

Optimizing HMAC for Enhanced Security in CAN Systems of Autonomous Vehicles

Mohamed Alhyan1 , Mariya Ouaissa2* , Mariyam Ouaissa1 , Zineb Nadifi1 , Ali Kartit1

1 LTI, Chouaib Doukkali University, El Jadida 24000, Morocco
2 LISI, Cadi Ayyad University, Marrakech 40000, Morocco

Corresponding Author Email: m.ouaissa@uca.ac.ma

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.151004

ABSTRACT

Received: 25 September 2025

Revised: 26 October 2025

Accepted: 29 October 2025

Available online: 31 October 2025

 With the increasing digitalization of automotive systems, in-vehicle networks such as

Controller Area Network (CAN) and Flexible Data-Rate (CAN FD) are exposed to

escalating cybersecurity risks because they lack native authentication mechanisms.

Ensuring secure communication while maintaining strict real-time constraints, therefore,

remains a critical challenge. This work proposes a lightweight security framework

combining three complementary elements: (1) Cython-based hardware emulation to

accelerate HMAC processing with minimal overhead, (2) adaptive key management using

HKDF-driven session key derivation, and (3) an optimized BLAKE2s-based HMAC

implementation suitable for short CAN messages. Unlike existing solutions such as CAN-

MM or FlexRay authentication extensions, the proposed method integrates cryptographic

optimization and engineering considerations into a cohesive architecture compatible with

CAN FD. Experimental results on automotive-grade testbeds indicate that hardware-

assisted Hash-based Message Authentication Code (HMAC) computation reduces

cryptographic execution cost by 46–52%, while the overall latency remains dominated by

transmission time, which accounts for more than 95% of the end-to-end delay. This

explains why throughput and total latency remain unchanged between hardware-enabled

and software-only modes. The findings highlight the feasibility of integrating lightweight

authentication into real-time CAN environments and provide clear design guidelines for

future high-speed in-vehicle security architectures.

Keywords:

automotive networks, CAN / CAN FD, HMAC,

BLAKE2s, authentication, integrity, latency,

autonomous vehicles

1. INTRODUCTION

The protection of automotive systems has emerged as one

of the most pressing research challenges in the development of

self-driving vehicles. Modern in-vehicle communication is

largely built on the Controller Area Network (CAN), a

protocol originally designed to provide reliable and efficient

data exchange between Electronic Control Units (ECUs) [1].

CAN’s simplicity and robustness made it an industry standard,

but its design lacked intrinsic security mechanisms. As a

result, CAN-based networks remain vulnerable to a wide

spectrum of cyberattacks, including message injection,

spoofing, replay, and denial-of-service. These threats are

particularly concerning in today’s vehicles, where growing

connectivity with external networks such as V2X

communication, cloud services, and diagnostic tools

significantly expands the attack surface and amplifies potential

risks [2].

To address these concerns, securing the integrity and

authenticity of transmitted data has become a fundamental

requirement. Message authentication is central to this effort,

with Message Authentication Codes (MACs) widely adopted

to ensure that messages originate from legitimate sources and

remain unaltered during transmission. However, the challenge

is far from solved. In CAN-based communications, even if

MACs are applied, a compromised ECU can still monitor

intra-vehicle traffic, raising concerns about resilience against

traffic analysis and long-term security sustainability.

Consequently, authentication mechanisms for automotive

systems must be designed not only for robustness but also for

efficiency and lightweight implementation, making them

viable under the strict real-time and resource constraints of

embedded automotive platforms [3].

Hash-based Message Authentication Codes (HMACs) offer

a practical solution by allowing ECUs to verify message

integrity and origin through shared secret keys. Despite their

security benefits, traditional implementations such as HMAC-

SHA256 are computationally demanding for resource-limited

automotive environments. This computational burden can

degrade performance, leading to increased latency and

reduced throughput, which is unacceptable in safety-critical

real-time vehicular networks [4]. A detailed latency analysis is

therefore essential, encompassing execution time, throughput,

and resource consumption.

Understanding these trade-offs is crucial for evaluating the

practicality of deploying HMAC in CAN systems [5].

This paper builds upon these insights by introducing an

improved HMAC-based authentication scheme tailored for

CAN networks in autonomous vehicles. The proposed

framework integrates three main components: (1) Cython-

based hardware emulation, to accelerate cryptographic

execution with minimal overhead; (2) dynamic key

International Journal of Safety and Security Engineering
Vol. 15, No. 10, October, 2025, pp. 2013-2023

Journal homepage: http://iieta.org/journals/ijsse

2013

https://orcid.org/0009-0009-1201-3371
https://orcid.org/0000-0002-0088-3742
https://orcid.org/0000-0002-3993-8405
https://orcid.org/0009-0008-0500-1973
https://orcid.org/0000-0002-3472-1151
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/ijsse.151004&domain=pdf

management, to enhance resilience against evolving threats;

and (3) BLAKE2s optimization, chosen for its favorable

balance of cryptographic strength and computational

efficiency. Together, these techniques aim to deliver a

lightweight yet secure authentication mechanism that

preserves compatibility with the stringent real-time demands

of autonomous driving systems.

