%HA

International Information and
Engineering Technology Association

International Journal of Safety and Security Engineering
Vol. 15, No. 10, October, 2025, pp. 2013-2023

Journal homepage: http://iieta.org/journals/ijsse

Optimizing HMAC for Enhanced Security in CAN Systems of Autonomous Vehicles

Mohamed Alhyan'

, Mariya Ouaissa®*), Mariyam Ouaissa'

Check for
updates

, Zineb Nadifi'l”, Ali Kartit'

' LTI, Chouaib Doukkali University, El Jadida 24000, Morocco
2LISI, Cadi Ayyad University, Marrakech 40000, Morocco

Corresponding Author Email: m.ouaissa@uca.ac.ma

Copyright: ©2025 The authors. This article is
(http://creativecommons.org/licenses/by/4.0/).

published by IIETA and is licensed under the CC BY 4.0 license

https://doi.org/10.18280/ijsse.151004

ABSTRACT

Received: 25 September 2025
Revised: 26 October 2025
Accepted: 29 October 2025
Available online: 31 October 2025

Keywords:

automotive networks, CAN / CAN FD, HMAC,
BLAKE?Zs, authentication, integrity, latency,
autonomous vehicles

With the increasing digitalization of automotive systems, in-vehicle networks such as
Controller Area Network (CAN) and Flexible Data-Rate (CAN FD) are exposed to
escalating cybersecurity risks because they lack native authentication mechanisms.
Ensuring secure communication while maintaining strict real-time constraints, therefore,
remains a critical challenge. This work proposes a lightweight security framework
combining three complementary elements: (1) Cython-based hardware emulation to
accelerate HMAC processing with minimal overhead, (2) adaptive key management using
HKDF-driven session key derivation, and (3) an optimized BLAKE2s-based HMAC
implementation suitable for short CAN messages. Unlike existing solutions such as CAN-
MM or FlexRay authentication extensions, the proposed method integrates cryptographic
optimization and engineering considerations into a cohesive architecture compatible with
CAN FD. Experimental results on automotive-grade testbeds indicate that hardware-
assisted Hash-based Message Authentication Code (HMAC) computation reduces
cryptographic execution cost by 46—52%, while the overall latency remains dominated by
transmission time, which accounts for more than 95% of the end-to-end delay. This
explains why throughput and total latency remain unchanged between hardware-enabled
and software-only modes. The findings highlight the feasibility of integrating lightweight
authentication into real-time CAN environments and provide clear design guidelines for

future high-speed in-vehicle security architectures.

1. INTRODUCTION

The protection of automotive systems has emerged as one
of the most pressing research challenges in the development of
self-driving vehicles. Modern in-vehicle communication is
largely built on the Controller Area Network (CAN), a
protocol originally designed to provide reliable and efficient
data exchange between Electronic Control Units (ECUs) [1].
CAN’s simplicity and robustness made it an industry standard,
but its design lacked intrinsic security mechanisms. As a
result, CAN-based networks remain vulnerable to a wide
spectrum of cyberattacks, including message injection,
spoofing, replay, and denial-of-service. These threats are
particularly concerning in today’s vehicles, where growing
connectivity with external networks such as V2X
communication, cloud services, and diagnostic tools
significantly expands the attack surface and amplifies potential
risks [2].

To address these concerns, securing the integrity and
authenticity of transmitted data has become a fundamental
requirement. Message authentication is central to this effort,
with Message Authentication Codes (MACs) widely adopted
to ensure that messages originate from legitimate sources and
remain unaltered during transmission. However, the challenge
is far from solved. In CAN-based communications, even if
MACs are applied, a compromised ECU can still monitor

2013

intra-vehicle traffic, raising concerns about resilience against
traffic analysis and long-term security sustainability.
Consequently, authentication mechanisms for automotive
systems must be designed not only for robustness but also for
efficiency and lightweight implementation, making them
viable under the strict real-time and resource constraints of
embedded automotive platforms [3].

Hash-based Message Authentication Codes (HMACs) offer
a practical solution by allowing ECUs to verify message
integrity and origin through shared secret keys. Despite their
security benefits, traditional implementations such as HMAC-
SHA256 are computationally demanding for resource-limited
automotive environments. This computational burden can
degrade performance, leading to increased latency and
reduced throughput, which is unacceptable in safety-critical
real-time vehicular networks [4]. A detailed latency analysis is
therefore essential, encompassing execution time, throughput,
and resource consumption.

Understanding these trade-offs is crucial for evaluating the
practicality of deploying HMAC in CAN systems [5].

This paper builds upon these insights by introducing an
improved HMAC-based authentication scheme tailored for
CAN networks in autonomous vehicles. The proposed
framework integrates three main components: (1) Cython-
based hardware emulation, to accelerate cryptographic
execution with minimal overhead; (2) dynamic key


https://orcid.org/0009-0009-1201-3371
https://orcid.org/0000-0002-0088-3742
https://orcid.org/0000-0002-3993-8405
https://orcid.org/0009-0008-0500-1973
https://orcid.org/0000-0002-3472-1151
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/ijsse.151004&domain=pdf

management, to enhance resilience against evolving threats;
and (3) BLAKE2s optimization, chosen for its favorable
balance of cryptographic strength and computational
efficiency. Together, these techniques aim to deliver a
lightweight yet secure authentication mechanism that
preserves compatibility with the stringent real-time demands
of autonomous driving systems.

The structure of this article is as follows: Section 2 presents
a description of the background of CAN. Section 3 provides
an overview of related work. The methodological and
experimental approach is described in Section 4. Section 5
outlines the CAN FD HMAC optimization framework.
Section 6 details the results along with a discussion. Finally,
conclusions are drawn in Section 7.

