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Blind steganalysis aims to determine whether a piece of media possesses hidden 

information without prior knowledge of the embedding algorithm. This task has become 

increasingly challenging as steganographic techniques continue to evolve rapidly. In this 

paper, we present a novel approach that integrates wavelet-based feature representations 

with a three-dimensional deep convolutional neural network (3D CNN) for robust blind 

image steganography. The discrete wavelet transform (DWT) is employed to capture 

spatial–frequency characteristics across subbands, enabling the preservation of subtle 

embedding distortions that conventional spatial-domain approaches often overlook. These 

wavelet-based feature volumes serve as inputs to the 3D CNN, which jointly models inter-

band, spatial, and frequency-domain dependencies through volumetric convolution. To 

rectify class imbalance and increase classification robustness, we introduce a custom 

weighted classification layer. We conducted extensive experiments on the BOWS2 and 

BOSSBase v1.01 datasets, and the results demonstrate that the proposed method 

outperforms baseline models using 2D CNN architectures in terms of accuracy, precision, 

recall, and F1-score across all embedding schemes. Our results demonstrate the potential 

of combining wavelet-domain methods with volumetric deep learning (DL) to improve 

blind steganalysis in practical digital forensics and cybersecurity applications.  
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1. INTRODUCTION

The rise of digital communication has made images, audio, 

and video the most prominent examples of data transmitted via 

public networks. Digital communication allows for global 

connections through possibility, but it also creates significant 

risks for security. Since information could be obscured within 

digital media by means of steganography, this aspect raises 

key policy concerns [1-3]. Steganography can create malicious 

abuse cases, clandestine communications, and violate privacy 

by embedding hidden data into otherwise benign content. 

Steganalysis is a counter-strategy to steganography that seeks 

to discover secret information regardless of which 

steganographic process has been employed to conceal the 

information [3-6]. Steganalysis targets to discover underlying 

patterns and extract hidden information. Perhaps most 

interestingly, secret analysis is able to do its job without 

requiring prior knowledge of which specific embedding 

algorithm was used. Thus, secret analysis is a means for 

examining information to discover hidden data, regardless of 

how it was previously structured or encoded. Efforts to 

uncover hidden information have grown more difficult as 

advanced embedding algorithms feature subtle, high-capacity, 

and adaptive methods [7, 8]. 

Classic approaches to steganalysis based on statistical 

features such as pixel correlations or histogram derivatives 

typically do not account for these subtle changes [9, 10]. 

Recently, deep learning (DL)-based methods that integrated 

the feature extraction and classification stages into one 

framework [11, 12]. CNNs have performed particularly well 

in modeling spatial artifacts introduced during the embedding 

process [13-16]. However, CNNs have limitations, which 

include the following: 

• Spatially constrained features: 2D CNNs effectively

operate in the spatial domain only and ignore characteristics 

from the frequency domain, which is where embedding 

artifacts are often more readily identifiable [15, 17, 18].  

• Expensive to compute: deep networks have large

parameter spaces and require a larger amount of data to train 

on, as well as more processing resources to run, which may 

not be practical in crowded, real-world scenarios [12]. 

• Limited robustness: The models generalize weakly to

other payload sizes and embedding algorithms, hence not as 

trustworthy for forensic or security uses [19-21]. 

To tackle such limitations, a wavelet-domain three-

dimensional deep convolutional neural network (3D CNN) 

architecture was proposed for blind image steganalysis. To 

overcome limitations of conventional 2D CNNs, we utilized 

multi-resolution discrete wavelet transform (DWT) features 

that co-harness spatial and frequency domain information. By 
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taking wavelet subbands volumetric inputs into account, the 

proposed 3D CNN can learn between-band relationships and, 

therefore, is more capable of revealing hidden steganographic 

signals. In addition, we have used a weighted classification 

layer specifically customized for dealing with class imbalance 

and enhancing detection performance. The key contributions 

of this paper are: 

1. Using wavelet domain priors in DL: We suggest 

implementing multi-resolution DWT subbands, which serve 

as structured inputs to identify slight embedding artifacts that 

spatial CNNs may not achieve. 

