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Secure data handling is paramount in energy production and management systems, where
cyber threats pose significant risks to operational continuity. In response, this study
proposes an integration of chaos bifurcation and the Polynomial High Order Fibonacci
(PHOF) approach to fortify encryption protocols in critical energy infrastructures. The
method combines polynomial-based Fibonacci sequences with chaotic iteration steps
analyzed through bifurcation to generate non-linear keystreams. These keystreams deliver
robust confusion and diffusion capabilities, effectively mitigating brute-force and
statistical attacks. Experimental findings confirm substantial gains in randomness,
validated by entropy assessments and avalanche effect tests. Moreover, chaos bifurcation
analysis highlights the sensitivity of the system’s chaotic parameters, reinforcing security
under varying conditions. Despite these layered mechanisms, the PHOF-chaotic scheme
maintains a low computational burden, making it highly suitable for real-time data
exchange within energy monitoring and control frameworks. Consequently, coupling
PHOF with chaos bifurcation techniques significantly strengthens cybersecurity for
energy systems, ensuring both reliable performance under operational demands and

resilient protection against evolving cyber threats.

1. INTRODUCTION

The digital era has brought significant advancements in
technology, transforming how data is created, stored, and
transmitted. However, this rapid evolution has also introduced
complex challenges in maintaining data security. One of the
primary concerns is the increasing volume of data generated
every second, ranging from personal information and financial
transactions to corporate secrets and governmental records.
This vast amount of data attracts cybercriminals seeking to
exploit vulnerabilities for financial gain, espionage, or
disruption [1, 2]. Cyber threats have become more
sophisticated over time, including phishing, ransomware,
malware, and denial-of-service attacks. Phishing attacks trick
users into providing sensitive information, while ransomware
encrypts data, demanding payment for its release. Malware
can infiltrate systems to steal, corrupt, or destroy data, and
denial-of-service attacks overwhelm networks, rendering them
inoperable. The dynamic nature of these threats poses
continuous challenges for cybersecurity experts. The
proliferation of Internet of Things (IoT) devices has further
complicated data security. Many IoT devices lack robust
security features, making them easy targets for hackers. These
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devices, when compromised, can serve as entry points to larger
networks, endangering sensitive data. Additionally, cloud
computing, while offering scalable storage solutions,
introduces risks related to data breaches, unauthorized access,
and data loss. One of the critical challenges is the constant
need for encryption methods that can withstand evolving
threats [3]. While traditional encryption techniques such as
RSA and AES remain widely used, they are increasingly being
scrutinized due to potential vulnerabilities posed by future
quantum computing advancements. This has led to the
exploration of new encryption models, such as Fibonacci
sequences and polynomial functions, which offer promising
alternatives in the face of these emerging threats. This has
spurred research into new encryption models, such as those
based on Fibonacci sequences and polynomial functions,
which offer promising alternatives due to their complexity and
unpredictability. Human factors also contribute to data
security challenges. Weak passwords, lack of awareness, and
negligence in following security protocols make systems
vulnerable. Organizations often face difficulties in ensuring
that all employees adhere to best practices for data security,
leading to potential breaches. Moreover, regulatory challenges
add another layer of complexity. Data protection laws vary
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across regions, making it difficult for multinational
organizations to comply with different standards
simultaneously. Non-compliance can result in hefty fines and
reputational damage. To address these challenges, continuous
innovation in encryption methods is essential. Integrating
Polynomial High Order Fibonacci (PHOF) models into
encryption algorithms can enhance data security by providing
more complex and resilient encryption keys. This method
leverages the unpredictable nature of high-order polynomial
sequences, making it harder for attackers to crack the
encryption. The digital era's rapid technological advancements
have made data security a critical concern. Sophisticated cyber
threats, IoT wvulnerabilities, human errors, and regulatory
challenges necessitate the development of advanced
encryption techniques. PHOF-based encryption presents a
promising solution, significantly enhancing data security by
introducing higher complexity into the key generation process.
By replacing the linear recurrence of standard Fibonacci
sequences with higher-order polynomial terms, the system
generates more unpredictable and non-linear sequences. This
increased complexity makes the key space exponentially
larger and more resistant to cryptanalysis, ensuring that data
remains secure even against evolving cyber threats.

Conventional encryption methods such as RSA, AES, and
DES have long been the backbone of data security. However,
as technology evolves, these methods face increasing
challenges. One significant limitation is their vulnerability to
quantum computing, which can potentially break classical
encryption algorithms through quantum algorithms like Shor’s
algorithm. Additionally, conventional methods often rely on
key management systems that can become weak points if not
handled securely. Another limitation is the computational
overhead of traditional encryption methods, especially when
applied to large datasets or real-time communications. High
processing power requirements can lead to inefficiencies in
resource-constrained environments, such as IoT devices or
embedded systems. Moreover, conventional encryption
methods can be susceptible to side-channel attacks, where
attackers exploit information leaked during the encryption
process, such as timing information, power consumption, or
electromagnetic leaks. Brute force attacks, although time-
consuming, remain a threat as computational power increases.
There is also the challenge of maintaining key integrity and
distribution. Public key infrastructures (PKI) are complex and
require constant monitoring and updating, posing operational
challenges. To address these limitations, new approaches are
necessary. PHOF-based encryption offers an innovative
solution by introducing more complex key generation
mechanisms. The use of polynomial sequences adds
unpredictability and robustness, making it harder for attackers
to decipher encrypted data. Additionally, integrating noise
with Fibonacci sequences provides an extra layer of security.
This approach not only enhances security but also offers
computational efficiency. By leveraging mathematical
properties of polynomials and Fibonacci numbers, the
encryption process can be optimized for various applications,
including IoT, cloud computing, and secure communications.
The need for new encryption approaches is evident in the face
of emerging threats and technological advancements. PHOF-
based encryption presents a promising avenue to enhance data
security [4-7].

