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Secure data handling is paramount in energy production and management systems, where 

cyber threats pose significant risks to operational continuity. In response, this study 

proposes an integration of chaos bifurcation and the Polynomial High Order Fibonacci 

(PHOF) approach to fortify encryption protocols in critical energy infrastructures. The 

method combines polynomial-based Fibonacci sequences with chaotic iteration steps 

analyzed through bifurcation to generate non-linear keystreams. These keystreams deliver 

robust confusion and diffusion capabilities, effectively mitigating brute-force and 

statistical attacks. Experimental findings confirm substantial gains in randomness, 

validated by entropy assessments and avalanche effect tests. Moreover, chaos bifurcation 

analysis highlights the sensitivity of the system’s chaotic parameters, reinforcing security 

under varying conditions. Despite these layered mechanisms, the PHOF-chaotic scheme 

maintains a low computational burden, making it highly suitable for real-time data 

exchange within energy monitoring and control frameworks. Consequently, coupling 

PHOF with chaos bifurcation techniques significantly strengthens cybersecurity for 

energy systems, ensuring both reliable performance under operational demands and 

resilient protection against evolving cyber threats. 
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1. INTRODUCTION

The digital era has brought significant advancements in 

technology, transforming how data is created, stored, and 

transmitted. However, this rapid evolution has also introduced 

complex challenges in maintaining data security. One of the 

primary concerns is the increasing volume of data generated 

every second, ranging from personal information and financial 

transactions to corporate secrets and governmental records. 

This vast amount of data attracts cybercriminals seeking to 

exploit vulnerabilities for financial gain, espionage, or 

disruption [1, 2]. Cyber threats have become more 

sophisticated over time, including phishing, ransomware, 

malware, and denial-of-service attacks. Phishing attacks trick 

users into providing sensitive information, while ransomware 

encrypts data, demanding payment for its release. Malware 

can infiltrate systems to steal, corrupt, or destroy data, and 

denial-of-service attacks overwhelm networks, rendering them 

inoperable. The dynamic nature of these threats poses 

continuous challenges for cybersecurity experts. The 

proliferation of Internet of Things (IoT) devices has further 

complicated data security. Many IoT devices lack robust 

security features, making them easy targets for hackers. These 

devices, when compromised, can serve as entry points to larger 

networks, endangering sensitive data. Additionally, cloud 

computing, while offering scalable storage solutions, 

introduces risks related to data breaches, unauthorized access, 

and data loss. One of the critical challenges is the constant 

need for encryption methods that can withstand evolving 

threats [3]. While traditional encryption techniques such as 

RSA and AES remain widely used, they are increasingly being 

scrutinized due to potential vulnerabilities posed by future 

quantum computing advancements. This has led to the 

exploration of new encryption models, such as Fibonacci 

sequences and polynomial functions, which offer promising 

alternatives in the face of these emerging threats. This has 

spurred research into new encryption models, such as those 

based on Fibonacci sequences and polynomial functions, 

which offer promising alternatives due to their complexity and 

unpredictability. Human factors also contribute to data 

security challenges. Weak passwords, lack of awareness, and 

negligence in following security protocols make systems 

vulnerable. Organizations often face difficulties in ensuring 

that all employees adhere to best practices for data security, 

leading to potential breaches. Moreover, regulatory challenges 

add another layer of complexity. Data protection laws vary 

International Journal of Safety and Security Engineering 
Vol. 15, No. 10, October, 2025, pp. 2155-2167 

Journal homepage: http://iieta.org/journals/ijsse 

2155

https://orcid.org/0000-0002-5178-7806
https://orcid.org/0000-0002-4645-6148
https://orcid.org/0000-0003-0185-6364
https://orcid.org/0000-0001-9730-1405
https://orcid.org/0000-0002-3224-2376
https://orcid.org/0009-0006-6585-5159
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/ijsse.151018&domain=pdf


 

across regions, making it difficult for multinational 

organizations to comply with different standards 

simultaneously. Non-compliance can result in hefty fines and 

reputational damage. To address these challenges, continuous 

innovation in encryption methods is essential. Integrating 

Polynomial High Order Fibonacci (PHOF) models into 

encryption algorithms can enhance data security by providing 

more complex and resilient encryption keys. This method 

leverages the unpredictable nature of high-order polynomial 

sequences, making it harder for attackers to crack the 

encryption. The digital era's rapid technological advancements 

have made data security a critical concern. Sophisticated cyber 

threats, IoT vulnerabilities, human errors, and regulatory 

challenges necessitate the development of advanced 

encryption techniques. PHOF-based encryption presents a 

promising solution, significantly enhancing data security by 

introducing higher complexity into the key generation process. 

By replacing the linear recurrence of standard Fibonacci 

sequences with higher-order polynomial terms, the system 

generates more unpredictable and non-linear sequences. This 

increased complexity makes the key space exponentially 

larger and more resistant to cryptanalysis, ensuring that data 

remains secure even against evolving cyber threats. 

Conventional encryption methods such as RSA, AES, and 

DES have long been the backbone of data security. However, 

as technology evolves, these methods face increasing 

challenges. One significant limitation is their vulnerability to 

quantum computing, which can potentially break classical 

encryption algorithms through quantum algorithms like Shor’s 

algorithm. Additionally, conventional methods often rely on 

key management systems that can become weak points if not 

handled securely. Another limitation is the computational 

overhead of traditional encryption methods, especially when 

applied to large datasets or real-time communications. High 

processing power requirements can lead to inefficiencies in 

resource-constrained environments, such as IoT devices or 

embedded systems. Moreover, conventional encryption 

methods can be susceptible to side-channel attacks, where 

attackers exploit information leaked during the encryption 

process, such as timing information, power consumption, or 

electromagnetic leaks. Brute force attacks, although time-

consuming, remain a threat as computational power increases. 

There is also the challenge of maintaining key integrity and 

distribution. Public key infrastructures (PKI) are complex and 

require constant monitoring and updating, posing operational 

challenges. To address these limitations, new approaches are 

necessary. PHOF-based encryption offers an innovative 

solution by introducing more complex key generation 

mechanisms. The use of polynomial sequences adds 

unpredictability and robustness, making it harder for attackers 

to decipher encrypted data. Additionally, integrating noise 

with Fibonacci sequences provides an extra layer of security. 

This approach not only enhances security but also offers 

computational efficiency. By leveraging mathematical 

properties of polynomials and Fibonacci numbers, the 

encryption process can be optimized for various applications, 

including IoT, cloud computing, and secure communications. 

The need for new encryption approaches is evident in the face 

of emerging threats and technological advancements. PHOF-

based encryption presents a promising avenue to enhance data 

security [4-7]. 

Fibonacci sequences have been utilized in data encryption 

due to their unique mathematical properties and inherent 

complexity. The Fibonacci sequence, where each number is 

the sum of the two preceding ones, offers an unpredictable 

pattern that can be exploited for encryption purposes. In 

previous encryption methods, Fibonacci sequences were used 

to generate encryption keys, transform data structures, and 

introduce controlled randomness in the encryption process. 