2. New class of 3D CNN for cross-domain feature learning: 

Unlike existing 2D CNNs, using volumetric convolutions 

enables us to capture spatial patterns and correlations between 

frequency domains, enhancing sensitivity to intricate 

steganography distortions.  

3. Enhanced robustness and accuracy: Through extensive 

experiments on benchmark datasets, our method consistently 

outperforms state-of-the-art CNN baselines in terms of 

accuracy, precision, recall, and F1-score, particularly across 

diverse embedding algorithms and payloads.  

4. Generalizable blind steganalysis framework: The 

proposed method is independent of the embedding algorithm 

knowledge, making it adaptable for practical forensic and 

cybersecurity applications where the embedding strategy is 

unknown.  

The remainder of this paper is organized as follows. Section 

2 reviews related work in conventional and DL-based 

steganalysis. Section 3 describes the proposed methodology in 

detail. Section 4 presents and discusses the experimental 

results and performance comparisons. Finally, conclusions 

based on the reality revealed in this work are drawn in Section 

5. 

 

 

2. RELATED WORK 

 

Due to advances in applying artificial intelligence 

techniques to address steganalysis in digital images, the 

performance outcomes have increased the general interest in 

this topic. Consequently, two categories —conventional 

learning and DL — have been recognized. In addition, a 

combination of machine learning and DL has been presented 

[22]. Conventionally, there are spatial and transform methods 

based on feature extraction and machine learning. One of these 

approaches is given by Chhikara and Bansal [23] that utilizes 

gray-level co-occurrence matrix (GLCM) features extracted 

from the images, which are then fed into a classifier to 

differentiate between cover and stego images. Similarly, Gui 

et al. [24] introduced another hand-crafted approach to 

compute local binary pattern (LBP) features in conjunction 

with a linear support vector machine (SVM) to detect hidden 

data. The histogram correlation derivatives have exhibited far 

more significant fluctuations. The first derivative of the 

histogram correlation can be used to identify LSB-

steganography, as indicated in the study by Abdali and 

Hussain [25]. Abdali and Hussain [26] proposed a differential 

histogram-correlation approach for spatially identifying secret 

information in images. Differential histogram-correlation 

analyzes color and grayscale images with varying derivative 

orders. In some analyses, it is discovered that the first and 

second derivatives are insufficient; thus, when the ratio of 

stego to cover images is tiny, the third derivative is required to 

uncover the concealed information. This technique allows a 

little secret message to get past the system. Shankar and 

Azhakath [27] designed a model to extract features from the 

spatial and frequency domains to distinguish between stego 

and cover images. Their method concatenates discrete cosine 

transform (DCT) features with Markov features to create a 

comprehensive feature vector to train the classifier. They 

utilized both standard SVM and an enhanced version 

incorporating particle swarm optimization to SVM 

(SVM+PSO) to improve detection accuracy.  In another 

emphasis of research, Akram et al. [28] proposed a binary 

classification-based SVM to determine if an image was either 

a stego or a cover source image by extracting curvelet 

histogram features. This proposed model was evaluated on the 

low- and high-payload steganography images without shifting 

features as expected, and this model performed decently at 

identifying stego images, as the additional embedding value 

changes the dependence on each pixel, but these pixel 

correlation values would validate the image value changes and 

thus not determine if a tampering had occurred through a 

straightforward correlative analysis of a stego image. 

DL has become a strong method in steganalysis due to the 

weaknesses in manual feature engineering [22]. An 

unsupervised technique [29] with stacked convolutional 

autoencoders first introduced DL to steganalysis. This early 

attempt was ultimately not successful, obtaining only 48% 

accuracy. Supervised learning emerged with Qian et al. [13] 

proposing a five-layer CNN that had a Gaussian activation 

function. This type of work was an improvement, but 

thresholds are still low compared to the other known 

steganalysis work. Qian et al. [14] improved upon their model 

from the previous work [13] by using transfer learning - rather 

than a specially made CNN—indicating that transfer learning 

is effective and that it can extract and learn better features for 

image steganalysis, particularly at low payload sizes. 

