Z‘ I El' A International Information and

Engineering Technology Association

International Journal of Safety and Security Engineering

Vol. 15, No. 10, October, 2025, pp. 2135-2142

Journal homepage: http://iieta.org/journals/ijsse

Integrating Wavelet Feature Decomposition and 3D CNNs for Accurate Blind Steganalysis ]

Natiq M. Abdali'*®?, Salah Al-Obaidi?*”’, Hiba Al-Khafaji’*®, Hawraa Al-Janabi*

Check for
updates

! College of Arts, University of Babylon, Babel 51001, Iraq

2 Department of Computer Science, College of Science for Women, University of Babylon, Babel 51001, Iraq
3 Department of Software, College of Information Technology, University of Babylon, Babel 51001, Iraq

4 College of Medicine, University of Warith Alanbiyaa, Karbala 56001, Iraq

Corresponding Author Email: art.natiq.mutashar@uobabylon.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.151016

ABSTRACT

Received: 17 September 2025
Revised: 18 October 2025
Accepted: 28 October 2025
Available online: 31 October 2025

Keywords:

steganalysis, steganography, convolutional
neural network, deep learning, accuracy,
dataset

Blind steganalysis aims to determine whether a piece of media possesses hidden
information without prior knowledge of the embedding algorithm. This task has become
increasingly challenging as steganographic techniques continue to evolve rapidly. In this
paper, we present a novel approach that integrates wavelet-based feature representations
with a three-dimensional deep convolutional neural network (3D CNN) for robust blind
image steganography. The discrete wavelet transform (DWT) is employed to capture
spatial-frequency characteristics across subbands, enabling the preservation of subtle
embedding distortions that conventional spatial-domain approaches often overlook. These
wavelet-based feature volumes serve as inputs to the 3D CNN, which jointly models inter-
band, spatial, and frequency-domain dependencies through volumetric convolution. To
rectify class imbalance and increase classification robustness, we introduce a custom
weighted classification layer. We conducted extensive experiments on the BOWS2 and
BOSSBase v1.01 datasets, and the results demonstrate that the proposed method
outperforms baseline models using 2D CNN architectures in terms of accuracy, precision,
recall, and F1-score across all embedding schemes. Our results demonstrate the potential
of combining wavelet-domain methods with volumetric deep learning (DL) to improve
blind steganalysis in practical digital forensics and cybersecurity applications.

1. INTRODUCTION

The rise of digital communication has made images, audio,
and video the most prominent examples of data transmitted via
public networks. Digital communication allows for global
connections through possibility, but it also creates significant
risks for security. Since information could be obscured within
digital media by means of steganography, this aspect raises
key policy concerns [1-3]. Steganography can create malicious
abuse cases, clandestine communications, and violate privacy
by embedding hidden data into otherwise benign content.
Steganalysis is a counter-strategy to steganography that seeks
to discover secret information regardless
steganographic process has been employed to conceal the
information [3-6]. Steganalysis targets to discover underlying
patterns and extract hidden information. Perhaps most
interestingly, secret analysis is able to do its job without
requiring prior knowledge of which specific embedding
algorithm was used. Thus, secret analysis is a means for
examining information to discover hidden data, regardless of
how it was previously structured or encoded. Efforts to
uncover hidden information have grown more difficult as
advanced embedding algorithms feature subtle, high-capacity,

and adaptive methods [7, 8].

Classic approaches to steganalysis based on statistical

features such as pixel correlations or histogram derivatives
typically do not account for these subtle changes [9, 10].
Recently, deep learning (DL)-based methods that integrated
the feature extraction and classification stages into one
framework [11, 12]. CNNs have performed particularly well
in modeling spatial artifacts introduced during the embedding
process [13-16]. However, CNNs have limitations, which
include the following:

* Spatially constrained features: 2D CNNs effectively
operate in the spatial domain only and ignore characteristics
from the frequency domain, which is where embedding
artifacts are often more readily identifiable [15, 17, 18].