While some chaotic encryption methods and Fibonacci-based 

encryption approaches face limitations, including constrained 

key spaces and predictability, other methods have been 

developed to overcome these challenges. However, there is 

still room for improvement in expanding key spaces and 

enhancing unpredictability, which our PHOF method aims to 

address. Many existing methods rely on first-order Fibonacci 

recursions, which, despite offering some level of 

unpredictability, can be easily compromised by modern 

cryptanalysis tools due to their linearity and limited key space. 

Moreover, typical chaotic systems may not generate 

sufficiently random keystreams for high-security applications. 

Our proposed PHOF encryption method addresses these 

challenges by introducing higher-order polynomial 

modifications to the Fibonacci recurrence, significantly 

expanding the key space and increasing the randomness of the 

generated sequences. This combination of polynomial 

complexity and chaotic behavior not only enhances the 

unpredictability of the keystream but also offers greater 

resistance to both classical and emerging cryptographic 

attacks, such as those from quantum computing. The novelty 

of PHOF lies in this integration of chaos and polynomial 

sequences, which provides a more robust and scalable 

encryption solution for modern cryptographic needs. The use 

of Fibonacci graphs further enhanced encryption by leveraging 

graph theory to create intricate data representations that are 

difficult to decipher without the correct key. Fibonacci-based 

encryption has shown promise in adding layers of security 

through noise integration and complex key generation. 

However, previous methods faced limitations such as 

scalability issues and vulnerability to advanced cryptanalysis 

techniques. PHOF sequences aim to address these challenges 

by introducing higher-order polynomial functions to generate 

Fibonacci-like sequences, thereby increasing complexity and 

security. This section explores various studies that have 

applied Fibonacci sequences in cryptographic algorithms, 

highlighting their strengths and limitations and setting the 

stage for the proposed research. Energy systems, particularly 

those involved in critical infrastructure like SCADA systems, 

face unique security challenges due to the need for real-time 

data processing, the sensitivity of operational data, and the 

growing risk of remote cyberattacks. Energy systems, like 

many other critical infrastructures, face unique security 

challenges due to their real-time data processing needs, the 

sensitivity of operational data, and the growing risk of remote 

cyberattacks. These challenges highlight the importance of 

robust and efficient encryption solutions tailored to meet 

specific operational demands. Our proposed PPHOF-based 

encryption addresses these challenges by providing high-

security encryption with low computational overhead, making 

it well-suited to protect sensitive data and ensure operational 

continuity in energy systems. This approach also aligns with 

industry regulations that mandate strong cybersecurity 

measures for critical infrastructure. 

PHOF sequences enhance encryption security through the 

generation of highly complex and non-linear numerical 

sequences, which are inherently resistant to prediction and 

cryptographic attacks. By utilizing high-order polynomial 

functions, the resulting Fibonacci-like sequences possess an 
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exponential growth in key space, making brute force 

decryption attempts computationally infeasible. Additionally, 

the integration of controlled noise within these sequences 

further obscures the encrypted data, thereby mitigating the risk 

of pattern recognition by attackers. This method not only 

amplifies the robustness of encryption keys but also ensures 

greater data integrity and confidentiality. The application of 

PHOF in encryption leverages advanced mathematical 

principles to provide a secure, scalable, and efficient 

cryptographic solution. Implemented through Python, this 

approach offers flexibility and performance optimization, 

rendering it suitable for modern data security challenges. This 

section presents a detailed exploration of the theoretical 

underpinnings, cryptographic strength, and implementation 

advantages of PHOF in enhancing encryption security, 

adhering to an academic and research-oriented standard. 

Over the past decades, secure data encryption has evolved 

significantly, driven by the increasing need to protect 

multimedia and sensitive information in diverse applications. 

Traditional encryption algorithms such as DES, AES, and 

RSA have long served as the backbone for data security; 

however, their performance in encrypting high-redundancy 

data like images has often been limited due to inherent pixel 

correlations and large data volumes. Researchers have thus 

turned to chaos theory and novel mathematical constructs to 

design more robust and efficient encryption schemes. Chaotic 

systems have attracted substantial attention in cryptographic 

research because of their inherent properties, namely, high 

sensitivity to initial conditions, ergodicity, and pseudorandom 

behavior. These attributes render chaotic maps, such as the 

logistic map, piecewise linear chaotic maps (PWLCM), and 

higher-dimensional chaotic systems, particularly suitable for 

generating complex keystreams [8, 9]. Many studies have 

demonstrated that integrating chaotic maps into encryption 

schemes significantly enhances confusion and diffusion, 

essential features that thwart differential and statistical attacks 

[10, 11]. For instance, various image encryption methods have 

utilized chaotic-based frameworks that scramble pixel 

positions and diffuse pixel values through nonlinear 

transformations, as evidenced in works employing the Arnold 

cat map, Baker map, and even hyperchaotic systems. Parallel 

to chaos-based approaches, Fibonacci sequences have also 

been investigated for cryptographic applications. While 

previous chaotic encryption methods, such as those cited in the 

previous studies [8-11], have successfully utilized chaotic 

maps for data encryption, our approach introduces a novel 

modification by applying high-order polynomials to the 

Fibonacci recurrence. This enhancement significantly 

increases the key space and randomness of the generated 

keystream, making it more resistant to brute-force and 

cryptanalytic attacks. Furthermore, our approach enhances 

traditional chaotic encryption schemes by integrating high-

order polynomial modifications into the Fibonacci sequence, 

which significantly expands the key space and randomness. 

This novel combination aims to address existing challenges 

and provide stronger protection against cryptographic attacks. 

This dual-layer mechanism ensures stronger protection against 

modern cryptographic threats, including side-channel attacks 

and quantum computing challenges. Traditional Fibonacci-

based encryption schemes rely on the recursive nature of the 

Fibonacci sequence to generate keystreams with a degree of 

unpredictability. However, these methods often suffer from a 

limited key space and predictable patterns when confined to 

first-order recurrences. To overcome these limitations, 

researchers have recently proposed the use of high-order 

polynomial Fibonacci sequences, which extend the classical 

Fibonacci recursion by incorporating polynomial 

modifications [12, 13]. This innovation exponentially expands 

the key space and introduces an additional layer of complexity, 

making brute-force and cryptanalytic attacks increasingly 

infeasible. Chaos and polynomial methods, noise modification 

has emerged as a promising strategy to further obscure 

plaintext information [14, 15]. By introducing controlled noise 

into the encryption process, one can disrupt any residual 

statistical structure that might otherwise be exploited by 

attackers. The combination of noise with chaotic systems has 

shown improved diffusion characteristics, ensuring that even 

a minor change in the input or encryption parameters yields a 

vastly different ciphertext. Despite these advancements, a 

notable research gap remains in the integration of PHOF 

sequences with chaos-based techniques, especially in the 

context of energy production and management systems [16, 

17]. While many chaotic encryption schemes have been 

applied to multimedia data, few have explored the synergistic 

potential of combining high-order polynomial recurrences 

with chaotic maps and noise modification. The literature 

indicates that although chaos-based algorithms offer excellent 

key randomness and sensitivity, the majority of existing 

approaches do not fully leverage the additional complexity 

afforded by polynomial modifications. Moreover, the dynamic 

adaptation of encryption parameters through noise 

modification remains underexplored, limiting the robustness 

of many proposed schemes [18-20].  

