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This study presents a data-driven framework for enhancing both the prediction and post-
deposition structural analysis of gas sensor materials using deep learning and bio-inspired
algorithms. A deep learning prediction model is first developed and trained on a
comprehensive dataset incorporating key material and process parameters, including
thermal conductivity, band gap, base and dopant compositions, substrate temperature,
sputtering pressure, power density, and deposition rates. This model achieves a high
prediction accuracy of 99.4% in classifying material structures amorphous, crystalline, or
polycrystalline based on input conditions, thereby enabling informed decisions in sensor
material design prior to deposition. In the post-deposition phase, a 53-layer Convolutional
Neural Network (CNN) is employed for structural classification using SEM images,
accurately distinguishing between crystalline and polycrystalline forms with an initial
accuracy of 92.2%. To further refine performance, bio-inspired optimization techniques
such as Particle Swarm Optimization (PSO) and Bee Colony Optimization (BCO) are
applied for hyperparameter tuning, improving classification accuracy to 98.6% and 96.25%,

respectively.

1. INTRODUCTION

Gas sensors play an integral role in a myriad of applications,
ranging from environmental monitoring and industrial safety
to medical diagnostics and homeland security [1]. Their ability
to detect and quantify various gases with high sensitivity and
selectivity is crucial for ensuring air quality, preventing
hazardous conditions, and enabling precise medical diagnoses.
With the increasing concern over environmental pollution,
toxic gas emissions, and the demand for smart, connected
devices, the development of advanced gas sensors has become
imperative [2]. Future needs will necessitate sensors that are
not only highly accurate and reliable but also cost-effective
and capable of integration into compact and portable devices.
Consequently, the advancement of gas sensor technology is
pivotal to addressing these evolving challenges and meeting
the stringent requirements of next-generation applications [3].
The design of gas sensors, however, is fraught with
complexities that pose significant challenges. One of the
primary hurdles is the selection of suitable materials that can
provide the desired sensitivity and specificity for various gases
[4]. This involves not only choosing the right base and dopant
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materials but also optimizing their composition and structural
properties. Additionally, the deposition parameters, such as
substrate temperature, sputtering pressure, and deposition rate
must be meticulously controlled to ensure the formation of the
desired material structure [5S]. Any deviation in these
parameters can lead to inconsistencies in sensor performance,
making the design process highly intricate. The need to predict
and control the crystalline structure of the sensor material
further complicates the design, as different structures,
crystalline, polycrystalline, or amorphous affect the sensor's
electrical and chemical properties differently [6].

Deep learning algorithms offer a transformative approach to
overcoming these design challenges by enabling the pre-
prediction of gas sensor materials and deposition parameters
[7]. These algorithms, trained on extensive datasets, can
predict the optimal material characteristics and deposition
conditions required to achieve the desired sensor performance.
For instance, deep learning models can analyse a range of
parameters, including thermal conductivity, band gap, and
composition, to forecast the output structure of the gas sensor
material [8]. This predictive capability significantly reduces
the trial-and-error approach traditionally associated with
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material selection and deposition parameter optimization,
thereby streamlining the sensor design process and enhancing
the precision of the predicted outcomes [9].

In addition to material prediction, deep learning plays a
crucial role in the post- deposition analysis of the sensor's
crystalline structure. Advanced models, such as Convolutional
Neural Networks (CNNss), can accurately classify the structure
of the deposited material, distinguishing between crystalline,
polycrystalline, and amorphous forms. By employing bio-
inspired optimization algorithms like Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO) and
Bee Colony Optimization (BCO), these models can be further
refined to achieve high classification accuracy [10]. This
integration of deep learning and bio- inspired optimization not
only enhances the reliability of structural analysis but also
provides a robust framework for optimizing the sensor design
for specific applications [11].

2. LITERATURE SURVEY

The design of gas sensors presents numerous research
challenges, primarily due to the intricate interplay of material
properties,  deposition  conditions, and  structural
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configurations that collectively determine sensor performance
[12]. One of the foremost challenges is the accurate prediction
of optimal material combinations and their corresponding
deposition parameters to achieve the desired sensitivity and
selectivity for specific gases [13]. This is complicated by the
need to tailor material properties such as thermal conductivity,
band gap, and composition to match the sensing requirements.
Moreover, the deposition process itself must be precisely
controlled to form the appropriate crystalline structure,
whether it be crystalline, polycrystalline, or amorphous, as
these structures have significant impacts on the sensor’s
electrical and chemical behaviour [14]. Variability in
deposition parameters like substrate temperature, sputtering
pressure, and deposition rate can lead to inconsistencies in the
sensor's performance, complicating the design and fabrication
processes [15]. Additionally, the post-deposition analysis of
the sensor material's structural properties is crucial but
challenging, as it requires sophisticated techniques to
accurately classify and understand the impact of different
structures on sensor functionality [16]. Addressing these
challenges requires innovative approaches and advanced
technologies, such as deep learning algorithms, to predict and
optimize the design parameters, thus pushing the boundaries
of gas sensor development in Figure 1.