+ Expensive to compute: deep networks have large
parameter spaces and require a larger amount of data to train
on, as well as more processing resources to run, which may
not be practical in crowded, real-world scenarios [12].

» Limited robustness: The models generalize weakly to
other payload sizes and embedding algorithms, hence not as
trustworthy for forensic or security uses [19-21].

To tackle such limitations, a wavelet-domain three-
dimensional deep convolutional neural network (3D CNN)
architecture was proposed for blind image steganalysis. To
overcome limitations of conventional 2D CNNs, we utilized
multi-resolution discrete wavelet transform (DWT) features
that co-harness spatial and frequency domain information. By
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taking wavelet subbands volumetric inputs into account, the
proposed 3D CNN can learn between-band relationships and,
therefore, is more capable of revealing hidden steganographic
signals. In addition, we have used a weighted classification
layer specifically customized for dealing with class imbalance
and enhancing detection performance. The key contributions
of this paper are:

1. Using wavelet domain priors in DL: We suggest
implementing multi-resolution DWT subbands, which serve
as structured inputs to identify slight embedding artifacts that
spatial CNNs may not achieve.

2. New class of 3D CNN for cross-domain feature learning:
Unlike existing 2D CNNs, using volumetric convolutions
enables us to capture spatial patterns and correlations between
frequency domains, enhancing sensitivity to intricate
steganography distortions.

3. Enhanced robustness and accuracy: Through extensive
experiments on benchmark datasets, our method consistently
outperforms state-of-the-art CNN baselines in terms of
accuracy, precision, recall, and F1-score, particularly across
diverse embedding algorithms and payloads.

4. Generalizable blind steganalysis framework: The
proposed method is independent of the embedding algorithm
knowledge, making it adaptable for practical forensic and
cybersecurity applications where the embedding strategy is
unknown.

The remainder of this paper is organized as follows. Section
2 reviews related work in conventional and DL-based
steganalysis. Section 3 describes the proposed methodology in
detail. Section 4 presents and discusses the experimental
results and performance comparisons. Finally, conclusions
based on the reality revealed in this work are drawn in Section
5.

2. RELATED WORK

Due to advances in applying artificial intelligence
techniques to address steganalysis in digital images, the
performance outcomes have increased the general interest in
this topic. Consequently, two categories —conventional
learning and DL — have been recognized. In addition, a
combination of machine learning and DL has been presented
[22]. Conventionally, there are spatial and transform methods
based on feature extraction and machine learning. One of these
approaches is given by Chhikara and Bansal [23] that utilizes
gray-level co-occurrence matrix (GLCM) features extracted
from the images, which are then fed into a classifier to
differentiate between cover and stego images. Similarly, Gui
et al. [24] introduced another hand-crafted approach to
compute local binary pattern (LBP) features in conjunction
with a linear support vector machine (SVM) to detect hidden
data. The histogram correlation derivatives have exhibited far
more significant fluctuations. The first derivative of the
histogram correlation can be wused to identify LSB-
steganography, as indicated in the study by Abdali and
Hussain [25]. Abdali and Hussain [26] proposed a differential
histogram-correlation approach for spatially identifying secret
information in images. Differential histogram-correlation
analyzes color and grayscale images with varying derivative
orders. In some analyses, it is discovered that the first and
second derivatives are insufficient; thus, when the ratio of
stego to cover images is tiny, the third derivative is required to
uncover the concealed information. This technique allows a
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little secret message to get past the system. Shankar and
Azhakath [27] designed a model to extract features from the
spatial and frequency domains to distinguish between stego
and cover images. Their method concatenates discrete cosine
transform (DCT) features with Markov features to create a
comprehensive feature vector to train the classifier. They
utilized both standard SVM and an enhanced version
incorporating particle swarm optimization to SVM
(SVM+PSO) to improve detection accuracy. In another
emphasis of research, Akram et al. [28] proposed a binary
classification-based SVM to determine if an image was either
a stego or a cover source image by extracting curvelet
histogram features. This proposed model was evaluated on the
low- and high-payload steganography images without shifting
features as expected, and this model performed decently at
identifying stego images, as the additional embedding value
changes the dependence on each pixel, but these pixel
correlation values would validate the image value changes and
thus not determine if a tampering had occurred through a
straightforward correlative analysis of a stego image.