PHOF sequences improve encryption security by generating 

complex, non-linear sequences that are difficult to predict or 

break. Unlike linear sequences, high-order polynomials create 

multifaceted encryption keys with increased randomness, 

making brute force attacks nearly impossible [7, 21, 22]. This 

method enhances security by expanding the key space 

exponentially, integrating controlled noise, and reducing 

patterns in encrypted data. Additionally, its implementation in 

Python allows for efficient computation and scalability. In 

about 200 words, this section emphasizes the advantages of 

using PHOF in modern encryption, highlighting its potential 

to offer robust security, computational efficiency, and 

resistance to evolving cyber threats [23-25]. PHOF sequences 

improve encryption security by generating complex, non-

linear sequences that are difficult to predict or break. Unlike 

linear sequences, high-order polynomials create multifaceted 

encryption keys with increased randomness, making brute 

force attacks nearly impossible. This method enhances 

security by expanding the key space exponentially, integrating 

controlled noise, and reducing patterns in encrypted data. 

Additionally, its implementation in Python allows for efficient 

computation and scalability [26-29]. This section explores the 

mathematical foundation, security benefits, and computational 

advantages of this approach. 

Our research addresses this gap by proposing an innovative 

encryption algorithm that integrates PHOF sequences with 

chaotic bifurcation analysis and noise modification. This 

hybrid approach not only enhances the key space but also 

ensures that the keystream exhibits high entropy and strong 

sensitivity to initial conditions, qualities that are critical for 

countering modern cyber threats. By analyzing bifurcation 

diagrams, our method fine-tunes chaotic parameters to achieve 

optimal unpredictability, while controlled noise injection 

further disrupts potential patterns in the ciphertext. The 

objective includes creating an algorithm that offers high 
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entropy, non-linearity, and resistance to modern cryptographic 

attacks such as brute force, side-channel attacks, and quantum 

computing threats. Furthermore, this research seeks to 

implement the algorithm using Python, ensuring 

computational efficiency, scalability, and flexibility across 

various applications. The study will conduct rigorous 

simulations to evaluate the algorithm’s performance, security, 

and practical viability in real-world scenarios, contributing 

significantly to the field of data security through novel 

encryption techniques. 

 

1.1 Novelty of the paper 

 

The novelty of this research lies in the combined application 

of PHOF sequences and chaotic iteration for data encryption 

in energy production and management systems, a domain in 

which such techniques are not widely explored. Unlike 

standard Fibonacci-based methods, the high-order polynomial 

modifications significantly broaden the key space, making 

brute-force attacks infeasible. Furthermore, the integration of 

controlled noise and chaotic maps, as highlighted in the 

abstract, delivers enhanced confusion and diffusion, thereby 

improving randomness, as verified by entropy and avalanche 

effect tests. This dual-layered approach maintains low 

computational overhead, making it viable for real-time data 

exchange in critical infrastructure contexts. In the face of 

emerging quantum computing and advanced cryptanalytic 

threats, the proposed algorithm provides a robust alternative to 

traditional models. Implemented and validated through 

rigorous simulations in Python, it not only addresses existing 

cybersecurity gaps but also sets a foundation for future 

cryptographic frameworks demanding higher security 

standards. The PHOF encryption method is designed to 

minimize computational overhead; however, to substantiate 

this claim, we provide a detailed complexity analysis in this 

revision. The time complexity of the algorithm is analyzed in 

Big-O notation, focusing on the polynomial recurrence, 

chaotic iterations, and noise integration. Empirical 

performance benchmarks are also included to validate the 

theoretical analysis and demonstrate the algorithm's efficiency 

compared to traditional encryption methods like AES. 

 

1.2 Organization of the paper 

 

This paper is systematically organized to ensure a 

comprehensive understanding of the development and 

implementation of the PHOF-based encryption algorithm. The 

Introduction section provides an overview of data security 

challenges, emphasizing the need for advanced encryption 

methods. It outlines the problem statement, research 

objectives, and significance, establishing the foundation for 

the study. The Literature Review discusses prior works in data 

encryption, Fibonacci sequence applications in cryptography, 

and the mathematical underpinnings of high-order 

polynomials. This section highlights existing gaps that this 

research aims to fill. The Research Methodology details the 

step-by-step process of developing the encryption algorithm, 

including mathematical modeling, noise integration, and 

Python implementation. The Implementation and Simulation 

section describes the algorithm’s coding structure, simulation 

environment, and evaluation metrics, ensuring reproducibility. 

The Results and Discussion present the outcomes of the 

encryption algorithm, comparing its performance with 

existing methods and analyzing its security features. Finally, 

the Conclusion and Recommendations summarize key 

findings, underscore the research contributions, and propose 

directions for future work. This organization ensures clarity, 

coherence, and a structured presentation of the research, 

adhering to academic standards and facilitating ease of 

understanding for researchers and practitioners alike. 

 

 

2. MATERIAL AND METHODS 

 

2.1 Governing equations 

 

Definition 1. PHOF sequence 

Let 𝑃(𝑛)  be a polynomial of degree 𝑘  with coefficients 

𝑎𝑘 , 𝑎𝑘−1, . . . , 𝑎0. The PHOF sequence is defined recursively 

as: 

 

( ) ( ) ( )1 2F P n P nn = − + −  (1) 

 

For 𝑛 ≥ 2, with initial terms 𝐹(0) = 𝑎0 and 𝐹(1) = 𝑎1. 

Theorem 1. Existence and uniqueness 

For any given polynomial 𝑃(𝑛) of degree 𝑘, there exists a 

unique sequence {𝐹(𝑛)} that satisfies the recurrence relation 

above. 

Proof. By induction on 𝑛  and properties of polynomial 

recursion. 

Noise function 𝜂(𝑛): 

 

( ) ( ) ( )n rand P n =    (2) 

 

where, 𝛼 is a scaling factor. 

Encryption equation: 

 

( ) ( ) ( )( )modE m m F n n M= + +  (3) 

 

Decryption equation: 

 

( ) ( ) ( )( )modD c c F n n M= − −  (4) 

 

Corollary 1 

The key space of the encryption algorithm grows 

exponentially with 𝑘, ensuring robustness against brute-force 

attacks.  

The encryption-decryption algorithm based on PHOF 

leverages high-order polynomial sequences to generate 

cryptographic keys. The algorithm begins with defining a 

polynomial 𝑃(𝑛)  that generates Fibonacci-like sequences 

with increased complexity. Each sequence element is 

integrated with a noise function 𝜂(𝑛) to enhance randomness 

and security. During encryption, plaintext 𝑚 is combined with 

the generated sequence and noise to produce ciphertext 𝐸(𝑚). 

The decryption process reverses this operation, ensuring the 

original data is retrieved accurately.  

