝐛𝐞𝐬𝐭 ← 𝐗𝐢

Else

Do nothing

Step 7: End For

Step 8: Return Xbest

End

3.4.4 Exploration phase

The CPO model utilizes defensive strategies to diversify the

search using two substeps: (1) Visual Awareness and (2)

Auditory Defense. The working of both substeps is formulated

in Eqs. (33)-(37).

4181

(1) Visual awareness

The visual awareness step in the HCPO algorithm is

analogous to the sight defense mechanism of the Crested

Porcupine. It facilitates extensive exploratory search through

the simulation of far-away threat detection, wherein agents

execute random Gaussian walks over the solution space to find

new, unexplored areas. This step is formulated in Eq. (33):

1 (0,1)t t

i iX X + = +  (33)

where, γ controls the degree of perturbation, and 𝒩(0,1)

introduces random Gaussian noise.

(2) Auditory defense

Agents create echo signals based on fitness, affecting others

through:

1 (. ())t t t

i i best iX X rand X X+ = + − (34)

3.4.5 Exploitation phase

At the exploitation phase, intelligent puma strategies are

utilized for local intensification:

A. Odor (CPO) mechanism:

()1 . . | () |t t t t n

i i best i best iX X sign X X X X+ = + − − (35)

where, 𝛽 ∈ (0,1) and 𝜂 controls the learning rate.

B. Puma memory attack: The agent selects the best

historical region using the criteria discussed in Eq. (36):

1 (, ,)t t

i best history best iX mean X X X+

−= (36)

Further, 𝑋𝑖
𝑡+1 is binary-encoded using Eq. (37):

()
()()1

1

otherwise

1

0

t

it

i

if X j r
X j

 +

+
 

= 


 (37)

where, 𝜎(.) is a sigmoid function. The pseudocode of the

proposed HCPPO is given in Algorithm 3.

3.5 Non-linear projection and classification

After the hierarchical capsule encoding and subsequent

feature reduction through the HCPPO, the selected feature set

𝐹̂𝑆𝑒𝑙 ∈ ℝ𝑁×𝑑, where, N is the number of samples and 𝑑 is the

optimized feature dimension. In order to increase nonlinearity

and enhance the separability of classes in the acquired

manifold, we introduce a nonlinear projection module that

maps these projected features to a latent discriminative

subspace 𝑅 ∈ 𝑁𝑁×𝑑′
 where 𝑑′ < 𝑑. Mathematically, we can

formulate this step according to Eq. (38):

()2 1 1 2
ˆ(. .)Proj SelF Tanh W ReLU W F b b= + + (38)

where, 𝑊1 and 𝑊2 are learnable weight matrices, 𝑏1 and 𝑏2

are bias terms. The projected features are then normalized and

passed to a Softmax classifier for final prediction, as shown in

Eq. (39):

ˆ (.)c norm cy Softmax W F b= + (39)

where, 𝑊𝑐 and 𝑏𝑐 are learning parameters of the output layer.

The output vector 𝑦̂ ∈ 𝑅𝑁×𝐶 holds the class probabilities for

all samples.

4. EXPERIMENTAL RESULTS AND DISCUSSION

This section provides an overall assessment of the proposed

feature extraction using the Capsule Encoding Block and

feature optimization using HCPPO from multiple dimensions.

Sections 4.1 and 4.2 describe the experimental setup, including

the datasets used and the model's implementation details. In

Sections 4.3 and 4.4, we compare the performance of the

model by evaluating its classification accuracy and parameter

efficiency against several state-of-the-art approaches on

various image datasets. Additionally, Section 4.5 presents a

detailed ablation study to examine the contribution of different

architectural components and configurations to the overall

performance of the proposed framework.

4.1 Experimental setup

All experiments were conducted on a high-performance

workstation equipped with an Intel Core i9-12900K processor

at 3.20 GHz and an NVIDIA GeForce RTX 3090 graphics

card. Model training and development were performed using

PyTorch 1.13.1, a deep learning library that leverages CUDA

11.7 and cuDNN 8.5 to take advantage of GPU acceleration.

4.2 Datasets details

Two benchmark handwriting datasets, the Devnagari

Character Dataset and the KHATT dataset, were used in

experiments to validate the robustness and generalization

ability of the proposed handwriting recognition framework.

They were chosen owing to their diversity in script style,

linguistic content, and writing complexity. A crisp detail of

both datasets is given below:

(1). Devanagari Hindi MNIST dataset

The Devnagari Hindi Character Dataset (DHCD) [28, 29]

comprises 92000 scans [32 × 32 pixels] stored in 8-bit

grayscale format. It is uniformly distributed over 46 balanced

classes, comprising 36-character classes (vowels and

consonants) and 10 numeral classes. Each class includes

approximately 2,000 samples, ensuring equitable

representation and preventing class imbalance during model

training and evaluation.

The data set has significant intra-class variability, including

variations in handwriting style, skew, and character

connectivity, making it an appropriate challenge for testing the

spatial sensitivity of our model. The sample images are

attached in Figure 9.

