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Accurate handwriting recognition is a challenging problem, owing to variability in
handwriting styles, distortions in writing patterns, and noise in handwritten documents.
These challenges are even more severe in scripts like Devanagari and Arabic, which
have complex character forms and high visual similarity among classes, requiring
strong feature extraction and semantic knowledge. To address these challenges, we have
developed a novel deep-learning-based handwriting recognition system that preserves
the intrinsic writing dynamics and recognizes hierarchical spatial cues through multi-
level abstraction and attention-driven encoding. Our framework synergistically
integrates a Residual Abstraction Block, Spatial Context Encoder, Spatial Attention
Generator, and Hierarchical Capsule Encoding Block to capture fine-grained spatial
dependencies and contextual semantics efficiently. To further improve efficiency, we
propose a hybrid puma-crested porcupine optimizer for Feature Reduction (FR), which
significantly reduces the model's complexity without compromising accuracy.
Extensive experiments on the Devanagari and KHATT datasets prove the effectiveness
of our method. Our proposed model achieves superior recognition accuracy of 98.94%
(with FR) and 93.28% (without FR) on Devanagari, and 97.36% (with FR) and 91.91%
(without FR) on KHATT, outperforming various baseline methods. These findings
demonstrate the robustness of our architecture in achieving high accuracy, compactness,
and resilience.

1. INTRODUCTION

Handwritten Character Recognition (HCR) has become a

representations from raw handwriting images [9]. However,
traditional CNNs tend to fail to capture the dynamic, fine-
grained, and context-dependent nature of handwriting

central field of study in pattern recognition and machine
learning due to its widespread applications in biometric
identification, document authentication, and forensic
examination [1]. Specifically, writer identification, or the
identification of an individual's distinctive handwriting style,
is essential for security systems, historical document analysis,
and criminal investigations [2]. However, intricate
handwriting styles, inconsistent writing patterns, and noise in
handwritten texts pose great challenges for reliable writer
identification [3].

Conventional methods were primarily based on handcrafted
local descriptors, such as Scale-Invariant Feature Transform
(SIFT), Speeded-Up Robust Features (SURF), Local Binary
Patterns (LBP), and Histogram of Oriented Gradients (HOQG),
which are robust to small distortions, affine variations, and
slight overlaps; however, they fail to capture higher-level
semantic information and contextual meaning in handwriting
[4-8]. Deep learning techniques, particularly Convolutional
Neural Networks (CNNs), facilitated data-driven feature
learning by  automatically  extracting  hierarchical
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variations [10]. They primarily emphasize local patterns and
lack an explicit mechanism to model spatial relationships and
salient regions, which are essential for distinguishing writing
styles [11, 12].

To overcome the limitations mentioned above, our study
aims to develop a hybrid deep learning architecture named
Curve-Aware Capsule Residual (CA-CapsResNet) CNN. The
model integrates three modules: (1) Residual Abstraction
Block (RAB), (2) Spatial Context Encoder (SCE), and (3)
Spatial Attention Generator (SAG), to extract, refine, and
boost the hierarchical and spatial nature of handwriting
features. First, the RAB employs a combination of zero-
padded convolutions and residual connections to preserve
fine-grained spatial locality while generating a shallow,
discriminative feature map. Then, the SCE utilizes depthwise
separable convolutions, lightweight channel attention, and
global context aggregation to refine local structures further
and selectively enhance semantically rich features. Lastly, the
SAG calculates a location-aware attention map that directs the
model to emphasize salient spatial areas in separating various
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handwriting styles. Finally, a hierarchical capsule network
[13] is introduced to extract high-dimensional fine-grained
spatial features from the extracted salient regions.

To further enhance classification accuracy and minimize the
risk of overfitting, a Hybrid Crested Porcupine-Puma
Optimizer (HCPPO) is introduced for optimal feature
selection. This approach synergistically combines the
exploratory search scheme of Crested Porcupine [14] and the
exploitative refinement technique of the Puma algorithm [15]
to achieve a better exploration-exploitation balance than
traditional feature selection techniques. Furthermore, the
integration of phase-based decision-making, binary encoding,
adaptive randomization, and a convergence-aware control
strategy ensures that the optimizer effectively reduces the
larger search space with an optimal feature set and higher
accuracy.

The main contributions of this work are briefly stated
below:

® We introduce the CA-CapsResNet, which integrates an
RAB, an SCE, and an SAG to extract and refine
hierarchical handwriting features.

The RAB retains fine-grained spatial information
through zero-padded convolutions and residual
connections, generating shallow, discriminative feature
maps.

The SCE enhances semantically dense features by
applying depthwise separable convolutions and
lightweight attention, and the SAG focuses on key
handwriting areas.

Our proposed HCPPO framework utilizes adaptive
phase transitions, binary encoding, and convergence
control policies to obtain minimal yet highly
discriminative feature subsets, thereby enhancing
classification accuracy while reducing complexity.

We conduct extensive five-fold cross-validation
experiments on the Devanagari Hindi and KHATT
datasets to examine the robustness and generalization
ability of the proposed framework.

The rest of the paper is structured as follows: Section 2
discusses relevant works on metaheuristic algorithms for
handwriting recognition and hybrid optimization methods.
Section 3 outlines the proposed methodology, including (1)
Preprocessing, (2) Feature Extraction (CA-CapsResNet), (3)
Optimal Feature Selection using the HCPPO algorithm, and
(4) Classification. Section 4 presents the experimental setup,
benchmark datasets, and experimental results, along with a
comparative analysis of the results with previous methods.
Lastly, Section 5 concludes the findings and proposes
directions for future research.

2. RELATED WORK

This section provides an overview of recent research into
handwritten character recognition and optimization-based
learning. To begin, Subsection 2.1 surveys important baseline
studies across capsule, CNN, and hybrid-based handwritten
character recognition. In turn, Subsection 2.2 applies a
comparative review based on the underlying principles and
limitations of the two approaches. Finally, Subsection 2.3
explains how the proposed CA-CapsResNet model with
HCPPO converges the gaps outlined in previous studies and
advances the field beyond the previous work.
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2.1 Baseline studies in capsule, CNN, and hybrid models

Yao et al. [16] introduced FOD DCNet, a deep capsule
network for fully overlapping handwritten digit recognition
and separation. The model implemented small convolutional
kernels and an improved series dual dynamic routing
collocation mechanism, increasing routing effectiveness.
Accuracy was reported to be 93.53%, with almost half the
number of parameters compared to a regular CapsNet.
Parcham et al. [17] introduced CBCapsNet by integrating
CNN with capsule networks to improve spatial feature
learning in the signature verification task. The architecture
employed a paired image scheme to reduce the training
parameters by half, thereby avoiding the need for dual
networks. The proposed network achieved a classification
accuracy of 92.94% with a low Feature Acceptance Rate
(FAR) and a high Feature Reduction Rate (FRR). Moudgil et
al. [18] presented a CapsNet framework for identifying
Devanagari characters, comprising 399 classes, with an
accuracy of 94.6%, which outperformed conventional models
such as CNN, MLP, and KNN.

In handwriting recognition, feature selection has also
received considerable attention. In a recent work, Abd Elaziz
et al. [19] integrated the Freeman Chain Code (FCC) with the
Whale Optimization Algorithm (WOA) to enhance the data
representation of handwritten text images. This step improved
the feature reduction and convergence rate of the WOA
compared to the Flower Pollination Algorithm (FPA). Al-
Saffar et al. [20] merged a Dynamically Configurable
Convolutional Recurrent Neural Network (DC-CRNN) with
the Salp Swarm Optimization Algorithm (SSA) to minimize
the complexity of the hyperparameter tuning process,
achieving improved results on both English and Arabic
datasets.

Altwaijry and Al-Turaiki [21] presented the Hijja dataset,
which contains 47,434 Arabic characters written by children
aged 7 to 12. They trained a CNN architecture on the Hijja and
AHCD datasets and reported 97% accuracy on AHCD and
88% on Hijja, showing a promising approach for Arabic
handwriting recognition. Kavitha and Srimathi [22] employed
CNN:s in the offline Handwritten Tamil Character Recognition
(HTCR) problem, highlighting the networks' capacity for
discriminative feature learning. Their CNN model, trained on
a dataset generated by HP Labs India, achieved an accuracy of
95.16%, outperforming baseline methods. Similarly, Assael et
al. [23] introduced ITHACA, a deep-learning framework built
for automating restoration and chronological accreditation of
Greek historical inscriptions. Ithaca improved the restoration
performance from 25% to 72%, surpassing state-of-the-art
methods.