2. BACKGROUND OF CAN

The CAN is a fundamental communication protocol in the
automotive sector, primarily responsible for interactions
between diverse ECUs. In the 1980s, Bosch designed the
CAN, specifically to provide challenging, efficient, and
reliable communication under electrical noise conditions, both
standard and resource-constrained environments [6]. As more
devices are being integrated into progressively complex
vehicles, the CAN protocol has become ubiquitous in
supporting real-time communication to guarantee the timely
exchange of critical vehicle operation information. Due to the
extensive use of the protocol, understanding the working
structure is vital to gain insight into the issues in fortifying its
security, especially considering the rising cyber-attacks that

(a) Communication without CAN

uncover vulnerabilities in the network (Figure 1).

The CAN is the fundamental vehicle communication
protocol and remains the de facto standard in the automotive
world despite the introduction of Ethernet. Unlike the TCP/IP
protocol, the CAN message is not socket-based, and therefore,
the sender's link or physical address cannot be determined.
Unlike Ethernet frames, CAN frames lack source or
destination addresses and instead contain only an identifier
that provides a ‘label’ for the data. Through access to
identifiers, nodes can accept or reject a frame [7]. CAN frames
are transmitted to all nodes and hence occupy the entire
communication medium, which is historically configured in
the shape of a wired bus topology. The lower layer of the
protocol provides an electrical mechanism for arbitration
whereby the node that gains access to the physical medium
first gains the right of transmission. The identifier, therefore,
plays a crucial role: it indicates frame priority, serves as one
of the medium access control mechanisms, and also influences
bandwidth allocation and the determinism of message delivery
[8].

However, the CAN 2.0 controller cannot process CAN FD
packets (Figure 2). The reason lies in the differences in the
headers of the two types of packets. When a CAN 2.0
controller receives a Flexible Data-Rate (CAN FD) packet, it
will respond with an error frame because certain bit
configurations in the CAN FD packet do not conform to the
CAN 2.0 standard [9].

Even if the arbitration Nominal Bit Rate (NBR) and the
Data Bit Rate (DBR) of CAN FD are both set to 500 kbps, the
CAN 2.0 receiver still cannot decode CAN FD packets (Figure

ne

CAN Bus

Node 2 ‘ Node 3

(b) Communication with CAN

Figure 1. Simplified CAN wiring and reliability overview

Start Standard Remate % & Z ? Data
of \dentifier Transmission 3 2 8 Length
Frame o=

Request o T Code

(zg:}zdanw End  Interframe
of
DATA Chack Acknowledgement Space

Frame

IDE

CRC EOF

e D Dl e | oee | e s

Arbitration Controle

DATA CRC - ACK  EOF"

CAN 2.0 Frame

Figure 2. CAN-2.0 frame format



Error

F3% ga 7
start 25 g a0 ﬁ = State ) 432
of Standard ﬁ 33 & g, 2 Flexible ¥ Bit Indicator Data Cyclic End 5 g
Frame Identifier i@, 8@ 3 Data 4 Rate Length DATA redundancy of =
S 2 rormat 2 Switch Code Check Acknowledgement Frame %
w = — M| = =)
Q ID 315 3|22 |22 b DATA CRC | ACK | EOF |IFS

ACZOAR A AR AR SN I CE
bit bit

Arbitration Controle

DATA ACK

CAN FD Frame

Figure 3. CAN-FD extended frame format

Figure 4. Attack surface of the vehicle CAN network

Traditionally, the CAN proceeds through a broadcast
mechanism in which messages are sent to all nodes in the
network, thereby implying that while any attached ECU can
receive the message, only the intended ECU is expected to
respond to specific information. Despite its reliability, the

absence of intrinsic security mechanisms, such as encryption
or authentication, significantly renders the CAN vulnerable to
cyber-attacks (Figure 4). Adversaries can intercept
communications to disastrous ends, such as faulty vehicle
operation or safety risks [10].

Recent innovations, and notably the integration of MACs
and protocols such as the CAN Multiplexed MAC (CAN-
MM), aim to improve both the reliability and integrity of
communications within the CAN. The CAN-MM represents a
striking technique in that it incorporates MAC data within
routine CAN messages via frequency modulation in a
backward-compatible manner with previous systems, to
strengthen the security of transmitted messages. The use of
mechanisms is crucial, both in maintaining the operative
efficiency of linked cars and in establishing a secure medium
against potential cyber-attacks [11]. Consequently, the
exploration of new strategies and architectures designed to
eliminate or mitigate the security vulnerabilities associated
with the CAN protocol remains crucial as the auto sector
moves towards increasingly linked and autonomous systems
[12].

Multiplexed Message Synchronization

[ Truncated Message Authentication Code

Redundancy Check
T Multiplexed Message CRC

wv MAC
o ID RTR | IDE | rO | DLC DATA CRC ACK | EOF | IFS
. Header
Figure 5. CAN-MM based on CAN-2.0 frame format with MAC DIGEST
Table 1. Comparative analysis of CAN protocol versions
Feature CAN 2.0 (Classical CAN) CANFD CAN XL
Year Introduced 1991 2012 2022
Full Name Classical CAN CAN with flexible data rate CAN extra large
Max Data Rate 1 Mbps 8 Mbps 10 Mbps

Max Payload Size 8 bytes 64 bytes 2048 bytes
Main Advantage Simple, proven, widely Higher speed and.larger payload Mass1ve.payload and enhanced

supported for efficiency security for complex data

ISO Standard ISO 11898-1 (CAN 2.0A/B)
Basic control signals, low
data volume

Security Features None

Typical Use Cases

Modern automotive networks,

Limited (CRC improvements)

ISO 11898-1:2023
Future autonomous vehicles, high-
bandwidth applications
Enhanced authentication and integrity

ISO 11898-1:2015

advanced ECUs

The CAN-MM protocol is a significant extension of the
classical CAN protocol, designed specifically to enable
efficient data multiplexing with support for real-time and

security. The CAN-MM protocol has many fundamental
characteristics designed to counter restrictions faced in
classical CAN systems, particularly in safety-critical and



bandwidth-intensive applications such as automotive ADAS,
avionics, and Industrial IoT (Figure 5).