The structure of this article is as follows: Section 2 presents

a description of the background of CAN. Section 3 provides

an overview of related work. The methodological and

experimental approach is described in Section 4. Section 5

outlines the CAN FD HMAC optimization framework.

Section 6 details the results along with a discussion. Finally,

conclusions are drawn in Section 7.

2. BACKGROUND OF CAN

The CAN is a fundamental communication protocol in the

automotive sector, primarily responsible for interactions

between diverse ECUs. In the 1980s, Bosch designed the

CAN, specifically to provide challenging, efficient, and

reliable communication under electrical noise conditions, both

standard and resource-constrained environments [6]. As more

devices are being integrated into progressively complex

vehicles, the CAN protocol has become ubiquitous in

supporting real-time communication to guarantee the timely

exchange of critical vehicle operation information. Due to the

extensive use of the protocol, understanding the working

structure is vital to gain insight into the issues in fortifying its

security, especially considering the rising cyber-attacks that

uncover vulnerabilities in the network (Figure 1).

The CAN is the fundamental vehicle communication

protocol and remains the de facto standard in the automotive

world despite the introduction of Ethernet. Unlike the TCP/IP

protocol, the CAN message is not socket-based, and therefore,

the sender's link or physical address cannot be determined.

Unlike Ethernet frames, CAN frames lack source or

destination addresses and instead contain only an identifier

that provides a ‘label’ for the data. Through access to

identifiers, nodes can accept or reject a frame [7]. CAN frames

are transmitted to all nodes and hence occupy the entire

communication medium, which is historically configured in

the shape of a wired bus topology. The lower layer of the

protocol provides an electrical mechanism for arbitration

whereby the node that gains access to the physical medium

first gains the right of transmission. The identifier, therefore,

plays a crucial role: it indicates frame priority, serves as one

of the medium access control mechanisms, and also influences

bandwidth allocation and the determinism of message delivery

[8].

However, the CAN 2.0 controller cannot process CAN FD

packets (Figure 2). The reason lies in the differences in the

headers of the two types of packets. When a CAN 2.0

controller receives a Flexible Data-Rate (CAN FD) packet, it

will respond with an error frame because certain bit

configurations in the CAN FD packet do not conform to the

CAN 2.0 standard [9].

Even if the arbitration Nominal Bit Rate (NBR) and the

Data Bit Rate (DBR) of CAN FD are both set to 500 kbps, the

CAN 2.0 receiver still cannot decode CAN FD packets (Figure

3).

(a) Communication without CAN (b) Communication with CAN

Figure 1. Simplified CAN wiring and reliability overview

Figure 2. CAN-2.0 frame format

2014

Figure 3. CAN-FD extended frame format

Figure 4. Attack surface of the vehicle CAN network

Traditionally, the CAN proceeds through a broadcast

mechanism in which messages are sent to all nodes in the

network, thereby implying that while any attached ECU can

receive the message, only the intended ECU is expected to

respond to specific information. Despite its reliability, the

absence of intrinsic security mechanisms, such as encryption

or authentication, significantly renders the CAN vulnerable to

cyber-attacks (Figure 4). Adversaries can intercept

communications to disastrous ends, such as faulty vehicle

operation or safety risks [10].

Recent innovations, and notably the integration of MACs

and protocols such as the CAN Multiplexed MAC (CAN-

MM), aim to improve both the reliability and integrity of

communications within the CAN. The CAN-MM represents a

striking technique in that it incorporates MAC data within

routine CAN messages via frequency modulation in a

backward-compatible manner with previous systems, to

strengthen the security of transmitted messages. The use of

mechanisms is crucial, both in maintaining the operative

efficiency of linked cars and in establishing a secure medium

against potential cyber-attacks [11]. Consequently, the

exploration of new strategies and architectures designed to

eliminate or mitigate the security vulnerabilities associated

with the CAN protocol remains crucial as the auto sector

moves towards increasingly linked and autonomous systems

[12].

Figure 5. CAN-MM based on CAN-2.0 frame format with MAC DIGEST

Table 1. Comparative analysis of CAN protocol versions

Feature CAN 2.0 (Classical CAN) CAN FD CAN XL

Year Introduced 1991 2012 2022

Full Name Classical CAN CAN with flexible data rate CAN extra large

Max Data Rate 1 Mbps 8 Mbps 10 Mbps

Max Payload Size 8 bytes 64 bytes 2048 bytes

Main Advantage
Simple, proven, widely

supported

Higher speed and larger payload

for efficiency

Massive payload and enhanced

security for complex data

ISO Standard ISO 11898-1 (CAN 2.0A/B) ISO 11898-1:2015 ISO 11898-1:2023

Typical Use Cases
Basic control signals, low

data volume

Modern automotive networks,

advanced ECUs

Future autonomous vehicles, high-

bandwidth applications

Security Features None Limited (CRC improvements) Enhanced authentication and integrity

The CAN-MM protocol is a significant extension of the

classical CAN protocol, designed specifically to enable

efficient data multiplexing with support for real-time and

security. The CAN-MM protocol has many fundamental

characteristics designed to counter restrictions faced in

classical CAN systems, particularly in safety-critical and

2015

bandwidth-intensive applications such as automotive ADAS,

avionics, and Industrial IoT (Figure 5).