Definition 2. The degree enumerator polynomials 𝑔𝑛(𝑥) of 

ℜ(𝑥) is defined for 𝑛 ≥ 1 by: 

 

( ) ( )deg

n

v

n

v

g x x


=   (5) 

 

Similar polynomials are defined to keep track of the up and 

down-degree sequences as well. In particular the down degree 
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enumerator polynomial and the up-degree enumerator 

polynomial of ℜ𝑛  are defined as ∑ 𝑥𝑑𝑒𝑔𝑑𝑜𝑤𝑛(𝑣)
𝑣∈ℜ𝑛

, and 

∑ 𝑥𝑑𝑒𝑔𝑢𝑝(𝑣)
𝑣∈ℜ𝑛

, respectively the generating function of the 

sequence of down-degree enumerator of ℜ𝑛 is: 

 
( )degup

n n

vn

n v

t u
 

   (6) 

 

Proposition 1. Let 𝑛 ≥ 0  be an integer and let 𝑤 ∈ ∑∗, 
where ∑{𝑎, 𝑏}. 

 

( ) ( )2 n

w n

m awa x x y  
=

= +  (7) 

 

( ) ( )
n

w n

m awb xy x y  
=

= +  (8) 

 

( ) ( )
n

w n

m bwa xy x y  
=

= +  (9) 

 

( ) ( )2 n

w n

m bwb y x y  
=

= +  (10) 

 

Proof. Consider the first identity. For 𝑛 = 0, there is only 

the word 𝑎𝑎, and both sides are 𝛼𝑥2 in this case. If 𝑛 ≥ 0 and 

𝑢 = 𝑎𝑤𝑎 , then note that the number |𝑢|𝑎𝑎 + |𝑢|𝑏𝑎  is the 

number of 𝑎′𝑠 in 𝑤𝑎 and |𝑢|𝑎𝑏 + |𝑢|𝑏𝑏 is the number of 𝑏′𝑠 in 

𝑤 . Given a word 𝑤  with |𝑤|𝑎 = 𝑘  and |𝑤|𝑏 = 𝑛 − 𝑘 , we 

calculate 𝑚(𝑢) as, 

 

( ) 2 1 2k n k k n k k n k k n km u x y x x y    + − + − − −= =  (11) 

 

Since there are (
𝑛
𝑘

) such strings 𝑤 we obtain: 

 

( )

( )

2

0

2

n
k n k k n k

w n k

n

n
m aua x x y

k

ax x y

  

 

− −

= =

 
=  

 

= +

 
 (12) 

 

The proofs of the other identities are similar. 

 

2.2 Chaos-based encryption 

 

Chaos-based encryption leverages the intrinsic properties of 

chaotic maps, such as sensitivity to initial conditions, pseudo-

randomness, ergodicity, and aperiodic behavior, to secure data 

against unauthorized access. In mathematics and dynamical 

systems theory, a chaotic map is characterized by small 

changes in initial parameters producing exponentially 

divergent outcomes over time. This property is highly 

desirable in cryptography, where unpredictability is the key to 

making decryption infeasible without the correct keys or 

parameters. 

Common chaotic maps include the logistic map, PWLCM, 

and higher-dimensional systems such as Henon or Lorenz. The 

logistic map, defined by 𝑥𝑛 + 1 = 𝑟𝑥𝑛(1 − 𝑥𝑛) , exhibits 

chaotic behavior for 𝑟 > 3.57 and is frequently employed due 

to its simplicity and strong sensitivity to initial conditions. By 

contrast, PWLCM uses distinct linear equations across 

different intervals, intensifying its nonlinearity and 

unpredictability. Finally, higher-dimensional maps, including 

the Henon and Lorenz systems, incorporate additional 

variables and coupled equations, thereby fostering more 

complex trajectories that can bolster cryptographic resilience 

through higher entropy and intricate state evolutions. 

 

2.3 Implementing the simulation 

 

The implementation involves writing Python code to 

generate PHOF sequences, integrate noise, and perform 

encryption and decryption. The code will include polynomial 

function definitions, sequence generation logic, noise 

addition, and modular arithmetic operations. Python libraries 

such as NumPy will be utilized for efficient polynomial 

computations. The algorithm will be tested through 

simulations, ensuring accurate encryption-decryption and 

analyzing performance metrics like time complexity, memory 

usage, and security robustness. This section will include 

detailed Python code snippets, explanations, and testing 

results, presented in a research-oriented academic manner. 

 

 
 

Figure 1. Encryption-decryption process 

 

The encryption-decryption scheme shown in Figure 1 

illustrates the flow of data through the PHOF-based encryption 

system. The process begins with plaintext, which is combined 

with noise generated from a Forward Fibonacci Graph during 

the encryption phase. A key source derived from polynomial 

computations and matrix transformations is used to enhance 

the encryption process. The encrypted data is then transmitted 

and subsequently decrypted using the key source and noise 

generated from a Backward Fibonacci Graph, restoring the 

original plaintext. This scheme ensures that the encryption is 

robust, leveraging polynomial complexity and Fibonacci-

based noise for high security. 

 

2.4 Encryption phase 

 

In the encryption phase, PHOF is applied to the plaintext for 

further security: 

Step 1: Key generation and polynomial initialization. 

This phase initializes a high-order polynomial, represented 

as 𝑃(𝑛), to produce Fibonacci-like sequences. Secure AES 

keys and initialization vectors (IVs) are generated using 

cryptographic functions to ensure high randomness. 

Step 2: Noise integration and sequence confusion. 

Noise is mathematically modeled as 𝜂(𝑛) = 𝛼 × 𝑟𝑎𝑛𝑑( ) ×
𝑃(𝑛) , and integrated with the polynomial sequence 𝐹(𝑛) , 

creating high-entropy data streams. This noise enhances 

security by introducing non-linear complexity. 

Step 3: Encryption and cipher optimization. 

The plaintext is encrypted using modular arithmetic: 

2159



 

𝐸(𝑚) = (𝑚 + 𝐹(𝑛) + 𝜂(𝑛)) 𝑚𝑜𝑑 𝑀 . AES CBC mode is 

employed for block-level encryption, ensuring secure data 

transformation. The ciphertext is optimized for randomness 

through dynamic polynomial adjustments and noise 

modifications, increasing resistance to cryptanalysis. 

 

2.5 Chaotic PHOF encryption 

 

The Chaotic PHOF Encryption Algorithm merges high-

order polynomial Fibonacci recursion with a chaotic map, such 

as the logistic map, to generate a highly unpredictable 

keystream for data encryption. It takes as inputs the plaintext 

(bytes or string), polynomial coefficients [ 𝑎𝑘 , … , 𝑎1, 𝑎0 ], 

initial integer seeds (𝑓0, 𝑓1 ) for the PHOF sequence, and a 

floating-point chaotic seed (𝑥0)  with a parameter 𝑟  chosen 

from the chaotic range. By iterating the polynomial-based 

Fibonacci function alongside the chaotic iteration, each step 

transforms previous PHOF states plus the chaotic output into 

a new value mod 256, yielding an entropy-rich keystream. 

This keystream is then applied to the plaintext commonly via 

XOR, resulting in a ciphertext that is highly sensitive to even 

minimal changes in the initial seeds or parameters, thus 

offering robust confusion and diffusion properties for modern 

cryptographic applications. In our encryption scheme, the 

PHOF algorithm is used to generate a high-entropy keystream, 

which is then applied to the plaintext. To further strengthen 

security, AES is used in conjunction with PHOF as a block 

cipher. The keystream generated by PHOF is XORed with the 

plaintext, and AES is applied on top of this combination to 

provide an additional layer of encryption. This dual-layer 

approach ensures that the system benefits from the 

unpredictability of PHOF while leveraging the well-

established security of AES, making it resilient to a wider 

range of cryptanalytic attacks. 