Shifting  towards  multilingual and  multimodal
environments, Das et al. [24] introduced a hybrid deep
learning framework combining a transfer-learning-based CNN
and a Random Forest classifier for the recognition of Bangla
Sign Language (BSL). This model was validated on the Ishara-
Bochon and Ishara-Lipi datasets, achieving 91% accuracy for
characters and 97% accuracy for digits across both datasets,
respectively. Chauhan et al. [25] leveraged transfer learning to
develop HCR-Net, a lightweight, script-agnostic model to
realize both faster convergence and better generalization. The
performance of HCR-Net was compared with 26 baseline
methods on 40 public datasets, with up to 11% higher accuracy
and 99% first-epoch convergence.

In parallel, optimization-driven techniques have gained



traction for improving feature selection and convergence
behavior. Hadadi and Arabani [26] developed a deep learning-
based method utilizing various handwritten samples for
Parkinson’s diagnosis, which was optimized using the Harris
Hawks Optimization (HHO) algorithm. This model achieved
94.12% accuracy, outperforming five pre-trained networks,
and converged to a cost function value of 0.0084746 in just 10
iterations. Mohammad et al. [27] proposed a metaheuristic
method based on the Honey Badger Algorithm (HBA) with the
Freeman Chain Code (FCC) for HCR feature extraction,
achieving efficient route length and computational time on the
CEDAR dataset. However, dependency on the FCC’s initial
points influences the consistency of extraction. To counter
this, the suggested HB-FCC effectively balanced exploration
and exploitation dynamically, increasing the robustness of
feature extraction.

The baseline studies on capsule, CNN, and hybrid models
are summarised in Table 1, along with their datasets,
performance levels, and limitations, which served as
motivation for the proposed CA-CapsResNet and HCPPO
framework.

2.2 Synthesis and comparative analysis

The given related work can be CATEGORIZED into three
research areas: (1) CNN-based, (2) Capsule-based, and (3)
hybrid or optimization-based approaches. CNN architectures
[21, 22, 24, 25] have effectively demonstrated hierarchical
learning capabilities and generalizability across scripts;
however, their lack of spatial awareness has limited their
ability to model detailed relationships among handwriting
strokes adequately. Capsule networks [16-18] were motivated
to address the issue of spatial awareness by retaining spatial
hierarchies and establishing part-whole relationships using
dynamic routing. Capsule networks demonstrated a greater

representation of local dependencies than CNNs; they were
computationally heavy and do not inherently provide the
possibility for adaptive decrease in features. Hybrid and
optimization approaches [19, 20, 26, 27] aim to balance
recognition accuracy and computational effectiveness by
integrating deep models with bio-inspired algorithms, such as
WOA, SSA, HHO, and HBA. Despite this, the majority of
these approaches focus on optimization and feature selection,
without considering context-sensitive spatial refinement, a
crucial aspect of complex handwriting styles.

2.3 Comparative advantage of the proposed work

Compared to existing CNN, capsule, and hybrid
handwriting recognition approaches, our CA-CapsResNet
with HCPPO is improved at both the architectural and
optimization stages. Conventional CNNs process only local
features, resulting in a loss of spatial hierarchy. Capsule
networks, on the other hand, maintain spatial relationships but
have significant architecture routing complexity and limited
adaptability. Our proposed CA-CapsResNet with HCPPO
addresses these challenges through residual abstraction,
spatial context encoding, and attention-guided refinement,
enabling it to model the continuity of curves, stroke dynamics,
and contextual dependencies in handwriting more effectively.

Furthermore, unlike previous hybrid or metaheuristic
optimizer techniques, such as WOA, SSA, HHO, and HBA,
the HCPPO selects compact yet highly discriminative feature
subsets by employing adaptive phase transitions to optimize
the balance between exploration and exploitation, thereby
reducing computational load. In summary, the CA-
CapsResNet and HCPPO form an integrated pipeline,
resulting in a richer encoding of spatial representations with
minimal feature redundancy and improved classification
accuracy compared to baseline methods.

Table 1. Summary of the related works done for handwriting character recognition

Study Model/Technique Datasets Novelty Accuracy Limitations
Yao et al. [16] FOD_DCNet Overlapping digit Dual dynamic rqutlng 93.53% Limited ad:':lptablllty,
dataset for capsule efficiency parametric heavy
Parcham et al. CBCapsNet Sienature dataset Paired-image scheme 92.94% Lacks attention-based
[17] (CNN + CapsNet) g g (low FAR/FRR) refinement
Moudgil et al. . Capsule routing across o Lacks feature
[18] CapsNet Devanagari dataset 399 classes 94.6% optimization
. S No spatial learning,
Abd Elaziz et al. WOA + FCC Handwritten text Whale Optlmlzatlo_n Improved path dependent on FCC
[19] for FCC representation length S
initialization
Limited contextual
Al-Saffaretal. o NN+ SSA TAM, IFN/ENIT SSA for CRNN Outperformed refinement; high
[20] structure learning conventional CRNN
parameter count
Altwaijry and CNN trained on a new 97% (AHCD), Poor generalization on
Al-Turaiki [21] CNN AHCD, Hijja Arabic dataset 88% (Hijja) noisy data
Kavitha and HP Labs Tamil CNN trained from o No spatl al blgrzi.rchy
. . CNN 95.16% modeling; limited
Srimathi [22] dataset scratch
robustness
Assael et al. . oy Restoration and dating o . Limited handwriting
[23] Ithaca (DL) Greek inscriptions model 62% (restoration) variability
Das et al. [24] CNN + Random Ishara-Bochon, Hybrid model with 91% (chars), Weak spatial consistency;
’ Forest Ishara-Lipi background removal 97% (digits) dual-stage complexity
Chauhan et al. HCR-Net 40 datasets Lightweight, script- +11% vs. baselines Limited fine-grained
[25] (transfer learning) independent ' spatial encoding
. . R o Focused on diagnosis;
Hadad{ and DL + HHO Parklnsgp s HHO-optimized DL 94.12% lacks feature-level
Arabani [26] handwriting model RS
optimization
Honey Badger .\ . o
Mohamad etal. = HB-FCC (HBA + CEDAR dataset optimization for FCC Improved route Ser}smve to initial points;
[27] FCC) features length limited context-awareness
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3. PROPOSED METHODOLOGY

In this section, we briefly cover the proposed methodology
in four categories: (1) Image preprocessing, (2) Multi-

dimensional handwriting feature extraction, (3) Feature
reduction using the proposed PO-CPA approach, and (4)
Classification using various machine learning classifiers. Our
proposed classification model is illustrated in Figure 1.
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Figure 1. Flowchart of the proposed handwriting recognition and writer's classification framework

3.1 Image preprocessing

Preprocessing is essential for enhancing the quality of
handwriting images and preparing them for feature extraction.
The operations are carried out step by step, following the
mathematical equation.

3.1.1 Image resizing

The input handwriting image is resized to a size of 224 X
224 pixels to maintain uniformity across the dataset. This
standardization ensures that all images have the same
dimensions for consistent processing. The resized images are
then stored for further preprocessing steps, such as noise
removal and normalization. The resized sample images are
illustrated in Figure 2.
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Figure 2. Sample writing samples after performing the
resizing operation in 224 x 224 pixels

3.1.2 Noise removal
We apply noise removal methods to remove unwanted
artifacts, such as salt-and-pepper noise, providing a clean,
binarized image. A median filter is used:
I'(x,y) = median {(x + i,y + j)|(i,j) € N} (1)
where, N represents the neighborhood window (3 x 3). This

step enhances image clarity for further processing. The clean
sample images are illustrated in Figure 3.