Table 1 shows the current versions of CAN.

At its foundation, CAN-MM comprises a MAC Header

field (8-16 bits), enabling logical addressing and data

multiplexing within a single CAN frame. This makes it

possible for several data sources to share the same identifier

space and therefore greatly increase bandwidth efficiency. As

a node synchronization method, the network utilizes

Multiplexed Message Synchronization (MM SYNC) frames

and disperses slot allocation maps and timestamps to regulate

time-division multiplexing (Figure 6). To address security

challenges, a truncated MAC provides lightweight verification

by computing a reduced-length HMAC-SHA256 hash, while

carefully balancing the requirements of both latency and

security. Data integrity is supplemented additionally via two

complementing approaches: Redundancy Check (RC),

comprising CRC16-CCITT headers and CRC32 payloads

along with error detection; and MM CRC, a proprietary

CRC8-DARC checksum that secures multiplexing metadata

[13].

Figure 6. CAN-MM based on CAN-FD extended frame format with MAC DIGEST

These functions are encapsulated within a CAN-FD-

compliant frame format, supporting up to 64 bytes of

multiplexed data and adaptive data rates (e.g., 500 kbps for

arbitration phase and 8 Mbps for data phase). CAN-MM is

thus ideally suited for next-gen applications where high data

throughput, deterministic latency, and robust security are key

requirements (e.g., autonomous vehicles, sensor fusion),

avionics (multiplexed cockpit data), and smart factories (real-

time control networks), and needs backward compatibility

with heritage CAN nodes but supplies forward-thinking

enhancements for next-gen embedded networks.

3. RELATED WORK

3.1 Hash-based Message Authentication Code

HMAC is a significant method for ensuring data integrity

and authentication with particular relevance to networked and

cyber-physical systems. HMAC operates by utilizing

cryptographic hash functions in conjunction with secret keys.

It demonstrates an efficient means of confirming the

authenticity of messages during transmission as well as

safeguarding them against tampering. The significance of this

approach is particularly evident in time-critical settings, such

as the CAN in autonomous vehicles, where security should be

maintained without disrupting communication flows.

The efficient working of HMAC constitutes one of its

fundamental strengths, particularly in comparison with

complementary schemes expressed as digital signatures,

which are less computationally and communicationally

efficient relative to HMAC. In time-constrained dynamic

vehicle scenarios, HMAC is applied in addressing security

needs without inducing unacceptable levels of delay [14]. In

conclusion, Martins et al. [7] demonstrated how HMAC was

subjected to experimental verification and thereafter emerges

as a suitable scheme in maintaining authentication and

integrity in time-triggered networked control systems. Their

results are important in highlighting both the computational

and communicationally accompanying overhead in the

implementation of HMAC, thereby establishing its ability to

satisfy the stringent degrees of working characteristics of

vehicle control networks in general.

Moreover, A fundamental aspect of HMAC’s effectiveness

is its dual nature: it provides data security through a

cryptographic method while remaining computationally

efficient. Such a duality plays a significant role in the scenario

of self-autonomous vehicles, where time sensitivity is a

concern, and inclusion of security mechanisms could

otherwise adversely affect the overall system efficiency [15].

Hence, the potential of HMAC in being implemented with

minimal impact on speed, in addition to reliability, makes it a

primary choice of enforcing security mechanisms in CAN,

particularly as automobiles increasingly move towards

interconnectivity and self-autonomy. Hence, in conclusion,

HMAC provides a robust foundation in ensuring message

authenticity and integrity in the harsh environment of the

automotive network, and thereby serves as a precursor towards

future implementations in secure communication within

automobiles.

3.2 Demonstrate HMAC implementation in CAN

HMAC support in the CAN is crucial for safeguarding the

cybersecurity of autonomous vehicle systems. The CAN

protocol, designed to ensure reliable communication between

ECUs in automotive networks, is currently exposed to

significant security threats due to heightened connectivity.

Traditional MAC methods are limited by throughput

constraints and frame size, leaving many vehicles vulnerable

to cyber-attacks. These vulnerabilities are further exacerbated

by the hostile environments in which ECUs operate, as they

2016

handle critical vehicle data under challenging conditions. To

address these security flaws, emerging technologies such as

the CAN-MM have been developed. This technology provides

an alternative approach for multiplexing authentication

information with standard CAN messages, allowing HMAC

data transmission without modifying the existing CAN system

architecture. By leveraging frequency modulation, CAN-MM

enables the joint transmission of data and its associated MAC,

enhancing vehicle security while maintaining compatibility

with various CAN protocol versions. This integrated approach

not only maintains communication integrity within CAN but

also strengthens overall resistance to cyber threats.

Additionally, multiplexed MAC techniques facilitate the

broader adoption of robust security measures across

automotive systems. As the automobile industry advances

toward decentralized and networked vehicle architectures,

such strong authentication procedures become increasingly

vital. Seamless integration and compatibility of cutting-edge

HMAC technologies into current CAN infrastructures will be

essential for protecting vehicle networks from potential

threats, ultimately leading to safer and more reliable

autonomous driving.

3.3 Shortcomings of the current HMAC method

The use of HMAC as a security solution within the CANs

of autonomous vehicles faces several innate limitations,

primarily due to computation and communication overhead.