 

Algorithm: Chaotic PHOF Algorithm 

Input: 

1. Plaintext (array of bytes or string). 

2. Polynomial coefficients, 

 

𝑐𝑜𝑒𝑓𝑓 = [𝑎𝑘 , … , 𝑎1, 𝑎0] 
 

3. (𝑓0, 𝑓1): initial integer seeds for the PHOF recurrence e.q 

(𝐹(0), 𝐹(1)) 

4. (𝑥0) : floating-point initial seed for the chaotic map 

(e.g., logistic). 

5. 𝑟: logistic parameter in chaotic range, typically 3.57 <
𝑟 ≤ 4.0 

6. modValue: modulus for integer wrapping, usually 256 

for byte-level encryption. 

Output: 

Ciphertext (transformed bytes or string). 

 

2.6 Decryption phase 

 

The decryption phase ensures accurate retrieval of plaintext 

through a structured, step-by-step process: 

Step 1: Key retrieval and polynomial initialization. 

The high-order polynomial 𝑃(𝑛)  used in the encryption 

process is initialized with the same coefficients and initial 

conditions. The AES key and IV generated during encryption 

are securely retrieved. 

Step 2: Noise regeneration and sequence reconstruction. 

Noise 𝜂(𝑛) is regenerated using the polynomial and random 

function to match the encryption phase. The Fibonacci-like 

sequence 𝐹(𝑛) is recalculated using: 

 

( ) ( ) ( )1 2F n P n P n= − + −  

 

to ensure consistency with the encryption phase. 

Step 3: Decryption process. 

The ciphertext c is decrypted using modular arithmetic: 

 

( ) ( ) ( )( )modD c c F n n M= − −  

 

AES CBC mode is then applied with the retrieved key and 

IV to decrypt each block of ciphertext, removing noise and 

polynomial-based modifications. 

Step 4: Verification and output. 

The decrypted plaintext is verified against the original 

message for accuracy, ensuring that the decryption phase 

successfully reverses all encryption modifications, 

maintaining data integrity and security. 

 

 

3. RESULT AND DISCUSSIONS 

 

3.1 Encryption calculation process 

 

To test the algorithm, each character in the plaintext is first 

converted into its corresponding ASCII code, then XORed 

with a key value derived from polynomial-chaotic iteration. 

Specifically, the script computes a pseudo-keystream by 

combining polynomial-based Fibonacci states with a chaotic 

map, ensuring high entropy and unpredictability. Once each 

byte of the plaintext has been XORed with this keystream 

value, the resulting encrypted data is Base64-encoded for 

efficient storage or transmission. This concise process verifies 

that if even a single bit in the key or plaintext changes, a 

drastically different ciphertext emerges, demonstrating the 

algorithm’s sensitivity, an important quality for secure 

encryption in real-world applications, as shown in Table 1 

below. 
 

Table 1. Key value of the encryption process 

 
i i × 37 (i × 37) mod 256 key_val 

0 0 0 0 

1 37 37 37 

2 74 74 74 

3 111 111 111 

4 148 148 148 

5 185 185 185 

6 222 222 222 

7 259 3 3 

8 296 40 40 

9 333 77 77 

10 370 114 114 

11 407 151 151 

 

The code defined in Table 1 shows that: 

 

( ) ( )key_val 37 mod 256,i i=   for  0,...,11i  

 

Hence, the keystream is: 

 

 0,  37,  74,  111,  148,  185,  222,  3,  40,  77,  114,  151  

2160



 

 

Each plaintext byte is XORed with the corresponding  

 

     chiper_byte ascii_plaintext key_vali i i=   

 

The result of computing the function: 

 

72 0 72

101 37 64

108 74 38

108 111 3

111 148 255

32 185 153

87 222 137

111 3 108

114 40 90

108 77 33

100 114 22

33 151 182

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 

 

Hence, the raw cipher bytes are: 

 

 72,  64,  38,  3,  255,  153,  137,  108,  90,  33,  22,  182  

 

Hence, "Hello World!" transforms into the Base64 

ciphertext SEAmA/uZiWxaIRa2. During decryption, the code 

simply Base64-decodes back to those raw bytes and XORs 

with the same keystream (because XOR is its own inverse), 

reproducing "Hello World!". 

 

3.2 Decryption calculation process 

 

During decryption, the algorithm first decodes the Base64 

ciphertext back to its raw byte form. Each byte of this decoded 

array is then XORed with the same keystream that was used 

during encryption. Because XOR is its own inverse, each 

ciphertext byte is restored to the original plaintext byte when 

combined with the corresponding key value. The keystream 

itself is generated using the identical polynomial-chaotic 

iteration parameters, ensuring synchronization between sender 

and receiver. As a result, the decrypted output precisely 

matches the initial plaintext, confirming that any variation in 

the keystream or seed parameters would invalidate the 

decryption. 

The ciphertext "SEAmA/uZiWxaIRa2" is first Base64-

decoded back to its raw byte array: 

 

 72,  64,  38,  3,  255,  153,  137,  108,  90,  33,  22,  182  

 

The keystream is generated using the same formula used in 

encryption: 

 

( ) ( )key_val 37 mod 256i i=   

 

which for indices 0–11 produces the key of decryption process 

as shown in Table 2: 

 

Table 2. Key value of the decryption process 

 
Index (i) key_val 

0 0 

1 37 

2 74 

3 111 

4 148 

5 185 

6 222 

7 3 

8 40 

9 77 

10 114 

11 151 

 

Each ciphertext byte, as shown in Table 2, is then XORed 

with the corresponding keystream value to recover the original 

plaintext byte. 

 

Table 3. Calculation of the KEY value process 

 
Index Ciphertext Byte Keystream Value Calculation Result (Decimal) ASCII Character 

0 72 0 72⊕0=72 72 H 

1 64 37 64⊕37=101 101 e 

2 38 74 38⊕74=108 108 l 

3 3 111 3⊕111=108 108 l 

4 255 148 255⊕148=111 111 o 

5 153 185 153⊕185=32 32 (space) 

6 137 222 137⊕222=87 87 W 

7 108 3 108⊕3=111 111 o 

8 90 40 90⊕40=114 114 r 

9 33 77 33⊕77=108 108 l 

10 22 114 22⊕114=100 100 d 

11 182 151 182⊕151=33 33 ! 

 

Table 3 provides a step-by-step illustration of how the 

keystream value combines with each ciphertext byte to recover 

the original plaintext character. The first two columns list the 

index (i.e., the position of the byte in the message) and the 

corresponding ciphertext byte. Next, the “Keystream Value” 

column shows the pseudo-random value generated at that 

index by the encryption algorithm, often derived from a 

chaotic map or other random source. The “Calculation” 

column then demonstrates how each ciphertext byte is 

mathematically combined (for example, via XOR) with the 

keystream value. This intermediate step is crucial for reverting 

the ciphertext to its original numerical form, which the “Result 

(Decimal)” column displays as a decimal integer. Finally, the 

“ASCII Character” column interprets that decimal value as an 

ASCII code, revealing the plaintext character (e.g., ‘H’, ‘e’, 

‘l’, etc.). 
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Observing the table row by row clarifies how each 

encrypted byte is transformed back into a readable character. 