(©)

Figure 1. Structures (a) Single Crystalline (b) Polycrystalline (c) Amorphous

In the realm of structural classification, extensive literature
exists, reflecting the interdisciplinary nature of this field.
Researchers have focused on elucidating the significance of
accurately categorizing structural forms, including amorphous,
crystalline, and polycrystalline states, owing to their profound
implications in materials science, chemistry, and engineering
applications. Benchmark studies such as those by Gulevich et
al. [17] and Ochoa-Muifioz et al. [18] have underscored the
critical role of structural classification in understanding
material properties and designing novel materials with tailored
functionalities. These seminal works have established
foundational benchmarks for subsequent research endeavours,
highlighting the need for robust classification methodologies
to address the inherent challenges posed by diverse structural
configurations.

Challenges abound in accurately classifying structural states,
necessitating innovative approaches and methodologies. Key
challenges identified in the literature include the subtle
distinctions between crystalline and polycrystalline structures,
which often confound conventional classification techniques.
Benchmark studies, such as the work by Tabian et al. [19],
have elucidated the complexities associated with
discriminating between these closely resembling structural
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forms. Additionally, the scalability and computational
efficiency of classification algorithms have been highlighted
as critical considerations, particularly in handling large and
heterogeneous datasets. Benchmark studies by Thalluri et al.
[20] and Simion et al. [21] have shed light on these challenges,
setting benchmarks for algorithmic performance and
computational resource utilization in structural classification
tasks.

Recent advancements in deep learning, particularly CNNs,
have spurred significant progress in structural classification
research. Benchmark studies by Hu et al. [22] and Kononov et
al. [23] have demonstrated the efficacy of CNN-based
approaches in surpassing conventional techniques and
achieving state-of-the-art classification accuracies. These
benchmarks have propelled the adoption of CNNs as the de
facto standard for structural classification tasks, owing to their
ability to automatically learn discriminative features from raw
data. Furthermore, benchmark studies focusing on
hyperparameter optimization techniques, such as those by
Dennler et al. [24] and Garcia-Rodriguez et al. [25], have
highlighted the critical role of parameter tuning in maximizing
classification performance. By benchmarking against
established methodologies and performance metrics,



researchers continue to push the boundaries of structural
classification, paving the way for advancements in materials
science and related disciplines.

3. GAS SENSOR DESIGN PARAMETERS PRE-
PREDICTION

Gas sensor design parameters pre-prediction using deep
learning involves a systematic and multifaceted approach that
encompasses several critical requirements and process steps.
Initially, a comprehensive dataset is essential, encompassing a
diverse range of parameters such as base target thermal
conductivity, band gap, composition, and deposition duration,
along with dopant characteristics, substrate temperature,
sputtering pressure, power density, deposition rate, and argon
flow rate. The deep learning process begins with the collection
and preprocessing of this data to ensure it is clean, normalized,

and suitable for training models. Following this, a deep
learning architecture, typically a neural network with multiple
layers, is selected and configured to handle the complexity of
the prediction task. The model is then trained on the dataset,
learning to correlate the input parameters with the desired
output structures, such as whether the material will be
crystalline, polycrystalline, or amorphous. This process
enables a robust and reliable prediction of gas sensor design
parameters, significantly streamlining the development and
optimization of high-performance gas sensors.

3.1 Dataset

A dataset was created with parameters like base target
thermal conductivity, band gap, composition, deposition
duration, dopant characteristics, substrate temperature,
sputtering pressure, power density, deposition rate, and argon
flow rate as listed in Table 1.

