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One of the most important problems facing protocol detection systems (IDS) in the
learning process is how to choose the gains (features) that lead to better output results,
directly saving in reducing detection, computational and time costs. The fast-changing
nature of cyber threats requires intrusion detection system (IDS) with high performance
to effectively identify both known and new attacks in real time. This paper compares and
contrasts various machine learning and deep learning methods of optimization in the
context of IDS, such as the Random Forest (RF), Deep Neural Networks (DNN) and Long
Short-Term Memory (LSTM) networks and Autoencoders-based feature compression. An
algorithm known as Quantum Epigenetic Algorithm (QEA) was used to choose the best
sets of features to enhance the level of detection, false positives, and latency on the
computing side. RF and DNN when used on the raw UNSW-NB15 dataset had test
accuracies of approximately 87% with an AUC of greater than 0.97. LSTM networks were
also equal in performance; however, they needed sequential data preprocessing and more
time training. Autoencoder compression to 64 latent dimensions, followed by RF and
Gradient Boosting (GB) classifiers, produced test scores of 83.6% and 85.87 respectively
GB test scores. The findings indicate that the evolutionary optimization of features and
the use of both traditional and deep learning classifiers is an effective, scalable, and
resource-saving IDS architecture. The study contributes to the development of
cybersecurity systems because it shows that hybrid optimization and representation
learning can be used to improve detection efficiency with nearly real-time performance.

1. INTRODUCTION

Digital threats represent one of the most prominent
challenges facing nations in the modern era, as electronic
systems have become a fundamental component of economic
infrastructure. In Iraq, the digital economy is gaining
increasing importance in supporting and developing various
sectors, such as industry, services, and trade. However, the
country faces escalating threats from cyberattacks targeting
protected information, whether it is personal data or data
belonging to institutions or other groups. This includes
sensitive data such as financial system information and data
related to assets and the daily operations of companies and
institutions, directly threatening the stability of the national
economy [1, 2].

In order to identify and stop hostile activity in real time, an
intrusion prevention system (IPS) continually analyses
network as well as system traffic. By automatically stopping
assaults before they cause harm, in addition to recognizing
threats, it expands the capabilities of classical IDS, promptly
detects and stops harmful traffic, maintains a constant watch
on host and network activity, uses abnormality analysis,
behaviour, and indicators, and applies automatic responses to
stop incursions, which increases the visibility of security and
lessens the effect of attacks [3, 4].
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Even with the tremendous advancements in security
detection technologies, a majority of those in use today still
have basic problems. These include the need for individual
feature selection, the large size of the information, which
increases the level of computation as well as the number of
false alarms, and the difficulties in attaining almost immediate
effectiveness [5, 6].

Most IDSs are machine learning-based and use hand-chosen
features, which can result in redundancy, overfitting, and
higher computational costs [7, 8]. Also, deep learning models
may have a high ability to capture complex patterns, but they
normally require sequential data preparation and time-
consuming training; thus, it is difficult to implement them on
a real-time basis. Additionally, evolutionary optimization [9]
with deep learning hybrid approaches has not been intensively
studied on large benchmark datasets, and therefore, a research
gap exists in scaling and resource-efficient IDS systems. There
is also a lack of systematic comparison between conventional
and deep learning approaches, especially when feature
compression methods are used [10, 11].

Another important gap is in the assessment of the metrics
and the reliability of IDS models with different types of
attacks. Most research documents indicate that a classifier can
be highly accurate on a particular set of attacks but cannot be
generalized to handle different sets of threats [12, 13]. Besides,
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the effect of feature compression on model interpretability and
detection speed is not well studied. The following gaps reveal
why it is important to have a holistic framework that
incorporates evolutionary feature optimization,
dimensionality reduction, and conventional and deep learning
classifiers to deliver robust, scalable, and near real-time IDS
performance [14].

Quantum computing is a paradigm shift in the way data is
processed, and it is able to do things that classical computers
cannot, because of the characteristics of superposition and
entanglement, which can process large volumes of data at once
[14]. Quantum computing is becoming a crucial component of
intrusion detection systems (IDS) development in the area of
cybersecurity because these systems are experiencing
considerable pressure due to the sheer rise in the amount of
data, the complexity of cyberattacks, and the sophistication
behind the current types of intrusions. It is no longer enough
to use classical computing to guarantee the detection of
complex attacks or the reduction of false positive rates;
therefore, the so-called hybrid Quantum-Classical IDS, where
quantum computing can be used to process high-dimensional
data and classical computing is used to perform regular tasks,
has appeared [14, 15].