DL has become a strong method in steganalysis due to the
weaknesses in manual feature engineering [22]. An
unsupervised technique [29] with stacked convolutional
autoencoders first introduced DL to steganalysis. This early
attempt was ultimately not successful, obtaining only 48%
accuracy. Supervised learning emerged with Qian et al. [13]
proposing a five-layer CNN that had a Gaussian activation
function. This type of work was an improvement, but
thresholds are still low compared to the other known
steganalysis work. Qian et al. [14] improved upon their model
from the previous work [13] by using transfer learning - rather
than a specially made CNN—indicating that transfer learning
is effective and that it can extract and learn better features for
image steganalysis, particularly at low payload sizes.
Following that work, Xu et al. [15] proposed a CNN
architecture that utilized a number of batch normalization
layers. Overall, this architecture was much better at
distinguishing cover and stego images; thus, it became a
critical and formative method for CNN-based models in the
previous studies [16, 30, 31].

However, adding many batch layers raised concerns about
the model's reduced stability and generalization. To counter
this problem, Wu et al. [19] proposed a different architecture
for a CNN with the aim of increasing the accuracy of various
steganography techniques by utilizing shared normalization
instead of batch normalization. The layer utilized a shared set
of statistics to normalize input data to solve the issue of
network learning instability, which resulted in better detection
accuracy and generalization. Boroumand et al. [17] presented
a DL model of an end-to-end steganalysis detection network.
The detection model has a deep residual architecture that
minimizes heuristics and external constraints, thus achieving
state-of-the-art detection accuracy through both spatial-
domain and JPEG steganography tasks. Following in this
pattern, Zhang et al. [32] proposed a compact CNN framework
intended for spatial-domain steganography. The framework of
this model utilized a low-dimensional kernel as a method of
reducing the number of parameters while still preserving local
feature representation. In addition, the model implemented
separable convolutions and spatial pyramid pooling to receive
a better detection performance. Yedroudj-Net [21] builds on
the core ideas behind Xu-Net and Ye-Net while improving the
architecture of Yedroudj-Net by implementing SRM, TLU
activation, and batch normalization. It also integrates adaptive



filter banks and uses data augmentation, both of which provide
substantial improvements in steganography detection
performance. Overall, despite some advancement with
Yedroudj-Net, there is still complexity that could cause
overfitting, especially when little data is available for training.
Therefore, from a generality perspective, one would need to
be careful about hyperparameter tuning. ZhuNet employs two
separable convolutional layers, which are also inspired by
precedent designs noted in recent work [32]. Later, in 2021,
GBRAS-Net [33], a significant advancement, followed Zhu-
Net as inspiration for a new direction, which combined
depthwise separable convolutional layers with “skip
connections” and leveraged SRM filter bank preprocessing in
nontrainable mode. GBRAS-Net successfully built upon
earlier methods, outperforming the model’s performance on
benchmark datasets BOWS and BOSSBase v1.01. Lin et al.
[18] devised a multifrequency residual convolutional neural
network (MRF-CNN) aimed at detecting color image
steganography by leveraging multiscale analysis technology to
extract steganographic noise from distinct frequency
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-

Volumetric
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components, resulting in a more efficient and lightweight
multifrequency model architecture. Attention mechanisms
were added for additional architectural improvements,
enhancing the ability of the CNN to focus on slight marks of
concealed data to enhance the model’s detection accuracy and
recognition efficiency [34]. Recently, a new architecture
called HSDetect-Net [20] presented a fuzzy logic layer as part
of the CNN structure, which enhanced the network’s ability to
accurately detect concealed information. In conjunction with
small convolutional kernels, HSDetect-Net was lightweight.
Still, the presented architecture does not always provide the
best accuracy for every steganography situation.

