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 With the increasing digitalization of automotive systems, in-vehicle networks such as 

Controller Area Network (CAN) and Flexible Data-Rate (CAN FD) are exposed to 

escalating cybersecurity risks because they lack native authentication mechanisms. 

Ensuring secure communication while maintaining strict real-time constraints, therefore, 

remains a critical challenge. This work proposes a lightweight security framework 

combining three complementary elements: (1) Cython-based hardware emulation to 

accelerate HMAC processing with minimal overhead, (2) adaptive key management using 

HKDF-driven session key derivation, and (3) an optimized BLAKE2s-based HMAC 

implementation suitable for short CAN messages. Unlike existing solutions such as CAN-

MM or FlexRay authentication extensions, the proposed method integrates cryptographic 

optimization and engineering considerations into a cohesive architecture compatible with 

CAN FD. Experimental results on automotive-grade testbeds indicate that hardware-

assisted Hash-based Message Authentication Code (HMAC) computation reduces 

cryptographic execution cost by 46–52%, while the overall latency remains dominated by 

transmission time, which accounts for more than 95% of the end-to-end delay. This 

explains why throughput and total latency remain unchanged between hardware-enabled 

and software-only modes. The findings highlight the feasibility of integrating lightweight 

authentication into real-time CAN environments and provide clear design guidelines for 

future high-speed in-vehicle security architectures. 
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1. INTRODUCTION 

 

The protection of automotive systems has emerged as one 

of the most pressing research challenges in the development of 

self-driving vehicles. Modern in-vehicle communication is 

largely built on the Controller Area Network (CAN), a 

protocol originally designed to provide reliable and efficient 

data exchange between Electronic Control Units (ECUs) [1]. 

CAN’s simplicity and robustness made it an industry standard, 

but its design lacked intrinsic security mechanisms. As a 

result, CAN-based networks remain vulnerable to a wide 

spectrum of cyberattacks, including message injection, 

spoofing, replay, and denial-of-service. These threats are 

particularly concerning in today’s vehicles, where growing 

connectivity with external networks such as V2X 

communication, cloud services, and diagnostic tools 

significantly expands the attack surface and amplifies potential 

risks [2]. 

To address these concerns, securing the integrity and 

authenticity of transmitted data has become a fundamental 

requirement. Message authentication is central to this effort, 

with Message Authentication Codes (MACs) widely adopted 

to ensure that messages originate from legitimate sources and 

remain unaltered during transmission. However, the challenge 

is far from solved. In CAN-based communications, even if 

MACs are applied, a compromised ECU can still monitor 

intra-vehicle traffic, raising concerns about resilience against 

traffic analysis and long-term security sustainability. 

Consequently, authentication mechanisms for automotive 

systems must be designed not only for robustness but also for 

efficiency and lightweight implementation, making them 

viable under the strict real-time and resource constraints of 

embedded automotive platforms [3]. 

Hash-based Message Authentication Codes (HMACs) offer 

a practical solution by allowing ECUs to verify message 

integrity and origin through shared secret keys. Despite their 

security benefits, traditional implementations such as HMAC-

SHA256 are computationally demanding for resource-limited 

automotive environments. This computational burden can 

degrade performance, leading to increased latency and 

reduced throughput, which is unacceptable in safety-critical 

real-time vehicular networks [4]. A detailed latency analysis is 

therefore essential, encompassing execution time, throughput, 

and resource consumption. 

Understanding these trade-offs is crucial for evaluating the 

practicality of deploying HMAC in CAN systems [5]. 

This paper builds upon these insights by introducing an 

improved HMAC-based authentication scheme tailored for 

CAN networks in autonomous vehicles. The proposed 

framework integrates three main components: (1) Cython-

based hardware emulation, to accelerate cryptographic 

execution with minimal overhead; (2) dynamic key 
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management, to enhance resilience against evolving threats; 

and (3) BLAKE2s optimization, chosen for its favorable 

balance of cryptographic strength and computational 

efficiency. Together, these techniques aim to deliver a 

lightweight yet secure authentication mechanism that 

preserves compatibility with the stringent real-time demands 

of autonomous driving systems. 

The structure of this article is as follows: Section 2 presents 

a description of the background of CAN. Section 3 provides 

an overview of related work. The methodological and 

experimental approach is described in Section 4. Section 5 

outlines the CAN FD HMAC optimization framework. 