Figure 9. Sample images of the Devanagari Hindi MNIST

dataset

4182

(2). KHATT dataset

The KFUPM Handwritten Arabic Text (KHATT) [30]

Database is one of the largest databases of unconstrained

handwritten Arabic text, comprising 9,850 handwritten forms

contributed by 1,000 diverse authors. The dataset comprises

2,000 similar-text paragraph images and 2,000 unique-text

paragraph images, uniformly distributed across all 1,000

classes. Each page was scanned at a resolution of 300 dpi and

saved as grayscale TIFF files. All the images are followed by

manually authenticated ground truth annotations, both in

Arabic text and Latin transliteration. The sample images are

attached in Figure 10.

4.3 Architectural composition and parametric overview

The proposed handwriting recognition architecture relies on

CA-CapsResNet for discriminative and robust feature

extraction and HCPPO for effective feature reduction and

dimensionality compression. The CA-CapsResNet is designed

at the architectural level to encode fine-grained handwriting

features by synergistically combining curve-aware adaptive

convolutions, residual propagation, and capsule-like spatial

encoding, thereby retaining the handwriting's inherent spatial

hierarchy and direction variances. Coupling this, HCPPO

leverages the search-oriented advantages of Crested Porcupine

motion and the Puma optimizer's behavior of exploitation to

eliminate redundant features while retaining critical

descriptors. Tables 2-4 provide in-depth parametric

descriptions of the constituent blocks in the architecture,

focusing on kernel sizes, layer-wise compositions, activation

modalities, and optimization methods.

Figure 10. Sample images of the KHATT dataset

Table 2. Components-wise parametric details used in the CA-CapsResNet model

Module Key Components Kernel Size
Parameters

Counts
Activation Normalization

RAB 3 × 3 Conv, 1 × 1 Residual Conv (× 3 layers), ReLU, BN 3 × 3, 1 × 1 ~35 K ReLU BatchNorm

SCE
Depthwise Separable Conv, GAP, FC × 2 (Attention),

ReLU, Sigmoid

3 × 3 DW

Conv, FC
~28 K ReLU BatchNorm

SAG Avg & Max Pooling (channel-wise), 7 × 7 Conv, Sigmoid 7 × 7 Conv ~10 K Sigmoid -

Table 3. Training configuration and hyperparameter setting of the CA-CapsResNet model

Training Parameter Value/ Setting

Optimizer AdamW (Weight Decoupling)

Learning Rate 0.001

Learning Rate Schedule Cosine Annealing with Warm Restarts (T₀ = 10 epochs, ηmin = 1e-5)

Number of Epochs 150

Batch Size 64

Loss Function Categorical Cross-Entropy with Focal Weighting (γ = 2.0)

Regularization DropBlock (p = 0.1), L2 weight decay (λ = 1e-4)

Early Stopping Patience = 20 epochs based on validation loss

Validation Split Five-fold (80:20)

4.4 Performance on Devnagari character and KHATT

dataset

In this section, classification accuracy and the number of

trainable parameters is used as the primary metrics for model

evaluation (Table 4). Since the samples in the Devnagari

Character Dataset and KHATT datasets are 28 × 28 grayscale

images of a single channel, the parameter count is the same for

all models. The performance of the proposed framework is

compared with six non-capsule network-based handwriting

recognition frameworks: (1) R-CSNN [30], (2) WaveMix

[31], (3) Threshold-Gabor CNN [32], (4) Fast Keypoints with

Harris Corner Detection (FKHCD) [33], (5) Hybrid CNN with

SVM [34], (6) Deep Transfer Learning with Random Forest

(DTL-RF) [24], and six capsule network-based methods: (1)

CapsNet [35], (2) Kernalized Deep Capsule Networks (K-

DCN) [16], (3) Deep Hybrid Capsule Networks (DHCN) [36],

(4) Dense Capsule Networks (DCN) [37], (5) Deep Multi-

prototype Capsule Networks [38], and (6) Modified Part

Capsule Auto-encoder (MPCAE) [39]. The experimental

outcomes demonstrate a strong performance benefit of the

proposed technique over both standard and capsule-based

methods on the Devnagari and KHATT datasets (Table 5).

In the case of methods not based on capsules, including R-

CSNN, WaveMix, Threshold-Gabor CNN, FKHCD, Hybrid

CNN with SVM, and DTL-RF, the accuracy increased by 15–

21% in all instances on both datasets when feature reduction

was applied. These models, typically characterized by a

relatively shallow depth and linear backends for classification,

appear to be more susceptible to noise and redundancy in the

feature space. For instance, FKHCD increased from 58.75%

to 74.40% on the Devnagari dataset, an increase of more than

21%, the best in this set.

Capsule-based models exhibit more complex behavior.

4183

Although they typically begin with higher baseline accuracy

due to their built-in routing-by-agreement, they still

experience improvements in the range of 11–18% when

features are reduced. CapsNet, for example, increases from

70.86% to 86.44% on Devnagari with feature reduction.

Interestingly, state-of-the-art capsule networks, such as

MPCAE and Deep Multi-Prototype CapsNet, exhibit

relatively smaller gains, suggesting that these models already

incorporate some implicit feature selection or compression

during training. The proposed method consistently performs

the best on both datasets, achieving 98.94% and 97.36%

accuracy on the Devnagari and KHATT datasets, respectively,

when feature reduction is applied. Even without feature

reduction, it retains a high performance, beating all other

approaches with a substantially reduced parameter number.

The reduction in performance in the absence of feature

reduction is nominal, at 5.7% and 5.6%, respectively. It proves

the inherent strength of the architecture and the reduced

reliance on extrinsic preprocessing stages.