Following that work, Xu et al. [15] proposed a CNN 

architecture that utilized a number of batch normalization 

layers. Overall, this architecture was much better at 

distinguishing cover and stego images; thus, it became a 

critical and formative method for CNN-based models in the 

previous studies [16, 30, 31]. 

However, adding many batch layers raised concerns about 

the model's reduced stability and generalization. To counter 

this problem, Wu et al. [19] proposed a different architecture 

for a CNN with the aim of increasing the accuracy of various 

steganography techniques by utilizing shared normalization 

instead of batch normalization. The layer utilized a shared set 

of statistics to normalize input data to solve the issue of 

network learning instability, which resulted in better detection 

accuracy and generalization. Boroumand et al. [17] presented 

a DL model of an end-to-end steganalysis detection network. 

The detection model has a deep residual architecture that 

minimizes heuristics and external constraints, thus achieving 

state-of-the-art detection accuracy through both spatial-

domain and JPEG steganography tasks. Following in this 

pattern, Zhang et al. [32] proposed a compact CNN framework 

intended for spatial-domain steganography. The framework of 

this model utilized a low-dimensional kernel as a method of 

reducing the number of parameters while still preserving local 

feature representation. In addition, the model implemented 

separable convolutions and spatial pyramid pooling to receive 

a better detection performance. Yedroudj-Net [21] builds on 

the core ideas behind Xu-Net and Ye-Net while improving the 

architecture of Yedroudj-Net by implementing SRM, TLU 

activation, and batch normalization. It also integrates adaptive 
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filter banks and uses data augmentation, both of which provide 

substantial improvements in steganography detection 

performance. Overall, despite some advancement with 

Yedroudj-Net, there is still complexity that could cause 

overfitting, especially when little data is available for training. 

Therefore, from a generality perspective, one would need to 

be careful about hyperparameter tuning. ZhuNet employs two 

separable convolutional layers, which are also inspired by 

precedent designs noted in recent work [32]. Later, in 2021, 

GBRAS-Net [33], a significant advancement, followed Zhu-

Net as inspiration for a new direction, which combined 

depthwise separable convolutional layers with “skip 

connections” and leveraged SRM filter bank preprocessing in 

nontrainable mode. GBRAS-Net successfully built upon 

earlier methods, outperforming the model’s performance on 

benchmark datasets BOWS and BOSSBase v1.01. Lin et al. 

[18] devised a multifrequency residual convolutional neural 

network (MRF-CNN) aimed at detecting color image 

steganography by leveraging multiscale analysis technology to 

extract steganographic noise from distinct frequency 

components, resulting in a more efficient and lightweight 

multifrequency model architecture. Attention mechanisms 

were added for additional architectural improvements, 

enhancing the ability of the CNN to focus on slight marks of 

concealed data to enhance the model’s detection accuracy and 

recognition efficiency [34]. Recently, a new architecture 

called HSDetect-Net [20] presented a fuzzy logic layer as part 

of the CNN structure, which enhanced the network’s ability to 

accurately detect concealed information. In conjunction with 

small convolutional kernels, HSDetect-Net was lightweight. 

Still, the presented architecture does not always provide the 

best accuracy for every steganography situation. 

 

 

3. METHODOLOGY 

 

The suggested framework for blind image steganalysis is 

made up of four main parts: preprocessing, multi-wavelet 

feature extraction, 3D CNN feature learning, and 

classification, as illustrated in Figure 1.

 

 
 

Figure 1. The block diagram of the proposed model 

 

3.1 Preprocessing 

 

The images that are part of the dataset, either cover or stego 

images, are initially standardized. The images are resized and 

normalized for consistency and to minimize complicated 

calculations prior to feature extraction, which sets the data for 

wavelet decomposition. 

 

3.2 Multi-wavelet feature extraction 

 

The process of extracting wavelet features uses the DWT to 

capture the spatial and frequency-domain information. DWT 

tackles the problem of non-stationary signal decomposition by 

using wavelets—functions confined in both time and 

frequency—produced by scaling and translating a mother 

wavelet. DWT decomposes each image into multiple 

subbands: Both low-frequency approximation and high-

frequency detail components. 