Section 6 details the results along with a discussion. Finally, 

conclusions are drawn in Section 7. 

2. BACKGROUND OF CAN

The CAN is a fundamental communication protocol in the 

automotive sector, primarily responsible for interactions 

between diverse ECUs. In the 1980s, Bosch designed the 

CAN, specifically to provide challenging, efficient, and 

reliable communication under electrical noise conditions, both 

standard and resource-constrained environments [6]. As more 

devices are being integrated into progressively complex 

vehicles, the CAN protocol has become ubiquitous in 

supporting real-time communication to guarantee the timely 

exchange of critical vehicle operation information. Due to the 

extensive use of the protocol, understanding the working 

structure is vital to gain insight into the issues in fortifying its 

security, especially considering the rising cyber-attacks that 

uncover vulnerabilities in the network (Figure 1). 

The CAN is the fundamental vehicle communication 

protocol and remains the de facto standard in the automotive 

world despite the introduction of Ethernet. Unlike the TCP/IP 

protocol, the CAN message is not socket-based, and therefore, 

the sender's link or physical address cannot be determined. 

Unlike Ethernet frames, CAN frames lack source or 

destination addresses and instead contain only an identifier 

that provides a ‘label’ for the data. Through access to 

identifiers, nodes can accept or reject a frame [7]. CAN frames 

are transmitted to all nodes and hence occupy the entire 

communication medium, which is historically configured in 

the shape of a wired bus topology. The lower layer of the 

protocol provides an electrical mechanism for arbitration 

whereby the node that gains access to the physical medium 

first gains the right of transmission. The identifier, therefore, 

plays a crucial role: it indicates frame priority, serves as one 

of the medium access control mechanisms, and also influences 

bandwidth allocation and the determinism of message delivery 

[8]. 

However, the CAN 2.0 controller cannot process CAN FD 

packets (Figure 2). The reason lies in the differences in the 

headers of the two types of packets. When a CAN 2.0 

controller receives a Flexible Data-Rate (CAN FD) packet, it 

will respond with an error frame because certain bit 

configurations in the CAN FD packet do not conform to the 

CAN 2.0 standard [9]. 

Even if the arbitration Nominal Bit Rate (NBR) and the 

Data Bit Rate (DBR) of CAN FD are both set to 500 kbps, the 

CAN 2.0 receiver still cannot decode CAN FD packets (Figure 

3). 

(a) Communication without CAN (b) Communication with CAN

Figure 1. Simplified CAN wiring and reliability overview 

Figure 2. CAN-2.0 frame format 
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Figure 3. CAN-FD extended frame format 

 

 
 

Figure 4. Attack surface of the vehicle CAN network 

 

Traditionally, the CAN proceeds through a broadcast 

mechanism in which messages are sent to all nodes in the 

network, thereby implying that while any attached ECU can 

receive the message, only the intended ECU is expected to 

respond to specific information. Despite its reliability, the 

absence of intrinsic security mechanisms, such as encryption 

or authentication, significantly renders the CAN vulnerable to 

cyber-attacks (Figure 4). Adversaries can intercept 

communications to disastrous ends, such as faulty vehicle 

operation or safety risks [10]. 

Recent innovations, and notably the integration of MACs 

and protocols such as the CAN Multiplexed MAC (CAN-

MM), aim to improve both the reliability and integrity of 

communications within the CAN. The CAN-MM represents a 

striking technique in that it incorporates MAC data within 

routine CAN messages via frequency modulation in a 

backward-compatible manner with previous systems, to 

strengthen the security of transmitted messages. The use of 

mechanisms is crucial, both in maintaining the operative 

efficiency of linked cars and in establishing a secure medium 

against potential cyber-attacks [11]. Consequently, the 

exploration of new strategies and architectures designed to 

eliminate or mitigate the security vulnerabilities associated 

with the CAN protocol remains crucial as the auto sector 

moves towards increasingly linked and autonomous systems 

[12]. 