Traditional non-capsule networks have a lower parameter

count, ranging from 0.7 million to 1.1 million. While they are

easy to implement, the models lack the performance of more

complex capsule-based methods, especially without feature

reduction. Capsule networks, although they offer better

performance, are computationally more costly, with

parameters ranging from 6.5 million to over 8.2 million.

Surprisingly, our proposed approach deviates from this trend

by achieving greater accuracy with only 2.87 M parameters,

which is significantly lower than those in any capsule-based

model.

Overall, we can summarize the performance of our method

on both datasets in the following points:

 Key Findings on Devnagri Datasets

(1) The proposed framework achieved 98.94% accuracy

with feature reduction and 93.28% without it, marking a 5.7%

improvement.

(2) Outperformed all other non-capsule (R-CSNN,

WaveMix, FKHCD, etc.) and capsule-based methods

(CapsNet, MPCAE, Deep Multi-Prototype CapsNet).

(3) CapsNet improved from 70.86% to 86.44% (18% gain),

yet remained significantly below the proposed model.

(4) Traditional non-capsule networks showed 15–21%

improvement with feature reduction but achieved notably

lower absolute accuracies.

 Key Findings on KHATT Datasets

(1) The proposed framework achieved 97.36% accuracy

with feature reduction and 91.91% without it, representing a

5.45% improvement in accuracy.

(2) Consistently outperformed all competing models on the

KHATT dataset, maintaining robustness across language

scripts.

(3) CapsNet accuracy increased from 68.02% to 83.82%

(18.9% gain), while Deep Multi-Prototype CapsNet rose from

75.26% to 88.04% (14.5% gain), but lower than the proposed

model.

(4) Non-capsule networks exhibited similar 15–21%

relative improvements, but still lower than in the final

accuracy levels.

Table 4. Details of optimal hyperparameters used in the feature reduction step using Puma-CPO

Hyperparameter Symbol Optimal Value Description

Population Size (Initial) 𝑁𝑚𝑎𝑥 Dataset dependent The initial number of candidate solutions

Minimum Population Size 𝑁𝑚𝑖𝑛 Dataset dependent Lower bound for dynamic population reduction

Maximum Iterations 𝑇𝑚𝑎𝑥 500 Stopping criterion for optimization

Convergence Rate 𝛾 0.13 Controls the balance between global and local search

Tradeoff Factor 𝑇𝑓 0.87 Probability of selecting the third or fourth defense mechanisms in CPO

Exploration Factor 𝑟1 0.19 Adjusts the impact of global best in the Puma search step

Exploitation Factor 𝑟2 0.81 Controls the refinement of feature selection

Perturbation Strength S 0.03 Stochastic perturbation for local search in CPO

Adaptive Memory Weight 𝑈1 0.7 Weight factor for personal best solution updates

Adaptive Step Size 𝑌𝑡 0.17 Determines search step variation in CPO

Selection Weight 𝑈2 0.8 Influences decision-making in feature selection

Objective Function Weight 1 𝛼1 0.37 Weight for classification accuracy error

Objective Function Weight 2 𝛼2 0.63 Weight for the number of selected features

Table 5. Accuracy and number of parameters across various methods on Devnagri and KHATT datasets with and without feature

reduction

Method Devnagari Accuracy (%) KHATT Accuracy (%) Parameters

 With FR Without FR With FR Without FR

Non-Capsule Methods

R-CSNN 78.15 65.42 (-16.4%) 74.80 63.00 (-15.8%) ~0.8M

WaveMix 82.60 68.42 (-17.2%) 80.50 67.44 (-16.3%) 0.7M

Threshold-Gabor CNN 75.88 62.14 (-18.2%) 72.95 61.30 (-16.0%) ~1.0M

FKHCD 74.40 58.75 (-21.0%) 71.23 59.12 (-17.0%) ~0.9M

Hybrid CNN + SVM 81.76 67.33 (-17.6%) 79.01 65.40 (-17.2%) ~0.85M

DTL-RF 85.33 70.61 (-17.2%) 82.19 69.40 (-15.6%) ~1.1M

Capsule-Based Methods

CapsNet 86.44 70.86 (-18.0%) 83.82 68.02 (-18.9%) 8.2M

K-DCN 87.55 73.06 (-16.6%) 84.90 70.88 (-16.5%) 7.9M

DHCN 88.41 74.02 (-16.2%) 85.75 72.48 (-15.5%) 6.5M

DCN 89.67 75.38 (-15.9%) 86.91 73.63 (-15.3%) 7.2M

Deep Multi-Prototype CapsNet 90.38 78.03 (-13.6%) 88.04 75.26 (-14.5%) 7.6M

MPCAE 91.74 81.03 (-11.7%) 89.66 77.74 (-13.3%) 6.9M

Proposed Method (Ours) 98.94 93.28 (-5.7%) 97.36 91.91 (-5.6%) 2.87M

4184

4.5 Effect of feature selection on classification accuracy

Figure 11 shows the comparison of validation accuracy

between various baseline methods and the proposed approach

on the Devanagari dataset after applying feature selection. It is

clear that the feature selection significantly improves

classification performance for all the methods. The proposed

algorithm consistently outperforms all baselines, achieving

more than 80% validation accuracy in the initial 50 epochs,

with performance peaking at approximately 99.5% after 145

epochs. By comparison, the nearest competing approaches,

MPCaE and Deep Multi-prototype CapsNet, achieve their

highest validation accuracy of approximately 91% and 89%,

respectively, which converge at slower rates. Baseline

strategies without feature fine-tuning, such as R-CSNN and

Hybrid CNN + SVM, plateau at much lower accuracy ranges,

from 70% to 85%. The improved performance of the

introduced method demonstrates how selecting the most

informative features optimizes learning effectiveness, reduces

overfitting, and accelerates convergence speed.