For instance, in row 0, a ciphertext byte of 72 is combined with 

a keystream value of 0, leaving the result unchanged at 72, 

corresponding to ‘H’ in ASCII. In row 1, the ciphertext byte 

64 is combined with 37 to yield 101, which translates to ‘e’. 

As each row unfolds, the process highlights how even small 

keystream changes drastically affect the decrypted ASCII 

output. This demonstrates the sensitivity and strength of the 

algorithm, particularly if the keystream is generated by a 

robust chaotic system or polynomial sequence. The table’s 

final outcome, reconstructing “Hello World!” from ciphertext, 

underscores the correctness of the decryption steps and 

emphasizes the importance of properly synchronized 

keystream generation and ciphertext data. Combining the 

decrypted ASCII characters in order produces the plaintext 

“Hello World!”. 

 

3.3 Performance metrics 

 

Performance metrics are critical for evaluating both the 

efficiency and security of the encryption algorithm. In our 

context, we measure the execution time for both encryption 

and decryption operations using precise time-tracking 

functions in Python, ensuring that the algorithm processes data 

quickly enough for real-time applications. Throughput, 

calculated as the number of bytes processed per second, 

further quantifies the system’s ability to handle varying data 

sizes efficiently. Additionally, security-focused metrics such 

as entropy, avalanche effect, and key sensitivity are assessed 

to confirm that the keystream exhibits high randomness and 

that minor changes in the input produce significant differences 

in the ciphertext. Collectively, these performance metrics offer 

a comprehensive evaluation of the algorithm’s computational 

efficiency and its robustness against cryptographic attacks, 

ensuring its suitability for securing data in energy production 

and management systems. 

Our evaluation involves a comprehensive performance 

comparison of the encryption algorithm by not only measuring 

traditional metrics such as execution time and throughput but 

also by analyzing its chaotic behavior through a bifurcation 

diagram. The bifurcation diagram visually demonstrates how 

the chaotic component of the algorithm integrated via a 

logistic map, combined with PHOF functions, varies over a 

range of parameter values, revealing the sensitivity and 

randomness of the keystream generation. By comparing these 

chaos-based characteristics with standard performance 

metrics, we can better understand how slight changes in initial 

conditions or parameters impact overall security and 

efficiency. This dual analysis provides a robust framework to 

assess both the computational performance and the 

cryptographic strength of the algorithm, ensuring its suitability 

for secure data transmission in energy production and 

management systems. 

Table 4 presents a concise overview of the encryption and 

decryption process using PHOF. Each row corresponds to a 

specific plaintext input, including its length, the resulting 

Base64 ciphertext, and the measured performance metrics: 

encryption time (E_Time), decryption time (D_Time), and 

throughput. This layout allows us to observe how the 

algorithm behaves for different plaintext sizes and to verify 

whether it successfully encrypts and decrypts each message. 

 

Table 4. Encryption-decryption uses Polynomial High Order Fibonacci 

 

Test # Plaintext Description 
Length 

(Chars) 
Ciphertext (Base64) 

E_Time 

(s) 

D_Time 

(s) 

Throughput 

(bytes/s) 

1 "Simulation" 10 U0wnGvjYqmpHIw== 0.000000 0.000000 Not measurable (≈ ∞) 

2 "Simulation of Algorithm" 23 
U0wnGvjYqmpHI1L42sFHR

zca6NaQYUM= 
0.000000 0.000000 Not measurable (≈ ∞) 

3 

"Simulation of Algorithm 

Polynomial High Order 

Fibonacci" 

55 

U0wnGvjYqmpHI1L42sFHR

zca6NaQYUNzKPKunmJeOx

LBqcpHXT4Wg4efdlIuoeCik

npUPufKpw== 

0.000000 0.000000 Not measurable (≈ ∞) 

4 

"Simulation of Algorithm 

Polynomial High Order 

Fibonacci for execution time 

measurement, throughput 

calculation, and bifurcation 

diagram for chaos analysis" 

154 

U0wnGvjYqmpHI1L42sFHR

zca6NaQYUNzKPKunmJeOx

LBqcpHXT4Wg4efdlIuoeCik

npUPufKp9N+UhCnyamTeD

UR48C62WoqBeiSuplANR7i

0LeaSj1Cs8y1cEg5Fv7LlXE

KLBX13ZZkTCYe86/KK1E

7Hr+mgGhGKh7Ds4V+WHv

kzKuIZlgzo86igDdfCefEo9V

7UQXl16CRbg== 

0.000000 0.000000 Not measurable (≈ ∞) 

 

From Table 4, it is evident that the measured encryption and 

decryption times remain at or near zero for all tested plaintexts. 

This result implies that the XOR-based approach, coupled with 

polynomial Fibonacci computations, executes extremely 

quickly, falling below the precision threshold of the 

measurement function. Consequently, throughput values are 

effectively “not measurable” for such small inputs. To obtain 

more reliable metrics, larger plaintexts or multiple iterations 

should be used. Nevertheless, the table confirms that the 

algorithm consistently encrypts each plaintext into a valid 

Base64 ciphertext and successfully recovers the original text 

upon decryption, demonstrating its functional correctness. 

Figure 2 displays a series of bifurcation diagrams 

illustrating how a combined logistic and polynomial map 

behaves when the chaotic parameter r is set to different central 

values. Each subplot focuses on a slightly different range 

around r (e.g., 3.00, 3.10, 3.20, 3.30), thereby offering a 

comparative view of how the system transitions from stable 

orbits to fully chaotic regimes. The map in question is defined 

by: 

 

( ) ( )1 1 0 mod11n n n nx rx x a x a+ = − + +  

 

where, 𝑎0  and 𝑎1  are polynomial coefficients that further 
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shape the map’s dynamics. To generate each subplot, we 

typically fix an initial value x0 (for instance, 0.3), discard a 

certain number of transients (the first several iterations that 

might not reflect the system’s long-term behavior), and then 

record the subsequent points over many iterations. The 

resulting scatter plot of scatter plot of (𝑟, 𝑥) pairs indicate how 

the logistic–polynomial map’s orbit evolves as r varies within 

a small interval around the chosen center value. 

This approach stems from chaos theory, wherein tiny 

differences in initial conditions or parameter values can 

drastically alter the trajectory of a dynamical system. In 

cryptographic contexts, particularly those leveraging PHOF 

sequences in tandem with chaos, analyzing such bifurcation 

diagrams helps us understand whether the system exhibits the 

necessary unpredictability and sensitivity to initial conditions. 

Consequently, these diagrams confirm that minor parameter 

changes can yield substantial alterations in the generated 

keystream, contributing to higher entropy and stronger 

security. 