3. METHODOLOGY

The suggested framework for blind image steganalysis is
made up of four main parts: preprocessing, multi-wavelet
feature extraction, 3D CNN feature learning, and
classification, as illustrated in Figure 1.
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Figure 1. The block diagram of the proposed model

3.1 Preprocessing

The images that are part of the dataset, either cover or stego
images, are initially standardized. The images are resized and
normalized for consistency and to minimize complicated
calculations prior to feature extraction, which sets the data for
wavelet decomposition.

3.2 Multi-wavelet feature extraction

The process of extracting wavelet features uses the DWT to
capture the spatial and frequency-domain information. DWT
tackles the problem of non-stationary signal decomposition by
using wavelets—functions confined in both time and
frequency—produced by scaling and translating a mother
wavelet. DWT decomposes each image into multiple
subbands: Both low-frequency approximation and high-
frequency detail components.

Given an input image 1 € R®™*W, denote an input grayscale
image, the DWT decomposes it into approximation and detail
subbands at level 1 using a chosen wavelet basis -

(LLO, LHO, HLO, HH®}= DWT WV (1, v), (1)

where, LLE/? is the low-frequency approximation and LH (l),

H LS;,), and H H$ ) are the high-frequency detail components.
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To capture complementary information, we apply DWT
using multiple wavelet families ¥ = {y,, v, ..., wr} across L
decomposition levels. The resulting volumetric representation
¥V is obtained by stacking only low-frequency subbands across
a specific level, 1, and wavelet families:

V = stack({(LLY Y € ¥,1=1,...,L), ©)

Depending on only low-frequency to form the volumetric
representation since this band carries global statistical
structure and salient image content that machine-learning
models use for classification [35, 36]. In addition, CNN can
extract stable and discriminative features more effectively
from low-frequency coefficients for detecting hidden data
[37].

The stacked volumetric representation using Eq. (2) serves
as input to the 3D CNN, enabling volumetric convolutions to
jointly model both spatial and frequency-domain
dependencies. Three distinct wavelet families are used —
Symlets, Daubechies, and Biorthogonal — each providing
complementary representations of the same image.
Incorporating multiple wavelets improves robustness across
diverse embedding algorithms by capturing subtle directional
edges or noise residues missed by a single wavelet.
Furthermore, employing three wavelets enhances the model’s
ability to generalize across different steganographic
techniques.



The resulting subband coefficients are stacked into a
volumetric feature construction to form a three-dimensional
representation, which preserves multi-resolution
dependencies. This volumetric input preserves crucial inter-
band and intra-band dependencies, enabling the detection of
subtle embedding traces that purely spatial-domain models
may overlook. In addition, this structured input is particularly
suited for 3D CNN processing, as it allows the network to
jointly analyze correlations across both spatial and frequency
domains.

3.3 3D convolutional neural network

In this paper, we propose a volumetric-based 3D CNN
model for blind steganalysis. The volumetric DWT features
are fed into a 3D CNN designed to exploit cross-band
relationships. Each volume contains information to represent
spatial and frequency information relating to the cover and
stego images.

The first stage of this architecture is a three-dimensional
convolutional layer, with a kernel of size 5x5x5, with 16
filters, followed by a Rectified Linear Unit (ReLU) non-
linearity. This stage captures the information of low-level
spatial-frequency features while maintaining small embedding
features. Subsequently, 3D max pooling (with a stride of
2x2x2) reduces the size of the 3D feature maps, enhancing the
model's robustness to noise. The next convolutional layer
block is another 5x5x5 convolutional layer with 32 filters,
followed again by a ReLU non-linearity, and a 3D pooling
layer block. Chosen smaller kernels are inadequate to capture
the correlation that occurs within the local neighbourhoods of
the wavelet subband, whereas larger kernels to a create
unnecessary complications for the computation and offer no
improvements to performance. Therefore, selecting a medium-
sized kernel such as 5x5x5 successfully identifies
steganographic embedding artefacts without increasing costly
computation. Filters were increased from 16 to 32
progressively through the different layers, also by following
typical DL techniques that allow for hierarchical feature
abstraction while addressing concerns about reducing
overfitting on the limited size of the steganalysis datasets.