Original Median Filtered
Y, ¢‘)‘VLJ:’1/\‘L;J0;&2},_DJ Y d‘)v‘@’b(bﬂ)’bzy_&
bl oy ek ol Oy ks e 4,,,4[.4,,,.“ By 0 ey bt ey b iy
[’Jjul‘wOJp}beﬂ ol U))uf'fabl.b)—'ybﬂgwuu
BNy QUL 8Ll e | lins Gy 4140 e by cad Pl el AL Bl e lar Glyc £y 0 el i cd pld sled

Figure 3. Sample writing samples after performing the
denoising operation using median filtering

3.1.3 Morphological processing

We apply morphological operations, including dilation and
erosion, to smooth the boundaries of handwriting. Dilation
fills small gaps in strokes using Eq. (2):

D(1)=1DK 2)
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where, K is a structuring element. Erosion removes small
noises and refines character edges using Eq. (3):

E(D=10K 3
These tasks strengthen stroke cohesion while maintaining

writing characteristics. The processed sample images are
illustrated in Figure 4.
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Figure 4. Sample writing samples after performing the
morphological operation

3.1.4 Slant normalization

Writer-dependent variations of stroke orientation are
removed by correction through slant normalization via shear
transformation using Eq. (4):

Myt

where, K is the corrected slant factor. It standardizes the
handwriting to achieve a uniform appearance across various
writers. The processed sample images are illustrated in Figure
5.

“4)

Erosion Erosion Slant Normalized

,\,;J S v, VL"JP.:"OZ_,‘ [V, 3N
atelfus ok ol Gy« W,-l-rﬂ‘“f"“’l“‘“
gy r,.»(ﬂp,—l ‘J[ﬂ-",é“‘“ cl
Pt Syt N Oy s o et
L) el 55 €0y 35 s

Dilation

| ( il
I I Y -'«+4U,'“r,

Opening
Vs v, (‘Luﬂfbézj w5
3 ot Coamy pd Gy

twurwowy sliant 4

dotis e Lk

L«z,' LM(KI})(,V())_,J“_:

Closmg

P s P

(7] ,Vl,ﬁ)‘p,// 5

RO [y 1/,,J l,dég)»._uu

L) Slezs¥ 3y (ol Gy sas

2V s v, \‘Ll_,ﬁ_"w&, D>
a3 ok ool Cpwse "Jtl,-‘-rf—'“‘/‘"‘"f"““
Aoy £33 0) o) -,lw-![r-—a ol
P Sty Aoy Gty £ M el s e ol et
) et s oy d e

Dilation Slant Normalized

| /
Lo ) Jlezsd) 5,5 Dy 8y s

Opening Slant Normalized
Vs ) vk, VLLMMZJ, edia

Juad Coamg plad Crynsy s dabf by Lk

bl
ol 4 Lk

.L@,J LMY',J(}_,O))JMI

Closing Slant Normalized

L‘J)u mol ol

£y ol ek ks
Vs L g, o
lygs ryd

i) deil "LA'JK‘AL“

L) ezl i G0y 45 e

Figure 5. Sample writing samples after performing the slant
normalization

3.1.5 Size normalization

We apply size normalization to standardize handwriting
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sizes, ensuring uniform input for recognition models. The
rescaling transformation is defined by:

I (x',
where, a and S are scale factors calculated according to the

standard character size. The processed sample images are
illustrated in Figure 6.
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Figure 6. Sample writing samples after performing the size
normalization

3.2 Proposed model architecture

Handwriting recognition for author identification is highly
challenging because handwriting style, stroke dynamics, and
non-regular spatial features are very difficult to handle due to
the presence of intricate intra-personal and inter-personal
variability. To address this complexity, we introduce the
hybrid CA-CapsResNet, which incorporates curvature-aware
adaptive convolutions, residual propagation of features, and
capsule-style spatial encoding to enhance the robustness of
features while preserving hierarchical structuring for
handwriting. The architecture's mathematical formulation is
outlined below, with a description of each significant
computational stage.

Algorithm 1. Pseudocode for RAB

function Residual Abstraction Block (X):

# Input: X € RF*WXC: original preprocessed image tensor
# Output: X, € RFEXWXC : shallow feature map

# Step 1: Apply Zero Padding

X ZP = ZeroPad (X, padding=1) # Pad with 1 pixel on all
sides

# Step 2: First Layer

Convl = Conv2D (X _ZP, kernel_size=3x3, stride=1,
padding='valid")

Resl = Conv2D (X _ZP, kernel_size=1x1, stride=1,
padding='valid")

Outl = Convl + Resl

# Step 3: Second Layer (Residual Repeat)

Conv2 = Conv2D (Outl, kernel size=3x3, stride=1,
padding="same")

Res2 = Conv2D (Outl, kernel size=1x1, stride=1,
padding='same")

Out2 = Conv2 + Res2

# Step 4: Third Layer (Residual Repeat)

Conv3 = Conv2D (Out2, kernel size=3x3, stride=1,
padding='same")

Res3 = Conv2D (Out2, kernel size=1x1, stride=1,
padding="same")

Out3 = Conv3 + Res3

# Step 5: Batch Normalization and ReLU

BN = Batch Normalization (Out3)

X 0=ReLU (BN)

return X,




3.2.1 RAB

Initially, the preprocessed image is transformed into a 3D
tensor representation: X € RT*W*C where H, W, and C refer
to height, width, and the number of channels, respectively. A
convolution layer of size 3 x 3, preceded by a zero-padding
operation, is applied to the input tensor to preserve the spatial
locality. Further, a residual operation with a convolution
window of size 1 x 1 is applied between the original tensor and
the convoluted tensor. This step is repeated in the second and
third layers. Finally, the output is passed through a Batch
Normalization (BN) and ReL U activation layer to compute the
shallow feature map: X, € R¥*"W*C can be represented as
follows:

X, = RelLu (F}, (Resl,‘l ((Convy3 (X, )) X, ))) (6)

where, X;p shows zero-padding operation on input tensor X
and Fpy(.) stands for BN. The pseudocode of this substep is
given in Algorithm 1.

3.2.2 SCE

To more finely adjust the spatial representations and
enhance global contextual perception, the SCE plays a critical
role in the proposed architecture. It aims to capture spatial
relationships at various scales without compromising
computational efficiency. The input of this block is the feature
map obtained from Eq. (1), and a depthwise separable
convolution using a 3 x 3 kernel is utilized channel-wise to
enable the network to extract subtle local patterns separately

within each channel. Mathematically, the depthwise
convolution operation can be described as:

F, = DWConv,; (X,) (7)
where, DWConv;ys (X,) represents the depthwise

convolution operator that is used to minimize the number of
hyperparameters while preserving spatial specificity and local
structural integrity. Further, BN and ReLU operations are
applied. Next, a Global Average Pooling (GAP) is
implemented to F,; for incorporating global context into the
local descriptors. This step yields a condensed channel-wise
descriptor z € R€ using Eq. (8):

1 H W
; ; F,(@,j,0),V L2,...
HxW;gd(uc) ce(l,2,...N)

z, =

®)

This descriptor captures the worldwide spatial distribution
of every channel and is an input to a light channel attention
module. The attention mechanism is a two-layer fully
connected (FC) bottleneck network with a reduction ratio r,
ReLU activation, and a final sigmoid gate:

o =o(,5(7z,) 9)
where, W, and W, are learnable weights, §(-) is the ReLU
activation function, and o(-) is the sigmoid function that
outputs the final attention weights a € [0,1]¢. The attention

vector a is transmitted over spatial dimensions and used on the
depthwise convoluted features F; resulting in improved

context-aware output F, € RH xW'xC This
mathematically represented in Eq. (10):

step s
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F (i, j.c)=a.F, (i, j.c) (10)

This selective boost of informative channels enables the
network to amplify semantically relevant spatial features and
filter out irrelevant or noisy elements. The pseudocode of this
substep is given in Algorithm 2.