Given an input image I ∈ RH×W, denote an input grayscale 

image, the DWT decomposes it into approximation and detail 

subbands at level l using a chosen wavelet basis ψ: 

 

{𝐿𝐿(𝑙), 𝐿𝐻(𝑙), 𝐻𝐿(𝑙), 𝐻𝐻(𝑙)}= 𝐷𝑊𝑇(𝑙)(𝐼, 𝜓), (1) 

 

where, 𝐿𝐿𝜓
(𝑙)

 is the low-frequency approximation and 𝐿𝐻𝜓
(𝑙)

, 

𝐻𝐿𝜓
(𝑙)

, and 𝐻𝐻𝜓
(𝑙)

 are the high-frequency detail components. 

To capture complementary information, we apply DWT 

using multiple wavelet families Ψ = {ψ1, ψ2, ..., ψF} across L 

decomposition levels. The resulting volumetric representation 

V is obtained by stacking only low-frequency subbands across 

a specific level, l, and wavelet families: 

 

𝑉 = 𝑠𝑡𝑎𝑐𝑘({𝐿𝐿𝜓
(𝑙)

}𝜓 ∈ 𝛹, 𝑙 = 1, . . . , 𝐿),  (2) 

 

Depending on only low-frequency to form the volumetric 

representation since this band carries global statistical 

structure and salient image content that machine-learning 

models use for classification [35, 36]. In addition, CNN can 

extract stable and discriminative features more effectively 

from low-frequency coefficients for detecting hidden data 

[37]. 

The stacked volumetric representation using Eq. (2) serves 

as input to the 3D CNN, enabling volumetric convolutions to 

jointly model both spatial and frequency-domain 

dependencies. Three distinct wavelet families are used — 

Symlets, Daubechies, and Biorthogonal — each providing 

complementary representations of the same image. 

Incorporating multiple wavelets improves robustness across 

diverse embedding algorithms by capturing subtle directional 

edges or noise residues missed by a single wavelet. 

Furthermore, employing three wavelets enhances the model’s 

ability to generalize across different steganographic 

techniques.  
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The resulting subband coefficients are stacked into a 

volumetric feature construction to form a three-dimensional 

representation, which preserves multi-resolution 

dependencies. This volumetric input preserves crucial inter-

band and intra-band dependencies, enabling the detection of 

subtle embedding traces that purely spatial-domain models 

may overlook. In addition, this structured input is particularly 

suited for 3D CNN processing, as it allows the network to 

jointly analyze correlations across both spatial and frequency 

domains.  

 

3.3 3D convolutional neural network 

 

In this paper, we propose a volumetric-based 3D CNN 

model for blind steganalysis. The volumetric DWT features 

are fed into a 3D CNN designed to exploit cross-band 

relationships. Each volume contains information to represent 

spatial and frequency information relating to the cover and 

stego images. 

The first stage of this architecture is a three-dimensional 

convolutional layer, with a kernel of size 5×5×5, with 16 

filters, followed by a Rectified Linear Unit (ReLU) non-

linearity. This stage captures the information of low-level 

spatial-frequency features while maintaining small embedding 

features. Subsequently, 3D max pooling (with a stride of 

2×2×2) reduces the size of the 3D feature maps, enhancing the 

model's robustness to noise. The next convolutional layer 

block is another 5×5×5 convolutional layer with 32 filters, 

followed again by a ReLU non-linearity, and a 3D pooling 

layer block.  Chosen smaller kernels are inadequate to capture 

the correlation that occurs within the local neighbourhoods of 

the wavelet subband, whereas larger kernels to a create 

unnecessary complications for the computation and offer no 

improvements to performance. Therefore, selecting a medium-

sized kernel such as 5×5×5 successfully identifies 

steganographic embedding artefacts without increasing costly 

computation. Filters were increased from 16 to 32 

progressively through the different layers, also by following 

typical DL techniques that allow for hierarchical feature 

abstraction while addressing concerns about reducing 

overfitting on the limited size of the steganalysis datasets. 