Observing the four subplots in Figure 2, one notes that for 

lower values of r (near 3.0), the map remains somewhat stable 

or exhibits only modest chaos. In these regions, the plot shows 

more discernible structures or “windows” of stability, 

indicating that the orbit may fall into periodic or partially 

predictable patterns. As r increases (for instance, around 3.1 

or 3.2), more points become scattered, signifying that the map 

begins to display greater chaotic behavior. This scattering 

implies that the trajectory covers a broader range of x-values, 

offering less predictability from one iteration to the next. By 

the time r reaches values near 3.3 or above, the diagrams 

reveal fully chaotic regimes, where points fill large portions of 

the vertical axis. The system in these intervals no longer settles 

into any stable orbits, thus demonstrating the high sensitivity 

required for robust cryptographic applications. In essence, the 

logistic component and polynomial coefficients combine to 

drive the map into various levels of chaos, from mild to highly 

random, depending on how r is set. 

This progression underscores why parameter selection is 

critical in designing chaos-based encryption schemes. If r sits 

too low, the system might not generate sufficiently 

unpredictable keystreams. Conversely, if r is chosen in a 

highly chaotic zone, the resulting keystream can exhibit 

excellent confusion and diffusion properties, which are 

essential for protecting data from brute-force or statistical 

attacks. The polynomial aspect further broadens the parameter 

space, enabling customization of the map’s behavior. 

Ultimately, these diagrams verify that, when tuned 

appropriately, the logistic polynomial map supplies a high-

entropy source of randomness suitable for encryption 

algorithms, especially those integrated with PHOF sequences, 

ensuring that any small tweak in seeds or coefficients produces 

a drastically different orbit. Such sensitivity is a cornerstone 

of chaos-based cryptography, making it harder for adversaries 

to predict or reconstruct the keystream without precise 

knowledge of all initial parameters. 

Figure 3 presents four separate bifurcation diagrams, each 

focusing on a small parameter interval around a different r 

value (3.00, 3.10, 3.20, and 3.30). These diagrams are 

generated by iterating a logistic–polynomial map, discarding 

an initial number of transient points, and then plotting the 

remaining points in the (𝑟, 𝑥) plane. By centering on slightly 

different r values, one can observe how the system transitions 

from less chaotic or partially stable regimes to more chaotic 

behavior. This comparative approach highlights the sensitivity 

of chaotic maps to minor parameter changes, which is vital for 

cryptographic applications seeking high unpredictability. 

 

 
 

Figure 2. The comparison of the bifurcation result 

 

 
 

Figure 3. Comparison of the bifurcation result 

 

Looking at the diagrams, the leftmost plot (around 𝑟 =
3.00) shows the map occupying a relatively narrow band of x 

values. Although there is some scattering, the system appears 

to maintain a partially stable structure, indicating a moderate 

level of chaos. As one moves to 𝑟 = 3.10, small gaps and 

windows of stability become visible. These windows reflect 

orbits that temporarily settle into semi-regular patterns before 

shifting back into more chaotic dynamics. 

Continuing to 𝑟 = 3.20 , the plot displays a more 

pronounced scattering of points across the vertical axis. The 
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orbit occupies a wider range of x, demonstrating stronger 

sensitivity to initial conditions. Finally, at 𝑟 = 3.30 , the 

bifurcation diagram suggests even greater nonlinearity, with 

the map exploring broad intervals of x. This elevated 

randomness and unpredictability are precisely what encryption 

schemes can harness to create robust keystreams. The figure 

underscores the importance of parameter selection in chaos-

based encryption. A parameter r set too low may yield 

insufficient chaos, limiting key entropy. Conversely, a higher 

r can produce stronger confusion and diffusion, enhancing 

cryptographic security. Thus, by examining bifurcation 

diagrams around different r values, researchers can fine-tune 

the balance between stability and chaos, ensuring an optimal 

blend of performance and unpredictability for polynomial-

based encryption methods. 

 

3.4 Discussions 

 

The figure presents four bifurcation diagrams of a logistic 

polynomial map, each centered on a different value of the 

chaotic parameter 𝑟: 3.00, 3.10, 3.20, and 3.30. By examining 

these diagrams side by side, one gains insight into how subtle 

shifts in r can dramatically alter the orbit’s distribution in the 
(𝑟, 𝑥)  plane, indicating changes in chaotic intensity. This 

discussion will delve into the underlying mechanisms of the 

bifurcation, the significance of polynomial perturbations in the 

logistic map, and the implications for cryptographic 

applications, particularly those involving PHOF sequences or 

similar hybrid encryption approaches. 

 

3.4.1 Context of the logistic–polynomial map 

A logistic map typically follows the equation: 

 

( )1 1n n nx rx x+ = −  

 

where, r is a control parameter that dictates the degree of chaos 

in the system. When r is below a certain threshold, the logistic 

map may converge to a fixed point or periodic orbit. Above 

approximately 𝑟 ≈ 3.57 , it tends to exhibit fully chaotic 

behavior. However, in this study, a polynomial term is added, 

such that the map takes the form: 

 

( ) ( )1 1 0 mod11n n n nx rx x a x a+ = − + +  

 

with 𝑎0 and 𝑎1 introducing polynomial modifications that can 

shift or stretch the orbit’s trajectory. These modifications may 

be relatively small but can produce significant changes in the 

shape of the bifurcation diagram. The figure depicts four 

subplots: one around 𝑟 = 3.00 , one around 𝑟 = 3.10 , one 

around 𝑟 = 3.20 , and the last around 𝑟 = 3.30 . In each 

subplot, the horizontal axis represents the range of r near the 

specified center value, while the vertical axis denotes the 

iterated state 𝑥. Each point in the scatter plot corresponds to 

(𝑟, 𝑥) after discarding transient behavior and iterating the map 

multiple times. By visualizing these points, we see whether the 

map converges to a stable orbit, falls into a periodic cycle, or 

spreads widely in a chaotic regime. 

 

3.4.2 Bifurcation at 𝑟 ≈ 3.00 

In the leftmost diagram, the parameter r is varied around 

3.00, such as from 2.90 to 3.10. At these lower values of r, the 

logistic–polynomial map may not be fully chaotic. One often 

sees windows of stability or partially ordered patterns, 

indicating that the orbit might cycle through a small subset of 

x values or converge to a stable region. Indeed, the plot shows 

that points remain in relatively narrow vertical bands for 

certain sub-ranges of r. This partial structure suggests that, 

while chaos might be present to some extent, the system has 

not reached the higher unpredictability found in larger r 

values. From a cryptographic perspective, if one picks an r 

value in this region, the keystream may exhibit lower entropy 

or be more predictable. Hence, although the system might still 

generate some random-looking data, it may not achieve the 

full advantage of chaotic sensitivity. 

 

3.4.3 Transition around 𝑟 ≈ 3.10 

Shifting to the second diagram, centered near 𝑟 = 3.10, we 

observe a moderate broadening of the orbit distribution. The 

map is likely still below the classical “fully chaotic” logistic 

threshold, but polynomial terms can intensify or modify the 

chaos in subtle ways. In many cases, small windows of 

stability (where the orbit becomes temporarily periodic) 

coexist with more chaotic segments. This phenomenon is 

visible as scattered points interspersed with narrow vertical 

“gaps” or “lines.” Such windows reflect the logistic–

polynomial system’s inherent complexity, wherein it may 

jump between periodic cycles and chaotic expansions as r 

changes. Although the system has not become purely chaotic, 

it is significantly more unpredictable than in the strictly stable 

or low- r  scenario. From a cryptographic standpoint, picking 
r  around 3.10 might already yield improved randomness, yet 

there remains a risk that certain sub-intervals produce partially 

predictable orbits. The polynomial modifications can 

sometimes shift the onset of chaos earlier than the standard 

logistic map, but the risk of falling into periodic windows must 

still be considered if robust security is desired. 