Although HMAC provides an efficient method for ensuring

message authenticity and integrity, it is not free of complexity.

The high computational overhead associated with HMAC may

be unfeasible for the real-time constraints of safety-critical

applications such as autonomous driving. The paper by

Martins et al. [7] noted that, especially in time-triggered

networked control systems, integrating security measures like

HMAC can substantially impact communication efficiency

and latency, thereby compromising the determinism essential

in these systems.

Moreover, HMAC performance is influenced by various

factors, including the specific algorithm used, the hardware

implementation, and the underlying system architecture. For

instance, although HMAC typically provides robust security

guarantees, discrepancies in the choice of hash algorithm (for

example, SHA-256 compared to SHA-1) may result in

differing effects on computational latency. In scenarios where

timing is critical, the additional latency introduced by HMAC

processing can hinder the system's capability to manage

messages within designated timeframes, potentially failing

control systems that depend heavily on the prompt handling of

data. Consequently, this necessitates a careful equilibrium

between the necessary levels of security and the demands for

agile and reliable communication within autonomous vehicle

networks. In summary, while the security advantages of

HMAC are evident, engineers and researchers need to conduct

a pragmatic evaluation of its influence on system performance.

A thorough examination of the computational and

communication overhead associated with HMAC is essential.

This approach indicates potential future bottlenecks and

facilitates the creation of optimized HMACs that can meet the

requirements of high-stakes applications, such as autonomous

vehicle networks, where both security and timing are critical

for optimal system functionality [16]. Future research should

focus on rectifying the shortcomings of the current system and

improving the efficiency of HMAC implementation to ensure

that autonomous systems operate more safely and securely in

increasingly complex environments.

4. METHODOLOGICAL APPROACH

Our methodological approach was structured in the form of

a rigorous four-stage process, in line with accepted research

principles for embedded systems engineering.

The first step was a thorough comparative analysis of

cryptographic algorithms in the context of real-time

requirements. We thoroughly evaluated SHA-256, SHA-3,

BLAKE2s, and BLAKE2b against objective criteria, including

computation time, memory capacity, cryptographic security,

and adaptability in terms of modern hardware architecture.

Quantitative analysis led to the selection of BLAKE2s as

having the optimum performance-security trade-off for the

short message lengths characteristic of CAN communications.

The second phase aimed to create a hybrid hardware–

software design. A co-design methodology was adopted,

wherein each layer of the system was optimized independently

without sacrificing interoperability. Hardware emulation in

Cython was achieved through a modular design, in which low-

level activities were isolated from high-level processes. The

modularity permitted exhaustive unit testing and incremental

validation of each component.

The third phase involved a careful experimental approach

for assessing performance. Individualized benchmarking was

implemented to accurately mirror the environmental

conditions of the CAN FD bus, with special care being taken

to ensure accurate assessments of latency and throughput.

Each experiment was repeated 30 times to produce statistically

valid results, with a 95% confidence level. Performance

measures were logged across multiple temporal scales, from

nanoseconds for crypto functions to milliseconds for full

transactions.

The fourth step comprised validation and comparison. A

reproducible scientific approach based on open-source

methodology was used, with the public release of all

applicable code and benchmark sets in open-source format.

The comparisons were performed under strictly controlled

environmental conditions such as the processor temperature,

system occupancy and library levels. The comparison included

quantitative measures (throughput, latency, memory

consumption) as well as qualitative judgments

(maintainability, portability, security resilience).

4.1 Experimental approach and validation

The experimental approach was based on a three-

dimensional validation procedure: raw performance,

cryptographic security, and real-time compliance.

To measure performance, we defined sustainable maximum

throughput over long 60-second runs without forced

performance peaks. Security was confirmed through NIST

compliance testing and formal verification of BLAKE2s

cryptographic properties. Real-time compliance was

confirmed by analyzing latency distributions and computing

the Worst-Case Execution Time (WCET).

The assurance of scientific reproducibility was achieved

through the utilization of containerization techniques via

Docker, which implemented stringent version control for

dependencies. Each benchmark assessment was conducted on

a uniform reference platform, Kali Linux, x86-64 architecture,

2017

ensuring resource partitioning to maintain consistent

measurement conditions. The reported outcomes

systematically encompassed standard deviations and

coefficients of variation, thus facilitating a robust evaluation

of performance stability.

4.2 Methodological innovation

The main originality of this contribution lies in the

integrated design—rather than a new cryptographic

algorithm—allowing the quantification, separately and then

collectively, of the impact of each optimization in a complete

CAN-FD pipeline.

Most importantly, the methodology's most significant

contribution is the incremental hardware emulation

methodology. Instead of comparing only software and

hardware realizations, we devised a sequence of optimizations,

enabling us to quantify the gain of each approach accurately.

The fine-grained analysis, in addition to assuring the merit of

our framework, provides solid indications for the future design

of secure on-chip systems.

The methodology is subsequently consistent with the

quality standards of experimental computer science research

and, nonetheless, provides novel contributions to the

performance analysis of cryptographic primitives for

automotive systems. By ensuring result reproducibility and

methodological transparency, the research secures the

scientific validity of the results and enables future extension in

the realm of connected car security.