Figure 12 illustrates the loss for various baselines and the

proposed method on the Devanagari dataset. The proposed

method exhibits the lowest and most stable validation loss

during training, and it rapidly dips below 0.2 at around 70

epochs, while maintaining improved convergence. Baseline

methods converge at a higher loss value of about 0.3 to 0.5,

indicating inferior learning. The sharp decline of the proposed

approach's loss curve also affirms the strength of feature

selection in enabling faster and robust optimization.

Figure 11. Epoch-wise validation accuracy comparison

between various baseline methods and our approach on the

Devanagari dataset with feature reduction

Figure 12. Epoch-wise loss comparison between various

baseline methods and our approach on the Devanagari dataset

with feature reduction

Figure 13. Epoch-wise validation accuracy comparison

between various baseline methods and our approach on the

Devanagari dataset without feature reduction

Figure 14. Epoch-wise loss comparison between various

baseline methods and our approach on the Devanagari dataset

without feature reduction

Figure 13 presents the epoch-by-epoch comparison of

validation accuracies for the proposed method and various

baselines on the Devanagari dataset, without feature reduction.

While the proposed method still far surpasses every other

competing methodology, its validation accuracy peak slides

down to near 88% compared to ~99.5% when a feature

selection criterion is used (Figure 11).

Other alternatives, such as MPCaE and deep multi-

prototype CapsNet, boast maximum accuracies of around 82%

and 78%, respectively. By contrast, conventional baselines

such as R-CSNN and Threshold-Gabor CNN tend to plateau

at lower accuracy levels, ranging from 65% to 70%.

Figure 14 illustrates the epoch-wise comparison of

validation loss for different baseline models and the proposed

approach on the Devanagari dataset, without feature reduction.

Even though the suggested approach still has the lowest

validation loss among all models, its convergence is slightly

less sharp and smooth than when feature selection is used (as

shown in Figure 12). The proposed approach converges to a

loss of ~0.08, whereas other competing approaches, such as

MPCaE and Deep Multi-prototype CapsNet, converge

towards losses of ~0.15 and 0.18, respectively. The remaining

baseline approaches, such as R-CSNN and Threshold-Gabor

CNN, converge at much higher loss values of approximately

0.3–0.45, reflecting poorer generalization performance.

Figure 15 shows the epoch-wise comparison of validation

accuracy among different baseline techniques and the

suggested technique on the KHATT dataset with feature

reduction. The suggested technique outperforms all baselines

throughout the epochs, achieving a validation accuracy of

around 96–97%, which indicates a prominent margin of 8–

12% over the second-best rival, such as MPCaE and Deep

4185

Multi-prototype CapsNet. Other approaches, such as DTL-RF

and Hybrid CNN+SVM, plateau at lower accuracies of 80–

85%, while traditional baselines, including R-CSNN and

Threshold-Gabor CNN, stabilize at accuracies below 75%.

The faster and higher convergence of the proposed approach

demonstrates the strength of feature selection in retaining the

most discriminative patterns and eliminating redundant

information, resulting in improved generalization ability and

training stability.

Figure 15. Epoch-wise validation accuracy comparison

between various baseline methods and our approach on the

KHATT dataset with feature reduction

Figure 16. Epoch-wise loss comparison between various

baseline methods and our approach on the KHATT dataset

with feature reduction

Figure 17. Epoch-wise validation accuracy comparison

between various baseline methods and our approach on the

KHATT dataset without feature reduction

Figure 16 depicts the validation loss curves for the same

experimental configuration on the KHATT dataset with

feature reduction. Not only does the proposed method yield the

lowest validation loss, which stabilizes at 0.10, but it also has

a smoother and quicker convergence than all other models. On

the other hand, baselines such as MPCaE and Deep Multi-

prototype CapsNet remain at higher losses of 0.20–0.25,

whereas conventional approaches, including R-CSNN and

Threshold-Gabor CNN, remain above 0.4. The steeper drop

and lower final loss values of the proposed approach validate

its better learning dynamics, effective optimization, and low

overfitting behavior.

In Figure 17, the accuracy progression with feature

selection for validation clearly shows the better learning

ability of the proposed method compared to baseline models.

The proposed method exhibits a steep increase in accuracy

during the first 40 epochs, reaching above 80% early on, and

gradually increases to approximately 95–97% as training

continues. By contrast, baseline approaches like R-CSNN,

WaveMix, and Threshold-Gabor CNN have slower

convergence and plateau at much lower accuracies (~70–

85%). Feature reduction has significantly enhanced the

discriminative power of the input representations, leading to

faster convergence and more stable performance.