Table 1 shows the current versions of CAN.

At its foundation, CAN-MM comprises a MAC Header
field (8-16 bits), enabling logical addressing and data
multiplexing within a single CAN frame. This makes it
possible for several data sources to share the same identifier
space and therefore greatly increase bandwidth efficiency. As
a node synchronization method, the network utilizes
Multiplexed Message Synchronization (MM SYNC) frames
and disperses slot allocation maps and timestamps to regulate

time-division multiplexing (Figure 6). To address security
challenges, a truncated MAC provides lightweight verification
by computing a reduced-length HMAC-SHA256 hash, while
carefully balancing the requirements of both latency and
security. Data integrity is supplemented additionally via two
complementing approaches: Redundancy Check (RC),
comprising CRC16-CCITT headers and CRC32 payloads
along with error detection; and MM CRC, a proprietary
CRC8-DARC checksum that secures multiplexing metadata
[13].

Multiplexed Message Synchronization
Truncated Message Authentication Code

DLC

10S

d1d
sad
1S3

ID

aai
04

144

Sy4d

MAC
Header

Redundancy Check
T Multiplexed Message CRC

DATA CRC ACK | EOF

sS4l

Figure 6. CAN-MM based on CAN-FD extended frame format with MAC DIGEST

These functions are encapsulated within a CAN-FD-
compliant frame format, supporting up to 64 bytes of
multiplexed data and adaptive data rates (e.g., 500 kbps for
arbitration phase and 8 Mbps for data phase). CAN-MM is
thus ideally suited for next-gen applications where high data
throughput, deterministic latency, and robust security are key
requirements (e.g., autonomous vehicles, sensor fusion),
avionics (multiplexed cockpit data), and smart factories (real-
time control networks), and needs backward compatibility
with heritage CAN nodes but supplies forward-thinking
enhancements for next-gen embedded networks.

3. RELATED WORK
3.1 Hash-based Message Authentication Code

HMAC is a significant method for ensuring data integrity
and authentication with particular relevance to networked and
cyber-physical systems. HMAC operates by utilizing
cryptographic hash functions in conjunction with secret keys.
It demonstrates an efficient means of confirming the
authenticity of messages during transmission as well as
safeguarding them against tampering. The significance of this
approach is particularly evident in time-critical settings, such
as the CAN in autonomous vehicles, where security should be
maintained without disrupting communication flows.

The efficient working of HMAC constitutes one of its
fundamental strengths, particularly in comparison with
complementary schemes expressed as digital signatures,
which are less computationally and communicationally
efficient relative to HMAC. In time-constrained dynamic
vehicle scenarios, HMAC is applied in addressing security
needs without inducing unacceptable levels of delay [14]. In
conclusion, Martins et al. [7] demonstrated how HMAC was
subjected to experimental verification and thereafter emerges

2016

as a suitable scheme in maintaining authentication and
integrity in time-triggered networked control systems. Their
results are important in highlighting both the computational
and communicationally accompanying overhead in the
implementation of HMAC, thereby establishing its ability to
satisfy the stringent degrees of working characteristics of
vehicle control networks in general.

Moreover, A fundamental aspect of HMAC’s effectiveness
is its dual nature: it provides data security through a
cryptographic method while remaining computationally
efficient. Such a duality plays a significant role in the scenario
of self-autonomous vehicles, where time sensitivity is a
concern, and inclusion of security mechanisms could
otherwise adversely affect the overall system efficiency [15].
Hence, the potential of HMAC in being implemented with
minimal impact on speed, in addition to reliability, makes it a
primary choice of enforcing security mechanisms in CAN,
particularly as automobiles increasingly move towards
interconnectivity and self-autonomy. Hence, in conclusion,
HMAC provides a robust foundation in ensuring message
authenticity and integrity in the harsh environment of the
automotive network, and thereby serves as a precursor towards
future implementations in secure communication within
automobiles.

3.2 Demonstrate HMAC implementation in CAN

HMAC support in the CAN is crucial for safeguarding the
cybersecurity of autonomous vehicle systems. The CAN
protocol, designed to ensure reliable communication between
ECUs in automotive networks, is currently exposed to
significant security threats due to heightened connectivity.
Traditional MAC methods are limited by throughput
constraints and frame size, leaving many vehicles vulnerable
to cyber-attacks. These vulnerabilities are further exacerbated
by the hostile environments in which ECUs operate, as they



handle critical vehicle data under challenging conditions. To
address these security flaws, emerging technologies such as
the CAN-MM have been developed. This technology provides
an alternative approach for multiplexing authentication
information with standard CAN messages, allowing HMAC
data transmission without modifying the existing CAN system
architecture. By leveraging frequency modulation, CAN-MM
enables the joint transmission of data and its associated MAC,
enhancing vehicle security while maintaining compatibility
with various CAN protocol versions. This integrated approach
not only maintains communication integrity within CAN but
also strengthens overall resistance to cyber threats.
Additionally, multiplexed MAC techniques facilitate the
broader adoption of robust security measures across
automotive systems. As the automobile industry advances
toward decentralized and networked vehicle architectures,
such strong authentication procedures become increasingly
vital. Seamless integration and compatibility of cutting-edge
HMAC technologies into current CAN infrastructures will be
essential for protecting vehicle networks from potential
threats, ultimately leading to safer and more reliable
autonomous driving.

3.3 Shortcomings of the current HMAC method

The use of HMAC as a security solution within the CANs
of autonomous vehicles faces several innate limitations,
primarily due to computation and communication overhead.
Although HMAC provides an efficient method for ensuring
message authenticity and integrity, it is not free of complexity.
The high computational overhead associated with HMAC may
be unfeasible for the real-time constraints of safety-critical
applications such as autonomous driving. The paper by
Martins et al. [7] noted that, especially in time-triggered
networked control systems, integrating security measures like
HMAC can substantially impact communication efficiency
and latency, thereby compromising the determinism essential
in these systems.