Fibonacci sequences have been utilized in data encryption
due to their unique mathematical properties and inherent
complexity. The Fibonacci sequence, where each number is
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the sum of the two preceding ones, offers an unpredictable
pattern that can be exploited for encryption purposes. In
previous encryption methods, Fibonacci sequences were used
to generate encryption keys, transform data structures, and
introduce controlled randomness in the encryption process.
While some chaotic encryption methods and Fibonacci-based
encryption approaches face limitations, including constrained
key spaces and predictability, other methods have been
developed to overcome these challenges. However, there is
still room for improvement in expanding key spaces and
enhancing unpredictability, which our PHOF method aims to
address. Many existing methods rely on first-order Fibonacci
recursions, which, despite offering some level of
unpredictability, can be easily compromised by modern
cryptanalysis tools due to their linearity and limited key space.
Moreover, typical chaotic systems may not generate
sufficiently random keystreams for high-security applications.
Our proposed PHOF encryption method addresses these
challenges by introducing higher-order polynomial
modifications to the Fibonacci recurrence, significantly
expanding the key space and increasing the randomness of the
generated sequences. This combination of polynomial
complexity and chaotic behavior not only enhances the
unpredictability of the keystream but also offers greater
resistance to both classical and emerging cryptographic
attacks, such as those from quantum computing. The novelty
of PHOF lies in this integration of chaos and polynomial
sequences, which provides a more robust and scalable
encryption solution for modern cryptographic needs. The use
of Fibonacci graphs further enhanced encryption by leveraging
graph theory to create intricate data representations that are
difficult to decipher without the correct key. Fibonacci-based
encryption has shown promise in adding layers of security
through noise integration and complex key generation.
However, previous methods faced limitations such as
scalability issues and vulnerability to advanced cryptanalysis
techniques. PHOF sequences aim to address these challenges
by introducing higher-order polynomial functions to generate
Fibonacci-like sequences, thereby increasing complexity and
security. This section explores various studies that have
applied Fibonacci sequences in cryptographic algorithms,
highlighting their strengths and limitations and setting the
stage for the proposed research. Energy systems, particularly
those involved in critical infrastructure like SCADA systems,
face unique security challenges due to the need for real-time
data processing, the sensitivity of operational data, and the
growing risk of remote cyberattacks. Energy systems, like
many other critical infrastructures, face unique security
challenges due to their real-time data processing needs, the
sensitivity of operational data, and the growing risk of remote
cyberattacks. These challenges highlight the importance of
robust and efficient encryption solutions tailored to meet
specific operational demands. Our proposed PPHOF-based
encryption addresses these challenges by providing high-
security encryption with low computational overhead, making
it well-suited to protect sensitive data and ensure operational
continuity in energy systems. This approach also aligns with
industry regulations that mandate strong cybersecurity
measures for critical infrastructure.

PHOF sequences enhance encryption security through the
generation of highly complex and non-linear numerical
sequences, which are inherently resistant to prediction and
cryptographic attacks. By utilizing high-order polynomial
functions, the resulting Fibonacci-like sequences possess an



exponential growth in key space, making brute force
decryption attempts computationally infeasible. Additionally,
the integration of controlled noise within these sequences
further obscures the encrypted data, thereby mitigating the risk
of pattern recognition by attackers. This method not only
amplifies the robustness of encryption keys but also ensures
greater data integrity and confidentiality. The application of
PHOF in encryption leverages advanced mathematical
principles to provide a secure, scalable, and efficient
cryptographic solution. Implemented through Python, this
approach offers flexibility and performance optimization,
rendering it suitable for modern data security challenges. This
section presents a detailed exploration of the theoretical
underpinnings, cryptographic strength, and implementation
advantages of PHOF in enhancing encryption security,
adhering to an academic and research-oriented standard.
Over the past decades, secure data encryption has evolved
significantly, driven by the increasing need to protect
multimedia and sensitive information in diverse applications.
Traditional encryption algorithms such as DES, AES, and
RSA have long served as the backbone for data security;
however, their performance in encrypting high-redundancy
data like images has often been limited due to inherent pixel
correlations and large data volumes. Researchers have thus
turned to chaos theory and novel mathematical constructs to
design more robust and efficient encryption schemes. Chaotic
systems have attracted substantial attention in cryptographic
research because of their inherent properties, namely, high
sensitivity to initial conditions, ergodicity, and pseudorandom
behavior. These attributes render chaotic maps, such as the
logistic map, piecewise linear chaotic maps (PWLCM), and
higher-dimensional chaotic systems, particularly suitable for
generating complex keystreams [8, 9]. Many studies have
demonstrated that integrating chaotic maps into encryption
schemes significantly enhances confusion and diffusion,
essential features that thwart differential and statistical attacks
[10, 11]. For instance, various image encryption methods have
utilized chaotic-based frameworks that scramble pixel
positions and diffuse pixel values through nonlinear
transformations, as evidenced in works employing the Arnold
cat map, Baker map, and even hyperchaotic systems. Parallel
to chaos-based approaches, Fibonacci sequences have also
been investigated for cryptographic applications. While
previous chaotic encryption methods, such as those cited in the
previous studies [8-11], have successfully utilized chaotic
maps for data encryption, our approach introduces a novel
modification by applying high-order polynomials to the
Fibonacci recurrence. This enhancement significantly
increases the key space and randomness of the generated
keystream, making it more resistant to brute-force and
cryptanalytic attacks. Furthermore, our approach enhances
traditional chaotic encryption schemes by integrating high-
order polynomial modifications into the Fibonacci sequence,
which significantly expands the key space and randomness.
This novel combination aims to address existing challenges
and provide stronger protection against cryptographic attacks.
This dual-layer mechanism ensures stronger protection against
modern cryptographic threats, including side-channel attacks
and quantum computing challenges. Traditional Fibonacci-
based encryption schemes rely on the recursive nature of the
Fibonacci sequence to generate keystreams with a degree of
unpredictability. However, these methods often suffer from a
limited key space and predictable patterns when confined to
first-order recurrences. To overcome these limitations,
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researchers have recently proposed the use of high-order
polynomial Fibonacci sequences, which extend the classical
Fibonacci  recursion by incorporating  polynomial
modifications [12, 13]. This innovation exponentially expands
the key space and introduces an additional layer of complexity,
making brute-force and cryptanalytic attacks increasingly
infeasible. Chaos and polynomial methods, noise modification
has emerged as a promising strategy to further obscure
plaintext information [14, 15]. By introducing controlled noise
into the encryption process, one can disrupt any residual
statistical structure that might otherwise be exploited by
attackers. The combination of noise with chaotic systems has
shown improved diffusion characteristics, ensuring that even
a minor change in the input or encryption parameters yields a
vastly different ciphertext. Despite these advancements, a
notable research gap remains in the integration of PHOF
sequences with chaos-based techniques, especially in the
context of energy production and management systems [16,
17]. While many chaotic encryption schemes have been
applied to multimedia data, few have explored the synergistic
potential of combining high-order polynomial recurrences
with chaotic maps and noise modification. The literature
indicates that although chaos-based algorithms offer excellent
key randomness and sensitivity, the majority of existing
approaches do not fully leverage the additional complexity
afforded by polynomial modifications. Moreover, the dynamic
adaptation of encryption parameters through noise
modification remains underexplored, limiting the robustness
of many proposed schemes [18-20].