Figure 18. Epoch-wise validation accuracy comparison

between various baseline methods and our approach on the

KHATT dataset without feature reduction

Figure 18 shows the respective validation loss curves,

where the proposed approach records the steepest and most

convergent drop in loss. At around 60 epochs, the proposed

approach's validation loss is already less than 0.2 and remains

low throughout with no significant oscillations for the

remainder of training. All other approaches plateau at much

higher levels of loss (~0.3–0.5), recording slower optimization

and less convergent stability. The gradual and smooth decline

in the loss curve for the proposed approach suggests efficient

training, quality fit to the data, and no overfitting.

Figure 19 presents a comprehensive comparison of

precision, recall, and F1-score between different baseline

models and the proposed method, with and without feature

selection, on the Devanagari dataset. On all metrics, it is

evident that feature selection consistently improves

performance across different models. Interestingly, the

proposed method (ours) produced the best performance, with

a precision of 0.91, a recall of 0.91, and an F1-score of 0.91

when feature selection was used, compared to 0.81, 0.82, and

0.81, respectively, without feature selection. Similarly,

conventional techniques such as Thresholder-Gabor CNN and

Hybrid CNN + SVM exhibit significant improvements

following feature selection, with precision values rising from

4186

0.61 to 0.71 and from 0.63 to 0.71, respectively. In addition,

the baselines of deep learning models, such as DTCN and

DCN, also improved, with the F1-score of DTCN increasing

from 0.72 to 0.83 and that of DCN from 0.74 to 0.85.

Figure 19. Epoch-wise validation accuracy comparison

between various baseline methods and our approach on the

Devanagari dataset without feature reduction

Figure 20 compares the precision, recall, and F1-score of

some baseline models and the proposed method, tested on the

KHATT dataset under both feature selection and non-feature

selection conditions. There is a common trend here where

feature selection greatly improves the performance of the

models in all measures. The proposed approach achieves better

performance, with accuracy, recall, and F1-scores of 0.90,

0.90, and 0.90, respectively, when feature selection is used,

compared to 0.79, 0.80, and 0.79, respectively, without feature

selection. Baseline approaches, such as Thresholded-Gabor

CNN and Hybrid CNN + SVM, yield moderate gains; for

example, precision values increase from 0.53 to 0.72 and from

0.53 to 0.73, respectively, when feature selection is employed.

More complex models, such as DTCN and DCN, also

benefited significantly, with the F1-score of DTCN increasing

from 0.71 to 0.81 and that of DCN from 0.74 to 0.84 through

feature selection. Likewise, MPCFE and Deep Multi-Stage

Cascaded Networks showed considerable improvement,

achieving F1-scores of 0.86 and 0.85, respectively, which

reflects the success of feature selection in deep models.

Figure 20. Epoch-wise validation accuracy comparison

between various baseline methods and our approach on the

KHATT dataset without feature reduction

4.6 Ablation study

In an ablation study, we need to determine how our

proposed components contribute to the verification model by

comparing the model with each component included to the

model without it. Thus, to conduct the ablation analysis, we

employed five varying models by excluding each of the

suggested components from the original CA-CapsResNet

architecture. These models were constructed as follows:

 Model 1: The original proposed CA-CapsResNet without

the RAB

 Model 2: The original proposed CA-CapsResNet without

the SCE module (Removing spatial attention modeling)

 Model 3: The proposed architecture without the Channel

Attention sub-module inside SCE (Only spatial attention is

preserved)

 Model 4: The proposed CA-CapsResNet without Capsule

Encoding (Only curvature-aware CNN and SCE without the

capsule layer)

 Model 5: The original proposed CA-CapsResNet without

the Curvature-Aware Convolutions (Using standard

convolutions instead).

Table 6. Comparison of the proposed method with the five models used in the ablation study

Model
Devnagari Accuracy (%) KHATT Accuracy (%)

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Method 1 92.80% 89.10% 87.32% 88.20% 89.67% 86.44% 84.00% 85.20%

Method 2 91.45% 88.05% 85.13% 86.56% 88.40% 84.20% 82.75% 83.47%

Method 3 93.92% 91.11% 88.79% 89.94% 91.02% 87.58% 85.41% 86.48%

Method 4 89.63% 86.23% 84.56% 85.38% 87.24% 83.12% 80.90% 81.99%

Method 5 90.71% 87.32% 85.07% 86.18% 88.56% 84.77% 82.50% 83.62%

Full Model 98.94% 97.66% 96.33% 97.00% 97.36% 94.80% 93.44% 94.05%

Model 1 is also very strong on both datasets, achieving

accuracies of 92.80% for Devnagari and 89.67% for KHATT.

The precision, recall, and F1-score values all indicate similar

strengths, with the highest precision and recall being 89.10%

and 87.32%, respectively, for Devnagari. For KHATT, the

corresponding precision and recall values are 86.44% and

84.00%. Even as a strong runner-up, Method 1 is still behind

the full model on all metrics. Model 2 has slightly weaker

4187

performance than Method 1, with accuracies of 91.45%

(Devnagari) and 88.40% (KHATT). Precision and recall

scores also follow the same trend of decrease, with Devnagari

precision at 88.05% and recall at 85.13%, whereas KHATT

scores fall to 84.20% for precision and 82.75% for recall. The

F1-scores overall also decrease, which means that Method 2's

performance is slightly weaker than Method 1. The Model 3 is

the most accurate method in terms of both accuracy and

overall performance. It achieves the best accuracy of 93.92%

for Devnagari and 91.02% for KHATT, surpassing both

Method 1 and Method 2. It also has the best improvements in

precision, recall, and F1-score, especially for Devnagari

(91.11%, 88.79%, and 89.94%, respectively) and for KHATT

(87.58%, 85.41%, and 86.48%, respectively). These findings

indicate that Method 3 achieves a more optimal balance

between recall and precision than the earlier methods (Table

6).