Algorithm 2. Pseudocode for SCE
function Spatial Context Encoder (X, ):
# Input: X, € RF*WXC feature map from previous block
# Output: F, € RIPXWXC context-aware spatially refined
output
# Step 1: Depthwise Separable Convolution

Fq = DWConv;,3 (X, kernelg;,. = 3 X 3, stride

= 1, padding = 'same’)

# Step 2: Batch Normalization and ReLU Activation
F 4= BatchNormalization (Fy)
Fd: RelLU (Fd)
# Step 3: Global Average Pooling to obtain channel
descriptor z € R¢
z = GlobalAveragePooling (Fy)
# Step 4: Lightweight Channel Attention via 2-layer
Fully Connected Network
hidden dim = C // r #r is the reduction ratio
Fc1 = Fully Connected (z, out_dim=hidden_dim)
Fcl=ReLU (Fc1)
F¢2 = FullyConnected (F¢1, out_dim=C)
a = Sigmoid (F¢2)
# Step 5: Contextual Reweighting over Spatial
Dimensions
F; = ElementWiseMultiply (Fq4, o)
return Fg

3.2.3 SAG

Although the channel attention mechanism emphasizes the
importance of each feature channel uniformly, it lacks spatial
discrimination. To address this gap, the SAG is proposed to
encode location-aware feature importance, enabling the
network to focus more attention on salient areas in the spatial
domain.

The input to SAG is the contextually enhanced feature map

F/ € RH'"*W'XC derived from the previous encoder module.
The spatial attention is built through a channel-wise
compression approach and a convolutional spatial gating
mechanism.

(1). Channel squeezing aggregation

To calculate spatial saliency, a compound summary of
feature information is retrieved by performing average pooling
and max pooling operations over the channel dimension:

FAVg = AngOOlchannel (F:) (1 1)

F Max — MaxP 001('hannel (E’) (12 )

where, Fapg and Fygy € RH">W'*1  Both maps encode

different spatial clues from the global average and global max
activations.

(2). Spatial attention convolution

The stacked maps are concatenated along the channel axis
and sent through a convolutional attention filter using Eqgs.
(13) and (14), respectively.



le RH’xW’xz

(13)

Feoncat = [FAvg; Frax

ﬂ RH'XW' (14)

O-(Conv7><7 ( concat )) €

Here:

* Conv,y5 (.) is a convolution layer with a 7 x 7 kernel,
capturing a wider spatial context.

e () is the sigmoid activation function that outputs the
spatial attention map .

(3). Attention mechanism

Finally, the spatial attention map is broadcast to all the
channels and element-wise multiplied with the input feature
map F;, which gives rise to the spatially attended output:

Fg, = RH"W'XC computed according to Eq. (15):

EgA(i>j’c):ﬁ(i’j)E9A(i’jac) (15)

Spatial reweighting in this manner highlights areas in the
feature map that are more informative for recognition and

dampens less informative areas, thus enhancing the spatial
localization ability of the network.

3.3 Feature extraction using hierarchical capsule encoding
block

3.3.1 Curve-aware convolution and curvature-guided pooling

Let X € RP*WXC denote the size of the input image patch,
where, H, W, and C refer to height, width, and number of
channels, respectively. Initially, we introduced a curvature-
awareness-oriented convolution operator by computing the
local curvature tensor k(i,j) using the Gaussian curvature
margin of the Hessian of the input image (/). It can be
mathematically formulated in Eq. (16):

o'l
Oxoy

621 L 01
_ §

K (i,))= =) (16)

This curvature estimates scales the convolutional weights in
a specially designed curve-aware convolution (CAC)
operation. The convolution response at the pixel.

FCAC(i'j)
kK({@+mj+n)*supm,.*X({@+m,j+nc)

(17

mmn,c
where, x is a learned convolution kernel from Eq. (16).

3.3.2 Normalized residual mapping

To maintain the spatial semantics and enable deep feature
learning, the CAC output is added back to the input in a
residual setup, followed by BN and activation:

F,

Res

=ReLU (B(Fc (i,/)+X)) (18)
where, B(.) refers to the BN procedure, and ReLU is the
rectified linear unit activation function.

3.3.3 Hierarchical capsule encoding block
(1) Primary capsule equation

The preprocessed image, represented as X € R?24*224*3 g
passed to a sequence of convolutional operations to derive
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low-level spatial features. The Hierarchical Dense Capsule
Network (HDCN) architecture is designed with four capsule
layers with progressively coarser spatial resolution. The
topmost capsule layer is a grid with 8 x 8 (64 capsules), which
ultimately learns low-level handwriting features, such as
stroke curvature and edge flow. The next capsule layer is a 4
x 4 grid (16 capsules) that uses the localized activations from
the previous layer to learn mid-level structure and continuity
in the patterning of writing strokes. The additional capsule
layer is 2 % 2 (4 capsules), which learns features that represent
higher-level abstractions of the characters in terms of their
subcomponents or strokes (typed formation). The fourth and
final capsule layerisa 1 x 1 (1 capsule), representing the style
of the user’s handwriting by combining all features of the
spatially  distributed capsules into a small, global
representation of the handwritten style.

Each capsule produces a pose vector u . € R4, where (i, )
refers to the location of the 1nd1v1dual capsule. The pose
vectors are mapped to a higher-level feature space by learning

transformation matrices, W;‘(i‘ i€ R4'xd realizing the
positional vector (Eq. (12)) for the next layers.

"(2) — D O]

Upij = VV;\IJ ¥ U (19)

These predictions are routed to the second layer through a
dynamic routing-by-agreement process.

(l+1) ZCU)

L0

). (ma Hm ). ) (20)
@.))
1+1 1+1
o _ i s e
(m,n) — (I+1)
I T Al
. . 0) . .
The routing coefficients Cij)amn) Are iteratively refined

based on the agreement scores between capsules. This process
continues hierarchically through all four capsule layers,
resulting in a global identity capsule v representing the
writer’s distinctive handwriting signature. Furthermore, to
refine identity cues, v® is fed into a secondary spatial capsule
network comprising three capsule layers (4 x 4,2 x 2,1 x 1).
The input capsule grid is initialized as:

)

ul) =ReLU(4, V) +b, )

(22)

where, A; ; € R4 and b, j are training parameters. To guide

dynamic routmg more effectively, attention coefficients
r

a(li_j),p are introduced to modulate the contribution of each

lower capsule based on learned spatial saliency calculated in
Eq. (20).

)

1
. exp(score (u((l 2) ), Wp‘(i’j)
a. . =

(i0).p (1) (23)
Z(”(w))’ i)
q

where,
score (u,W) =a" *tanh(W u) (24)

The final attention-weighted routing input is computed as:



@ _ ) (0 A2)
Sp S5, p F G el

(25

This attention-guided capsule routing enhances robustness
to local distortions and selectively amplifies salient spatial

>

m

&0

S T g

2&'\ 1 Capsule :%'
("%J'Q Gy
g it

Hierarchical Dense Capsule Network

regions crucial for handwriting identity. The final capsule
output v3" encodes a compact, discriminative embedding
that merges local and global characteristics for reliable author
identification. The detailed architecture of the proposed CA-
CapsResNet is shown in Figure 7.
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Figure 7. The architecture of the proposed CA-CASResNet
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Figure 8. Flowchart of the proposed HCPPO algorithm for feature reduction
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3.4 Feature optimization using hybrid puma-crested
porcupine optimizer

Feature optimization is crucial for reducing overlapping
features while preserving discriminative information. In this
paper, we propose a HCPPO to optimize the extracted feature
set of Hybrid CA-CapsResNet. This algorithm integrates
defence-guided exploration from CPO with intelligence-
driven exploitation and adaptive phase transition from PO. The
combination of these two strong metaheuristics enables
HCPPO to achieve a good balance between exploration and
exploitation, thereby determining optimal subsets of features.
The flowchart of the proposed algorithm is given in Figure 8.
The suggested improvements are discussed in the subsequent
steps.

3.4.1 Problem formulation for feature selection

Let D = {(x1,y1), (x5, ¥2), .. (%, )} be a dataset
consisting of n samples and m features where x; € R™ and y;
€ R. The objective is to find the best subset of features S €
(fi, f2, - fn) that achieves maximum model performance
while minimizing the number of selected features. Define a
binary solution vector:

Xz{xl,xz,...xn},xl.eo,l (26)

where, x; = 0 if the feature is rejected and x; = 1 if the
feature is selected. The objective function (f (x)) for feature
optimization is modelled as a weighted sum of classification
accuracy error and the relative number of features selected.
Symbolically, it can be represented in Eq. (42).