PHOF sequences improve encryption security by generating
complex, non-linear sequences that are difficult to predict or
break. Unlike linear sequences, high-order polynomials create
multifaceted encryption keys with increased randomness,
making brute force attacks nearly impossible [7, 21, 22]. This
method enhances security by expanding the key space
exponentially, integrating controlled noise, and reducing
patterns in encrypted data. Additionally, its implementation in
Python allows for efficient computation and scalability. In
about 200 words, this section emphasizes the advantages of
using PHOF in modern encryption, highlighting its potential
to offer robust security, computational efficiency, and
resistance to evolving cyber threats [23-25]. PHOF sequences
improve encryption security by generating complex, non-
linear sequences that are difficult to predict or break. Unlike
linear sequences, high-order polynomials create multifaceted
encryption keys with increased randomness, making brute
force attacks nearly impossible. This method enhances
security by expanding the key space exponentially, integrating
controlled noise, and reducing patterns in encrypted data.
Additionally, its implementation in Python allows for efficient
computation and scalability [26-29]. This section explores the
mathematical foundation, security benefits, and computational
advantages of this approach.

Our research addresses this gap by proposing an innovative
encryption algorithm that integrates PHOF sequences with
chaotic bifurcation analysis and noise modification. This
hybrid approach not only enhances the key space but also
ensures that the keystream exhibits high entropy and strong
sensitivity to initial conditions, qualities that are critical for
countering modern cyber threats. By analyzing bifurcation
diagrams, our method fine-tunes chaotic parameters to achieve
optimal unpredictability, while controlled noise injection
further disrupts potential patterns in the ciphertext. The
objective includes creating an algorithm that offers high



entropy, non-linearity, and resistance to modern cryptographic
attacks such as brute force, side-channel attacks, and quantum
computing threats. Furthermore, this research seeks to
implement the algorithm wusing Python, ensuring
computational efficiency, scalability, and flexibility across
various applications. The study will conduct rigorous
simulations to evaluate the algorithm’s performance, security,
and practical viability in real-world scenarios, contributing
significantly to the field of data security through novel
encryption techniques.

1.1 Novelty of the paper

The novelty of this research lies in the combined application
of PHOF sequences and chaotic iteration for data encryption
in energy production and management systems, a domain in
which such techniques are not widely explored. Unlike
standard Fibonacci-based methods, the high-order polynomial
modifications significantly broaden the key space, making
brute-force attacks infeasible. Furthermore, the integration of
controlled noise and chaotic maps, as highlighted in the
abstract, delivers enhanced confusion and diffusion, thereby
improving randomness, as verified by entropy and avalanche
effect tests. This dual-layered approach maintains low
computational overhead, making it viable for real-time data
exchange in critical infrastructure contexts. In the face of
emerging quantum computing and advanced cryptanalytic
threats, the proposed algorithm provides a robust alternative to
traditional models. Implemented and validated through
rigorous simulations in Python, it not only addresses existing
cybersecurity gaps but also sets a foundation for future
cryptographic frameworks demanding higher security
standards. The PHOF encryption method is designed to
minimize computational overhead; however, to substantiate
this claim, we provide a detailed complexity analysis in this
revision. The time complexity of the algorithm is analyzed in
Big-O notation, focusing on the polynomial recurrence,
chaotic iterations, and noise integration. Empirical
performance benchmarks are also included to validate the
theoretical analysis and demonstrate the algorithm's efficiency
compared to traditional encryption methods like AES.

1.2 Organization of the paper

This paper is systematically organized to ensure a
comprehensive understanding of the development and
implementation of the PHOF-based encryption algorithm. The
Introduction section provides an overview of data security
challenges, emphasizing the need for advanced encryption
methods. It outlines the problem statement, research
objectives, and significance, establishing the foundation for
the study. The Literature Review discusses prior works in data
encryption, Fibonacci sequence applications in cryptography,
and the mathematical wunderpinnings of high-order
polynomials. This section highlights existing gaps that this
research aims to fill. The Research Methodology details the
step-by-step process of developing the encryption algorithm,
including mathematical modeling, noise integration, and
Python implementation. The Implementation and Simulation
section describes the algorithm’s coding structure, simulation
environment, and evaluation metrics, ensuring reproducibility.
The Results and Discussion present the outcomes of the
encryption algorithm, comparing its performance with
existing methods and analyzing its security features. Finally,
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the Conclusion and Recommendations summarize key
findings, underscore the research contributions, and propose
directions for future work. This organization ensures clarity,
coherence, and a structured presentation of the research,
adhering to academic standards and facilitating ease of
understanding for researchers and practitioners alike.

2. MATERIAL AND METHODS
2.1 Governing equations

Definition 1. PHOF sequence

Let P(n) be a polynomial of degree k with coefficients
g, Qg_1,---,a9. The PHOF sequence is defined recursively
as:

F(n)=P(n-1)+P(n-2) (1)

For n = 2, with initial terms F(0) = ay and F(1) = a;.

Theorem 1. Existence and uniqueness

For any given polynomial P(n) of degree k, there exists a
unique sequence {F(n)} that satisfies the recurrence relation
above.

Proof. By induction on n and properties of polynomial
recursion.

Noise function n(n):

n(n)=axrand( )xP(n) )
where,  is a scaling factor,
Encryption equation:
E(m)=(m+F(n)+7(n))modM 3)
Decryption equation:
D(c)=(c—F(n)-n(n))modM (4)

Corollary 1

The key space of the encryption algorithm grows
exponentially with k, ensuring robustness against brute-force
attacks.

The encryption-decryption algorithm based on PHOF
leverages high-order polynomial sequences to generate
cryptographic keys. The algorithm begins with defining a
polynomial P(n) that generates Fibonacci-like sequences
with increased complexity. Each sequence element is
integrated with a noise function n(n) to enhance randomness
and security. During encryption, plaintext m is combined with
the generated sequence and noise to produce ciphertext E (m).
The decryption process reverses this operation, ensuring the
original data is retrieved accurately.