4.7 Research limitations

Although our proposed model for handwriting recognition

has demonstrated promising results, several limitations need

to be addressed. A list of five key limitations and their

potential solutions is discussed below:

1). The model can be challenged by extreme handwriting

changes, specifically inconsistent handwriting styles, which

can be detrimental to feature extraction and compromise

performance. This problem can be addressed by utilizing

adaptive normalization for domain alignment, which

standardizes handwriting styles during the training procedure

to improve style robustness and reduce variation between

writers.

2). The hybrid CA-CapsResNet exhibits high computational

requirements, making real-time or resource-constrained

deployment challenging. To mitigate this issue, developers

can investigate model compression methods, such as pruning,

quantization, and knowledge distillation, aiming to reduce the

computational burden while maintaining acceptable

recognition performance.

3). The model's stability can be compromised when exposed

to noisy or low-quality images, as its ability to extract

significant features can be adversely affected. In the future,

this can be reduced by using noise-robust preprocessing

modules, such as denoising autoencoders and contrastive

regularization, to extract stable features under challenging

imaging conditions.

4). Limited generalization ability may occur, particularly

when training on datasets with insufficient diversity in

handwriting samples, resulting in a decline in performance

when applied to unseen data. Future work may focus on

increasing data variability through synthetic augmentation,

cross-domain adaptation, and style transfer to enhance model

generalization to unseen scripts and writing conditions.

5). Handwriting types with distinctive or excessively ornate

characteristics, such as calligraphy or stylized cursive, may

cause difficulties for the model, as their distinctive traits may

not align well with the feature extraction approaches, thereby

reducing accuracy. This challenge can be alleviated by

utilizing multi-scale spatial transformer networks or semantic

regularisation mechanisms that can dynamically respond to

structural deformations and the utilization of complex stroke

structures.

5. CONCLUSION AND FUTURE SCOPE

In this paper, a new handwriting recognition system is

introduced that integrates RABs, SCE, SAG, hierarchical

capsule encoding, and a hybrid puma-crested porcupine

optimizer for feature reduction. This hybrid model can better

maintain hierarchies of features in both local and global

contexts while also improving the spatial integration of those

feature structures and learning hierarchical representations.

Quantitatively, the framework achieved an accuracy of

98.94% and 97.36% (with feature reduction) on the

Devanagari and KHATT datasets, respectively, compared

with an accuracy of 93.28% and 91.91% without feature

reduction, representing improvements of 5.66% and 5.45%

(Table 5). These results differ significantly from two

traditional capsule-based models, where CapsNet improved by

almost 18% or Multi-Prototype CapsNet by 13 to 14%, but

with reduced accuracy, as their accuracies remained in the 86

to 90% range.

Therefore, the described framework represents a new state-

of-the-art for handwriting recognition tasks, combining high

accuracy, parameter efficiency, and stability through feature

reduction. Nonetheless, several potential avenues exist for

extending this work. One of these is to investigate cross-

lingual handwriting recognition, where the model can be

adapted and fine-tuned to recognize handwriting in various

languages and scripts, including Chinese and Japanese.

Future research can aim to extend this model to cross-

lingual handwriting recognition, enabling the model to

generalize to different writing systems (e.g., Arabic, Chinese,

or Japanese) through transfer learning or domain adaptation.

Another avenue is to optimize this model for real-time

implementation on edge and mobile devices, which would

reduce latency and the computational burden on educational,

document authentication, and banking digitization

applications. In addition, the feature selection based on hybrid

optimization could be enhanced through adaptive or dynamic

feature selection, which would enable the neural network to

dynamically focus on a smaller subset of important features

depending on the characteristics of the input. Ultimately, this

system is adaptable for commercial and forensic applications,

including automated document verification, writer

identification, and handwriting-based behavioral analysis.

REFERENCES

[1] Humayun, M., Siddiqi, R., Uddin, M., Kandhro, I.A.,

Abdelhaq, M., Alsaqour, R. (2024). A novel

methodology for offline English handwritten character

recognition using ELBP-based sequential (CNN). Neural

Computing and Applications, 36(30): 19139-19156.

https://doi.org/10.1007/s00521-024-10206-1

[2] Khan, A.A., Shaikh, A.A., Laghari, A.A., Dootio, M.A.,

Rind, M.M., Awan, S.A. (2022). Digital forensics and

cyber forensics investigation: Security challenges,

limitations, open issues, and future direction.

International Journal of Electronic Security and Digital

Forensics, 14(2): 124-150.

https://doi.org/10.1504/IJESDF.2022.121174

[3] Damayanti, F., Suzanti, I.O., Jauhari, A., Herawati, S.

(2024). Restoration of Javanese characters based on

Wasserstein Generative Adversarial Network-Gradient

Penalty. Mathematical Modelling of Engineering

4188

Problems, 11(12): 3447-3457.

https://doi.org/10.18280/mmep.111223

[4] Tripathi, K.M., Kamat, P., Patil, S., Jayaswal, R.,

Ahirrao, S., Kotecha, K. (2023). Gesture-to-text

translation using SURF for Indian sign language.