Once the feature extraction is done, the volumes are 

flattened into a 1D vector and passed into fully connected 

layers. These linked layers do the high-level reasoning by 

mixing the extracted features into a discriminative 

representation for classification. Dropout regularization can be 

used at this point to mitigate overfitting. Finally, the softmax 

classification layer provides the output probabilities that 

identify the cover or stego images. Through this design, the 3D 

CNN effectively learns to discriminate between cover and 

stego images by exploiting subtle embedding cues that span 

both spatial and frequency domains. 

 

 

4. EXPERIMENT RESULTS AND DISCUSSION 

 

To thoroughly assess performance, the system is examined 

across three widely used benchmark datasets with a variety of 

embedding algorithms and payload sizes. The typical metrics 

are used: accuracy, precision, recall (sensitivity), and F1-

score. The accuracy rate is calculated as follows. 

 

𝐴𝑐𝑐𝑢𝑎𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  (3) 

In this context, TP and TN represent the correct 

classifications of the stego image and the cover image, 

respectively, while FP and FN denote incorrect classifications 

(misclassifications). By using these metrics, the evaluation 

will reveal not only the correctness of the system overall but 

also the system's robustness for detecting steganographic 

images of different embedding difficulties. 

 

4.1 Datasets and experimental setup  

 

The evaluation of the proposed methodology was conducted 

using two datasets: BOWS2 [38] and BOSSBase v1.01 [39]. 

Each of these datasets comprises 10,000 grayscale images. 

The dimensions of each image within these datasets are 

512×512 pixels. Furthermore, the image datasets incorporate 

images that have undergone processing using specific 

steganographic algorithms. Specifically, the datasets contain 

images that have been manipulated using the S-UNIWARD, 

WOW, MiPOD, HUGO, and HILL steganographic 

algorithms. 

The MATLAB R2020a version was employed to conduct 

all experiments on a laptop equipped with an Intel Core i7-

9750H 2.6 GHz CPU and 16 GB of RAM. 

 

4.2 Evaluation 

 

Several experiments were conducted to evaluate the 

proposed method. The set of experiments focuses on proving 

the superiority of the proposed method to deal with various 

embedding payload and their outperformance compared to the 

existing work.  

In the first experiment, the BOWS2 dataset was used. This 

dataset contains stego images manipulated using the S-

UNIWARD and WOW steganography algorithms.  For this 

medium-sized dataset, the grayscale images are randomly split 

into 80% training and 20% testing sets to balance sufficient 

data representation with reduced training time. The accuracy 

rate is calculated using Eq. (3). The results of accuracy, 

precision, recall, and F1-score of this experiment are shown in 

Table 1. 

 

Table 1. The average of evaluation metrics for the proposed 

schema using the BOWS2 dataset 

 
Model Accuracy Precision Recall F1-Score 

Proposed model 92.1% 90.8% 92.0% 91.3% 

 

The results displayed in Table 1 demonstrate that the 

proposed method achieves strong and balanced performance 

across all four evaluation metrics on the BOWS2 dataset. 

These findings underscore the ability of the model to 

accurately identify cover and stego images and maintain a 

reasonable trade-off of false positives and false negatives. The 

high precision shows that the model produces, on average, 

relatively few false alarms for stego images, while the high 

recall signifies that the model can accurately detect the 

collection of stego content, even when the artifacts of 

embedding are small. The F1-score, which reflects both 

precision and recall scoring, supports the credibility of the 

model evaluations across the various testing conditions. 

Compared to traditional handcrafted feature approaches, the 

proposed model has further benefits associated with its 

volumetric multi-wavelet representation, allowing the 3D 

CNN to extract richer spatial-frequency interactions. The data 
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overall suggests that the detection of steganography adheres to 

quality and robustness based on the framework's performance 

in real-life blind application, where reliability and 

minimization of error are of the utmost concern. 

The second experiment used the BOSSBase v1.01 database 

to examine the performance of the proposed wavelet-based 3D 

CNN framework under multiple embedding ratios. The 

embedding algorithms used in this dataset are S-UNIWARD, 

WOW, MiPOD, HUGO, and HILL steganographic 

algorithms. The grayscale images are from this dataset, which 

was randomly divided into 80% for training and 20% for 

testing. The accuracy rates were analyzed using Eq. (3) to 

determine the overall accuracy rate. The efficiency rates for 

this experiment are shown in Table 2 and Figure 2, 

respectively. 