Definition 2. The degree enumerator polynomials g, (x) of
R(x) is defined for n = 1 by:

g, (X) — z Xdeg(V)

veR,

)

Similar polynomials are defined to keep track of the up and
down-degree sequences as well. In particular the down degree



enumerator polynomial and the up-degree enumerator
polynomial of R, are defined as ¥,eq, x4egaown®  and

Yven, x4e9up® respectively the generating function of the
sequence of down-degree enumerator of R, is:

Z tn z (e (¥)

n=R, veR,

(6)

Proposition 1. Let n > 0 be an integer and let w € } %,
where Y.{a, b}.

> m(awa)=ax’ (ax+By)"

> ()
‘% m(awb) = Bxy(ax+ By)" (8)
\v;:nm(bwa) = axy(ax+py)' ©)
> m(bwb) = By? (ax+ By)" (10)

[wj=n

Proof. Consider the first identity. For n = 0, there is only
the word aa, and both sides are ax? in this case. If n > 0 and
u = awa, then note that the number |u|y, + |ulp, is the
number of a's in wa and |u|y;, + |u|py is the number of b's in
w. Given a word w with |w|, =k and |w|, =n —k, we
calculate m(u) as,

k+1 pn—

m(u) — Xk+2yn7ka k — aXZXk ynfkakﬂnfk (1 1)
. n . .
Since there are ( k) such strings w we obtain:
n(n
Y m(aua)=ax’) | Ky rakpm
) o\ (12)

=axd (ax+pBy)
The proofs of the other identities are similar.
2.2 Chaos-based encryption

Chaos-based encryption leverages the intrinsic properties of
chaotic maps, such as sensitivity to initial conditions, pseudo-
randomness, ergodicity, and aperiodic behavior, to secure data
against unauthorized access. In mathematics and dynamical
systems theory, a chaotic map is characterized by small
changes in initial parameters producing exponentially
divergent outcomes over time. This property is highly
desirable in cryptography, where unpredictability is the key to
making decryption infeasible without the correct keys or
parameters.

Common chaotic maps include the logistic map, PWLCM,
and higher-dimensional systems such as Henon or Lorenz. The
logistic map, defined by x, +1 =rx,(1 —x,), exhibits
chaotic behavior for r > 3.57 and is frequently employed due
to its simplicity and strong sensitivity to initial conditions. By
contrast, PWLCM uses distinct linear equations across
different intervals, intensifying its nonlinearity and
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unpredictability. Finally, higher-dimensional maps, including
the Henon and Lorenz systems, incorporate additional
variables and coupled equations, thereby fostering more
complex trajectories that can bolster cryptographic resilience
through higher entropy and intricate state evolutions.

2.3 Implementing the simulation

The implementation involves writing Python code to
generate PHOF sequences, integrate noise, and perform
encryption and decryption. The code will include polynomial
function definitions, sequence generation logic, noise
addition, and modular arithmetic operations. Python libraries
such as NumPy will be utilized for efficient polynomial
computations. The algorithm will be tested through
simulations, ensuring accurate encryption-decryption and
analyzing performance metrics like time complexity, memory
usage, and security robustness. This section will include
detailed Python code snippets, explanations, and testing
results, presented in a research-oriented academic manner.

Noise
Backward
Frmrmrmrmrmreny Fibonacci
; Matrix ! Graph ;
| P ' L PR |
Plain text Encryption Decryption | Plain text
— > —
H 1
H i
H 1
______ A l i ‘[
: Noise i 3
: Forward ! Key Source
Fibonacci

Graph

Figure 1. Encryption-decryption process

The encryption-decryption scheme shown in Figure 1
illustrates the flow of data through the PHOF-based encryption
system. The process begins with plaintext, which is combined
with noise generated from a Forward Fibonacci Graph during
the encryption phase. A key source derived from polynomial
computations and matrix transformations is used to enhance
the encryption process. The encrypted data is then transmitted
and subsequently decrypted using the key source and noise
generated from a Backward Fibonacci Graph, restoring the
original plaintext. This scheme ensures that the encryption is
robust, leveraging polynomial complexity and Fibonacci-
based noise for high security.

2.4 Encryption phase

In the encryption phase, PHOF is applied to the plaintext for
further security:

Step 1: Key generation and polynomial initialization.

This phase initializes a high-order polynomial, represented
as P(n), to produce Fibonacci-like sequences. Secure AES
keys and initialization vectors (IVs) are generated using
cryptographic functions to ensure high randomness.

Step 2: Noise integration and sequence confusion.

Noise is mathematically modeled as n(n) = a X rand() X
P(n), and integrated with the polynomial sequence F(n),
creating high-entropy data streams. This noise enhances
security by introducing non-linear complexity.

Step 3: Encryption and cipher optimization.

The plaintext is encrypted using modular arithmetic:



E(m) = (m +F(n) + n(n))modM . AES CBC mode is
employed for block-level encryption, ensuring secure data
transformation. The ciphertext is optimized for randomness
through dynamic polynomial adjustments and noise
modifications, increasing resistance to cryptanalysis.

2.5 Chaotic PHOF encryption

The Chaotic PHOF Encryption Algorithm merges high-
order polynomial Fibonacci recursion with a chaotic map, such
as the logistic map, to generate a highly unpredictable
keystream for data encryption. It takes as inputs the plaintext
(bytes or string), polynomial coefficients [ ay,...,aq,aq ],
initial integer seeds (fy, f;) for the PHOF sequence, and a
floating-point chaotic seed (x,) with a parameter r chosen
from the chaotic range. By iterating the polynomial-based
Fibonacci function alongside the chaotic iteration, each step
transforms previous PHOF states plus the chaotic output into
a new value mod 256, yielding an entropy-rich keystream.
This keystream is then applied to the plaintext commonly via
XOR, resulting in a ciphertext that is highly sensitive to even
minimal changes in the initial seeds or parameters, thus
offering robust confusion and diffusion properties for modern
cryptographic applications. In our encryption scheme, the
PHOF algorithm is used to generate a high-entropy keystream,
which is then applied to the plaintext. To further strengthen
security, AES is used in conjunction with PHOF as a block
cipher. The keystream generated by PHOF is XORed with the
plaintext, and AES is applied on top of this combination to
provide an additional layer of encryption. This dual-layer
approach ensures that the system benefits from the
unpredictability of PHOF while leveraging the well-
established security of AES, making it resilient to a wider
range of cryptanalytic attacks.

Algorithm: Chaotic PHOF Algorithm
Input:

1. Plaintext (array of bytes or string).
2. Polynomial coefficients,

coeff = [ay, ..., ay,a4]

3. (fo, f1): initial integer seeds for the PHOF recurrence e.q
(F(0), F(D))

4. (x,): floating-point initial seed for the chaotic map
(e.g., logistic).