Applied System Innovation, 6(2): 35.

https://doi.org/10.3390/asi6020035

[5] Alghyaline, S. (2023). Arabic optical character

recognition: A review. Computer Modeling in

Engineering & Sciences, 135(3): 1825-1861.

https://doi.org/10.32604/cmes.2022.024555

[6] Kumar, M., Jindal, M.K., Kumar, M. (2022). Distortion,

rotation and scale invariant recognition of hollow Hindi

characters. Sādhanā, 47(2): 92.

https://doi.org/10.1007/s12046-022-01847-w

[7] Lee, S.H., Yu, W.F., Yang, C.S. (2022). ILBPSDNet:

Based on improved local binary pattern shallow deep

convolutional neural network for character recognition.

IET Image Processing, 16(3): 669-680.

https://doi.org/10.1049/ipr2.12226

[8] Sharma, N.K., Rahamatkar, S., Rathore, A.S. (2024).

Comprehensive analysis to detect optimal vehicle

position for roadside traffic surveillance using

lightweight contour-based CNN. International Journal of

Transport Development and Integration, 8(1): 197-213.

https://doi.org/10.18280/ijtdi.080119

[9] Mahadevappa, M., Aradhya, V.N.M., Basavaraju, H.T.,

Shivarudraswamy, S. (2024). CNN-DEdge: Multilingual

scene text detection and extraction. Mathematical

Modelling of Engineering Problems, 11(11): 3152-3160.

https://doi.org/10.18280/mmep.111125

[10] Noor, M.H.M., Ige, A.O. (2025). A survey on state-of-

the-art deep learning applications and challenges.

Engineering Applications of Artificial Intelligence, 159:

111225. https://doi.org/10.1016/j.engappai.2025.111225

[11] Truong, T.N., Nguyen, C.T., Zanibbi, R., Mouchère, H.,

Nakagawa, M. (2024). A survey on handwritten

mathematical expression recognition: The rise of

encoder-decoder and GNN models. Pattern Recognition,

153: 110531.

https://doi.org/10.1016/j.patcog.2024.110531

[12] Younesi, A., Ansari, M., Fazli, M., Ejlali, A., Shafique,

M., Henkel, J. (2024). A comprehensive survey of

convolutions in deep learning: Applications, challenges,

and future trends. IEEE Access, 12: 41180-41218.

https://doi.org/10.1109/ACCESS.2024.3376441

[13] Xi, E., Bing, S., Jin, Y. (2017). Capsule network

performance on complex data. arXiv preprint

arXiv:1712.03480.

https://doi.org/10.48550/arXiv.1712.03480

[14] Abdel-Basset, M., Mohamed, R., Abouhawwash, M.

(2024). Crested porcupine optimizer: A new nature-

inspired metaheuristic. Knowledge-Based Systems, 284:

111257. https://doi.org/10.1016/j.knosys.2023.111257

[15] Abdollahzadeh, B., Khodadadi, N., Barshandeh, S.,

Trojovský, P., Gharehchopogh, F.S., El-kenawy, E.S.M.,

Mirjalili, S. (2024). Puma optimizer (PO): A novel

metaheuristic optimization algorithm and its application

in machine learning. Cluster Computing, 27(4): 5235-

5283. https://doi.org/10.1007/s10586-023-04221-5

[16] Yao, H., Tan, Y., Xu, C., Yu, J., Bai, X. (2021). Deep

capsule network for recognition and separation of fully

overlapping handwritten digits. Computers & Electrical

Engineering, 91: 107028.

https://doi.org/10.1016/j.compeleceng.2021.107028

[17] Parcham, E., Ilbeygi, M., Amini, M. (2021). CBCapsNet:

A novel writer-independent offline signature verification

model using a CNN-based architecture and capsule

neural networks. Expert Systems with Applications, 185:

115649. https://doi.org/10.1016/j.eswa.2021.115649

[18] Moudgil, A., Singh, S., Rani, S., Shabaz, M., Alsubai, S.

(2024). Deep learning for ancient scripts recognition: A

CapsNet-LSTM based approach. Alexandria

Engineering Journal, 103: 169-179.

https://doi.org/10.1016/j.aej.2024.01.017

[19] Abd Elaziz, M., Lu, S., He, S. (2021). A multi-leader

whale optimization algorithm for global optimization and

image segmentation. Expert Systems with Applications,

175: 114841.

https://doi.org/10.1016/j.eswa.2021.114841

[20] Al-Saffar, A., Awang, S., Al-Saiagh, W., Al-Khaleefa,

A.S., Abed, S.A. (2021). A sequential handwriting

recognition model based on a dynamically configurable

CRNN. Sensors, 21(21): 7306.

https://doi.org/10.3390/s21217306

[21] Altwaijry, N., Al-Turaiki, I. (2021). Arabic handwriting

recognition system using convolutional neural network.