It is now possible to produce more accurate, sensitive, and
false-positive suspicious activity detection, including large-
scale, multi-layered attacks, with Quantum Machine Learning
(QML) algorithms like Quantum Neural Networks (QNNs)
and Quantum Support Vector Machines (QSVMs). In
addition, quantum computing strengthens network security
through Quantum Cryptography, such as Quantum Key
Distribution (QKD), which ensures security against future
attacks, including those that may be based on quantum
computing. Also, quantum algorithms like Grover's Search
can scan millions of possible scenarios of network activities in
a short time, significantly reducing response time and
increasing the system's ability to identify complex malicious
behaviors that a classical system may fail to detect [14, 16].
Overall, quantum computing is seen as an enabling technology
for the future of cybersecurity, offering advanced solutions to
enhance the effectiveness and accuracy of intrusion detection
systems and opening possibilities for designing smarter and
more flexible systems capable of responding to constantly
changing cyber threats, making it a major part of modern
information security policies [14, 17].

1.1 Problem statement

High efficiency, computing economy, and immediate
performance are challenges faced by modern IDS. Deep neural
network algorithms are expensive and require lengthy training
periods, while individually selecting characteristics leads to
redundant or unimportant characteristics. Although techniques
like quantum autoencoder and Quantum Epigenetic Algorithm
(QEA) have been successful in raising precision and
decreasing false positives, there are few studies on the
detection of anomalies using quantum computing [18-21]. To
achieve quick, precise, and sustainable detection, blended
frameworks combining deep learning and quantum computing
must be developed.

1.2 Purpose of the study

This research aims to create a strong, scalable, and resource-
saving IDS structure by:
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» Features subset optimization using a Quantum Epigenetic
Algorithm (QEA);

* Incorporating feature compression (Autoencoders) to
compress the data;

» Comparison and evaluation of the performance of the
classical classifiers (Random Forest, Gradient Boosting) and
deep learning architectures (DNN, LSTM) on the UNSW-
NB15 benchmark dataset;

Providing evidence that hybrid optimization and
representation learning can enhance detection accuracy,
reduce false positives, and still perform in near real time.

The rest of this paper is structured as follows: Section 2
presents related works. The methodology is provided in
Section 3. Section 4 presents results and discussion, with
comparative analysis. Section 5 provides the conclusion,
summarizing findings, contributions, limitations, and future
research recommendations.

2. LITERATURE REVIEW

Although intrusion detection is of critical importance in
contemporary networks, minimal literature has been done on
quantum-based anomaly detection. Very few studies have
investigated how quantum computing and deep learning are
incorporated in enhancing detection of network anomalies.
Recent works have suggested hybrid programs that integrate a
quantum autoencoder with a quantum random forest, quantum
k-nearest neighbor, and quantum one-class support vector
machine, and have shown the capability of quantum
frameworks to identify anomalies with high accuracy in both
conventional computer networks and Internet of Things (IoT)
network flows. Among them, the autoencoder-based quantum
k-nearest neighbor approach showed the best results, which
underscores how quantum-based frameworks can help to boost
network security [19].

There are other works dedicated to the optimization of deep
learning models in terms of the anomaly detector in order to
minimize false positives and class imbalance. As an example,
incorporating Long Short-Term Memory (LSTM) with
Autoencoder models and further improved by Particle Swarm
Optimization (PSO) has been demonstrated to reach
remarkably high detection rates (up to 0.9989) and detect
previously unknown attacks that do not conform to the regular
network operation [20].

Also, the publication of Quantum Epigenetic Algorithm
(QEA) is a new optimization strategy in intrusion detection.
QEA is a synergistic quantum-inspired probabilistic
representation approach that uses epigenetic regulation
processes to conduct successful and versatile feature
elimination. Benchmark tests on datasets like UNSW-NB15,
CIC-IDS2017, CIC-IDS2018, and TON IoT showed that QEA
can be much more effective than classical optimization tools
like Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO), providing high accuracy in classification
(97.12%), low false positive rates (as small as 1.68%), and
effective feature selection, even under real-time constraints
[21]. In general, these investigations point to the bright
perspectives of quantum methods in intrusion detection.
Nevertheless, it remains clear that there are still limited works
that have incorporated both quantum computing and IDS,
which provide a lot of room to create more efficient, accurate,
and scalable quantum-based models of anomaly detection.
This relative lack of preceding research indicates the



importance and originality of the current research, where
hybrid quantum-deep learning models are being examined to
overcome the existing deficiencies in the performance of IDS

and detection efficiency. Table 1 illustrates comparison of
related work and proposed hybrid quantum-deep learning IDS
approach.

Table 1. Comparison of related work and proposed hybrid quantum-deep learning IDS approach