5. r: logistic parameter in chaotic range, typically 3.57 <
r<4.0

6. modValue: modulus for integer wrapping, usually 256
for byte-level encryption.

Output:

Ciphertext (transformed bytes or string).

2.6 Decryption phase

The decryption phase ensures accurate retrieval of plaintext
through a structured, step-by-step process:

Step 1: Key retrieval and polynomial initialization.

The high-order polynomial P(n) used in the encryption
process is initialized with the same coefficients and initial
conditions. The AES key and IV generated during encryption
are securely retrieved.

Step 2: Noise regeneration and sequence reconstruction.

Noise n(n) is regenerated using the polynomial and random

function to match the encryption phase. The Fibonacci-like
sequence F(n) is recalculated using:

F(n)=P(n-1)+P(n-2)

to ensure consistency with the encryption phase.
Step 3: Decryption process.
The ciphertext ¢ is decrypted using modular arithmetic:

D(c)=(c—F(n)-n(n))modM

AES CBC mode is then applied with the retrieved key and
IV to decrypt each block of ciphertext, removing noise and
polynomial-based modifications.

Step 4: Verification and output.

The decrypted plaintext is verified against the original
message for accuracy, ensuring that the decryption phase
successfully reverses all encryption modifications,
maintaining data integrity and security.

3. RESULT AND DISCUSSIONS
3.1 Encryption calculation process

To test the algorithm, each character in the plaintext is first
converted into its corresponding ASCII code, then XORed
with a key value derived from polynomial-chaotic iteration.
Specifically, the script computes a pseudo-keystream by
combining polynomial-based Fibonacci states with a chaotic
map, ensuring high entropy and unpredictability. Once each
byte of the plaintext has been XORed with this keystream
value, the resulting encrypted data is Base64-encoded for
efficient storage or transmission. This concise process verifies
that if even a single bit in the key or plaintext changes, a
drastically different ciphertext emerges, demonstrating the
algorithm’s sensitivity, an important quality for secure
encryption in real-world applications, as shown in Table 1
below.

Table 1. Key value of the encryption process

i ix37 (ix37)mod 256 key val
0 0 0 0
1 37 37 37
2 74 74 74
3 111 111 111
4 148 148 148
5 185 185 185
6 222 222 222
7 259 3 3
8 296 40 40
9 333 77 77
10 370 114 114
11 407 151 151

The code defined in Table 1 shows that:
key_val(i) = (ix37)mod 256, for i<{0,...,11}
Hence, the keystream is:

[0, 37, 74, 111, 148, 185, 222, 3, 40, 77, 114, 151]



Each plaintext byte is XORed with the corresponding
chiper_byte[i] = ascii_plaintext[i]® key_val[i]

The result of computing the function:

7200=72
101®37 =64
108@74 =38
108®111=3
111148 = 255
329185=153
87®222 =137
111©3=108
114®©40=90
10877 =33
100©114 =22
33®151=182

Hence, the raw cipher bytes are:

[72, 64, 38, 3, 255, 153, 137, 108, 90, 33, 22, 182]

Hence, "Hello World!" transforms into the Base64
ciphertext SEAmA/uZiWxalRa2. During decryption, the code
simply Base64-decodes back to those raw bytes and XORs
with the same keystream (because XOR is its own inverse),
reproducing "Hello World!".

3.2 Decryption calculation process

During decryption, the algorithm first decodes the Base64
ciphertext back to its raw byte form. Each byte of this decoded
array is then XORed with the same keystream that was used
during encryption. Because XOR is its own inverse, each

ciphertext byte is restored to the original plaintext byte when
combined with the corresponding key value. The keystream
itself is generated using the identical polynomial-chaotic
iteration parameters, ensuring synchronization between sender
and receiver. As a result, the decrypted output precisely
matches the initial plaintext, confirming that any variation in
the keystream or seed parameters would invalidate the
decryption.

The ciphertext "SEAmA/uZiWxalRa2" is first Base64-
decoded back to its raw byte array:

[72, 64, 38, 3, 255, 153, 137, 108, 90, 33, 22, 182]

The keystream is generated using the same formula used in
encryption:

key_val(i) = (i x37)mod 256

which for indices 0—11 produces the key of decryption process
as shown in Table 2:

Table 2. Key value of the decryption process

Index () key val

0 0

1 37
2 74
3 111
4 148
5 185
6 222
7 3

8 40
9 77
10 114
11 151

Each ciphertext byte, as shown in Table 2, is then XORed
with the corresponding keystream value to recover the original
plaintext byte.

Table 3. Calculation of the KEY value process

Index Ciphertext Byte Keystream Value  Calculation  Result (Decimal) ASCII Character

0 72 0 7200=72 72 H

1 64 37 64@37=101 101 e

2 38 74 38©74=108 108 1

3 3 111 3P111=108 108 1

4 255 148 255p148=111 111 0

5 153 185 15369 185=32 32 (space)
6 137 222 13769222=87 87 W

7 108 3 108P3=111 111 0

8 90 40 90p40=114 114 r

9 33 77 33@77=108 108 1

10 22 114 22114=100 100 d

11 182 151 182D151=33 33 !

Table 3 provides a step-by-step illustration of how the
keystream value combines with each ciphertext byte to recover
the original plaintext character. The first two columns list the
index (i.e., the position of the byte in the message) and the
corresponding ciphertext byte. Next, the “Keystream Value”
column shows the pseudo-random value generated at that
index by the encryption algorithm, often derived from a
chaotic map or other random source. The “Calculation”

2161

column then demonstrates how each ciphertext byte is
mathematically combined (for example, via XOR) with the
keystream value. This intermediate step is crucial for reverting
the ciphertext to its original numerical form, which the “Result
(Decimal)” column displays as a decimal integer. Finally, the
“ASCII Character” column interprets that decimal value as an
ASCII code, revealing the plaintext character (e.g., ‘H’, ‘e’,
‘1, etc.).



Observing the table row by row clarifies how each
encrypted byte is transformed back into a readable character.
For instance, in row 0, a ciphertext byte of 72 is combined with
a keystream value of 0, leaving the result unchanged at 72,
corresponding to ‘H’ in ASCIL. In row 1, the ciphertext byte
64 is combined with 37 to yield 101, which translates to ‘e’.
As each row unfolds, the process highlights how even small
keystream changes drastically affect the decrypted ASCII
output. This demonstrates the sensitivity and strength of the
algorithm, particularly if the keystream is generated by a
robust chaotic system or polynomial sequence. The table’s
final outcome, reconstructing “Hello World!” from ciphertext,
underscores the correctness of the decryption steps and
emphasizes the importance of properly synchronized
keystream generation and ciphertext data. Combining the
decrypted ASCII characters in order produces the plaintext
“Hello World!”.