Table 1. List of dataset parameters [26-39]

Dataset Parameter

Name/Value

Base Target

Base Target Thermal Conductivity (W/meK)
Base Target Band Gap (eV)
Base Target Composition (wt.%)
Base Target Deposition Duration (min)
Dopant Target
Dopant Target Density (g/cm?)
Dopant Target Melting Point (°C)
Dopant Target Refractive Index
Dopant Target Thermal Conductivity (W/m<K)
Dopant Target Band Gap (eV)
Dopant Target Composition (wt.%)
Dopant Target Deposition Duration (min)
Substrate Temperature (°C)
Sputtering Pressure (mTorr)
Power Density (W/cm?)
Deposition Rate (nm/min)
Argon Flow Rate (sccm)

SHOZ, Si3N4, CLIzO, Ti02, SHOZ, CeOz, Ge,
Sn02, ZHO, WOs, C602, Si, In203, G3.203, Fe203, Fe20s

60
3.6
97
10

N, Nb, Ga, Sb, Zr, P, Al, Re, Zr, B, Sn, Ti

5.0-10.0
500 - 2000
1.5-25
20-50
1.0-3.0
1.0-10.0
5-15
200 - 500
5-15
2-8
20 -50
20-50

Output Structure Amorphous / Crystalline/ Poly Crystalline
Input Layer
[
Dense(128
neurons) Dropout
. Layer
Activation: [Dropout
RelU, Rate: 0.2]
Input
Shape:
Features.

Figure 2. Presented deep learning model

3.2 Deep learning model

The presented deep learning algorithm is a neural network
model designed for multi- class classification tasks. It
comprises multiple dense layers with rectified linear unit
(ReLU) activation functions, which enable the model to learn
complex nonlinear relationships within the data. Dropout
layers are incorporated to prevent overfitting by randomly
deactivating neurons during training, enhancing the model's
generalization capabilities. The model is trained using the
Adam optimizer and sparse categorical cross-entropy loss
function, suitable for handling categorical targets. By
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iteratively adjusting weights based on observed errors, the
model learns to accurately classify input data into different
categories. Its significance lies in its ability to automatically
extract features from raw data, making it suitable for various
applications, including image recognition, natural language
processing, and bioinformatics. Additionally, its flexibility
and scalability make it well-suited for large-scale datasets and
complex problem domains, contributing to advancements in
artificial intelligence and machine learning research in Figure
2.

The classification of materials into amorphous, crystalline,
and polycrystalline structures is pivotal in various applications,



including gas sensing and beyond. In gas sensing, amorphous
materials offer high surface areas and chemical reactivity,
making them suitable for adsorption and reaction with gas
molecules.

— Aecuracy

Epochs
Figure 3. Deep learning model accuracy

Crystalline materials provide predictable and reproducible
sensing behaviour due to their well- defined crystal structures,
which may offer intrinsic properties for specific gas species
detection. Polycrystalline materials, comprising multiple
grains with random orientation, balance the high surface area
of amorphous materials with the defined properties of single
crystals, introducing additional active sites for gas adsorption.
Beyond gas sensing, this classification guides material
selection in electronic devices, optoelectronic devices,
catalysis, and energy storage, where each structure type offers
distinct advantages based on its properties and applications
requirements. The accuracy plot indicates that the model has
learned to classify the material structure with high confidence,
reaching near-perfect accuracy of 99.4% after 50 epochs. This
suggests that the deep learning model is highly effective in
identifying complex relationships between material and
deposition parameters, such as composition, temperature,
pressure, and dopant properties and the resulting structure type
amorphous, crystalline, or polycrystalline in Figure 3.

4. METAL OXIDE WITH DOPANT DEPOSITION

In this study, metal oxides were meticulously selected for
gas sensor development using deep learning predictions to
identify optimal material combinations and deposition
parameters. WOs was chosen as the primary metal oxide due
to its excellent gas sensing properties, and its performance was
further enhanced by incorporating varying proportions of TiO,
as indicated by the deep learning model in Table 2.

Table 2. Composites considered for deposition

Composition
Composition-1Composition-2Composition-3
WO; WOs3+ TiO2 WOs3+ TiO2
100% 95% + 5%  90% +10%

The deposition process was tailored to achieve specific
topographical, optical, and structural characteristics. The
characterization results demonstrate that pure WOs forms a
coarse-grained surface with 82% transparency at 453.15 K,
and exhibits a semi-crystalline structure. In contrast, the
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addition of 5% TiO2 to WOs resulted in a similar coarse-
grained morphology with slightly improved transparency at
83.25% and maintained a semi-crystalline nature. Notably,
increasing the TiO: content to 10% transformed the surface
into a granular texture, significantly enhancing transparency to
86% and achieving a fully crystalline structure. These findings
underline the efficacy of deep learning in predicting and
optimizing material compositions and deposition conditions,
leading to advanced metal oxide sensors with tailored
properties for superior performance.