Once the feature extraction is done, the volumes are
flattened into a 1D vector and passed into fully connected
layers. These linked layers do the high-level reasoning by
mixing the extracted features into a discriminative
representation for classification. Dropout regularization can be
used at this point to mitigate overfitting. Finally, the softmax
classification layer provides the output probabilities that
identify the cover or stego images. Through this design, the 3D
CNN effectively learns to discriminate between cover and
stego images by exploiting subtle embedding cues that span
both spatial and frequency domains.

4. EXPERIMENT RESULTS AND DISCUSSION

To thoroughly assess performance, the system is examined
across three widely used benchmark datasets with a variety of
embedding algorithms and payload sizes. The typical metrics
are used: accuracy, precision, recall (sensitivity), and FI1-
score. The accuracy rate is calculated as follows.

TP+ TN

Accuaracy = ————
TP +TN + FP + FN

3)
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In this context, TP and TN represent the correct
classifications of the stego image and the cover image,
respectively, while FP and FN denote incorrect classifications
(misclassifications). By using these metrics, the evaluation
will reveal not only the correctness of the system overall but
also the system's robustness for detecting steganographic
images of different embedding difficulties.

4.1 Datasets and experimental setup

The evaluation of the proposed methodology was conducted
using two datasets: BOWS2 [38] and BOSSBase v1.01 [39].
Each of these datasets comprises 10,000 grayscale images.
The dimensions of each image within these datasets are
512%512 pixels. Furthermore, the image datasets incorporate
images that have undergone processing using specific
steganographic algorithms. Specifically, the datasets contain
images that have been manipulated using the S-UNIWARD,
WOW, MiPOD, HUGO, and HILL steganographic
algorithms.

The MATLAB R2020a version was employed to conduct
all experiments on a laptop equipped with an Intel Core i7-
9750H 2.6 GHz CPU and 16 GB of RAM.

4.2 Evaluation

Several experiments were conducted to evaluate the
proposed method. The set of experiments focuses on proving
the superiority of the proposed method to deal with various
embedding payload and their outperformance compared to the
existing work.

In the first experiment, the BOWS2 dataset was used. This
dataset contains stego images manipulated using the S-
UNIWARD and WOW steganography algorithms. For this
medium-sized dataset, the grayscale images are randomly split
into 80% training and 20% testing sets to balance sufficient
data representation with reduced training time. The accuracy
rate is calculated using Eq. (3). The results of accuracy,
precision, recall, and F1-score of this experiment are shown in
Table 1.

Table 1. The average of evaluation metrics for the proposed
schema using the BOWS?2 dataset

Model
Proposed model

Recall
92.0%

F1-Score
91.3%

Accuracy Precision
92.1% 90.8%

The results displayed in Table 1 demonstrate that the
proposed method achieves strong and balanced performance
across all four evaluation metrics on the BOWS2 dataset.
These findings underscore the ability of the model to
accurately identify cover and stego images and maintain a
reasonable trade-off of false positives and false negatives. The
high precision shows that the model produces, on average,
relatively few false alarms for stego images, while the high
recall signifies that the model can accurately detect the
collection of stego content, even when the artifacts of
embedding are small. The Fl-score, which reflects both
precision and recall scoring, supports the credibility of the
model evaluations across the various testing conditions.
Compared to traditional handcrafted feature approaches, the
proposed model has further benefits associated with its
volumetric multi-wavelet representation, allowing the 3D
CNN to extract richer spatial-frequency interactions. The data



overall suggests that the detection of steganography adheres to
quality and robustness based on the framework's performance
in real-life blind application, where reliability and
minimization of error are of the utmost concern.

The second experiment used the BOSSBase v1.01 database
to examine the performance of the proposed wavelet-based 3D
CNN framework under multiple embedding ratios. The
embedding algorithms used in this dataset are S-UNIWARD,
WOW, MiPOD, HUGO, and HILL steganographic
algorithms. The grayscale images are from this dataset, which
was randomly divided into 80% for training and 20% for
testing. The accuracy rates were analyzed using Eq. (3) to
determine the overall accuracy rate. The efficiency rates for
this experiment are shown in Table 2 and Figure 2,
respectively.