3.3 Performance metrics

Performance metrics are critical for evaluating both the
efficiency and security of the encryption algorithm. In our
context, we measure the execution time for both encryption
and decryption operations using precise time-tracking
functions in Python, ensuring that the algorithm processes data
quickly enough for real-time applications. Throughput,
calculated as the number of bytes processed per second,
further quantifies the system’s ability to handle varying data
sizes efficiently. Additionally, security-focused metrics such
as entropy, avalanche effect, and key sensitivity are assessed
to confirm that the keystream exhibits high randomness and

that minor changes in the input produce significant differences
in the ciphertext. Collectively, these performance metrics offer
a comprehensive evaluation of the algorithm’s computational
efficiency and its robustness against cryptographic attacks,
ensuring its suitability for securing data in energy production
and management systems.

Our evaluation involves a comprehensive performance
comparison of the encryption algorithm by not only measuring
traditional metrics such as execution time and throughput but
also by analyzing its chaotic behavior through a bifurcation
diagram. The bifurcation diagram visually demonstrates how
the chaotic component of the algorithm integrated via a
logistic map, combined with PHOF functions, varies over a
range of parameter values, revealing the sensitivity and
randomness of the keystream generation. By comparing these
chaos-based characteristics with standard performance
metrics, we can better understand how slight changes in initial
conditions or parameters impact overall security and
efficiency. This dual analysis provides a robust framework to
assess both the computational performance and the
cryptographic strength of the algorithm, ensuring its suitability
for secure data transmission in energy production and
management systems.

Table 4 presents a concise overview of the encryption and
decryption process using PHOF. Each row corresponds to a
specific plaintext input, including its length, the resulting
Base64 ciphertext, and the measured performance metrics:
encryption time (E Time), decryption time (D Time), and
throughput. This layout allows us to observe how the
algorithm behaves for different plaintext sizes and to verify
whether it successfully encrypts and decrypts each message.

Table 4. Encryption-decryption uses Polynomial High Order Fibonacci

. .. Length . E_Time D_Time Throughput
Test # Plaintext Description (Chars) Ciphertext (Base64) ) s) (bytes/s)
1 "Simulation" 10 U0wnGvjY qmpHIw== 0.000000  0.000000  Not measurable (= ©)
e . I UOwnGvjYqmpHI1L42sFHR ~
2 Simulation of Algorithm 23 2ca6NaQY UM= 0.000000  0.000000  Not measurable (= ©)
"Simulation of Algorithm iggﬁfgggg;gg%ﬁiﬁ?;i
3 Polynomlal ng.}'l‘ Order 55 LBqepHXT4WedefdlTuoeCik 0.000000  0.000000  Not measurable (= )
Fibonacci _
npUPufKpw=—=
UOwnGvjYqmpHI1L42sFHR
zcabNaQYUNzKPKunmJeOx
"Simulation of Algorithm LBqcpHXT4WgdefdlluoeCik
Polynomial High Order npUPufKp9N+UhCnyamTeD
Fibonacci for execution time UR48C62WoqBeiSuplANR7i -
4 measurement, throughput 154 OLeaSj1Cs8y1cEg5Fv7LIXE 0.000000 0.000000  Not measurable (= =)
calculation, and bifurcation KLBX13ZZkTCYe86/KKI1E
diagram for chaos analysis" 7Hr+mgGhGKh7Ds4V+WHyv

kzKulZlgzo86igDdfCefEo9V

7UQX116CRbg==

From Table 4, it is evident that the measured encryption and
decryption times remain at or near zero for all tested plaintexts.
This result implies that the XOR-based approach, coupled with
polynomial Fibonacci computations, executes extremely
quickly, falling below the precision threshold of the
measurement function. Consequently, throughput values are
effectively “not measurable” for such small inputs. To obtain
more reliable metrics, larger plaintexts or multiple iterations
should be used. Nevertheless, the table confirms that the
algorithm consistently encrypts each plaintext into a valid
Base64 ciphertext and successfully recovers the original text
upon decryption, demonstrating its functional correctness.
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Figure 2 displays a series of bifurcation diagrams
illustrating how a combined logistic and polynomial map
behaves when the chaotic parameter 7 is set to different central
values. Each subplot focuses on a slightly different range
around r (e.g., 3.00, 3.10, 3.20, 3.30), thereby offering a
comparative view of how the system transitions from stable
orbits to fully chaotic regimes. The map in question is defined
by:

X1 = X (1= X, ) +a,X,+a,(mod1)

where, a, and a; are polynomial coefficients that further



shape the map’s dynamics. To generate each subplot, we
typically fix an initial value xo (for instance, 0.3), discard a
certain number of transients (the first several iterations that
might not reflect the system’s long-term behavior), and then
record the subsequent points over many iterations. The
resulting scatter plot of scatter plot of (7, x) pairs indicate how
the logistic—polynomial map’s orbit evolves as r varies within
a small interval around the chosen center value.

This approach stems from chaos theory, wherein tiny
differences in initial conditions or parameter values can
drastically alter the trajectory of a dynamical system. In
cryptographic contexts, particularly those leveraging PHOF
sequences in tandem with chaos, analyzing such bifurcation
diagrams helps us understand whether the system exhibits the
necessary unpredictability and sensitivity to initial conditions.
Consequently, these diagrams confirm that minor parameter
changes can yield substantial alterations in the generated
keystream, contributing to higher entropy and stronger
security.

Observing the four subplots in Figure 2, one notes that for
lower values of 7 (near 3.0), the map remains somewhat stable
or exhibits only modest chaos. In these regions, the plot shows
more discernible structures or “windows” of stability,
indicating that the orbit may fall into periodic or partially
predictable patterns. As r increases (for instance, around 3.1
or 3.2), more points become scattered, signifying that the map
begins to display greater chaotic behavior. This scattering
implies that the trajectory covers a broader range of x-values,
offering less predictability from one iteration to the next. By
the time r reaches values near 3.3 or above, the diagrams
reveal fully chaotic regimes, where points fill large portions of
the vertical axis. The system in these intervals no longer settles
into any stable orbits, thus demonstrating the high sensitivity
required for robust cryptographic applications. In essence, the

Bifurcation (logistic + poly) around r=3.00

Bifurcation (logistic + poly) around r=3.30

logistic component and polynomial coefficients combine to
drive the map into various levels of chaos, from mild to highly
random, depending on how r is set.