 

Table 2. Accuracy of the various embedding ratios for the 

proposed technique with the BOSSBase v1.01 dataset 

 
Embedding Ratio (%) TP FN TN FP Accuracy 

10 905 95 806 194 85.5% 

20 912 88 831 169 87.2% 

30 923 77 841 159 88.2% 

40 936 64 856 144 89.6% 

50 941 59 862 138 90.1% 

100 952 48 876 134 91.4% 

 

 
 

Figure 2. The accuracy values of various embedding ratios 

 

The results in Table 2 and Figure 2 showcase the 

performance of the new wavelet-based 3D CNN framework at 

alternate embedding ratios. The results confirmed that the 

method clearly demonstrated effectiveness in detecting 

steganographic content even at lower payloads. At an 

embedding ratio of 10%, the model obtains an accuracy of 

85.5%, demonstrating the ability to discern modest distortions, 

which on many occasions are difficult to determine. However, 

this accuracy is considered insufficient in information security 

applications, which shows the shortcomings of the proposed 

method; it introduces a limitation at very low payload. The 

performance improved incrementally with increased 

embedding ratios, as accuracy improved from 87.2% at 20% 

to 90.1% at 50%. The maximum accuracy rate of 91.4% was 

achieved at a full embedding ratio (100%), thereby validating 

the proposed framework under a more robust embedding ratio. 

This increase in accuracy reflected the model's performance in 

distinguishing the different strengths of the embedding 

artifact, since it remained consistent in the detection of each 

cover and stego class equally.  

Furthermore, the low false negative rates of results 

presented in Table 2 established reliability in the model's 

capacity to mitigate the missed detection of undetected stego 

images to perform hidden communication for security 

purposes; that is of paramount importance for applications 

from a security perspective. If not, the true positive and true 

negative rates for each payload were stable during testing, 

which indicates that the model was not overfitting toward 

either class, which is typically a challenge of steganalysis tasks 

in uneven class distributions. 

 

4.3 Comparing the outcomes with the existing techniques 

 

The accuracy of five prominent models of steganalysis, 

Yedroudj-Net, Zhu-Net, GBRAS-Net, Bayu-Net, and the 

Proposed Model, is compared in this section, using the two 

steganography algorithms S-UNIWARD and WOW, as 

described in Table 3.  

This comparative analysis examines the efficiency of these 

techniques in identifying stego images with varied 

steganography methods; it was compared to DL techniques. 

By analyzing the accuracy results, we can determine where the 

model and algorithm pairs are most effective in steganalysis. 

A comprehensive study was conducted in terms of five models 

of steganalysis, Yedroudj-Net, Zhu-Net, GBRAS-Net, Bayu-

Net, and the proposed method, based on S-UNIWARD and 

WOW algorithms with a payload of 0.4 bpp, demonstrating 

substantial improvements in the evaluation performance 

measures, especially accuracy. 

 

Table 3. Accuracy comparison for the 3DCNN model and 

existing techniques using the BOSSBase v1.01 dataset 

 
Model S-UNIWARD WOW 

Yedroudj et al.’s method [21] 77.2 84.1 

Zhang et al.’s method [32] 80.1 84.4 

Reinel et al.’s method [33] 81.4 85.9 

Triwibowo et al.’s method [40] 83.7 86.4 

Proposed 3D CNN 85.1 89.2 

 

The results presented in Table 3 indicate that the wavelet-

based 3D CNN model we introduced has a better detection 

accuracy than some leading CNN architectures on the 

BOSSBase v1.01 dataset using the S-UNIWARD and WOW 

embedding algorithms. Our accuracies of 85.1% (S-

UNIWARD) and 89.2% (WOW) surpass those of existing 

work, and the consistent performance shows that leveraging 

multi-wavelet feature representations in volumetric 3D 

convolutions increases performance by capturing spatial–

frequency dependencies in a stronger way than a conventional 

2D CNN architecture. The fact that these gains are larger when 

the WOW embedding is used suggests that the proposed model 

is better able to detect adaptive steganography methods that 

introduce very localized and subtle distortions.  