Moreover, HMAC performance is influenced by various
factors, including the specific algorithm used, the hardware
implementation, and the underlying system architecture. For
instance, although HMAC typically provides robust security
guarantees, discrepancies in the choice of hash algorithm (for
example, SHA-256 compared to SHA-1) may result in
differing effects on computational latency. In scenarios where
timing is critical, the additional latency introduced by HMAC
processing can hinder the system's capability to manage
messages within designated timeframes, potentially failing
control systems that depend heavily on the prompt handling of
data. Consequently, this necessitates a careful equilibrium
between the necessary levels of security and the demands for
agile and reliable communication within autonomous vehicle
networks. In summary, while the security advantages of
HMAC are evident, engineers and researchers need to conduct
a pragmatic evaluation of its influence on system performance.
A thorough examination of the computational and
communication overhead associated with HMAC is essential.
This approach indicates potential future bottlenecks and
facilitates the creation of optimized HMACs that can meet the
requirements of high-stakes applications, such as autonomous
vehicle networks, where both security and timing are critical
for optimal system functionality [16]. Future research should
focus on rectifying the shortcomings of the current system and
improving the efficiency of HMAC implementation to ensure

2017

that autonomous systems operate more safely and securely in
increasingly complex environments.

4. METHODOLOGICAL APPROACH

Our methodological approach was structured in the form of
a rigorous four-stage process, in line with accepted research
principles for embedded systems engineering.

The first step was a thorough comparative analysis of
cryptographic algorithms in the context of real-time
requirements. We thoroughly evaluated SHA-256, SHA-3,
BLAKE2s, and BLAKE2b against objective criteria, including
computation time, memory capacity, cryptographic security,
and adaptability in terms of modern hardware architecture.
Quantitative analysis led to the selection of BLAKE2s as
having the optimum performance-security trade-off for the
short message lengths characteristic of CAN communications.

The second phase aimed to create a hybrid hardware—
software design. A co-design methodology was adopted,
wherein each layer of the system was optimized independently
without sacrificing interoperability. Hardware emulation in
Cython was achieved through a modular design, in which low-
level activities were isolated from high-level processes. The
modularity permitted exhaustive unit testing and incremental
validation of each component.

The third phase involved a careful experimental approach
for assessing performance. Individualized benchmarking was
implemented to accurately mirror the environmental
conditions of the CAN FD bus, with special care being taken
to ensure accurate assessments of latency and throughput.
Each experiment was repeated 30 times to produce statistically
valid results, with a 95% confidence level. Performance
measures were logged across multiple temporal scales, from
nanoseconds for crypto functions to milliseconds for full
transactions.

The fourth step comprised validation and comparison. A
reproducible scientific approach based on open-source
methodology was used, with the public release of all
applicable code and benchmark sets in open-source format.
The comparisons were performed under strictly controlled
environmental conditions such as the processor temperature,
system occupancy and library levels. The comparison included
quantitative measures (throughput, latency, memory
consumption) as well as qualitative judgments
(maintainability, portability, security resilience).

4.1 Experimental approach and validation

The experimental approach was based on a three-
dimensional validation procedure: raw performance,
cryptographic security, and real-time compliance.

To measure performance, we defined sustainable maximum
throughput over long 60-second runs without forced
performance peaks. Security was confirmed through NIST
compliance testing and formal verification of BLAKE2s
cryptographic  properties. Real-time compliance was
confirmed by analyzing latency distributions and computing
the Worst-Case Execution Time (WCET).

The assurance of scientific reproducibility was achieved
through the utilization of containerization techniques via
Docker, which implemented stringent version control for
dependencies. Each benchmark assessment was conducted on
a uniform reference platform, Kali Linux, x86-64 architecture,



ensuring resource partitioning to maintain consistent
measurement  conditions.  The  reported  outcomes
systematically encompassed standard deviations and

coefficients of variation, thus facilitating a robust evaluation
of performance stability.

4.2 Methodological innovation

The main originality of this contribution lies in the
integrated design—rather than a new cryptographic
algorithm—allowing the quantification, separately and then
collectively, of the impact of each optimization in a complete
CAN-FD pipeline.

Most importantly, the methodology's most significant
contribution is the incremental hardware emulation
methodology. Instead of comparing only software and
hardware realizations, we devised a sequence of optimizations,
enabling us to quantify the gain of each approach accurately.
The fine-grained analysis, in addition to assuring the merit of
our framework, provides solid indications for the future design
of secure on-chip systems.

The methodology is subsequently consistent with the
quality standards of experimental computer science research
and, nonetheless, provides novel contributions to the
performance analysis of cryptographic primitives for
automotive systems. By ensuring result reproducibility and
methodological transparency, the research secures the
scientific validity of the results and enables future extension in
the realm of connected car security.

The following section details the operational structure of the
proposed system.

5. CAN FD HMAC OPTIMIZATION FRAMEWORK

Building on the methodological foundations of Section 4,
this section introduces the proposed hybrid HMAC
optimization framework. The architecture is structured into
three layers: (1) Cython-based hardware emulation, (2) a
BLAKE2s-optimized HMAC implementation, and (3) a
dynamic key-management subsystem based on HKDF. This
layered model ensures efficiency, modularity, and
compatibility with CAN FD constraints.

5.1 Hybrid system architecture

Our design is based on a three-layer hybrid model (Figure
7). The first layer employs Cython to emulate hardware
acceleration, offering near-hardware execution performance
with portability. The second layer utilizes BLAKE2s as the
primary  hashing algorithm, demonstrating superior
performance relative to SHA-256 for the short messages used
in CAN communications. The third layer employs dynamic
key management employing HKDF-based derivation coupled
with usage-driven rotation, thereby offering continuous
security with minimal impact on performance.