This progression underscores why parameter selection is
critical in designing chaos-based encryption schemes. If 7 sits
too low, the system might not generate sufficiently
unpredictable keystreams. Conversely, if 7 is chosen in a
highly chaotic zone, the resulting keystream can exhibit
excellent confusion and diffusion properties, which are
essential for protecting data from brute-force or statistical
attacks. The polynomial aspect further broadens the parameter
space, enabling customization of the map’s behavior.
Ultimately, these diagrams verify that, when tuned
appropriately, the logistic polynomial map supplies a high-
entropy source of randomness suitable for encryption
algorithms, especially those integrated with PHOF sequences,
ensuring that any small tweak in seeds or coefficients produces
a drastically different orbit. Such sensitivity is a cornerstone
of chaos-based cryptography, making it harder for adversaries
to predict or reconstruct the keystream without precise
knowledge of all initial parameters.

Figure 3 presents four separate bifurcation diagrams, each
focusing on a small parameter interval around a different r
value (3.00, 3.10, 3.20, and 3.30). These diagrams are
generated by iterating a logistic—polynomial map, discarding
an initial number of transient points, and then plotting the
remaining points in the (r, x) plane. By centering on slightly
different » values, one can observe how the system transitions
from less chaotic or partially stable regimes to more chaotic
behavior. This comparative approach highlights the sensitivity
of chaotic maps to minor parameter changes, which is vital for
cryptographic applications seeking high unpredictability.

Bifurcation (logistic + poly) around r=3.50 Bifurcation (logistic + poly) around r=3.40

Figure 2. The comparison of the bifurcation result

Bifurcation around r=3.00

Bifurcation around r=3.10

Bifurcation around r=3.20 Bifurcation around r=3.30
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Figure 3. Comparison of the bifurcation result

Looking at the diagrams, the leftmost plot (around r =
3.00) shows the map occupying a relatively narrow band of x
values. Although there is some scattering, the system appears
to maintain a partially stable structure, indicating a moderate
level of chaos. As one moves to r = 3.10, small gaps and
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windows of stability become visible. These windows reflect
orbits that temporarily settle into semi-regular patterns before
shifting back into more chaotic dynamics.

Continuing to r =3.20 , the plot displays a more
pronounced scattering of points across the vertical axis. The



orbit occupies a wider range of x, demonstrating stronger
sensitivity to initial conditions. Finally, at r = 3.30, the
bifurcation diagram suggests even greater nonlinearity, with
the map exploring broad intervals of x. This elevated
randomness and unpredictability are precisely what encryption
schemes can harness to create robust keystreams. The figure
underscores the importance of parameter selection in chaos-
based encryption. A parameter r set too low may yield
insufficient chaos, limiting key entropy. Conversely, a higher
r can produce stronger confusion and diffusion, enhancing
cryptographic security. Thus, by examining bifurcation
diagrams around different » values, researchers can fine-tune
the balance between stability and chaos, ensuring an optimal
blend of performance and unpredictability for polynomial-
based encryption methods.

3.4 Discussions

The figure presents four bifurcation diagrams of a logistic
polynomial map, each centered on a different value of the
chaotic parameter r: 3.00, 3.10, 3.20, and 3.30. By examining
these diagrams side by side, one gains insight into how subtle
shifts in 7 can dramatically alter the orbit’s distribution in the
(r,x) plane, indicating changes in chaotic intensity. This
discussion will delve into the underlying mechanisms of the
bifurcation, the significance of polynomial perturbations in the
logistic map, and the implications for cryptographic
applications, particularly those involving PHOF sequences or
similar hybrid encryption approaches.

3.4.1 Context of the logistic—polynomial map
A logistic map typically follows the equation:

Xni1 = an(l_ Xn)

where, 7 is a control parameter that dictates the degree of chaos
in the system. When r is below a certain threshold, the logistic
map may converge to a fixed point or periodic orbit. Above
approximately r = 3.57, it tends to exhibit fully chaotic
behavior. However, in this study, a polynomial term is added,
such that the map takes the form:

Xy = (1= X, )+, X, + 8,(mod1)

with a, and a, introducing polynomial modifications that can
shift or stretch the orbit’s trajectory. These modifications may
be relatively small but can produce significant changes in the
shape of the bifurcation diagram. The figure depicts four
subplots: one around r = 3.00, one around r = 3.10, one
around r = 3.20, and the last around r = 3.30. In each
subplot, the horizontal axis represents the range of » near the
specified center value, while the vertical axis denotes the
iterated state x. Each point in the scatter plot corresponds to
(r, x) after discarding transient behavior and iterating the map
multiple times. By visualizing these points, we see whether the
map converges to a stable orbit, falls into a periodic cycle, or
spreads widely in a chaotic regime.

3.4.2 Bifurcation at r = 3.00

In the leftmost diagram, the parameter r is varied around
3.00, such as from 2.90 to 3.10. At these lower values of », the
logistic—polynomial map may not be fully chaotic. One often
sees windows of stability or partially ordered patterns,

2164

indicating that the orbit might cycle through a small subset of
x values or converge to a stable region. Indeed, the plot shows
that points remain in relatively narrow vertical bands for
certain sub-ranges of r. This partial structure suggests that,
while chaos might be present to some extent, the system has
not reached the higher unpredictability found in larger r
values. From a cryptographic perspective, if one picks an r
value in this region, the keystream may exhibit lower entropy
or be more predictable. Hence, although the system might still
generate some random-looking data, it may not achieve the
full advantage of chaotic sensitivity.

3.4.3 Transition around r = 3.10

Shifting to the second diagram, centered near r = 3.10, we
observe a moderate broadening of the orbit distribution. The
map is likely still below the classical “fully chaotic” logistic
threshold, but polynomial terms can intensify or modify the
chaos in subtle ways. In many cases, small windows of
stability (where the orbit becomes temporarily periodic)
coexist with more chaotic segments. This phenomenon is
visible as scattered points interspersed with narrow vertical
“gaps” or “lines.” Such windows reflect the logistic—
polynomial system’s inherent complexity, wherein it may
jump between periodic cycles and chaotic expansions as r
changes. Although the system has not become purely chaotic,
it is significantly more unpredictable than in the strictly stable
or low-I' scenario. From a cryptographic standpoint, picking
I' around 3.10 might already yield improved randomness, yet
there remains a risk that certain sub-intervals produce partially
predictable orbits. The polynomial modifications can
sometimes shift the onset of chaos earlier than the standard
logistic map, but the risk of falling into periodic windows must
still be considered if robust security is desired.