When comparing the suggested model to Yedroudj-Net, 

there is a marked improvement, as both WOW (5.1%) and S-

UNIWARD methods (7.9%) accuracy increased from the 

proposed model. Results of the comparison to other models 

will be discussed below. As discussed, the results show the 

suggested model has increased detection accuracy and 

generalization across embedding algorithms and offers a 

strong approach for real-world applications of blind 

steganalysis.  
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Table 4. Comparing the accuracy of our proposed model 

with SA-CNN and Simulated Dual-CNN using the 

BOSSBase v1.01 dataset 

 
Accuracy 

(%) 
CNN Network 

Hiding Rate 

(bpp) 

50 Simulated Dual-CNN [41] 

0.1 60 SA-CNN [42] 

85.5 Proposed model 

66.67 Simulated Dual-CNN [41] 

0.5 76.67 SA-CNN [42] 

90.1 Proposed model 

80 Simulated Dual-CNN [41] 

1.0 90 SA-CNN [42] 

91.4 Proposed model 

 

Table 5. Comparison of suggested models, ablation, and DL 

performance measures for image steganalysis on the BOWS-

2 dataset 

 
Model Accuracy 

LEA [43] 76.334% 

MLR [44] 77.509% 

RL-GAN [45] 79.601% 

Proposed method 92.1% 

 

Table 4 presents the accuracy for concealing rates of 0.1, 

0.5, and 1.0 bpp for both SA-CNN and Simulated Dual-CNN. 

This table demonstrates that the proposed approach 

outperforms the SA-CNN and Simulated Dual-CNN. In fact, 

the suggested technique achieves an accuracy of 85.5%, 

90.1%, and 91.4% for concealing rates of 0.1 bpp, 0.5 bpp, and 

1.0 bpp, respectively. In contrast, Simulated Dual-CNN 

obtains 50%, 66.67%, and 80% accuracy for the same 

concealing rates. 

The suggested model was rigorously compared to three 

other DL models throughout the evaluation phase: LEA [43], 

MLR [44], and RL-GAN [45]. To evaluate the effect of the 

accuracy components in our suggested model, we also carried 

out ablation experiments. Table 5 provides a summary of the 

outcomes of these studies for the BOWS-2 datasets. The 

significant performance difference comes from using a multi-

wavelet three-dimensional representation of the direct model 

of high-frequency steganographic artifacts through the 

proposed method. 

 

 

5. CONCLUSIONS 

 

This paper has presented a novel framework for blind image 

steganalysis that integrates wavelet decomposition with 3D 

CNN. Whereas a 2D CNN approach is limited to the 

dependencies of spatially constituted pixels, our method 

leverages DWT to capture spatial–frequency characteristics to 

enhance the sensitivity to subtle embedding artifacts that 

conventional spatial-domain approaches often overlook. The 

ability to use volumetric convolution enables joint learning of 

inter-band correlations, thereby improving the discriminative 

power of the steganalysis process. 

Experimental evaluation on the BOSSBase v1.01 and 

BOWS2 data sets demonstrates that the proposed method 

achieves better detection accuracy compared to the existing 

2D CNN-based models. Overall, these findings illustrate the 

potential efficacy of wavelet-guided volumetric learning 

technology to distinguish between embedded values or 

messages in blind steganalysis, especially when the 

embedding process presents unavoidable perceptible 

distortions.  

Moreover, the proposed framework is shown to contribute 

a general and data-driven research framework to blindly 

distinguish between embedding techniques without prior 

knowledge of the embedding algorithm. The dimension of 

offering a data-driven research structure ensures the proposed 

framework is useful in real-world digital forensic and 

cybersecurity applications where unknown, evolving 

steganographic techniques create challenges. 

Future work will consider integrating hybrid spatial-

frequency feature learning, specifically attention-based hybrid 

feature learning, to enhance feature extraction. Additionally, 

we will explore practical implementations of the proposed 

architecture with lightweight implementations.  possible in the 

real-world digital forensics and cybersecurity settings. 
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