Neural Computing and Applications, 33(7): 2249-2261.

https://doi.org/10.1007/s00521-020-05107-0

[22] Kavitha, B.R., Srimathi, C.B. (2022). Benchmarking on

offline handwritten tamil character recognition using

convolutional neural networks. Journal of King Saud

University - Computer and Information Sciences, 34(4):

1183-1190. https://doi.org/10.1016/j.jksuci.2018.09.004

[23] Assael, Y., Sommerschield, T., Shillingford, B.,

Bordbar, M., Pavlopoulos, J., Chatzipanagiotou, M., De

Freitas, N. (2022). Restoring and attributing ancient texts

using deep neural networks. Nature, 603(7900): 280-283.

https://doi.org/10.1038/s41586-022-04448-z

[24] Das, S., Imtiaz, M.S., Neom, N.H., Siddique, N., Wang,

H. (2023). A hybrid approach for Bangla sign language

recognition using deep transfer learning model with

random forest classifier. Expert Systems with

Applications, 213: 118914.

https://doi.org/10.1016/j.eswa.2022.118914

[25] Chauhan, V.K., Singh, S., Sharma, A. (2024). HCR-Net:

A deep learning based script independent handwritten

character recognition network. Multimedia Tools and

Applications, 83(32): 78433-78467.

https://doi.org/10.1007/s11042-024-19263-8

[26] Hadadi, S., Arabani, S.P. (2024). A novel approach for

Parkinson’s disease diagnosis using deep learning and

Harris Hawks optimization algorithm with handwritten

samples. Multimedia Tools and Applications, 83(34):

81491-81510. https://doi.org/10.1007/s11042-024-

18584-3

[27] Mohamad, M.A., Ahmad, M.A., Mahmood, J. (2024).

Feature extraction algorithm based metaheuristic

optimization for handwritten character recognition.

Journal of Telecommunication, Electronic and Computer

Engineering, 16(2): 27-30.

https://doi.org/10.54554/jtec.2024.16.02.004

[28] Acharya, S., Pant, A.K., Gyawali, P.K. (2015). Deep

learning based large scale handwritten Devanagari

character recognition. In 2015 9th International

Conference on Software, Knowledge, Information

Management and Applications (SKIMA), Kathmandu,

Nepal, pp. 1-6.

4189

https://doi.org/10.18280/mmep.111223
https://doi.org/10.18280/mmep.111125

https://doi.org/10.1109/SKIMA.2015.7400041

[29] Mahmoud, S.A., Ahmad, I., Alshayeb, M., Al-Khatib,

W.G., Parvez, M.T., Fink, G.A., El Abed, H. (2012).

Khatt: Arabic offline handwritten text database. In 2012

International Conference on Frontiers in Handwriting

Recognition, Bari, Italy, pp. 449-454.

https://doi.org/10.1109/ICFHR.2012.224

[30] Mirsadeghi, M., Shalchian, M., Kheradpisheh, S.R.,

Masquelier, T. (2023). Spike time displacement-based

error backpropagation in convolutional spiking neural

networks. Neural Computing and Applications, 35(21):

15891-15906. https://doi.org/10.1007/s00521-023-

08567-0

[31] Viswanathan, K., Sethi, A. WaveMix-Lite: A Resource-

efficient neural network for image analysis. arXiv pre-

print arXiv.2205.14375.

https://doi.org/10.48550/arXiv.2205.14375

[32] Mridha, M.F., Ohi, A.Q., Shin, J., Kabir, M.M.,

Monowar, M.M., Hamid, M.A. (2021). A thresholded

Gabor-CNN based writer identification system for Indic

scripts. IEEE Access, 9: 132329-132341.

https://doi.org/10.1109/ACCESS.2021.3114799

[33] Semma, A., Hannad, Y., Siddiqi, I., Djeddi, C., El

Kettani, M.E.Y. (2021). Writer identification using deep

learning with fast keypoints and Harris corner detector.

Expert Systems with Applications, 184: 115473.

https://doi.org/10.1016/j.eswa.2021.115473

[34] Ali, A.A.A., Mallaiah, S. (2022). Intelligent handwritten

recognition using hybrid CNN architectures based-SVM

classifier with dropout. Journal of King Saud University-

Computer and Information Sciences, 34(6): 3294-3300.

https://doi.org/10.1016/j.jksuci.2021.01.012

[35] Moudgil, A., Singh, S., Gautam, V., Rani, S., Shah, S.H.

(2023). Handwritten Devanagari manuscript characters

recognition using CapsNet. International Journal of

Cognitive Computing in Engineering, 4: 47-54.

https://doi.org/10.1016/j.ijcce.2023.02.001

[36] Tan, Y., Yao, H. (2021). Deep capsule network

handwritten digit recognition. International Journal of

Advanced Network, Monitoring and Controls, 5(4): 1-8.

https://doi.org/10.21307/ijanmc-2020-031

[37] Rani, N.S., BR, P. (2022). Robust recognition technique

for handwritten Kannada character recognition using

capsule networks. International Journal of Electrical &

Computer Engineering, 12(1): 383-391.

https://doi.org/10.11591/ijece.v12i1.pp383-391

[38] Abbassi, S., Ghiasi-Shirazi, K., Harati, A. (2024). Deep

multi-prototype capsule networks. arXiv preprint

arXiv:2404.15445. https://doi.org/10.1007/s11063-023-

11155-x

[39] Wu, X.J., Ao, X., Zhang, R.S., Liu, C.L. (2023).

Structural recognition of handwritten Chinese characters

using a modified part capsule auto-encoder. In CAAI

International Conference on Artificial Intelligence, pp.

478-490. https://doi.org/10.1007/978-981-99-8850-1_39

4190