 

 
 

Figure 5. CAN-MM based on CAN-2.0 frame format with MAC DIGEST 

 
Table 1. Comparative analysis of CAN protocol versions 

 

Feature CAN 2.0 (Classical CAN) CAN FD CAN XL 

Year Introduced 1991 2012 2022 

Full Name Classical CAN CAN with flexible data rate CAN extra large 

Max Data Rate 1 Mbps 8 Mbps 10 Mbps 

Max Payload Size 8 bytes 64 bytes 2048 bytes 

Main Advantage 
Simple, proven, widely 

supported 

Higher speed and larger payload 

for efficiency 

Massive payload and enhanced 

security for complex data 

ISO Standard ISO 11898-1 (CAN 2.0A/B) ISO 11898-1:2015 ISO 11898-1:2023 

Typical Use Cases 
Basic control signals, low 

data volume 

Modern automotive networks, 

advanced ECUs 

Future autonomous vehicles, high-

bandwidth applications 

Security Features None Limited (CRC improvements) Enhanced authentication and integrity 

 

The CAN-MM protocol is a significant extension of the 

classical CAN protocol, designed specifically to enable 

efficient data multiplexing with support for real-time and 

security. The CAN-MM protocol has many fundamental 

characteristics designed to counter restrictions faced in 

classical CAN systems, particularly in safety-critical and 
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bandwidth-intensive applications such as automotive ADAS, 

avionics, and Industrial IoT (Figure 5). 

Table 1 shows the current versions of CAN. 

At its foundation, CAN-MM comprises a MAC Header 

field (8-16 bits), enabling logical addressing and data 

multiplexing within a single CAN frame. This makes it 

possible for several data sources to share the same identifier 

space and therefore greatly increase bandwidth efficiency. As 

a node synchronization method, the network utilizes 

Multiplexed Message Synchronization (MM SYNC) frames 

and disperses slot allocation maps and timestamps to regulate 

time-division multiplexing (Figure 6). To address security 

challenges, a truncated MAC provides lightweight verification 

by computing a reduced-length HMAC-SHA256 hash, while 

carefully balancing the requirements of both latency and 

security. Data integrity is supplemented additionally via two 

complementing approaches: Redundancy Check (RC), 

comprising CRC16-CCITT headers and CRC32 payloads 

along with error detection; and MM CRC, a proprietary 

CRC8-DARC checksum that secures multiplexing metadata 

[13]. 

 

 
 

Figure 6. CAN-MM based on CAN-FD extended frame format with MAC DIGEST 

 

These functions are encapsulated within a CAN-FD-

compliant frame format, supporting up to 64 bytes of 

multiplexed data and adaptive data rates (e.g., 500 kbps for 

arbitration phase and 8 Mbps for data phase). CAN-MM is 

thus ideally suited for next-gen applications where high data 

throughput, deterministic latency, and robust security are key 

requirements (e.g., autonomous vehicles, sensor fusion), 

avionics (multiplexed cockpit data), and smart factories (real-

time control networks), and needs backward compatibility 

with heritage CAN nodes but supplies forward-thinking 

enhancements for next-gen embedded networks. 

 

 

3. RELATED WORK 

 

3.1 Hash-based Message Authentication Code 

 

HMAC is a significant method for ensuring data integrity 

and authentication with particular relevance to networked and 

cyber-physical systems. HMAC operates by utilizing 

cryptographic hash functions in conjunction with secret keys. 

It demonstrates an efficient means of confirming the 

authenticity of messages during transmission as well as 

safeguarding them against tampering. The significance of this 

approach is particularly evident in time-critical settings, such 

as the CAN in autonomous vehicles, where security should be 

maintained without disrupting communication flows. 

The efficient working of HMAC constitutes one of its 

fundamental strengths, particularly in comparison with 

complementary schemes expressed as digital signatures, 

which are less computationally and communicationally 

efficient relative to HMAC. In time-constrained dynamic 

vehicle scenarios, HMAC is applied in addressing security 

needs without inducing unacceptable levels of delay [14]. In 

conclusion, Martins et al. [7] demonstrated how HMAC was 

subjected to experimental verification and thereafter emerges 

as a suitable scheme in maintaining authentication and 

integrity in time-triggered networked control systems. Their 

results are important in highlighting both the computational 

and communicationally accompanying overhead in the 

implementation of HMAC, thereby establishing its ability to 

satisfy the stringent degrees of working characteristics of 

vehicle control networks in general. 

Moreover, A fundamental aspect of HMAC’s effectiveness 

is its dual nature: it provides data security through a 

cryptographic method while remaining computationally 

efficient. Such a duality plays a significant role in the scenario 

of self-autonomous vehicles, where time sensitivity is a 

concern, and inclusion of security mechanisms could 

otherwise adversely affect the overall system efficiency [15]. 