No. of selected features

x)=a.llass, +(1-a).
f( ) o+ ) Original features

where, Classg, o refers to errors in classification accuracy,
and « is a weight balancing the tradeoff between classification
accuracy and selected features.

3.4.2 Initialization phase

The algorithm begins by generating a population of N
binary agents X; € {0, 1}™, representing different subsets of
features. Let the features generated by CA-CASResNet be
defined by

X=X, X),... X" (28)
The fitness score of each feature is calculated by f(X}).

3.4.3 Intelligent phase switching mechanism

The PO-inspired adaptive phase transition adaptively
chooses between exploration and exploitation phases based on
scoring mechanisms, as outlined in Eqgs. (22) and (23),
respectively.

SCOrey . = AL + A f 29)
Scores i, = AL+ L (30)
f> = mean (AFitness;qs; 1) 31

The phase is selected as follows:

@27

Exploration if Scorey,,,,, > Score,,,,

(32)

Otherwise

Phase = o
Exploitation

Algorithm 3. Pseudocode of proposed HCPPO for feature
reduction

Input:

- Extracted feature set

F = {(x1,y1), X2,V2), ... Xn, ¥n)} from CA-CapsResNet
- Population size Ny, minimum population size N,

- Maximum iterations Ty,

- Objective function

No. of selected features
f(x) = a. Classgror + (1 — ).

Original features

- Convergence parameters: y (convergence rate), T¢
(tradeoff factor)

- Random coefficients ry, 5, I's

- A1, A2 (phase weight factors)

Output:
- Optimized feature subset Xpest
For t=1 to T4 do:

Step 1: Initialization

1.1 Initialize population agent: X = {X1,X5 , ..., XN .0 )
randomly

1.2 Evaluate fitness for each candidate solution using f;,x
1.3. Calculate Scoregypiore and Scoregyp)oir using Eq. (22),
respectively.

Step 2: Phase Selection Process
Select phase based on Eq. (25):

If Scoregypiore > SCOr€gypiore then
Phase « Exploration

Else

Phase < Exploitation

Step 3: Decision Step 1

If Phase == Exploration then

Randomly select one of the following phases
- Visual Awareness (Eq. (26)):

- Auditory Defense (Eq. (27)):

Step 4: Decision Step 2

Else if Phase == Exploitation then:
Randomly select one of the following phases
- Odor Mechanism (Eq. (28)):

- Puma Memory Attack (Eq. (29)):

Step 5: Apply Binary Encoding using Eq. (30):
Step 6: Evaluate fitness f (X;)

If f(X;) < f(Xpest), then update

Xbest < Xi

Else

Do nothing

Step 7: End For

Step 8: Return Xj,et

End

3.4.4 Exploration phase

The CPO model utilizes defensive strategies to diversify the
search using two substeps: (1) Visual Awareness and (2)
Auditory Defense. The working of both substeps is formulated
in Egs. (33)-(37).



(1) Visual awareness

The visual awareness step in the HCPO algorithm is
analogous to the sight defense mechanism of the Crested
Porcupine. It facilitates extensive exploratory search through
the simulation of far-away threat detection, wherein agents
execute random Gaussian walks over the solution space to find
new, unexplored areas. This step is formulated in Eq. (33):

XM= X! +y*N(0,1) (33)

where, y controls the degree of perturbation, and N (0,1)
introduces random Gaussian noise.

(2) Auditory defense
Agents create echo signals based on fitness, affecting others
through:

XM =X +S5(rand. (X,

3.4.5 Exploitation phase
At the exploitation phase, intelligent puma strategies are
utilized for local intensification:

A. Odor (CPO) mechanism:

X,

X" =X+ Bsign (X, —X!).| (X, XD (39)

where, f € (0,1) and 7 controls the learning rate.
B. Puma memory attack: The agent selects the best
historical region using the criteria discussed in Eq. (36):

X[Hl = mean (Xhexl H Xhi.vtoryfhext H Xtt) (36)
Further, X/ ! is binary-encoded using Eq. (37):
1 if o (X (7)) >r
X (7)= 7ol ) @)
0 otherwise

where, a(.) is a sigmoid function. The pseudocode of the
proposed HCPPO is given in Algorithm 3.

3.5 Non-linear projection and classification

After the hierarchical capsule encoding and subsequent
feature reduction through the HCPPO, the selected feature set
Fs.; € RVN*4 where, N is the number of samples and d is the
optimized feature dimension. In order to increase nonlinearity
and enhance the separability of classes in the acquired
manifold, we introduce a nonlinear projection module that
maps these projected features to a latent discriminative
subspace R € NV*4' where d’ < d. Mathematically, we can
formulate this step according to Eq. (38):

Fpy =Tanh(W,.ReLU (W, i, +b; )+ b,) (38)

where, W, and W, are learnable weight matrices, b; and b,
are bias terms. The projected features are then normalized and
passed to a Softmax classifier for final prediction, as shown in
Eq. (39):

j} = Soﬁm (W;‘Emrm + bc) (39)
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where, W, and b, are learning parameters of the output layer.
The output vector § € RV*¢ holds the class probabilities for
all samples.

4. EXPERIMENTAL RESULTS AND DISCUSSION

This section provides an overall assessment of the proposed
feature extraction using the Capsule Encoding Block and
feature optimization using HCPPO from multiple dimensions.
Sections 4.1 and 4.2 describe the experimental setup, including
the datasets used and the model's implementation details. In
Sections 4.3 and 4.4, we compare the performance of the
model by evaluating its classification accuracy and parameter
efficiency against several state-of-the-art approaches on
various image datasets. Additionally, Section 4.5 presents a
detailed ablation study to examine the contribution of different
architectural components and configurations to the overall
performance of the proposed framework.

4.1 Experimental setup

All experiments were conducted on a high-performance
workstation equipped with an Intel Core 19-12900K processor
at 3.20 GHz and an NVIDIA GeForce RTX 3090 graphics
card. Model training and development were performed using
PyTorch 1.13.1, a deep learning library that leverages CUDA
11.7 and cuDNN 8.5 to take advantage of GPU acceleration.

4.2 Datasets details

Two benchmark handwriting datasets, the Devnagari
Character Dataset and the KHATT dataset, were used in
experiments to validate the robustness and generalization
ability of the proposed handwriting recognition framework.
They were chosen owing to their diversity in script style,
linguistic content, and writing complexity. A crisp detail of
both datasets is given below:

(1). Devanagari Hindi MNIST dataset

The Devnagari Hindi Character Dataset (DHCD) [28, 29]
comprises 92000 scans [32 x 32 pixels] stored in 8-bit
grayscale format. It is uniformly distributed over 46 balanced
classes, comprising 36-character classes (vowels and
consonants) and 10 numeral classes. Each class includes
approximately 2,000  samples, ensuring equitable
representation and preventing class imbalance during model
training and evaluation.

The data set has significant intra-class variability, including
variations in handwriting style, skew, and character
connectivity, making it an appropriate challenge for testing the
spatial sensitivity of our model. The sample images are
attached in Figure 9.
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Figure 9. Sample images of the Devanagari Hindi MNIST
dataset



(2). KHATT dataset

The KFUPM Handwritten Arabic Text (KHATT) [30]
Database is one of the largest databases of unconstrained
handwritten Arabic text, comprising 9,850 handwritten forms
contributed by 1,000 diverse authors. The dataset comprises
2,000 similar-text paragraph images and 2,000 unique-text
paragraph images, uniformly distributed across all 1,000
classes. Each page was scanned at a resolution of 300 dpi and
saved as grayscale TIFF files. All the images are followed by
manually authenticated ground truth annotations, both in
Arabic text and Latin transliteration. The sample images are
attached in Figure 10.