The following section details the operational structure of the

proposed system.

5. CAN FD HMAC OPTIMIZATION FRAMEWORK

Building on the methodological foundations of Section 4,

this section introduces the proposed hybrid HMAC

optimization framework. The architecture is structured into

three layers: (1) Cython-based hardware emulation, (2) a

BLAKE2s-optimized HMAC implementation, and (3) a

dynamic key-management subsystem based on HKDF. This

layered model ensures efficiency, modularity, and

compatibility with CAN FD constraints.

5.1 Hybrid system architecture

Our design is based on a three-layer hybrid model (Figure

7). The first layer employs Cython to emulate hardware

acceleration, offering near-hardware execution performance

with portability. The second layer utilizes BLAKE2s as the

primary hashing algorithm, demonstrating superior

performance relative to SHA-256 for the short messages used

in CAN communications. The third layer employs dynamic

key management employing HKDF-based derivation coupled

with usage-driven rotation, thereby offering continuous

security with minimal impact on performance.

In Algorithm 1, the present function executes a secure CAN

message protocol tailored for real-time automotive

applications. It verifies session keys through dynamic

derivation, uses a three-tiered HMAC caching strategy, and

guarantees integrity with truncated 8-byte tags. An

examination of performance metrics, including computation

durations, cache effectiveness, and transmission delays,

illustrates a design that prioritizes minimal latency, high

throughput, and robust cryptographic security within vehicular

networks.

Algorithm 1: Secure CAN Message Authentication

Procedure

def secure_can_message(self, can_id, data,

timestamp=None):

if timestamp is None:

timestamp = time.time()

Check if session key exists and is valid

if (can_id not in self.session_keys or

self.session_keys[can_id]['expiry'] < timestamp):

self.derive_session_key(can_id, timestamp)

session_key = self.session_keys[can_id]['key']

self.session_keys[can_id]['usage_count'] += 1

Check cache for identical messages

cache_hit = False

data_hash = hashlib.sha256(data).digest()

cache_key = (can_id, data_hash)

if cache_key in self.hmac_cache:

hmac_value = self.hmac_cache[cache_key]

cache_hit = True

else:

Check precomputed HMACs

if can_id in self.precomputed_hmacs and data in

self.precomputed_hmacs[can_id]:

hmac_value = self.precomputed_hmacs[can_id][data]

else:

Calculate HMAC using hardware-accelerated approach

start_time = time.perf_counter()

hmac_value = self._calculate_hmac_hardware(data,

session_key)

end_time = time.perf_counter()

self.performance_stats['hmac_times'].append(end_time -

start_time)

Update cache

self.hmac_cache[cache_key] = hmac_value

Update cache hit rate statistics

total_operations =

len(self.performance_stats['hmac_times']) +

len(self.hmac_cache)

if total_operations > 0:

self.performance_stats['cache_hit_rate'] =

len(self.hmac_cache) /

 total_operations

Construct secured message (CAN FD supports up to 64

bytes)

secured_data = data + hmac_value[:8]# Use first 8 bytes of

HMAC

Calculate realistic transmission time

transmission_time =

self.calculate_transmission_time(len(secured_data))

self.performance_stats['transmission_times'].append(trans

mission_time)

return secured_data, hmac_value, transmission_time,

cache_hit

2018

Figure 7. Hybrid HMAC optimization workflow

5.2 Hardware optimization through Cython emulation

Hardware-focused emulation with Cython gives

breathtaking performance enhancement by leveraging

multiple optimization techniques. Native code compilation

removes Python interpreter overhead, while static typing and

manual memory management reduce dynamic allocations to

nearly zero. Additionally, compilation directives such as

boundscheck (False) and wraparound (False) suppress

redundant safety checks. Memory access through C pointers

enables block-level optimal processing. Overall, as a

consequence, this approach provides a 3x to 5x improvement

in performance compared to a purely Python-based

implementation [17, 18].

The presented function executes the cryptographic HMAC

core tailored for secure automotive communication through a

hybrid approach. It standardizes the input data and emphasizes

the use of Cython-based hardware acceleration whenever

possible, concurrently providing a smooth fallback to an

enhanced Python implementation. This two-tiered architecture

guarantees enhanced performance, reliability, backward

compatibility, and fault tolerance, thereby positioning it as a

suitable solution for safety-critical embedded systems in the

automotive sector (Algorithm 2).

5.3 Advantages of BLAKE2s over SHA-256

The use of BLAKE2s in place of SHA-256 is prompted by

its superior technical characteristics in CAN applications.

BLAKE2s results in 25–40% improved computation on short

messages (8–64 bytes), reduces memory consumption by

approximately 30%, and is better suited for modern

architectures due to the inherent parallelism. In terms of

security, BLAKE2s provides the same level of safeguard as

SHA-256 with proven resistance to collision and preimage

attacks [19, 20].