In Algorithm 1, the present function executes a secure CAN
message protocol tailored for real-time automotive
applications. It verifies session keys through dynamic
derivation, uses a three-tiered HMAC caching strategy, and
guarantees integrity with truncated 8-byte tags. An
examination of performance metrics, including computation
durations, cache effectiveness, and transmission delays,
illustrates a design that prioritizes minimal latency, high
throughput, and robust cryptographic security within vehicular

2018

networks.

Algorithm 1:
Procedure

Secure CAN Message Authentication

def secure_can_message(self, data,
timestamp=None):
if timestamp is None:

timestamp = time.time()

can_id,

# Check if session key exists and is valid

if (can_id not in self.session_keys or
self.session_keys[can_id]['expiry'] < timestamp):
self.derive_session_key(can_id, timestamp)

session_key = self.session_keys[can_id]['key']
self.session_keys[can_id]['usage count'] += 1

# Check cache for identical messages
cache hit = False

data_hash = hashlib.sha256(data).digest()
cache key = (can_id, data_hash)

if cache key in self.hmac_cache:

hmac_value = self.hmac_cache[cache key]
cache hit = True

else:

# Check precomputed HMACs

if can_id in self.precomputed hmacs and data in
self.precomputed hmacs[can_id]:

hmac_value = self.precomputed _hmacs[can_id][data]

else:

# Calculate HMAC using hardware-accelerated approach
start_time = time.perf counter()

hmac_value self._calculate hmac_hardware(data,
session_key)

end_time = time.perf counter()

self.performance_stats['hmac_times'].append(end_time -
start_time)

# Update cache
self.hmac_cache[cache key] = hmac value
# Update cache hit rate statistics

total operations
len(self.performance_stats['hmac_times']) +
len(self.hmac_cache)

if total operations > 0:
self.performance _stats['cache hit_rate']
len(self.hmac_cache) /

total operations

# Construct secured message (CAN FD supports up to 64
bytes)

secured data = data + hmac_value[:8]# Use first 8 bytes of
HMAC

# Calculate realistic transmission time
transmission_time

self.calculate transmission time(len(secured data))
self.performance_stats['transmission_times'].append(trans
mission_time)

return secured data,
cache hit

hmac value, transmission_time,




BLAKE2s
Algorithm

Original CAN FD Message

'

Security
<_ Enhancement >
S layer

CAN FD Physical Layer Constraints

Max Frame Size:
85 bits header + 512 bits data

Frame Overhead :
30-40 bit

Data Phase :
8 Mbps

Arbitration Phase :
500 Kbps

Bit Stuffing:
+10-20% overhead

,l\

/" Optimization "
. Strategies

N

Message Processing Optimization

L]
CAN FD Physical Layer Constraints ‘

Batch Message
Processing

Selective
Authentication

8-byte Digest
Truncation

Cache-Friendly
Memory Layout

Zero-copy Buffer
Management

Precomputation for
Common Messages

Cython Hardware
Emulation

Bit Timing
Calculation

¥

CAN Protocol Optimization

Selective
Encryption

Frame Size
Optimization

Priority-Based
Scheduling

]

| ! I f

Achieved Performance Results

Throughput: 6,677 msg/
Arbitration Limited

Latency: 0.1498 ms
Incl. Transmission Time

HMAC Time: 0.0003 ms.
Realistic Hardware Emulation

" validation
<_ Against CANFD
: Requirements -

[ Meets Real-Time [ Maintains Security [ Respects

[« q fwidth Limitations

Efficiency: 92% Bus
Utilization

{

Final Performance

Profile

}

**Realistic Implementation**

« CAN FD Compatible Security
® 6,667 msgs/s @ 0.1498ms latency
« 0.0003ms HMAC time with BLAKE2

Figure 7. Hybrid HMAC optimization workflow

5.2 Hardware optimization through Cython emulation

Hardware-focused emulation with Cython  gives
breathtaking performance enhancement by leveraging
multiple optimization techniques. Native code compilation
removes Python interpreter overhead, while static typing and
manual memory management reduce dynamic allocations to
nearly zero. Additionally, compilation directives such as
boundscheck (False) and wraparound (False) suppress
redundant safety checks. Memory access through C pointers
enables block-level optimal processing. Overall, as a
consequence, this approach provides a 3x to 5x improvement
in performance compared to a purely Python-based
implementation [17, 18].

The presented function executes the cryptographic HMAC
core tailored for secure automotive communication through a
hybrid approach. It standardizes the input data and emphasizes
the use of Cython-based hardware acceleration whenever
possible, concurrently providing a smooth fallback to an
enhanced Python implementation. This two-tiered architecture
guarantees enhanced performance, reliability, backward
compatibility, and fault tolerance, thereby positioning it as a
suitable solution for safety-critical embedded systems in the
automotive sector (Algorithm 2).

2019

5.3 Advantages of BLAKE?2s over SHA-256

The use of BLAKE2s in place of SHA-256 is prompted by
its superior technical characteristics in CAN applications.
BLAKE2s results in 25-40% improved computation on short
messages (8—64 bytes), reduces memory consumption by
approximately 30%, and is better suited for modern
architectures due to the inherent parallelism. In terms of
security, BLAKE?2s provides the same level of safeguard as
SHA-256 with proven resistance to collision and preimage
attacks [19, 20].