Hence, the potential of HMAC in being implemented with 

minimal impact on speed, in addition to reliability, makes it a 

primary choice of enforcing security mechanisms in CAN, 

particularly as automobiles increasingly move towards 

interconnectivity and self-autonomy. Hence, in conclusion, 

HMAC provides a robust foundation in ensuring message 

authenticity and integrity in the harsh environment of the 

automotive network, and thereby serves as a precursor towards 

future implementations in secure communication within 

automobiles. 

 

3.2 Demonstrate HMAC implementation in CAN 

 

HMAC support in the CAN is crucial for safeguarding the 

cybersecurity of autonomous vehicle systems. The CAN 

protocol, designed to ensure reliable communication between 

ECUs in automotive networks, is currently exposed to 

significant security threats due to heightened connectivity. 

Traditional MAC methods are limited by throughput 

constraints and frame size, leaving many vehicles vulnerable 

to cyber-attacks. These vulnerabilities are further exacerbated 

by the hostile environments in which ECUs operate, as they 

2016



 

handle critical vehicle data under challenging conditions. To 

address these security flaws, emerging technologies such as 

the CAN-MM have been developed. This technology provides 

an alternative approach for multiplexing authentication 

information with standard CAN messages, allowing HMAC 

data transmission without modifying the existing CAN system 

architecture. By leveraging frequency modulation, CAN-MM 

enables the joint transmission of data and its associated MAC, 

enhancing vehicle security while maintaining compatibility 

with various CAN protocol versions. This integrated approach 

not only maintains communication integrity within CAN but 

also strengthens overall resistance to cyber threats. 

Additionally, multiplexed MAC techniques facilitate the 

broader adoption of robust security measures across 

automotive systems. As the automobile industry advances 

toward decentralized and networked vehicle architectures, 

such strong authentication procedures become increasingly 

vital. Seamless integration and compatibility of cutting-edge 

HMAC technologies into current CAN infrastructures will be 

essential for protecting vehicle networks from potential 

threats, ultimately leading to safer and more reliable 

autonomous driving. 

 

3.3 Shortcomings of the current HMAC method 

 

The use of HMAC as a security solution within the CANs 

of autonomous vehicles faces several innate limitations, 

primarily due to computation and communication overhead. 

Although HMAC provides an efficient method for ensuring 

message authenticity and integrity, it is not free of complexity. 

The high computational overhead associated with HMAC may 

be unfeasible for the real-time constraints of safety-critical 

applications such as autonomous driving. The paper by 

Martins et al. [7] noted that, especially in time-triggered 

networked control systems, integrating security measures like 

HMAC can substantially impact communication efficiency 

and latency, thereby compromising the determinism essential 

in these systems. 

Moreover, HMAC performance is influenced by various 

factors, including the specific algorithm used, the hardware 

implementation, and the underlying system architecture. For 

instance, although HMAC typically provides robust security 

guarantees, discrepancies in the choice of hash algorithm (for 

example, SHA-256 compared to SHA-1) may result in 

differing effects on computational latency. In scenarios where 

timing is critical, the additional latency introduced by HMAC 

processing can hinder the system's capability to manage 

messages within designated timeframes, potentially failing 

control systems that depend heavily on the prompt handling of 

data. Consequently, this necessitates a careful equilibrium 

between the necessary levels of security and the demands for 

agile and reliable communication within autonomous vehicle 

networks. In summary, while the security advantages of 

HMAC are evident, engineers and researchers need to conduct 

a pragmatic evaluation of its influence on system performance. 

A thorough examination of the computational and 

communication overhead associated with HMAC is essential. 

This approach indicates potential future bottlenecks and 

facilitates the creation of optimized HMACs that can meet the 

requirements of high-stakes applications, such as autonomous 

vehicle networks, where both security and timing are critical 

for optimal system functionality [16]. Future research should 

focus on rectifying the shortcomings of the current system and 

improving the efficiency of HMAC implementation to ensure 

that autonomous systems operate more safely and securely in 

increasingly complex environments. 

 

 

4. METHODOLOGICAL APPROACH 

 

Our methodological approach was structured in the form of 

a rigorous four-stage process, in line with accepted research 

principles for embedded systems engineering. 

The first step was a thorough comparative analysis of 

cryptographic algorithms in the context of real-time 

requirements. We thoroughly evaluated SHA-256, SHA-3, 

BLAKE2s, and BLAKE2b against objective criteria, including 

computation time, memory capacity, cryptographic security, 

and adaptability in terms of modern hardware architecture. 