4.1 Polycrystalline structure

Leveraging deep learning predictions, WOs-based metal
oxides were selected and precisely deposited to develop
advanced gas sensors with tailored properties. The deep
learning model guided the optimal incorporation of TiO: to
enhance sensor characteristics. Characterization revealed that
pure WOs forms a coarse-grained surface with 82%
transparency at 453.15 K and a semi-crystalline structure.
Adding 5% TiO: maintained a coarse texture but increased
transparency to 83.25%, while 10% TiO: resulted in a granular
surface, boosting transparency to 86% and achieving a fully
crystalline structure. These results underscore the efficacy of
deep learning in predicting and optimizing material

compositions and deposition processes, leading to high-
performance gas sensors with specific topographical, optical,
and structural attributes in Figure 4.

Figure 4. Polycrystalline structures
4.2 Crystalline structure

Composition-3, comprising a combination of WO; and TiOx,
exhibits a granular surface morphology, attaining an
impressive transparency of 86% at 453.15 K. Structurally, it
manifests a crystalline form with 90% WOs and 10% TiO2
composition, indicating a well-defined atomic arrangement.
This composition showcases a balanced blend of granular
texture, high transparency, and crystalline structure,

suggesting its potential suitability for applications requiring
robust gas sensor materials with optimized optical and
structural properties in Figure 5.

Figure 5. Crystalline structures

5. STRUCTURAL ANALYSIS USING CNN

Structural analysis employing CNNs presents a powerful
methodology for characterizing material structures with high
precision and efficiency. By leveraging the hierarchical



feature extraction capabilities of CNN architectures, complex
patterns within the material's crystalline arrangement can be
discerned and classified accurately, enabling comprehensive
structural insights crucial for various applications in material
science. CNNs play a significant role in the structural
classification of metal oxides into crystalline, amorphous, and
polycrystalline forms due to their ability to effectively learn
and analyse spatial dependencies in data. CNNs excel at
automatically learning hierarchical representations of features
from raw data such as images or spatially structured data. In
the case of metal oxides, structural classification often
involves data from imaging techniques like scanning electron
microscopy (SEM), where spatial features are crucial for
identifying crystal structures.

5.1 Dataset

The dataset used for structural analysis consisted of 106
SEM images, categorized into two classes: 50 crystalline and
56 polycrystalline structures. These images were collected to
train and evaluate the performance of the 53-layer CNN model

in accurately distinguishing between the two material
structures. To ensure effective learning and model
generalization, the dataset was split into 80% for training and
20% for testing, resulting in 85 images for training and 21
images for testing. This balanced and well labelled dataset
provided a solid foundation for the deep learning model to
extract structural features and perform precise classification.

5.2 CNN layer analysis

In CNN layer analysis, the architecture's individual layers
are scrutinized to understand their roles in extracting and
representing structural features from input data. Convolutional
layers perform feature detection through convolution
operations, while pooling layers downsample feature maps to
retain essential information. Understanding the interactions
between these layers elucidates how structural information is
progressively  extracted and synthesized, facilitating
optimization of the network architecture for improved
performance in structural analysis tasks in Figure 6.

Max pool=mxm
Stride=5

Fully Connected
Layer

Figure 6. 53-Layer CNN model for structural analysis

The 53-layer CNN model developed for structural analysis
is a deep convolutional architecture designed to extract and
classify complex features from material surface images, such
as those obtained through SEM or other imaging techniques.
Comprising multiple convolutional, pooling, and fully
connected layers, this model progressively learns hierarchical
spatial features critical for distinguishing between amorphous,
crystalline, and polycrystalline structures. The depth of the
network allows it to capture fine-grained patterns and subtle
textural differences in microstructures, leading to high
classification accuracy. This architecture enables automated,
scalable, and precise structural analysis, significantly
enhancing the efficiency of materials characterization and
supporting the development of optimized gas sensor materials.

Treining fecuracy

W
Evns

Figure 7. Accuracy of 53-layer CNN for Structural
Classification
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The accuracy curve shows a consistent and progressive
improvement over the epochs, reflecting the model's effective
learning behaviour. Beginning at approximately 45%, the
accuracy quickly rises to around 68% by the 2nd epoch and
continues to improve steadily. By the 9th epoch, it crosses
90%, ultimately reaching an accuracy of 92.2%. This smooth
and sustained growth indicates that the model successfully
captures the essential features required for classifying
crystalline and polycrystalline structures in metal oxide
sensors, demonstrating high reliability and robustness in its
predictions in Figure 7.