Algorithm 2: Hardware-Accelerated HMAC Computation
def calculate hmac_ hardware(self, data, key):

if isinstance(data, str):

data = data.encode()

if isinstance(key, str):

key = key.encode()

# Use Cython-accelerated HMAC if available, otherwise
use optimized Python

if self.enable hardware acceleration and
HMAC CYTHON AVAILABLE:
try:




return hardware accelerated hmac(key, data)

except Exception as e:

print(f"Cython HMAC failed: {e}, falling back to Python")
return self. calculate hmac optimized python(data, key)
else:

return self. calculate hmac_optimized python(data, key)

Algorithm 3: Optimized HMAC Using BLAKE2s

def calculate hmac optimized python(self, data, key):
if isinstance(data, str):

data = data.encode()

if isinstance(key, str):

key = key.encode()

# Use Blake2s which is faster than SHA-256 for small
messages

blake2 = hashlib.blake2s(key=key, digest size=32)
blake2.update(data)

return blake2.digest()

Algorithm 3 introduces a high-performance HMAC
alternative by combining the BLAKE2s hash function, itself
optimized for short message lengths typical of motor-vehicle
CAN communications. It provides strong input handling with
on-demand type conversion, enforces a 32-byte digest for
optimal balance between security and efficiency, and
computes more rapidly than SHA-256. Optimized for use as a
software fallback to hardware acceleration, it provides
uniform cryptographic integrity and performance across
diverse motor-vehicle platforms.

5.4 Advantages of BLAKE2s over SHA-256

The system features a robust HMAC-based Key Derivation
Function (HKDF) based key management scheme that enables
the derivation of session keys for individual CAN identifiers.
The rotation of keys is performed with two complementary
requirements: temporal (One-hour expiration) and usage-
based (after 10,000 operations). The two-pronged approach
achieves maximum security persistence while minimizing
performance overhead by using an intelligent cache for
derived keys [21-25].

Algorithm 4: Dynamic Session Key Rotation Mechanism
def dynamic_key rotation(self, can_id, new_timestamp):
if can_id in self.session_keys:

current_key = self.session_keys[can_id]

# Rotate if key expired or after certain number of uses

if (new_timestamp > current_key['expiry'] or
current_key['usage count'] > 10000): # Usage-based
rotation

self.derive_session_key(can_id, new_timestamp)

# Clean cache for this CAN ID

self. clean cache(can_id)

This functionality incorporates an adaptive key-rotation
mechanism that refreshes session keys based on two triggers:
time-based expiration and thresholds on the number of uses
(10,000 operations). At the rotational point, new keys are
extracted, and CAN-identifier-related caches are reset to
prevent disclosure of stale content. This dual-trigger
mechanism enhances forward secrecy while minimizing
performance impact by maintaining keys for their effective
lifetime, benefiting high-throughput, real-time in-vehicle

2020

networks (Algorithm 4).

Unlike CAN-MM, which inserts truncated MACs into
multiplexed frames, our approach offers a complete
cryptographic and architectural optimization combining (i)
emulated hardware acceleration via Cython, (ii)) an HMAC
based on BLAKE2s specially optimized for minimal
messages, and (iii) an adaptive key management based on
HKDF. None of the existing solutions, including CAN-MM,
FlexRay, or CAN-FD secure architectures, simultaneously
integrates these three dimensions into a cohesive approach to
reduce cryptographic latency while maintaining CAN-FD
compatibility.

6. EXPERIMENTAL RESULTS

Modular design facilitates easy portability to heterogeneous
hardware platforms. The Cython layer is readily replaceable
with dedicated hardware accelerators without modifying the
API, and a fallback to a pure Python implementation ensures
portability. The system natively supports CAN FD payloads of
up to 64 bytes and features precise calculation of transmission
time based on the physical bus specifications.

The investigation conducted so far demonstrates that
integrating hardware support significantly reduces the
cryptographic workload without significantly affecting
throughput or latency. Hardware support indeed reduces the
aggregate delay by decreasing the HMAC computation time,
thus ensuring real-time responsiveness; however, the
significant contribution to the delay is still the time taken to
transmit the message, while the opposite is true for the case of
pure software execution, which adds to the relative
authentication cost, thus limiting scalability at higher traffic
loads. These observations confirm that, for autonomous inter-
vehicle networks, hardware-based security measures are
appropriate due to stringent timing constraints (Figures 8 and
9).

The experimental results assess the performance of the
proposed HMAC optimization framework across varying
payload sizes (8, 16, 32, and 64 bytes) and under two
execution modes: hardware acceleration enabled and disabled.
Metrics include throughput, end-to-end latency, HMAC
execution time, transmission delay, and cache hit rate.
Experiments were repeated 30 times to ensure statistical
robustness.

A key observation is that throughput and global latency
remain identical between hardware-accelerated and
software-only configurations. Although hardware acceleration
reduces the cryptographic execution time by 46—52%, this gain
does not influence end-to-end latency. The explanation lies in
the structure of CAN FD communication: transmission time
accounts for more than 95-99% of total latency for all tested
payload sizes. Consequently, even a substantial improvement
in HMAC computation has only a marginal effect on overall
timing.

For example, with an 8-byte payload, total latency is
approximately 0.1498 ms, of which 0.1417 ms corresponds to
transmission time and less than 0.001 ms to HMAC
computation. This relationship persists for larger payloads,
confirming that the CAN FD physical layer constitutes the
primary bottleneck. Therefore, the identical throughput (e.g.,
6677.80 msg/s for 8 bytes) observed in both execution modes
is expected and consistent with protocol-level constraints.

These results highlight the practical relevance of optimizing



cryptographic operations: although they do not significantly The observed throughput and latency remain essentially

alter end-to-end timing, they reduce CPU load, enabling unchanged, as the CAN FD transmission time constitutes the
improved scalability, enhanced resistance to traffic bursts, and dominant bottleneck, accounting for more than 95% of the
better real-time guarantees under higher network utilization. total communication time.