Quantitative analysis led to the selection of BLAKE2s as 

having the optimum performance-security trade-off for the 

short message lengths characteristic of CAN communications. 

The second phase aimed to create a hybrid hardware–

software design. A co-design methodology was adopted, 

wherein each layer of the system was optimized independently 

without sacrificing interoperability. Hardware emulation in 

Cython was achieved through a modular design, in which low-

level activities were isolated from high-level processes. The 

modularity permitted exhaustive unit testing and incremental 

validation of each component. 

The third phase involved a careful experimental approach 

for assessing performance. Individualized benchmarking was 

implemented to accurately mirror the environmental 

conditions of the CAN FD bus, with special care being taken 

to ensure accurate assessments of latency and throughput. 

Each experiment was repeated 30 times to produce statistically 

valid results, with a 95% confidence level. Performance 

measures were logged across multiple temporal scales, from 

nanoseconds for crypto functions to milliseconds for full 

transactions. 

The fourth step comprised validation and comparison. A 

reproducible scientific approach based on open-source 

methodology was used, with the public release of all 

applicable code and benchmark sets in open-source format. 

The comparisons were performed under strictly controlled 

environmental conditions such as the processor temperature, 

system occupancy and library levels. The comparison included 

quantitative measures (throughput, latency, memory 

consumption) as well as qualitative judgments 

(maintainability, portability, security resilience). 

 

4.1 Experimental approach and validation 

 

The experimental approach was based on a three-

dimensional validation procedure: raw performance, 

cryptographic security, and real-time compliance. 

To measure performance, we defined sustainable maximum 

throughput over long 60-second runs without forced 

performance peaks. Security was confirmed through NIST 

compliance testing and formal verification of BLAKE2s 

cryptographic properties. Real-time compliance was 

confirmed by analyzing latency distributions and computing 

the Worst-Case Execution Time (WCET). 

The assurance of scientific reproducibility was achieved 

through the utilization of containerization techniques via 

Docker, which implemented stringent version control for 

dependencies. Each benchmark assessment was conducted on 

a uniform reference platform, Kali Linux, x86-64 architecture, 
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ensuring resource partitioning to maintain consistent 

measurement conditions. The reported outcomes 

systematically encompassed standard deviations and 

coefficients of variation, thus facilitating a robust evaluation 

of performance stability. 

 

4.2 Methodological innovation 

 

The main originality of this contribution lies in the 

integrated design—rather than a new cryptographic 

algorithm—allowing the quantification, separately and then 

collectively, of the impact of each optimization in a complete 

CAN-FD pipeline. 

Most importantly, the methodology's most significant 

contribution is the incremental hardware emulation 

methodology. Instead of comparing only software and 

hardware realizations, we devised a sequence of optimizations, 

enabling us to quantify the gain of each approach accurately. 

The fine-grained analysis, in addition to assuring the merit of 

our framework, provides solid indications for the future design 

of secure on-chip systems. 

The methodology is subsequently consistent with the 

quality standards of experimental computer science research 

and, nonetheless, provides novel contributions to the 

performance analysis of cryptographic primitives for 

automotive systems. By ensuring result reproducibility and 

methodological transparency, the research secures the 

scientific validity of the results and enables future extension in 

the realm of connected car security. 

The following section details the operational structure of the 

proposed system. 

 

 

5. CAN FD HMAC OPTIMIZATION FRAMEWORK 

Building on the methodological foundations of Section 4, 

this section introduces the proposed hybrid HMAC 

optimization framework. The architecture is structured into 

three layers: (1) Cython-based hardware emulation, (2) a 

BLAKE2s-optimized HMAC implementation, and (3) a 

dynamic key-management subsystem based on HKDF. This 

layered model ensures efficiency, modularity, and 

compatibility with CAN FD constraints. 

 

5.1 Hybrid system architecture 

 

Our design is based on a three-layer hybrid model (Figure 

7). The first layer employs Cython to emulate hardware 

acceleration, offering near-hardware execution performance 

with portability. The second layer utilizes BLAKE2s as the 

primary hashing algorithm, demonstrating superior 

performance relative to SHA-256 for the short messages used 

in CAN communications. The third layer employs dynamic 

key management employing HKDF-based derivation coupled 

with usage-driven rotation, thereby offering continuous 

security with minimal impact on performance. 