4.3 Architectural composition and parametric overview

The proposed handwriting recognition architecture relies on
CA-CapsResNet for discriminative and robust feature
extraction and HCPPO for effective feature reduction and
dimensionality compression. The CA-CapsResNet is designed
at the architectural level to encode fine-grained handwriting
features by synergistically combining curve-aware adaptive
convolutions, residual propagation, and capsule-like spatial
encoding, thereby retaining the handwriting's inherent spatial
hierarchy and direction variances. Coupling this, HCPPO
leverages the search-oriented advantages of Crested Porcupine
motion and the Puma optimizer's behavior of exploitation to

eliminate redundant features while retaining critical
descriptors. Tables 2-4 provide in-depth parametric
descriptions of the constituent blocks in the architecture,
focusing on kernel sizes, layer-wise compositions, activation
modalities, and optimization methods.
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Figure 10. Sample images of the KHATT dataset

Table 2. Components-wise parametric details used in the CA-CapsResNet model

Module Key Components Kernel Size Paé?::ﬁ::“ Activation Normalization
RAB 3 x 3 Conv, 1 x 1 Residual Conv (x 3 layers), ReLU, BN 3x3,1x1 ~35K ReLU BatchNorm
Depthwise Separable Conv, GAP, FC x 2 (Attention), 3 x3DW N
SCE ReL U, Sigmoid Conv, FC 28 K ReLU BatchNorm
SAG Avg & Max Pooling (channel-wise), 7 X 7 Conv, Sigmoid 7 x 7 Conv ~10 K Sigmoid -

Table 3. Training configuration and hyperparameter setting of the CA-CapsResNet model

Training Parameter

Value/ Setting

Optimizer
Learning Rate
Learning Rate Schedule
Number of Epochs
Batch Size
Loss Function
Regularization
Early Stopping
Validation Split

AdamW (Weight Decoupling)
0.001

Cosine Annealing with Warm Restarts (To = 10 epochs, Nmin = 1€7)

150
64

Categorical Cross-Entropy with Focal Weighting (y = 2.0)
DropBlock (p = 0.1), L2 weight decay (A = 1e#)
Patience = 20 epochs based on validation loss

Five-fold (80:20)

4.4 Performance on Devnagari character and KHATT
dataset

In this section, classification accuracy and the number of
trainable parameters is used as the primary metrics for model
evaluation (Table 4). Since the samples in the Devnagari
Character Dataset and KHATT datasets are 28 x 28 grayscale
images of a single channel, the parameter count is the same for
all models. The performance of the proposed framework is
compared with six non-capsule network-based handwriting
recognition frameworks: (1) R-CSNN [30], (2) WaveMix
[31], (3) Threshold-Gabor CNN [32], (4) Fast Keypoints with
Harris Corner Detection (FKHCD) [33], (5) Hybrid CNN with
SVM [34], (6) Deep Transfer Learning with Random Forest
(DTL-RF) [24], and six capsule network-based methods: (1)
CapsNet [35], (2) Kernalized Deep Capsule Networks (K-
DCN) [16], (3) Deep Hybrid Capsule Networks (DHCN) [36],
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(4) Dense Capsule Networks (DCN) [37], (5) Deep Multi-
prototype Capsule Networks [38], and (6) Modified Part
Capsule Auto-encoder (MPCAE) [39]. The experimental
outcomes demonstrate a strong performance benefit of the
proposed technique over both standard and capsule-based
methods on the Devnagari and KHATT datasets (Table 5).

In the case of methods not based on capsules, including R-
CSNN, WaveMix, Threshold-Gabor CNN, FKHCD, Hybrid
CNN with SVM, and DTL-REF, the accuracy increased by 15—
21% in all instances on both datasets when feature reduction
was applied. These models, typically characterized by a
relatively shallow depth and linear backends for classification,
appear to be more susceptible to noise and redundancy in the
feature space. For instance, FKHCD increased from 58.75%
to 74.40% on the Devnagari dataset, an increase of more than
21%, the best in this set.

Capsule-based models exhibit more complex behavior.



Although they typically begin with higher baseline accuracy
due to their built-in routing-by-agreement, they still
experience improvements in the range of 11-18% when
features are reduced. CapsNet, for example, increases from
70.86% to 86.44% on Devnagari with feature reduction.
Interestingly, state-of-the-art capsule networks, such as
MPCAE and Deep Multi-Prototype CapsNet, exhibit
relatively smaller gains, suggesting that these models already
incorporate some implicit feature selection or compression
during training. The proposed method consistently performs
the best on both datasets, achieving 98.94% and 97.36%
accuracy on the Devnagari and KHATT datasets, respectively,
when feature reduction is applied. Even without feature
reduction, it retains a high performance, beating all other
approaches with a substantially reduced parameter number.
The reduction in performance in the absence of feature
reduction is nominal, at 5.7% and 5.6%, respectively. It proves
the inherent strength of the architecture and the reduced
reliance on extrinsic preprocessing stages.

Traditional non-capsule networks have a lower parameter
count, ranging from 0.7 million to 1.1 million. While they are
easy to implement, the models lack the performance of more
complex capsule-based methods, especially without feature
reduction. Capsule networks, although they offer better
performance, are computationally more costly, with
parameters ranging from 6.5 million to over 8.2 million.
Surprisingly, our proposed approach deviates from this trend
by achieving greater accuracy with only 2.87 M parameters,
which is significantly lower than those in any capsule-based

model.

Overall, we can summarize the performance of our method
on both datasets in the following points:

* Key Findings on Devnagri Datasets

(1) The proposed framework achieved 98.94% accuracy
with feature reduction and 93.28% without it, marking a 5.7%

improvement.
(2) Outperformed all other non-capsule (R-CSNN,
WaveMix, FKHCD, etc.) and capsule-based methods

(CapsNet, MPCAE, Deep Multi-Prototype CapsNet).

(3) CapsNet improved from 70.86% to 86.44% (18% gain),
yet remained significantly below the proposed model.

(4) Traditional non-capsule networks showed 15-21%
improvement with feature reduction but achieved notably
lower absolute accuracies.

* Key Findings on KHATT Datasets

(1) The proposed framework achieved 97.36% accuracy
with feature reduction and 91.91% without it, representing a
5.45% improvement in accuracy.

(2) Consistently outperformed all competing models on the
KHATT dataset, maintaining robustness across language
scripts.

(3) CapsNet accuracy increased from 68.02% to 83.82%
(18.9% gain), while Deep Multi-Prototype CapsNet rose from
75.26% to 88.04% (14.5% gain), but lower than the proposed
model.

(4) Non-capsule networks exhibited similar 15-21%
relative improvements, but still lower than in the final
accuracy levels.

Table 4. Details of optimal hyperparameters used in the feature reduction step using Puma-CPO

Hyperparameter Symbol  Optimal Value Description
Population Size (Initial) Npax  Dataset dependent The initial number of candidate solutions
Minimum Population Size Npin Dataset dependent Lower bound for dynamic population reduction
Maximum Iterations Tnax 500 Stopping criterion for optimization
Convergence Rate y 0.13 Controls the balance between global and local search
Tradeoff Factor T¢ 0.87 Probability of selecting the third or fourth defense mechanisms in CPO
Exploration Factor e 0.19 Adjusts the impact of global best in the Puma search step
Exploitation Factor 7y 0.81 Controls the refinement of feature selection
Perturbation Strength S 0.03 Stochastic perturbation for local search in CPO
Adaptive Memory Weight U, 0.7 Weight factor for personal best solution updates
Adaptive Step Size Y: 0.17 Determines search step variation in CPO
Selection Weight U, 0.8 Influences decision-making in feature selection
Objective Function Weight 1 aq 0.37 Weight for classification accuracy error
Objective Function Weight 2 a, 0.63 Weight for the number of selected features