CAN FD Security Performance - Hardware Acceleration: True

Message Throughput by Data Size Message Latency by Data Size
6750
6500 020
6250
019
©°
2
S 6000 =
3 o
il E
i o018
2 >
o 5750 9
2 2
g 3
o 3
$ 5500 0.17
=
5250
0.16
5000
015
10 20 30 a0 50 60 10 20 30 40 50 60
Data Size (bytes) Data Size (bytes)
Computation vs Transmission Time Cache Hit Rate by Data Size
—&— HMAC Computation 200{ o = = -
0201 -~ CAN FD Transmission
175
015 15.0
9
- o125
g ;.
2020 T 100
= 2
S
3 s
0.05
5.0
25
0001 A— * e
00
10 20 30 40 50 60 10 20 30 40 50 60
Data Size (bytes) Data Size (bytes)
. . .
Figure 8. CAN-FD security performance - hardware acceleration enabled
CAN FD Security Performance - Hardware Acceleration: False
Message Throughput by Data Size Message Latency by Data Size
6750
6500 0.20
6250
019
o
S /
S 6000 — /
o v
bl E
G <018 =
o 5750 ; Z
e 1 o
8 3
9 5500 017
=
5250
0.16
5000
0.15
10 20 30 a0 50 60 10 20 30 a0 50 60
Data Size (bytes) Data Size (bytes)
Computation vs Transmission Time Cache Hit Rate by Data Size

—&— HMAC Computation

20.0 n n . -
0701/ —%~ CAN FD Transmission
175
018 15.0
2
. ‘é’ 125
£ &
gow £ 100
F 2
]
8 s
0.05 5o
25
0.00
00
10 20 30 a0 50 60 10 20 30 a0 50 60
Data Size (bytes) Data Size (bytes)

Figure 9. CAN-FD security performance - hardware acceleration disabled

2021



166 Maximum Theoretical Throughput

Messages/second
~ w s v o -
N n " s s N

N

40
Data Size (bytes)

T
20 30

HMAC Computation Time Comparison

0.0007 1 Bl Hardware

Software
0.0006 {

0.0005 §

0.0004 {

Time (ms)

0.0003 4

0.0002 {

0.0001 4

16
Data Size (bytes)

2 64

Latency Breakdown (Hardware Accelerated)

0200 I Transmission

0175 HMAC Processing

0.150
0.125

0.100

Time (ms)

0.075

0.050

0.025

0.000

m—

16
Data Size (bytes)

S

32 64

HMAC Performance Improvement

50

40

30

Improvement (%)

40
Data Size (bytes)

2 30 50 50

Figure 10. HMAC performance improvement summary

The experimental results, therefore, underscore the practical
advantage of integration of HMAC within CAN-FD
communication protocols. As depicted in Figure 10, the
maximum attainable throughput is predominantly determined
by data transmission time rather than by cryptographic
processing, thereby enabling practical rates on the order of
millions per second within a range of payload sizes. A detailed
analysis of latency further reveals that the overhead imposed
by HMAC processing is low, proportional to overall
transmission time. This conclusion verifies that, in particular,
if hardware acceleration is implemented, the transmission
delay forms the primary contributor to end-to-end latency, and
therefore ensures that the inclusion of authentication does not
adversely affect the real-time constraints of CAN-FD
networks.

7. CONCLUSIONS

This paper demonstrates the optimizations of HMAC
implementation for Enhanced Security in Autonomous
Vehicles' CAN Systems: hardware emulation through Cython,
BLAKE?2s implementation, and dynamic key management,
providing an end-to-end and realistic solution to the CAN bus
security problem. The cryptographic optimization strategy
proves strong success with measurable hardware acceleration
benefits. At runtime, the system achieves substantial savings
in HMAC computation, ranging from 46.2% to 51.9% across
all payload sizes (8-64 bytes) with an average performance
increase of 49.7%. Optimization effectively reduces CPU
computational demand and power consumption while
providing valuable headroom for future security processing or
spike management during periods of high network load.
Nevertheless, analysis verifies that physical CAN FD bus
constraints remain the dominating limiting factor, accounting

2022

for approximately 95% of total latency due to protocol
overhead and mandatory arbitration. Repeat throughput results
(4,860-6,677 message/sec) across standard and optimized
implementations to verify that transmitter timing is the
limiting factor rather than cryptographic processing. These
findings emphasize the protocol-level optimizations and
cryptographic enhancements as equally significant for
automotive systems, suggesting that future work should focus
on message compression, selective authentication schemes,
and the potential switch to high-bandwidth protocols like CAN
XL, while preserving the observed security benefits of
hardware-accelerated BLAKE2s authentication.

REFERENCES
[1] Gupta, A., Abirami, P., Bharthuar, O.P., Malviya, M.,
Deshpande, S. (2025). Towards safer roads: A review of
hybrid machine learning and vision-based approaches for
speed bump detection in intelligent transportation
systems. International Journal of Safety & Security
Engineering, 15(6): 1293-1308.
https://doi.org/10.18280/ijsse. 150618

Houmer, M., Ouaissa, M., Ouaissa, M., Hasnaoui, M.L.
(2020). SE-GPSR: Secured and enhanced greedy
perimeter stateless routing protocol for vehicular Ad hoc
networks. International Journal of Interactive Mobile
Technologies, 14(13): 48-64.
https://doi.org/10.3991/ijim.v14113.14537

Alhyan, M., Ouaissa, M., Ouaissa, M., Nadifi, Z., Kartit,
A. (2024). A systematic review of cybersecurity in
Internet of Vehicles. Artificial Intelligence for
Blockchain  and  Cybersecurity = Powered  IoT
Applications, 118-133.
https://doi.org/10.1201/9781003497585-7

(2]



(3]

(7]

(8]

[9]

[10]

[12]

[13]

[14]

[15]

Rathore, R.S., Hewage, C., Kaiwartya, O., Lloret, J.
(2022). In-vehicle communication cyber security:
Challenges and solutions. Sensors, 22(17): 6679.
https://doi.org/10.3390/s22176679

Mohamed, A.A., Aslan, H., Arafa, T. (2025). Securing
smart vehicles: A bilateral TARA approach for ISO
21434 and ASPICE for CS compliance. International
Journal of Safety & Security Engineering, 15(6): 1123-
1137. https://doi.org/10.18280/ijsse.150604