In Algorithm 1, the present function executes a secure CAN 

message protocol tailored for real-time automotive 

applications. It verifies session keys through dynamic 

derivation, uses a three-tiered HMAC caching strategy, and 

guarantees integrity with truncated 8-byte tags. An 

examination of performance metrics, including computation 

durations, cache effectiveness, and transmission delays, 

illustrates a design that prioritizes minimal latency, high 

throughput, and robust cryptographic security within vehicular 

networks. 

 

Algorithm 1: Secure CAN Message Authentication 

Procedure 

def secure_can_message(self, can_id, data, 

timestamp=None): 

if timestamp is None: 

timestamp = time.time() 

 

# Check if session key exists and is valid 

if (can_id not in self.session_keys or  

self.session_keys[can_id]['expiry'] < timestamp): 

self.derive_session_key(can_id, timestamp) 

 

session_key = self.session_keys[can_id]['key'] 

self.session_keys[can_id]['usage_count'] += 1 

 

# Check cache for identical messages 

cache_hit = False 

data_hash = hashlib.sha256(data).digest() 

cache_key = (can_id, data_hash) 

 

if cache_key in self.hmac_cache: 

hmac_value = self.hmac_cache[cache_key] 

cache_hit = True 

else: 

# Check precomputed HMACs 

if can_id in self.precomputed_hmacs and data in 

self.precomputed_hmacs[can_id]: 

 

hmac_value = self.precomputed_hmacs[can_id][data] 

else: 

# Calculate HMAC using hardware-accelerated approach 

start_time = time.perf_counter() 

hmac_value = self._calculate_hmac_hardware(data, 

session_key) 

end_time = time.perf_counter() 

 

self.performance_stats['hmac_times'].append(end_time - 

start_time) 

 

# Update cache 

self.hmac_cache[cache_key] = hmac_value 

# Update cache hit rate statistics 

total_operations = 

len(self.performance_stats['hmac_times']) +  

len(self.hmac_cache) 

 

if total_operations > 0: 

self.performance_stats['cache_hit_rate'] = 

len(self.hmac_cache) /  

 total_operations 

# Construct secured message (CAN FD supports up to 64 

bytes) 

secured_data = data + hmac_value[:8]# Use first 8 bytes of 

HMAC 

# Calculate realistic transmission time 

transmission_time = 

self.calculate_transmission_time(len(secured_data)) 

self.performance_stats['transmission_times'].append(trans

mission_time)  

return secured_data, hmac_value, transmission_time, 

cache_hit 
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Figure 7. Hybrid HMAC optimization workflow 

 

5.2 Hardware optimization through Cython emulation 

 

Hardware-focused emulation with Cython gives 

breathtaking performance enhancement by leveraging 

multiple optimization techniques. Native code compilation 

removes Python interpreter overhead, while static typing and 

manual memory management reduce dynamic allocations to 

nearly zero. Additionally, compilation directives such as 

boundscheck (False) and wraparound (False) suppress 

redundant safety checks. Memory access through C pointers 

enables block-level optimal processing. Overall, as a 

consequence, this approach provides a 3x to 5x improvement 

in performance compared to a purely Python-based 

implementation [17, 18]. 

The presented function executes the cryptographic HMAC 

core tailored for secure automotive communication through a 

hybrid approach. It standardizes the input data and emphasizes 

the use of Cython-based hardware acceleration whenever 

possible, concurrently providing a smooth fallback to an 

enhanced Python implementation. This two-tiered architecture 

guarantees enhanced performance, reliability, backward 

compatibility, and fault tolerance, thereby positioning it as a 

suitable solution for safety-critical embedded systems in the 

automotive sector (Algorithm 2). 

5.3 Advantages of BLAKE2s over SHA-256 

 

The use of BLAKE2s in place of SHA-256 is prompted by 

its superior technical characteristics in CAN applications. 

BLAKE2s results in 25–40% improved computation on short 

messages (8–64 bytes), reduces memory consumption by 

approximately 30%, and is better suited for modern 

architectures due to the inherent parallelism. In terms of 

security, BLAKE2s provides the same level of safeguard as 

SHA-256 with proven resistance to collision and preimage 

attacks [19, 20]. 