Table 2. Accuracy of the various embedding ratios for the
proposed technique with the BOSSBase v1.01 dataset

Embedding Ratio (%) TP FN TN FP Accuracy
10 905 95 806 194  85.5%
20 912 88 831 169  87.2%
30 923 77 841 159  88.2%
40 936 64 856 144  89.6%
50 941 59 862 138  90.1%
100 952 48 876 134 91.4%
Accuracy rates vs. Embedding ratio
92
91
590
@ 89
=]
S 88
Ly
86
85
0 10 20 30 40 50 o0 70 80 90 100
Embedding ratio

Figure 2. The accuracy values of various embedding ratios

The results in Table 2 and Figure 2 showcase the
performance of the new wavelet-based 3D CNN framework at
alternate embedding ratios. The results confirmed that the
method clearly demonstrated effectiveness in detecting
steganographic content even at lower payloads. At an
embedding ratio of 10%, the model obtains an accuracy of
85.5%, demonstrating the ability to discern modest distortions,
which on many occasions are difficult to determine. However,
this accuracy is considered insufficient in information security
applications, which shows the shortcomings of the proposed
method; it introduces a limitation at very low payload. The
performance improved incrementally with increased
embedding ratios, as accuracy improved from 87.2% at 20%
to 90.1% at 50%. The maximum accuracy rate of 91.4% was
achieved at a full embedding ratio (100%), thereby validating
the proposed framework under a more robust embedding ratio.
This increase in accuracy reflected the model's performance in
distinguishing the different strengths of the embedding
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artifact, since it remained consistent in the detection of each
cover and stego class equally.

Furthermore, the low false negative rates of results
presented in Table 2 established reliability in the model's
capacity to mitigate the missed detection of undetected stego
images to perform hidden communication for security
purposes; that is of paramount importance for applications
from a security perspective. If not, the true positive and true
negative rates for each payload were stable during testing,
which indicates that the model was not overfitting toward
either class, which is typically a challenge of steganalysis tasks
in uneven class distributions.

4.3 Comparing the outcomes with the existing techniques

The accuracy of five prominent models of steganalysis,
Yedroudj-Net, Zhu-Net, GBRAS-Net, Bayu-Net, and the
Proposed Model, is compared in this section, using the two
steganography algorithms S-UNIWARD and WOW, as
described in Table 3.

This comparative analysis examines the efficiency of these
techniques in identifying stego images with varied
steganography methods; it was compared to DL techniques.
By analyzing the accuracy results, we can determine where the
model and algorithm pairs are most effective in steganalysis.
A comprehensive study was conducted in terms of five models
of steganalysis, Yedroudj-Net, Zhu-Net, GBRAS-Net, Bayu-
Net, and the proposed method, based on S-UNIWARD and
WOW algorithms with a payload of 0.4 bpp, demonstrating
substantial improvements in the evaluation performance
measures, especially accuracy.

Table 3. Accuracy comparison for the 3DCNN model and
existing techniques using the BOSSBase v1.01 dataset

Model S-UNIWARD  WOW
Yedroudj et al.’s method [21] 77.2 84.1
Zhang et al.’s method [32] 80.1 84.4
Reinel et al.’s method [33] 81.4 85.9
Triwibowo et al.’s method [40] 83.7 86.4
Proposed 3D CNN 85.1 89.2

The results presented in Table 3 indicate that the wavelet-
based 3D CNN model we introduced has a better detection
accuracy than some leading CNN architectures on the
BOSSBase v1.01 dataset using the S-UNIWARD and WOW
embedding algorithms. Our accuracies of 85.1% (S-
UNIWARD) and 89.2% (WOW) surpass those of existing
work, and the consistent performance shows that leveraging
multi-wavelet feature representations in volumetric 3D
convolutions increases performance by capturing spatial—
frequency dependencies in a stronger way than a conventional
2D CNN architecture. The fact that these gains are larger when
the WOW embedding is used suggests that the proposed model
is better able to detect adaptive steganography methods that
introduce very localized and subtle distortions.