Table 5. Accuracy and number of parameters across various methods on Devnagri and KHATT datasets with and without feature

reduction
Method Devnagari Accuracy (%) KHATT Accuracy (%) Parameters
With FR Without FR With FR Without FR
Non-Capsule Methods
R-CSNN 78.15 65.42 (-16.4%) 74.80 63.00 (-15.8%) ~0.8M
WaveMix 82.60 68.42 (-17.2%) 80.50 67.44 (-16.3%) 0.7M
Threshold-Gabor CNN 75.88 62.14 (-18.2%) 72.95 61.30 (-16.0%) ~1.0M
FKHCD 74.40 58.75 (-21.0%) 71.23 59.12 (-17.0%) ~0.9M
Hybrid CNN + SVM 81.76 67.33 (-17.6%) 79.01 65.40 (-17.2%) ~0.85M
DTL-RF 85.33 70.61 (-17.2%) 82.19 69.40 (-15.6%) ~1.1M
Capsule-Based Methods
CapsNet 86.44 70.86 (-18.0%) 83.82 68.02 (-18.9%) 8.2M
K-DCN 87.55 73.06 (-16.6%) 84.90 70.88 (-16.5%) 7.9M
DHCN 88.41 74.02 (-16.2%) 85.75 72.48 (-15.5%) 6.5M
DCN 89.67 75.38 (-15.9%) 86.91 73.63 (-15.3%) 7.2M
Deep Multi-Prototype CapsNet 90.38 78.03 (-13.6%) 88.04 75.26 (-14.5%) 7.6M
MPCAE 91.74 81.03 (-11.7%) 89.66 77.74 (-13.3%) 6.9M
Proposed Method (Ours) 98.94 93.28 (-5.7%) 97.36 91.91 (-5.6%) 2.87TM
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4.5 Effect of feature selection on classification accuracy

Figure 11 shows the comparison of validation accuracy
between various baseline methods and the proposed approach
on the Devanagari dataset after applying feature selection. It is
clear that the feature selection significantly improves
classification performance for all the methods. The proposed
algorithm consistently outperforms all baselines, achieving
more than 80% validation accuracy in the initial 50 epochs,
with performance peaking at approximately 99.5% after 145
epochs. By comparison, the nearest competing approaches,
MPCaE and Deep Multi-prototype CapsNet, achieve their
highest validation accuracy of approximately 91% and 89%,
respectively, which converge at slower rates. Baseline
strategies without feature fine-tuning, such as R-CSNN and
Hybrid CNN + SVM, plateau at much lower accuracy ranges,
from 70% to 85%. The improved performance of the
introduced method demonstrates how selecting the most
informative features optimizes learning effectiveness, reduces
overfitting, and accelerates convergence speed.

Figure 12 illustrates the loss for various baselines and the
proposed method on the Devanagari dataset. The proposed
method exhibits the lowest and most stable validation loss
during training, and it rapidly dips below 0.2 at around 70
epochs, while maintaining improved convergence. Baseline
methods converge at a higher loss value of about 0.3 to 0.5,
indicating inferior learning. The sharp decline of the proposed
approach's loss curve also affirms the strength of feature
selection in enabling faster and robust optimization.

Validation Accuracy over Epochs With Feature Selection

100

80

80 100 120 140
Epochs

40

Figure 11. Epoch-wise validation accuracy comparison
between various baseline methods and our approach on the
Devanagari dataset with feature reduction
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Figure 12. Epoch-wise loss comparison between various
baseline methods and our approach on the Devanagari dataset
with feature reduction
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Figure 13. Epoch-wise validation accuracy comparison
between various baseline methods and our approach on the
Devanagari dataset without feature reduction
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Figure 14. Epoch-wise loss comparison between various
baseline methods and our approach on the Devanagari dataset
without feature reduction

Figure 13 presents the epoch-by-epoch comparison of
validation accuracies for the proposed method and various
baselines on the Devanagari dataset, without feature reduction.
While the proposed method still far surpasses every other
competing methodology, its validation accuracy peak slides
down to near 88% compared to ~99.5% when a feature
selection criterion is used (Figure 11).

Other alternatives, such as MPCaE and deep multi-
prototype CapsNet, boast maximum accuracies of around 82%
and 78%, respectively. By contrast, conventional baselines
such as R-CSNN and Threshold-Gabor CNN tend to plateau
at lower accuracy levels, ranging from 65% to 70%.

Figure 14 illustrates the epoch-wise comparison of
validation loss for different baseline models and the proposed
approach on the Devanagari dataset, without feature reduction.
Even though the suggested approach still has the lowest
validation loss among all models, its convergence is slightly
less sharp and smooth than when feature selection is used (as
shown in Figure 12). The proposed approach converges to a
loss of ~0.08, whereas other competing approaches, such as
MPCaE and Deep Multi-prototype CapsNet, converge
towards losses of ~0.15 and 0.18, respectively. The remaining
baseline approaches, such as R-CSNN and Threshold-Gabor
CNN, converge at much higher loss values of approximately
0.3-0.45, reflecting poorer generalization performance.

Figure 15 shows the epoch-wise comparison of validation
accuracy among different baseline techniques and the
suggested technique on the KHATT dataset with feature
reduction. The suggested technique outperforms all baselines
throughout the epochs, achieving a validation accuracy of
around 96-97%, which indicates a prominent margin of 8§—
12% over the second-best rival, such as MPCaE and Deep



Multi-prototype CapsNet. Other approaches, such as DTL-RF
and Hybrid CNN+SVM, plateau at lower accuracies of 80—
85%, while traditional baselines, including R-CSNN and
Threshold-Gabor CNN, stabilize at accuracies below 75%.
The faster and higher convergence of the proposed approach
demonstrates the strength of feature selection in retaining the
most discriminative patterns and eliminating redundant
information, resulting in improved generalization ability and
training stability.
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Figure 15. Epoch-wise validation accuracy comparison
between various baseline methods and our approach on the
KHATT dataset with feature reduction
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Figure 16. Epoch-wise loss comparison between various
baseline methods and our approach on the KHATT dataset
with feature reduction
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Figure 17. Epoch-wise validation accuracy comparison
between various baseline methods and our approach on the
KHATT dataset without feature reduction

Figure 16 depicts the validation loss curves for the same
experimental configuration on the KHATT dataset with
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feature reduction. Not only does the proposed method yield the
lowest validation loss, which stabilizes at 0.10, but it also has
a smoother and quicker convergence than all other models. On
the other hand, baselines such as MPCaE and Deep Multi-
prototype CapsNet remain at higher losses of 0.20-0.25,
whereas conventional approaches, including R-CSNN and
Threshold-Gabor CNN, remain above 0.4. The steeper drop
and lower final loss values of the proposed approach validate
its better learning dynamics, effective optimization, and low
overfitting behavior.

In Figure 17, the accuracy progression with feature
selection for validation clearly shows the better learning
ability of the proposed method compared to baseline models.
The proposed method exhibits a steep increase in accuracy
during the first 40 epochs, reaching above 80% early on, and
gradually increases to approximately 95-97% as training
continues. By contrast, baseline approaches like R-CSNN,
WaveMix, and Threshold-Gabor CNN have slower
convergence and plateau at much lower accuracies (~70—
85%). Feature reduction has significantly enhanced the
discriminative power of the input representations, leading to
faster convergence and more stable performance.
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Figure 18. Epoch-wise validation accuracy comparison
between various baseline methods and our approach on the
KHATT dataset without feature reduction

Figure 18 shows the respective validation loss curves,
where the proposed approach records the steepest and most
convergent drop in loss. At around 60 epochs, the proposed
approach's validation loss is already less than 0.2 and remains
low throughout with no significant oscillations for the
remainder of training. All other approaches plateau at much
higher levels of loss (~0.3-0.5), recording slower optimization
and less convergent stability. The gradual and smooth decline
in the loss curve for the proposed approach suggests efficient
training, quality fit to the data, and no overfitting.