3.4.4 Higher chaotic regime at r = 3.20

In the third subplot, around r = 3.20, the system appears to
display a larger scattering of points. The vertical spread for
each sub-interval of r is more pronounced, indicating that x
occupies a wider range. This is characteristic of a system
nearing or entering more robust chaotic dynamics. Periodic
windows might still appear, but they become smaller or less
frequent. The majority of parameter values in this region
produce a map that is highly sensitive to initial conditions and
parameter changes, which is precisely the property that
cryptographers seek to exploit for keystream generation.
Because the polynomial terms remain present, the map can
exhibit slightly different transitions compared to a pure
logistic map. For example, certain orbits might be shifted
upward or downward, or the chaotic region may begin earlier
than the classical logistic threshold. Regardless, the increased
scattering suggests the system is more unpredictable, which in
turn can lead to a higher-entropy keystream if used in an
encryption context. This unpredictability is beneficial for
confusion (making it difficult to link ciphertext patterns to
plaintext) and diffusion (where small changes in initial
conditions or keys lead to major shifts in the orbit).

3.4.5 Fully chaotic behavior at r = 3.30

The rightmost diagram shows the map around r = 3.30. At
these parameter values, the logistic—polynomial map tends to
exhibit broad, dense coverage of the vertical axis, signifying
near-complete chaos with minimal stable windows. This
means that for small changes in r or in the seeds used for
iteration, the orbit will drastically change. From a



cryptographic perspective, this is typically where the map is
most useful: the keystream is far less likely to display
discernible periodicities or patterns that an attacker could
exploit. In many chaos-based encryption schemes, a parameter
near or above 3.30 is chosen specifically to ensure that the map
stays in a chaotic regime, thereby maximizing entropy and
complexity. The polynomial aspect can also be tuned (by
adjusting a, and a,) to further shape the map’s behavior.
Indeed, the presence of polynomial terms means that the
logistic map’s standard route to chaos might be altered,
potentially providing an additional layer of nonlinearity that
can thwart attempts at cryptanalysis.

3.4.6 Implications for PHOF encryption

When PHOF sequences are combined with chaotic maps,
the objective is to create a hybrid system that exploits both the
polynomial recursion’s high-degree complexity and the
logistic map’s sensitivity to initial conditions. The diagrams
shown in the figure illustrate how the chaotic side of the
system behaves at various r ranges. If the encryption algorithm
sets  too low (e.g., near 3.0), it might risk partial periodicity.
Conversely, if it chooses 7 near or above 3.2 or 3.3, the system
should exhibit strong chaos, which is beneficial for generating
a keystream that’s highly sensitive, non-repetitive, and
unpredictable. In practice, one would likely pick a parameter
range where the map is consistently chaotic, ensuring minimal
stable windows. The polynomial modifications, in turn, can
shift or expand these chaotic regions, granting some flexibility
in design. By examining the figure’s four subplots, it is clear
that as r increases from 3.0 to 3.3, the map transitions from
partially ordered orbits to more complete chaotic scattering,
reinforcing the notion that parameter selection is critical for
robust encryption. Meanwhile, the polynomial aspect can help
maintain or intensify chaos even in regions that would
otherwise be borderline in a pure logistic scenario. The PHOF
encryption method is designed to minimize computational
overhead; however, to substantiate this claim, we provide a
detailed complexity analysis in this revision. The time
complexity of the algorithm is analyzed in Big-O notation,
focusing on the polynomial recurrence, chaotic iterations, and
noise integration. Empirical performance benchmarks are also
included to validate the theoretical analysis and demonstrate
the algorithm's efficiency compared to traditional encryption
methods like AES.

4. CONCLUSIONS

This research presents a novel encryption algorithm that
integrates PHOF sequences with chaotic maps, offering a
robust framework for secure data encryption in energy
production and management systems. By leveraging the
intrinsic complexity of high-order polynomial recurrences
alongside the sensitivity and unpredictability of chaos
demonstrated through bifurcation analysis, the proposed
method generates keystreams with high entropy and strong
resistance to conventional cryptanalytic attacks. Furthermore,
the incorporation of controlled noise modification amplifies
the non-linearity of the system, ensuring that even minor
variations in initial conditions or parameters yield drastically
different encryption outcomes. This dual-layer approach
enhances both confusion and diffusion, key properties that are
critical for thwarting brute-force, statistical, and differential
attacks. The experimental simulations indicate that the
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algorithm maintains low computational overhead, making it
feasible for real-time applications in critical energy
infrastructures. Moreover, the chaos-based analysis not only
validates the algorithm’s randomness but also provides
valuable insights into optimal parameter selection to maximize
security. The implications for cryptography are significant: by
merging advanced mathematical constructs with chaos theory
and noise modulation, this work paves the way for next-
generation cryptographic systems that can effectively counter
evolving cyber threats, including those posed by quantum
computing advancements. The research contributes an
innovative and adaptable encryption framework that addresses
the dual requirements of high security and operational
efficiency. The successful integration of PHOF with chaotic
noise modification holds promise for further developments in
cryptographic techniques, offering a resilient foundation for
protecting sensitive data in energy production and
management contexts, as well as beyond. Future work will
focus on refining noise modification strategies and exploring
multidimensional chaotic maps to further enhance the
system’s security and scalability.
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NOMENCLATURE

PHOF

Xn
P(n)

Ay, Aq, ey A

Polynomial High  Order Fibonacci
sequence, used for generating extended key
spaces in encryption

Chaotic map parameter (e.g., logistic map)
controlling the degree of chaos

Chaotic sequence state variable at iteration
n

Polynomial function defining the PHOF
recurrence

Coefficients of the high-order polynomial
P(n)

2167

fo fu
n(n)

Ciphertext
Plaintext

Throughput
AES

Entropy

Initial integer seeds for the PHOF
recurrence

Noise or perturbation term integrated into
the encryption process

Encrypted representation of the original
data

Original unencrypted data (image/data)
Rate at which data (plaintext/ciphertext) is
processed

Advanced  Encryption  Standard, a
conventional block cipher algorithm
Measure of randomness/unpredictability in

the generated keystream or ciphertext