When comparing the suggested model to Yedroudj-Net,
there is a marked improvement, as both WOW (5.1%) and S-
UNIWARD methods (7.9%) accuracy increased from the
proposed model. Results of the comparison to other models
will be discussed below. As discussed, the results show the
suggested model has increased detection accuracy and
generalization across embedding algorithms and offers a
strong approach for real-world applications of blind
steganalysis.



Table 4. Comparing the accuracy of our proposed model
with SA-CNN and Simulated Dual-CNN using the
BOSSBase v1.01 dataset

Hiding Rate Accuracy
(bpp) CNN Network (%)
Simulated Dual-CNN [41] 50
0.1 SA-CNN [42] 60
Proposed model 85.5
Simulated Dual-CNN [41] 66.67
0.5 SA-CNN [42] 76.67
Proposed model 90.1
Simulated Dual-CNN [41] 80
1.0 SA-CNN [42] 90
Proposed model 914

Table 5. Comparison of suggested models, ablation, and DL
performance measures for image steganalysis on the BOWS-

2 dataset
Model Accuracy
LEA [43] 76.334%
MLR [44] 77.509%
RL-GAN [45] 79.601%

Proposed method 92.1%

Table 4 presents the accuracy for concealing rates of 0.1,
0.5, and 1.0 bpp for both SA-CNN and Simulated Dual-CNN.
This table demonstrates that the proposed approach
outperforms the SA-CNN and Simulated Dual-CNN. In fact,
the suggested technique achieves an accuracy of 85.5%,
90.1%, and 91.4% for concealing rates of 0.1 bpp, 0.5 bpp, and
1.0 bpp, respectively. In contrast, Simulated Dual-CNN
obtains 50%, 66.67%, and 80% accuracy for the same
concealing rates.

The suggested model was rigorously compared to three
other DL models throughout the evaluation phase: LEA [43],
MLR [44], and RL-GAN [45]. To evaluate the effect of the
accuracy components in our suggested model, we also carried
out ablation experiments. Table 5 provides a summary of the
outcomes of these studies for the BOWS-2 datasets. The
significant performance difference comes from using a multi-
wavelet three-dimensional representation of the direct model
of high-frequency steganographic artifacts through the
proposed method.

5. CONCLUSIONS

This paper has presented a novel framework for blind image
steganalysis that integrates wavelet decomposition with 3D
CNN. Whereas a 2D CNN approach is limited to the
dependencies of spatially constituted pixels, our method
leverages DWT to capture spatial-frequency characteristics to
enhance the sensitivity to subtle embedding artifacts that
conventional spatial-domain approaches often overlook. The
ability to use volumetric convolution enables joint learning of
inter-band correlations, thereby improving the discriminative
power of the steganalysis process.

Experimental evaluation on the BOSSBase v1.01 and
BOWS2 data sets demonstrates that the proposed method
achieves better detection accuracy compared to the existing
2D CNN-based models. Overall, these findings illustrate the
potential efficacy of wavelet-guided volumetric learning
technology to distinguish between embedded values or
messages in blind steganalysis, especially when the
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embedding process presents unavoidable perceptible
distortions.

Moreover, the proposed framework is shown to contribute
a general and data-driven research framework to blindly
distinguish between embedding techniques without prior
knowledge of the embedding algorithm. The dimension of
offering a data-driven research structure ensures the proposed
framework is useful in real-world digital forensic and
cybersecurity applications where unknown, evolving
steganographic techniques create challenges.

Future work will consider integrating hybrid spatial-
frequency feature learning, specifically attention-based hybrid
feature learning, to enhance feature extraction. Additionally,
we will explore practical implementations of the proposed
architecture with lightweight implementations. possible in the

real-world digital forensics and cybersecurity settings.
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