Algorithm 2: Hardware-Accelerated HMAC Computation

def _calculate_hmac_hardware(self, data, key):

if isinstance(data, str):

data = data.encode()

if isinstance(key, str):

key = key.encode()

Use Cython-accelerated HMAC if available, otherwise

use optimized Python

if self.enable_hardware_acceleration and

HMAC_CYTHON_AVAILABLE:

try:

2019

return hardware_accelerated_hmac(key, data)

except Exception as e:

print(f"Cython HMAC failed: {e}, falling back to Python")

return self._calculate_hmac_optimized_python(data, key)

else:

return self._calculate_hmac_optimized_python(data, key)

Algorithm 3: Optimized HMAC Using BLAKE2s

def _calculate_hmac_optimized_python(self, data, key):

if isinstance(data, str):

data = data.encode()

if isinstance(key, str):

key = key.encode()

Use Blake2s which is faster than SHA-256 for small

messages

blake2 = hashlib.blake2s(key=key, digest_size=32)

blake2.update(data)

return blake2.digest()

Algorithm 3 introduces a high-performance HMAC

alternative by combining the BLAKE2s hash function, itself

optimized for short message lengths typical of motor-vehicle

CAN communications. It provides strong input handling with

on-demand type conversion, enforces a 32-byte digest for

optimal balance between security and efficiency, and

computes more rapidly than SHA-256. Optimized for use as a

software fallback to hardware acceleration, it provides

uniform cryptographic integrity and performance across

diverse motor-vehicle platforms.

5.4 Advantages of BLAKE2s over SHA-256

The system features a robust HMAC-based Key Derivation

Function (HKDF) based key management scheme that enables

the derivation of session keys for individual CAN identifiers.

The rotation of keys is performed with two complementary

requirements: temporal (One-hour expiration) and usage-

based (after 10,000 operations). The two-pronged approach

achieves maximum security persistence while minimizing

performance overhead by using an intelligent cache for

derived keys [21-25].

Algorithm 4: Dynamic Session Key Rotation Mechanism

def dynamic_key_rotation(self, can_id, new_timestamp):

if can_id in self.session_keys:

current_key = self.session_keys[can_id]

Rotate if key expired or after certain number of uses

if (new_timestamp > current_key['expiry'] or

current_key['usage_count'] > 10000): # Usage-based

rotation

self.derive_session_key(can_id, new_timestamp)

Clean cache for this CAN ID

self._clean_cache(can_id)

This functionality incorporates an adaptive key-rotation

mechanism that refreshes session keys based on two triggers:

time-based expiration and thresholds on the number of uses

(10,000 operations). At the rotational point, new keys are

extracted, and CAN-identifier-related caches are reset to

prevent disclosure of stale content. This dual-trigger

mechanism enhances forward secrecy while minimizing

performance impact by maintaining keys for their effective

lifetime, benefiting high-throughput, real-time in-vehicle

networks (Algorithm 4).

Unlike CAN-MM, which inserts truncated MACs into

multiplexed frames, our approach offers a complete

cryptographic and architectural optimization combining (i)

emulated hardware acceleration via Cython, (ii) an HMAC

based on BLAKE2s specially optimized for minimal

messages, and (iii) an adaptive key management based on

HKDF. None of the existing solutions, including CAN-MM,

FlexRay, or CAN-FD secure architectures, simultaneously

integrates these three dimensions into a cohesive approach to

reduce cryptographic latency while maintaining CAN-FD

compatibility.

6. EXPERIMENTAL RESULTS

Modular design facilitates easy portability to heterogeneous

hardware platforms. The Cython layer is readily replaceable

with dedicated hardware accelerators without modifying the

API, and a fallback to a pure Python implementation ensures

portability. The system natively supports CAN FD payloads of

up to 64 bytes and features precise calculation of transmission

time based on the physical bus specifications.

The investigation conducted so far demonstrates that

integrating hardware support significantly reduces the

cryptographic workload without significantly affecting

throughput or latency. Hardware support indeed reduces the

aggregate delay by decreasing the HMAC computation time,

thus ensuring real-time responsiveness; however, the

significant contribution to the delay is still the time taken to

transmit the message, while the opposite is true for the case of

pure software execution, which adds to the relative

authentication cost, thus limiting scalability at higher traffic

loads. These observations confirm that, for autonomous inter-

vehicle networks, hardware-based security measures are

appropriate due to stringent timing constraints (Figures 8 and

9).

The experimental results assess the performance of the

proposed HMAC optimization framework across varying

payload sizes (8, 16, 32, and 64 bytes) and under two

execution modes: hardware acceleration enabled and disabled.

Metrics include throughput, end‑to‑end latency, HMAC

execution time, transmission delay, and cache hit rate.

Experiments were repeated 30 times to ensure statistical

robustness.

A key observation is that throughput and global latency

remain identical between hardware‑accelerated and

software‑only configurations. Although hardware acceleration

reduces the cryptographic execution time by 46–52%, this gain

does not influence end‑to‑end latency. The explanation lies in

the structure of CAN FD communication: transmission time

accounts for more than 95–99% of total latency for all tested

payload sizes. Consequently, even a substantial improvement

in HMAC computation has only a marginal effect on overall

timing.

For example, with an 8‑byte payload, total latency is

approximately 0.1498 ms, of which 0.1417 ms corresponds to

transmission time and less than 0.001 ms to HMAC

computation. This relationship persists for larger payloads,

confirming that the CAN FD physical layer constitutes the

primary bottleneck. Therefore, the identical throughput (e.g.,

6677.80 msg/s for 8 bytes) observed in both execution modes

is expected and consistent with protocol‑level constraints.