 

Algorithm 2: Hardware-Accelerated HMAC Computation 

def _calculate_hmac_hardware(self, data, key): 

if isinstance(data, str): 

data = data.encode() 

if isinstance(key, str): 

key = key.encode() 

 

# Use Cython-accelerated HMAC if available, otherwise 

use optimized Python 

if self.enable_hardware_acceleration and 

HMAC_CYTHON_AVAILABLE: 

try: 
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return hardware_accelerated_hmac(key, data) 

except Exception as e: 

print(f"Cython HMAC failed: {e}, falling back to Python") 

return self._calculate_hmac_optimized_python(data, key) 

else: 

return self._calculate_hmac_optimized_python(data, key) 

 

Algorithm 3: Optimized HMAC Using BLAKE2s 

def _calculate_hmac_optimized_python(self, data, key): 

if isinstance(data, str): 

data = data.encode() 

if isinstance(key, str): 

key = key.encode() 

 

# Use Blake2s which is faster than SHA-256 for small 

messages 

blake2 = hashlib.blake2s(key=key, digest_size=32) 

blake2.update(data) 

return blake2.digest() 

 

Algorithm 3 introduces a high-performance HMAC 

alternative by combining the BLAKE2s hash function, itself 

optimized for short message lengths typical of motor-vehicle 

CAN communications. It provides strong input handling with 

on-demand type conversion, enforces a 32-byte digest for 

optimal balance between security and efficiency, and 

computes more rapidly than SHA-256. Optimized for use as a 

software fallback to hardware acceleration, it provides 

uniform cryptographic integrity and performance across 

diverse motor-vehicle platforms. 

 

5.4 Advantages of BLAKE2s over SHA-256 

 

The system features a robust HMAC-based Key Derivation 

Function (HKDF) based key management scheme that enables 

the derivation of session keys for individual CAN identifiers. 

The rotation of keys is performed with two complementary 

requirements: temporal (One-hour expiration) and usage-

based (after 10,000 operations). The two-pronged approach 

achieves maximum security persistence while minimizing 

performance overhead by using an intelligent cache for 

derived keys [21-25]. 

 

Algorithm 4: Dynamic Session Key Rotation Mechanism 

def dynamic_key_rotation(self, can_id, new_timestamp): 

if can_id in self.session_keys: 

current_key = self.session_keys[can_id] 

# Rotate if key expired or after certain number of uses 

if (new_timestamp > current_key['expiry'] or  

current_key['usage_count'] > 10000):  # Usage-based 

rotation 

self.derive_session_key(can_id, new_timestamp) 

# Clean cache for this CAN ID 

self._clean_cache(can_id) 

 

This functionality incorporates an adaptive key-rotation 

mechanism that refreshes session keys based on two triggers: 

time-based expiration and thresholds on the number of uses 

(10,000 operations). At the rotational point, new keys are 

extracted, and CAN-identifier-related caches are reset to 

prevent disclosure of stale content. This dual-trigger 

mechanism enhances forward secrecy while minimizing 

performance impact by maintaining keys for their effective 

lifetime, benefiting high-throughput, real-time in-vehicle 

networks (Algorithm 4). 

Unlike CAN-MM, which inserts truncated MACs into 

multiplexed frames, our approach offers a complete 

cryptographic and architectural optimization combining (i) 

emulated hardware acceleration via Cython, (ii) an HMAC 

based on BLAKE2s specially optimized for minimal 

messages, and (iii) an adaptive key management based on 

HKDF. None of the existing solutions, including CAN-MM, 

FlexRay, or CAN-FD secure architectures, simultaneously 

integrates these three dimensions into a cohesive approach to 

reduce cryptographic latency while maintaining CAN-FD 

compatibility. 

 

 

6. EXPERIMENTAL RESULTS 

 

Modular design facilitates easy portability to heterogeneous 

hardware platforms. The Cython layer is readily replaceable 

with dedicated hardware accelerators without modifying the 

API, and a fallback to a pure Python implementation ensures 

portability. The system natively supports CAN FD payloads of 

up to 64 bytes and features precise calculation of transmission 

time based on the physical bus specifications. 

The investigation conducted so far demonstrates that 

integrating hardware support significantly reduces the 

cryptographic workload without significantly affecting 

throughput or latency. Hardware support indeed reduces the 

aggregate delay by decreasing the HMAC computation time, 

thus ensuring real-time responsiveness; however, the 

significant contribution to the delay is still the time taken to 

transmit the message, while the opposite is true for the case of 

pure software execution, which adds to the relative 

authentication cost, thus limiting scalability at higher traffic 

loads. These observations confirm that, for autonomous inter-

vehicle networks, hardware-based security measures are 

appropriate due to stringent timing constraints (Figures 8 and 

9). 