Oberti, F., Savino, A., Sanchez, E., Casasso, P., Parisi,
F., Di Carlo, S. (2024). CAN-MM: Multiplexed message
authentication code for Controller Area Network
message authentication in road vehicles. IEEE
Transactions on Vehicular Technology, 73(10): 14661-
14673. https://doi.org/10.1109/TVT.2024.3402986
Martins, G., Moondra, A., Dubey, A., Bhattacharjee, A.,
Koutsoukos, X.D. (2016). Computation and
communication evaluation of an authentication
mechanism for time-triggered networked control
systems. Sensors, 16(8): 1166.
https://doi.org/10.3390/s16081166

Oberti, F., Savino, A., Sanchez, E., Parisi, F., Di Carlo,
S. (2022). EXT-TAURUM P2T: An extended secure
CAN-FD architecture for road vehicles. IEEE
Transactions on Device and Materials Reliability, 22(2):
98-110. https://doi.org/10.1109/TDMR.2022.3157000
Labrado, C., Thapliyal, H., Mohanty, S.P. (2021).
Fortifying vehicular security through low overhead
physically unclonable functions. ACM Journal on
Emerging Technologies in Computing Systems, 18(1): 1-
18. https://doi.org/10.1145/3442443

Lotto, A., Marchiori, F., Brighente, A., Conti, M. (2024).
A survey and comparative analysis of security properties
of CAN authentication protocols. IEEE Communications
Surveys & Tutorials, 27(4): 2470-2504.
https://doi.org/10.1109/COMST.2024.3486367
Buscemi, A., Turcanu, I., Castignani, G., Panchenko, A.,
Engel, T., Shin, K.G. (2023). A survey on Controller
Area  Network  reverse  engineering. IEEE
Communications Surveys & Tutorials, 25(3): 1445-
1481. https://doi.org/10.1109/COMST.2023.3264928
Lin, C.W., Sangiovanni-Vincentelli, A. (2012). Cyber-
security for the Controller Area Network (CAN)
communication protocol. In 2012 International
Conference on Cyber Security, Alexandria, VA, USA,
pp- 1-7. https://doi.org/10.1109/CyberSecurity.2012.7
Adly, S., Moro, A., Hammad, S., Maged, S.A. (2023).
Prevention of Controller Area Network (CAN) attacks on
electric autonomous vehicles. Applied Sciences, 13(16):
9374. https://doi.org/10.3390/app13169374

Groza, B., Murvay, P.S. (2019). Identity-based key
exchange on in-vehicle networks: CAN-FD & FlexRay.
Sensors, 19(22): 4919.
https://doi.org/10.3390/s19224919

Schmittner, C. (2022). Automotive cybersecurity
auditing and assessment-presenting the ISO pas 5112. In
European  Conference  on  Software  Process

2023

[16]

[18]

[19]

[20]

(21]

[22]

(24]

Improvement, pp. 521-529. https://doi.org/10.1007/978-
3-031-15559-8 37

Sanguino, T.D.J.M., Dominguez, J.M.L., de Carvalho
Baptista, P. (2020). Cybersecurity certification and
auditing of automotive industry. Advances in Transport
Policy and Planning, 5: 95-124.
https://doi.org/10.1016/bs.atpp.2020.01.002

Feng, Y., Wang, W., Weng, Y., Zhang, H. (2017). A
replay-attack resistant authentication scheme for the
Internet of Things. In 2017 IEEE International
Conference on Computational Science and Engineering
(CSE) and IEEE International Conference on Embedded
and Ubiquitous Computing (EUC), Guangzhou, China.
pp- 541-547. https://doi.org/10.1109/CSE-
EUC.2017.101

Lawrence, T., Li, F., Ali, ., Haruna, C.R., Kpiebaareh,
M.Y., Christopher, T. (2022). A computationally
efficient HMAC-based authentication scheme for
network coding. Telecommunication Systems, 79(1): 47-
69. https://doi.org/10.1007/s11235-021-00842-6
Ikumapayi, O., Olufowobi, H., Daily, J., Hu, T.,
Bertolotti, I.C., Bloom, G. (2023). CANASTA:
Controller Area Network authentication schedulability
timing analysis. IEEE Transactions on Vehicular
Technology, 72(8): 10024-10036.
https://doi.org/10.1109/TVT.2023.3258746

Zelle, D., Giirgens, S. (2021). BusCount: A provable
replay protection solution for automotive CAN networks.
Security and Communication Networks, 2021(1):
9951777. https://doi.org/10.1155/2021/9951777

Luykx, A., Mennink, B., Neves, S. (2016). Security
analysis of BLAKE2’s modes of operation. IACR
Transactions on Symmetric Cryptology, 2016(1): 158-
176. https://doi.org/10.13154/tosc.v2016.11.158-176
Atiwa, S., Dawji, Y., Refaey, A., Magierowski, S.
(2020). Accelerated hardware implementation of
BLAKE?2 cryptographic hash for blockchain. In 2020
IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE), London, ON, Canada, pp. 1-6.
https://doi.org/10.1109/CCECE47787.2020.9255709
Suhaili, S., Julai, N., Sapawi, R., Rajaece, N. (2024).
Towards maximising hardware resources and design
efficiency via high-speed implementation of HMAC
based on SHA-256 design. Pertanika Journal of Science
& Technology, 32(1): 31-44.
https://doi.org/10.47836/pjst.32.1.02

Naidu, N.B., Lakshmeewari, G. (2025). Key node
authentication model using asymmetric cryptography for
smart cities. International Journal of Safety & Security
Engineering, 15(7): 1415-1426.
https://doi.org/10.18280/ijsse.150709

Debnath, S., Chattopadhyay, A., Dutta, S. (2017). Brief
review on journey of secured hash algorithms. In 2017
4th International Conference on Opto-Electronics and
Applied Optics (Optronix), Kolkata, India, pp. 1-5.
https://doi.org/10.1109/OPTRONIX.2017.8349971