5.3 Hyperparameters optimization

Hyperparameters optimization aims to refine the selection
of hyperparameters to improve the overall performance of
CNN models in structural analysis tasks. This optimization
process is crucial for fine-tuning the model's behavior and
achieving superior accuracy and generalization capabilities.
Two prominent optimization algorithms employed in this
context are PSO and BCO, which iteratively explore the
hyperparameter space to discover configurations that yield
optimal model performance.

The tuning process begins by initializing a swarm of
particles, where each particle represents a unique combination
of CNN hyperparameters such as batch size, learning rate,



dropout, number of filters, and kernel size. The fitness of each
particle is evaluated based on the CNN’s classification
accuracy. After evaluation, each particle updates its personal
best solution, and the global best among all particles is
identified. Using this information, particles adjust their
velocities and positions to explore new hyperparameter
combinations. This cycle of evaluation and position updating
continues iteratively. The process checks for convergence
based on either reaching a maximum number of iterations or
achieving a target accuracy. Once convergence is met, the
best-performing hyperparameter set is selected as the optimal
configuration for the CNN model in Figures 8-10.

Initialize Swarm
(particles, velocities, positions)
Evaluate Fitness
(CNN Accuracy)
Update Personal Best
and Global Best
Update Velocity & Position

Check Convergence
(Max Iterations or Accuracy)

Yes

Optimal Hyperparameters
(batch size, learning rate,
dropout, filters, kernel size)

Figure 8. Hyperparameter tuning process using PSO for
CNN model

Initialize Bee Colony
(number of bees, food sources)
Evaluate Fitness
(CNN Accuracy)
Employ Bees Phase
Onlocker Bees Phase

Scout Bees Phase
(Abandon poor sources)

Check Convergence
(Max Cycles or Accuracy)

Yes

Optimal Hyperparameters
(batch size, learning rate,
dropout, filters, kemel size)

Figure 9. Hyperparameter tuning process using BCO for
CNN model
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The BCO process for tuning CNN hyperparameters begins
with initializing a population of artificial bees, where each bee
explores a food source representing a unique set of
hyperparameters such as batch size, learning rate, dropout rate,
number of filters, and kernel size. In the employed bees phase,
each bee evaluates the fitness of its current food source based
on the CNN's classification accuracy. The information is then
shared with onlooker bees, which probabilistically choose the
best-performing sources to exploit further. Poor solutions are
discarded during the scout bees phase, where new random
sources are explored to maintain diversity in the search space.
This iterative process continues, with bees refining their
selections through multiple cycles, until a convergence
condition is met—typically when the model achieves a
specified accuracy or a maximum number of iterations is
reached. The outcome is the identification of the most optimal
combination of hyperparameters that maximizes CNN
performance. Through iterative refinement guided by PSO and
BCO, CNN-based structural analysis models can achieve
enhanced accuracy and robustness, further advancing their
utility in material science research and applications.

100

80

2]
o
1

Accuracy(%)
»
o

20

BCO

Optimizers

Figure 10. Comprehensive analysis on the role of optimizers
i.e., PSO and BCO

The hyperparameters considered for tuning in the 53-layer
CNN include learning rate, batch size, number of filters in
convolutional layers, kernel size, stride length, dropout rate,
activation functions, number of neurons in fully connected
layers, and weight initialization methods. Optimization of
these parameters using bio-inspired algorithms significantly
enhanced the model's performance. PSO yielded the highest
accuracy of 98.6%, BCO achieved 96.25%. Both optimizers
notably improved the baseline CNN accuracy of 92.2%,
demonstrating the effectiveness of these strategies in refining
the model’s ability to distinguish between crystalline and
polycrystalline structures in gas sensor materials.

6. CONCLUSION

A comprehensive dataset encompassing diverse design
parameters, the developed deep learning model accurately
predicts the output structure of gas sensor materials,
streamlining the pre-prediction phase with unprecedented
precision. Furthermore, the introduction of an advanced 53-
layer CNN for post-deposition structural analysis significantly
enhances classification accuracy, achieving remarkable



differentiation between crystalline and polycrystalline
structures. Through the implementation of bio-inspired
optimization algorithms such as PSO and BCO,
hyperparameters are fine-tuned, resulting in substantial
accuracy improvements. With accuracy levels reaching up to
98.6% and 96.25% respectively, these advancements
underscore the potential of deep learning and bio-inspired
optimization techniques to propel the field of gas sensor
technology towards unparalleled levels of efficiency and
precision in material prediction and structural analysis.
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