The experimental results assess the performance of the 

proposed HMAC optimization framework across varying 

payload sizes (8, 16, 32, and 64 bytes) and under two 

execution modes: hardware acceleration enabled and disabled. 

Metrics include throughput, end‑to‑end latency, HMAC 

execution time, transmission delay, and cache hit rate. 

Experiments were repeated 30 times to ensure statistical 

robustness. 

A key observation is that throughput and global latency 

remain identical between hardware‑accelerated and 

software‑only configurations. Although hardware acceleration 

reduces the cryptographic execution time by 46–52%, this gain 

does not influence end‑to‑end latency. The explanation lies in 

the structure of CAN FD communication: transmission time 

accounts for more than 95–99% of total latency for all tested 

payload sizes. Consequently, even a substantial improvement 

in HMAC computation has only a marginal effect on overall 

timing. 

For example, with an 8‑byte payload, total latency is 

approximately 0.1498 ms, of which 0.1417 ms corresponds to 

transmission time and less than 0.001 ms to HMAC 

computation. This relationship persists for larger payloads, 

confirming that the CAN FD physical layer constitutes the 

primary bottleneck. Therefore, the identical throughput (e.g., 

6677.80 msg/s for 8 bytes) observed in both execution modes 

is expected and consistent with protocol‑level constraints. 

These results highlight the practical relevance of optimizing 
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cryptographic operations: although they do not significantly 

alter end‑to‑end timing, they reduce CPU load, enabling 

improved scalability, enhanced resistance to traffic bursts, and 

better real‑time guarantees under higher network utilization. 

The observed throughput and latency remain essentially 

unchanged, as the CAN FD transmission time constitutes the 

dominant bottleneck, accounting for more than 95% of the 

total communication time. 

 

 
 

Figure 8. CAN-FD security performance - hardware acceleration enabled 

 

 
 

Figure 9. CAN-FD security performance - hardware acceleration disabled 
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Figure 10. HMAC performance improvement summary 

 

The experimental results, therefore, underscore the practical 

advantage of integration of HMAC within CAN-FD 

communication protocols. As depicted in Figure 10, the 

maximum attainable throughput is predominantly determined 

by data transmission time rather than by cryptographic 

processing, thereby enabling practical rates on the order of 

millions per second within a range of payload sizes. A detailed 

analysis of latency further reveals that the overhead imposed 

by HMAC processing is low, proportional to overall 

transmission time. This conclusion verifies that, in particular, 

if hardware acceleration is implemented, the transmission 

delay forms the primary contributor to end-to-end latency, and 

therefore ensures that the inclusion of authentication does not 

adversely affect the real-time constraints of CAN-FD 

networks. 

 

 

7. CONCLUSIONS 

 

This paper demonstrates the optimizations of HMAC 

implementation for Enhanced Security in Autonomous 

Vehicles' CAN Systems: hardware emulation through Cython, 

BLAKE2s implementation, and dynamic key management, 

providing an end-to-end and realistic solution to the CAN bus 

security problem. The cryptographic optimization strategy 

proves strong success with measurable hardware acceleration 

benefits. At runtime, the system achieves substantial savings 

in HMAC computation, ranging from 46.2% to 51.9% across 

all payload sizes (8-64 bytes) with an average performance 

increase of 49.7%. Optimization effectively reduces CPU 

computational demand and power consumption while 

providing valuable headroom for future security processing or 

spike management during periods of high network load. 

Nevertheless, analysis verifies that physical CAN FD bus 

constraints remain the dominating limiting factor, accounting 

for approximately 95% of total latency due to protocol 

overhead and mandatory arbitration. Repeat throughput results 

(4,860-6,677 message/sec) across standard and optimized 

implementations to verify that transmitter timing is the 

limiting factor rather than cryptographic processing. These 

findings emphasize the protocol-level optimizations and 

cryptographic enhancements as equally significant for 

automotive systems, suggesting that future work should focus 

on message compression, selective authentication schemes, 

and the potential switch to high-bandwidth protocols like CAN 

XL, while preserving the observed security benefits of 

hardware-accelerated BLAKE2s authentication. 
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