Figure 19 presents a comprehensive comparison of
precision, recall, and Fl-score between different baseline
models and the proposed method, with and without feature
selection, on the Devanagari dataset. On all metrics, it is
evident that feature selection consistently improves
performance across different models. Interestingly, the
proposed method (ours) produced the best performance, with
a precision of 0.91, a recall of 0.91, and an F1-score of 0.91
when feature selection was used, compared to 0.81, 0.82, and
0.81, respectively, without feature selection. Similarly,
conventional techniques such as Thresholder-Gabor CNN and
Hybrid CNN + SVM exhibit significant improvements
following feature selection, with precision values rising from



0.61 to 0.71 and from 0.63 to 0.71, respectively. In addition,
the baselines of deep learning models, such as DTCN and
DCN, also improved, with the F1-score of DTCN increasing
from 0.72 to 0.83 and that of DCN from 0.74 to 0.85.
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Figure 19. Epoch-wise validation accuracy comparison
between various baseline methods and our approach on the
Devanagari dataset without feature reduction

Figure 20 compares the precision, recall, and F1-score of
some baseline models and the proposed method, tested on the
KHATT dataset under both feature selection and non-feature
selection conditions. There is a common trend here where
feature selection greatly improves the performance of the
models in all measures. The proposed approach achieves better
performance, with accuracy, recall, and Fl-scores of 0.90,
0.90, and 0.90, respectively, when feature selection is used,
compared to 0.79, 0.80, and 0.79, respectively, without feature
selection. Baseline approaches, such as Thresholded-Gabor
CNN and Hybrid CNN + SVM, yield moderate gains; for
example, precision values increase from 0.53 to 0.72 and from
0.53 to 0.73, respectively, when feature selection is employed.
More complex models, such as DTCN and DCN, also
benefited significantly, with the F1-score of DTCN increasing
from 0.71 to 0.81 and that of DCN from 0.74 to 0.84 through
feature selection. Likewise, MPCFE and Deep Multi-Stage

reflects the success of feature selection in deep models.
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Figure 20. Epoch-wise validation accuracy comparison
between various baseline methods and our approach on the
KHATT dataset without feature reduction

4.6 Ablation study

In an ablation study, we need to determine how our
proposed components contribute to the verification model by
comparing the model with each component included to the
model without it. Thus, to conduct the ablation analysis, we
employed five varying models by excluding each of the
suggested components from the original CA-CapsResNet
architecture. These models were constructed as follows:

* Model 1: The original proposed CA-CapsResNet without
the RAB

* Model 2: The original proposed CA-CapsResNet without
the SCE module (Removing spatial attention modeling)

* Model 3: The proposed architecture without the Channel
Attention sub-module inside SCE (Only spatial attention is
preserved)

* Model 4: The proposed CA-CapsResNet without Capsule
Encoding (Only curvature-aware CNN and SCE without the
capsule layer)

* Model 5: The original proposed CA-CapsResNet without

Cascaded Networks showed considerable improvement, the  Curvature-Aware  Convolutions  (Using  standard
achieving Fl-scores of 0.86 and 0.85, respectively, which convolutions instead).
Table 6. Comparison of the proposed method with the five models used in the ablation study
Model Devnagari Accuracy (%) KHATT Accuracy (%)
Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
Method 1 92.80% 89.10% 87.32% 88.20% 89.67% 86.44% 84.00% 85.20%
Method 2 91.45% 88.05% 85.13% 86.56% 88.40% 84.20% 82.75% 83.47%
Method 3 93.92% 91.11% 88.79% 89.94% 91.02% 87.58% 85.41% 86.48%
Method 4 89.63% 86.23% 84.56% 85.38% 87.24% 83.12% 80.90% 81.99%
Method 5 90.71% 87.32% 85.07% 86.18% 88.56% 84.77% 82.50% 83.62%
Full Model 98.94% 97.66% 96.33% 97.00% 97.36% 94.80% 93.44% 94.05%

Model 1 is also very strong on both datasets, achieving
accuracies of 92.80% for Devnagari and 89.67% for KHATT.
The precision, recall, and F1-score values all indicate similar
strengths, with the highest precision and recall being 89.10%
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and 87.32%, respectively, for Devnagari. For KHATT, the
corresponding precision and recall values are 86.44% and
84.00%. Even as a strong runner-up, Method 1 is still behind
the full model on all metrics. Model 2 has slightly weaker



performance than Method 1, with accuracies of 91.45%
(Devnagari) and 88.40% (KHATT). Precision and recall
scores also follow the same trend of decrease, with Devnagari
precision at 88.05% and recall at 85.13%, whereas KHATT
scores fall to 84.20% for precision and 82.75% for recall. The
F1-scores overall also decrease, which means that Method 2's
performance is slightly weaker than Method 1. The Model 3 is
the most accurate method in terms of both accuracy and
overall performance. It achieves the best accuracy of 93.92%
for Devnagari and 91.02% for KHATT, surpassing both
Method 1 and Method 2. It also has the best improvements in
precision, recall, and Fl-score, especially for Devnagari
(91.11%, 88.79%, and 89.94%, respectively) and for KHATT
(87.58%, 85.41%, and 86.48%, respectively). These findings
indicate that Method 3 achieves a more optimal balance
between recall and precision than the earlier methods (Table
6).

4.7 Research limitations

Although our proposed model for handwriting recognition
has demonstrated promising results, several limitations need
to be addressed. A list of five key limitations and their
potential solutions is discussed below:

1). The model can be challenged by extreme handwriting
changes, specifically inconsistent handwriting styles, which
can be detrimental to feature extraction and compromise
performance. This problem can be addressed by utilizing
adaptive normalization for domain alignment, which
standardizes handwriting styles during the training procedure
to improve style robustness and reduce variation between
writers.

2). The hybrid CA-CapsResNet exhibits high computational
requirements, making real-time or resource-constrained
deployment challenging. To mitigate this issue, developers
can investigate model compression methods, such as pruning,
quantization, and knowledge distillation, aiming to reduce the
computational burden while maintaining acceptable
recognition performance.

3). The model's stability can be compromised when exposed
to noisy or low-quality images, as its ability to extract
significant features can be adversely affected. In the future,
this can be reduced by using noise-robust preprocessing
modules, such as denoising autoencoders and contrastive
regularization, to extract stable features under challenging
imaging conditions.

4). Limited generalization ability may occur, particularly
when training on datasets with insufficient diversity in
handwriting samples, resulting in a decline in performance
when applied to unseen data. Future work may focus on
increasing data variability through synthetic augmentation,
cross-domain adaptation, and style transfer to enhance model
generalization to unseen scripts and writing conditions.

5). Handwriting types with distinctive or excessively ornate
characteristics, such as calligraphy or stylized cursive, may
cause difficulties for the model, as their distinctive traits may
not align well with the feature extraction approaches, thereby
reducing accuracy. This challenge can be alleviated by
utilizing multi-scale spatial transformer networks or semantic
regularisation mechanisms that can dynamically respond to
structural deformations and the utilization of complex stroke
structures.
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5. CONCLUSION AND FUTURE SCOPE

In this paper, a new handwriting recognition system is
introduced that integrates RABs, SCE, SAG, hierarchical
capsule encoding, and a hybrid puma-crested porcupine
optimizer for feature reduction. This hybrid model can better
maintain hierarchies of features in both local and global
contexts while also improving the spatial integration of those
feature structures and learning hierarchical representations.
Quantitatively, the framework achieved an accuracy of
98.94% and 97.36% (with feature reduction) on the
Devanagari and KHATT datasets, respectively, compared
with an accuracy of 93.28% and 91.91% without feature
reduction, representing improvements of 5.66% and 5.45%
(Table 5). These results differ significantly from two
traditional capsule-based models, where CapsNet improved by
almost 18% or Multi-Prototype CapsNet by 13 to 14%, but
with reduced accuracy, as their accuracies remained in the 86
to 90% range.

Therefore, the described framework represents a new state-
of-the-art for handwriting recognition tasks, combining high
accuracy, parameter efficiency, and stability through feature
reduction. Nonetheless, several potential avenues exist for
extending this work. One of these is to investigate cross-
lingual handwriting recognition, where the model can be
adapted and fine-tuned to recognize handwriting in various
languages and scripts, including Chinese and Japanese.

Future research can aim to extend this model to cross-
lingual handwriting recognition, enabling the model to
generalize to different writing systems (e.g., Arabic, Chinese,
or Japanese) through transfer learning or domain adaptation.
Another avenue is to optimize this model for real-time
implementation on edge and mobile devices, which would
reduce latency and the computational burden on educational,
document authentication, and banking digitization
applications. In addition, the feature selection based on hybrid
optimization could be enhanced through adaptive or dynamic
feature selection, which would enable the neural network to
dynamically focus on a smaller subset of important features
depending on the characteristics of the input. Ultimately, this
system is adaptable for commercial and forensic applications,
including automated document verification, writer
identification, and handwriting-based behavioral analysis.
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