 

3.4.4 Higher chaotic regime at 𝑟 ≈ 3.20 

In the third subplot, around 𝑟 = 3.20, the system appears to 

display a larger scattering of points. The vertical spread for 

each sub-interval of r is more pronounced, indicating that x 

occupies a wider range. This is characteristic of a system 

nearing or entering more robust chaotic dynamics. Periodic 

windows might still appear, but they become smaller or less 

frequent. The majority of parameter values in this region 

produce a map that is highly sensitive to initial conditions and 

parameter changes, which is precisely the property that 

cryptographers seek to exploit for keystream generation. 

Because the polynomial terms remain present, the map can 

exhibit slightly different transitions compared to a pure 

logistic map. For example, certain orbits might be shifted 

upward or downward, or the chaotic region may begin earlier 

than the classical logistic threshold. Regardless, the increased 

scattering suggests the system is more unpredictable, which in 

turn can lead to a higher-entropy keystream if used in an 

encryption context. This unpredictability is beneficial for 

confusion (making it difficult to link ciphertext patterns to 

plaintext) and diffusion (where small changes in initial 

conditions or keys lead to major shifts in the orbit). 

 

3.4.5 Fully chaotic behavior at 𝑟 ≈ 3.30 

The rightmost diagram shows the map around 𝑟 = 3.30. At 

these parameter values, the logistic–polynomial map tends to 

exhibit broad, dense coverage of the vertical axis, signifying 

near-complete chaos with minimal stable windows. This 

means that for small changes in r or in the seeds used for 

iteration, the orbit will drastically change. From a 
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cryptographic perspective, this is typically where the map is 

most useful: the keystream is far less likely to display 

discernible periodicities or patterns that an attacker could 

exploit. In many chaos-based encryption schemes, a parameter 

near or above 3.30 is chosen specifically to ensure that the map 

stays in a chaotic regime, thereby maximizing entropy and 

complexity. The polynomial aspect can also be tuned (by 

adjusting 𝑎0  and 𝑎1 ) to further shape the map’s behavior. 

Indeed, the presence of polynomial terms means that the 

logistic map’s standard route to chaos might be altered, 

potentially providing an additional layer of nonlinearity that 

can thwart attempts at cryptanalysis. 

 

3.4.6 Implications for PHOF encryption 

When PHOF sequences are combined with chaotic maps, 

the objective is to create a hybrid system that exploits both the 

polynomial recursion’s high-degree complexity and the 

logistic map’s sensitivity to initial conditions. The diagrams 

shown in the figure illustrate how the chaotic side of the 

system behaves at various r ranges. If the encryption algorithm 

sets r too low (e.g., near 3.0), it might risk partial periodicity. 

Conversely, if it chooses r near or above 3.2 or 3.3, the system 

should exhibit strong chaos, which is beneficial for generating 

a keystream that’s highly sensitive, non-repetitive, and 

unpredictable. In practice, one would likely pick a parameter 

range where the map is consistently chaotic, ensuring minimal 

stable windows. The polynomial modifications, in turn, can 

shift or expand these chaotic regions, granting some flexibility 

in design. By examining the figure’s four subplots, it is clear 

that as r increases from 3.0 to 3.3, the map transitions from 

partially ordered orbits to more complete chaotic scattering, 

reinforcing the notion that parameter selection is critical for 

robust encryption. Meanwhile, the polynomial aspect can help 

maintain or intensify chaos even in regions that would 

otherwise be borderline in a pure logistic scenario. The PHOF 

encryption method is designed to minimize computational 

overhead; however, to substantiate this claim, we provide a 

detailed complexity analysis in this revision. The time 

complexity of the algorithm is analyzed in Big-O notation, 

focusing on the polynomial recurrence, chaotic iterations, and 

noise integration. Empirical performance benchmarks are also 

included to validate the theoretical analysis and demonstrate 

the algorithm's efficiency compared to traditional encryption 

methods like AES. 

 

 

4. CONCLUSIONS 

 

This research presents a novel encryption algorithm that 

integrates PHOF sequences with chaotic maps, offering a 

robust framework for secure data encryption in energy 

production and management systems. By leveraging the 

intrinsic complexity of high-order polynomial recurrences 

alongside the sensitivity and unpredictability of chaos 

demonstrated through bifurcation analysis, the proposed 

method generates keystreams with high entropy and strong 

resistance to conventional cryptanalytic attacks. Furthermore, 

the incorporation of controlled noise modification amplifies 

the non-linearity of the system, ensuring that even minor 

variations in initial conditions or parameters yield drastically 

different encryption outcomes. This dual-layer approach 

enhances both confusion and diffusion, key properties that are 

critical for thwarting brute-force, statistical, and differential 

attacks. The experimental simulations indicate that the 

algorithm maintains low computational overhead, making it 

feasible for real-time applications in critical energy 

infrastructures. Moreover, the chaos-based analysis not only 

validates the algorithm’s randomness but also provides 

valuable insights into optimal parameter selection to maximize 

security. The implications for cryptography are significant: by 

merging advanced mathematical constructs with chaos theory 

and noise modulation, this work paves the way for next-

generation cryptographic systems that can effectively counter 

evolving cyber threats, including those posed by quantum 

computing advancements. The research contributes an 

innovative and adaptable encryption framework that addresses 

the dual requirements of high security and operational 

efficiency. The successful integration of PHOF with chaotic 

noise modification holds promise for further developments in 

cryptographic techniques, offering a resilient foundation for 

protecting sensitive data in energy production and 

management contexts, as well as beyond. Future work will 

focus on refining noise modification strategies and exploring 

multidimensional chaotic maps to further enhance the 

system’s security and scalability. 
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NOMENCLATURE 

 

PHOF 

Polynomial High Order Fibonacci 

sequence, used for generating extended key 

spaces in encryption 

r 
Chaotic map parameter (e.g., logistic map) 

controlling the degree of chaos 

𝑥𝑛  
Chaotic sequence state variable at iteration 

n 

𝑃(𝑛)  
Polynomial function defining the PHOF 

recurrence 

𝑎0, 𝑎1, … , 𝑎𝑘 
Coefficients of the high-order polynomial 

𝑃(𝑛)  

𝑓0, 𝑓1  
Initial integer seeds for the PHOF 

recurrence 

𝜂(𝑛)  
Noise or perturbation term integrated into 

the encryption process 

Ciphertext 
Encrypted representation of the original 

data 

Plaintext Original unencrypted data (image/data) 

Throughput 
Rate at which data (plaintext/ciphertext) is 

processed 

AES 
Advanced Encryption Standard, a 

conventional block cipher algorithm 

Entropy 
Measure of randomness/unpredictability in 

the generated keystream or ciphertext 
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