These results highlight the practical relevance of optimizing

2020

cryptographic operations: although they do not significantly

alter end‑to‑end timing, they reduce CPU load, enabling

improved scalability, enhanced resistance to traffic bursts, and

better real‑time guarantees under higher network utilization.

The observed throughput and latency remain essentially

unchanged, as the CAN FD transmission time constitutes the

dominant bottleneck, accounting for more than 95% of the

total communication time.

Figure 8. CAN-FD security performance - hardware acceleration enabled

Figure 9. CAN-FD security performance - hardware acceleration disabled

2021

Figure 10. HMAC performance improvement summary

The experimental results, therefore, underscore the practical

advantage of integration of HMAC within CAN-FD

communication protocols. As depicted in Figure 10, the

maximum attainable throughput is predominantly determined

by data transmission time rather than by cryptographic

processing, thereby enabling practical rates on the order of

millions per second within a range of payload sizes. A detailed

analysis of latency further reveals that the overhead imposed

by HMAC processing is low, proportional to overall

transmission time. This conclusion verifies that, in particular,

if hardware acceleration is implemented, the transmission

delay forms the primary contributor to end-to-end latency, and

therefore ensures that the inclusion of authentication does not

adversely affect the real-time constraints of CAN-FD

networks.

7. CONCLUSIONS

This paper demonstrates the optimizations of HMAC

implementation for Enhanced Security in Autonomous

Vehicles' CAN Systems: hardware emulation through Cython,

BLAKE2s implementation, and dynamic key management,

providing an end-to-end and realistic solution to the CAN bus

security problem. The cryptographic optimization strategy

proves strong success with measurable hardware acceleration

benefits. At runtime, the system achieves substantial savings

in HMAC computation, ranging from 46.2% to 51.9% across

all payload sizes (8-64 bytes) with an average performance

increase of 49.7%. Optimization effectively reduces CPU

computational demand and power consumption while

providing valuable headroom for future security processing or

spike management during periods of high network load.

Nevertheless, analysis verifies that physical CAN FD bus

constraints remain the dominating limiting factor, accounting

for approximately 95% of total latency due to protocol

overhead and mandatory arbitration. Repeat throughput results

(4,860-6,677 message/sec) across standard and optimized

implementations to verify that transmitter timing is the

limiting factor rather than cryptographic processing. These

findings emphasize the protocol-level optimizations and

cryptographic enhancements as equally significant for

automotive systems, suggesting that future work should focus

on message compression, selective authentication schemes,

and the potential switch to high-bandwidth protocols like CAN

XL, while preserving the observed security benefits of

hardware-accelerated BLAKE2s authentication.

REFERENCES

[1] Gupta, A., Abirami, P., Bharthuar, O.P., Malviya, M.,

Deshpande, S. (2025). Towards safer roads: A review of

hybrid machine learning and vision-based approaches for

speed bump detection in intelligent transportation

systems. International Journal of Safety & Security

Engineering, 15(6): 1293-1308.

https://doi.org/10.18280/ijsse.150618

[2] Houmer, M., Ouaissa, M., Ouaissa, M., Hasnaoui, M.L.

(2020). SE-GPSR: Secured and enhanced greedy

perimeter stateless routing protocol for vehicular Ad hoc

networks. International Journal of Interactive Mobile

Technologies, 14(13): 48-64.

https://doi.org/10.3991/ijim.v14i13.14537

[3] Alhyan, M., Ouaissa, M., Ouaissa, M., Nadifi, Z., Kartit,

A. (2024). A systematic review of cybersecurity in

Internet of Vehicles. Artificial Intelligence for

Blockchain and Cybersecurity Powered IoT

Applications, 118-133.

https://doi.org/10.1201/9781003497585-7

2022

[4] Rathore, R.S., Hewage, C., Kaiwartya, O., Lloret, J.

(2022). In-vehicle communication cyber security:

Challenges and solutions. Sensors, 22(17): 6679.

https://doi.org/10.3390/s22176679

[5] Mohamed, A.A., Aslan, H., Arafa, T. (2025). Securing

smart vehicles: A bilateral TARA approach for ISO

21434 and ASPICE for CS compliance. International

Journal of Safety & Security Engineering, 15(6): 1123-

1137. https://doi.org/10.18280/ijsse.150604

[6] Oberti, F., Savino, A., Sanchez, E., Casasso, P., Parisi,

F., Di Carlo, S. (2024). CAN-MM: Multiplexed message

authentication code for Controller Area Network

message authentication in road vehicles. IEEE

Transactions on Vehicular Technology, 73(10): 14661-

14673. https://doi.org/10.1109/TVT.2024.3402986

[7] Martins, G., Moondra, A., Dubey, A., Bhattacharjee, A.,

Koutsoukos, X.D. (2016). Computation and

communication evaluation of an authentication

mechanism for time-triggered networked control

systems. Sensors, 16(8): 1166.

https://doi.org/10.3390/s16081166

[8] Oberti, F., Savino, A., Sanchez, E., Parisi, F., Di Carlo,

S. (2022). EXT-TAURUM P2T: An extended secure

CAN-FD architecture for road vehicles. IEEE

Transactions on Device and Materials Reliability, 22(2):

98-110. https://doi.org/10.1109/TDMR.2022.3157000

[9] Labrado, C., Thapliyal, H., Mohanty, S.P. (2021).

Fortifying vehicular security through low overhead

physically unclonable functions. ACM Journal on

Emerging Technologies in Computing Systems, 18(1): 1-

18. https://doi.org/10.1145/3442443

[10] Lotto, A., Marchiori, F., Brighente, A., Conti, M. (2024).

A survey and comparative analysis of security properties

of CAN authentication protocols. IEEE Communications

Surveys & Tutorials, 27(4): 2470-2504.

https://doi.org/10.1109/COMST.2024.3486367

[11] Buscemi, A., Turcanu, I., Castignani, G., Panchenko, A.,

Engel, T., Shin, K.G. (2023). A survey on Controller

Area Network reverse engineering. IEEE

Communications Surveys & Tutorials, 25(3): 1445-

1481. https://doi.org/10.1109/COMST.2023.3264928

[12] Lin, C.W., Sangiovanni-Vincentelli, A. (2012). Cyber-

security for the Controller Area Network (CAN)

communication protocol. In 2012 International

Conference on Cyber Security, Alexandria, VA, USA,

pp. 1-7. https://doi.org/10.1109/CyberSecurity.2012.7

[13] Adly, S., Moro, A., Hammad, S., Maged, S.A. (2023).

Prevention of Controller Area Network (CAN) attacks on

electric autonomous vehicles. Applied Sciences, 13(16):

9374. https://doi.org/10.3390/app13169374

[14] Groza, B., Murvay, P.S. (2019). Identity-based key

exchange on in-vehicle networks: CAN-FD & FlexRay.

Sensors, 19(22): 4919.

https://doi.org/10.3390/s19224919

[15] Schmittner, C. (2022). Automotive cybersecurity

auditing and assessment-presenting the ISO pas 5112. In

European Conference on Software Process

Improvement, pp. 521-529. https://doi.org/10.1007/978-

3-031-15559-8_37

[16] Sanguino, T.D.J.M., Domínguez, J.M.L., de Carvalho

Baptista, P. (2020). Cybersecurity certification and

auditing of automotive industry. Advances in Transport

Policy and Planning, 5: 95-124.

https://doi.org/10.1016/bs.atpp.2020.01.002

[17] Feng, Y., Wang, W., Weng, Y., Zhang, H. (2017). A

replay-attack resistant authentication scheme for the

Internet of Things. In 2017 IEEE International

Conference on Computational Science and Engineering

(CSE) and IEEE International Conference on Embedded

and Ubiquitous Computing (EUC), Guangzhou, China.

pp. 541-547. https://doi.org/10.1109/CSE-

EUC.2017.101

[18] Lawrence, T., Li, F., Ali, I., Haruna, C.R., Kpiebaareh,

M.Y., Christopher, T. (2022). A computationally

efficient HMAC-based authentication scheme for

network coding. Telecommunication Systems, 79(1): 47-

69. https://doi.org/10.1007/s11235-021-00842-6

[19] Ikumapayi, O., Olufowobi, H., Daily, J., Hu, T.,

Bertolotti, I.C., Bloom, G. (2023). CANASTA:

Controller Area Network authentication schedulability

timing analysis. IEEE Transactions on Vehicular

Technology, 72(8): 10024-10036.

https://doi.org/10.1109/TVT.2023.3258746

[20] Zelle, D., Gürgens, S. (2021). BusCount: A provable

replay protection solution for automotive CAN networks.

Security and Communication Networks, 2021(1):

9951777. https://doi.org/10.1155/2021/9951777

[21] Luykx, A., Mennink, B., Neves, S. (2016). Security

analysis of BLAKE2’s modes of operation. IACR

Transactions on Symmetric Cryptology, 2016(1): 158-

176. https://doi.org/10.13154/tosc.v2016.i1.158-176

[22] Atiwa, S., Dawji, Y., Refaey, A., Magierowski, S.

(2020). Accelerated hardware implementation of

BLAKE2 cryptographic hash for blockchain. In 2020

IEEE Canadian Conference on Electrical and Computer

Engineering (CCECE), London, ON, Canada, pp. 1-6.

https://doi.org/10.1109/CCECE47787.2020.9255709

[23] Suhaili, S., Julai, N., Sapawi, R., Rajaee, N. (2024).

Towards maximising hardware resources and design

efficiency via high-speed implementation of HMAC

based on SHA-256 design. Pertanika Journal of Science

& Technology, 32(1): 31-44.

https://doi.org/10.47836/pjst.32.1.02

[24] Naidu, N.B., Lakshmeewari, G. (2025). Key node

authentication model using asymmetric cryptography for

smart cities. International Journal of Safety & Security

Engineering, 15(7): 1415-1426.

https://doi.org/10.18280/ijsse.150709

[25] Debnath, S., Chattopadhyay, A., Dutta, S. (2017). Brief

review on journey of secured hash algorithms. In 2017

4th International Conference on Opto-Electronics and

Applied Optics (Optronix), Kolkata, India, pp. 1-5.

https://doi.org/10.1109/OPTRONIX.2017.8349971

2023