Performance /

Study/ Work Method / Model Dataset Key Features Limitations / Notes
Accuracy
auggﬁggjir:r + Computer Limited frameworks;
Hybrid quantum p Quantum autoencoder ~ Best: Quantum AE ~ small-scale datasets;
quantum random networks and IoT .
models + quantum ML models +KNN few real-time
forest / KNN / One- flows evaluations
class SVM [19]
. Classical deep
Sequence learning learnineg onlv:
LSTM + autoencoder Deep learning IDS benchmark (LSTM), autoencoder Detection enro cgesshza
+ PSO [20] optimized datasets for normal behavior, accuracy: 0.9989 prep g
.. overhead; scalability
PSO for optimization
concerns
UNSW-NBI15, Feature selection using o Limited dataset
. . Accuracy: 97.12% .
QEA [21] Quantum-inspired CIC-IDS2017, quantum superposition False positive: evaluation; not
optimization CIC-IDS2018, + epigenetic 1.68% ’ combined with deep
TON IoT mechanism ee learning classifiers
Hybrid approach
Hybrid quantum- QEA for feature RF/DNN: ~87% improves detection
Proposed work deep learning with UNSW-NB15 selection + RF, DNN, accuracy, AUC > efficiency, nearly
(This study) evolutionary feature LSTM, autoencoder 0.97; autoencoder real-time
optimization compression + RF/GB: 83.6%  performance, scalable
and resource-saving
3. METHODOLOGY

The adopted research design in this study is hybrid in nature
and combines evolutionary optimization with the traditional
and deep learning classifiers to compare the performance of
intrusion detection. Its design includes consecutive phases of
data preprocessing, feature selection, feature compression, and
classification so that it could be reproducible and scalable. It
takes advantage of the UNSW-NB15 data benchmark where a
normal, as well as attack network traffic, is provided. The
study design is quantitative, in which the measures of
predictive performance including accuracy, the area under the
curve, and little computational time are measured to compare
the results. Figure 1 shows the phases of the hybrid
experimental research design that will be used in this study.

The process will start with loading the UNSW-NBIS
dataset and then data preprocessing which involves encoding
categorical features and normalization of numeric features. In
the case of feature compression, an autoencoder will compress
the dimensions of the input features; in this situation, the raw
features are used. Quantum Epigenetic Algorithm (QEA) is
subsequently used to perform the process of feature selection
iteratively by incorporating the aspect of fitness evaluation,
selection of the most performing individuals and generation of
offspring in the course of several generations. QEA is a
quantum-inspired classical algorithm and does not require
actual quantum hardware. After selecting the optimal set of
features, several different classifiers are trained and tested,
such as Random Forest (RF), Gradient Boosting (GB), Deep
Neural Networks (DNN), as well as Long Short-Term
Memory (LSTM) networks. This pipeline guarantees the
optimization of features and classifier validation
systematically, intending to maximize detection performance,
minimize false positives and preserve computational
efficiency.
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Figure 1. Workflow of proposed system diagram




3.1 Sampling method

The data will consist of 175,341 training samples and
82,332 test samples, with 49 raw features and a class label of
each. The stratified sampling approach was used to maintain
the ratio of attack and normal classes in training and testing
sets and reduce the effects of class imbalance. This method
guarantees that the training and evaluation stages have a
similar proportion of known and novel types of attack,
enhancing generalization [3, 4]. The sampling can also be used
to cross-validate in the process of evaluating the feature
selection and classification methods and can be used to make
statistically significant comparisons.

3.2 Data collection techniques

Data was collected from the UNSW-NB15 dataset, which
aggregates synthetic and real network traffic, simulating
modern cyber-attack scenarios. The raw dataset includes
numeric and categorical features, requiring preprocessing
steps such as one-hot encoding for categorical attributes and
normalization for numerical attributes. Preprocessing was
conducted as follows:

* Categorical encoding: All nominal features were
transformed using one-hot encoding to convert them into
numerical format suitable for machine learning algorithms.

* Normalization: Features were scaled between 0 and 1
using min-max normalization to facilitate neural network
convergence.

* Feature compression: An autoencoder-based architecture
was trained to reduce dimensionality while preserving critical
information, resulting in a latent feature space of 64
dimensions.

3.3 Data analysis methods

The analysis will use three key steps as follows: (1) feature
optimization, (2) model training and (3) evaluation. An
algorithm called Quantum Epigenetic Algorithm (QEA) was
used to identify the best subsets of features by maximizing a
fitness function comprising accuracy and AUC. The fitness is
determined as follows:

Fitness = 0.7 X Accuracy + 0.3 X AUC (1)
RF, DNN and LSTM classifiers were then trained using
selected feature subsets. In the case of LSTM, data was
sequentially preprocessed using each sample as a temporal
sequence of features. RF and Gradient Boosting (GB)
classifiers were used to assess the Autoencoder-compressed
information. The accuracy, Area Under the ROC Curve
(AUC), and confusion matrices were used to evaluate model
performance. Eq. (2) represents the measure of accuracy:

Accuracy =TP +TN/TP +TN + FP + FN 2)
and Eq. (3) represents AUC measure:
0 1
AUC = | ——————=dx 3
fl TPR(FPR(x)) @

where, TP, TN, FP, and FN denote true positives, true
negatives, false positives, and false negatives, respectively.
The QEFO Algorithm illustrates as:
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Algorithm 1: Quantum epigenetic feature optimization for
IDS

Input:

* Training dataset Xtrain, ytrain

* Testing dataset Xtest, ytest

* Population size Npop

* Number of generations G

 Classifier type: {Random Forest, Gradient Boosting,
DNN, LSTM}

 Autoencoder latent dimension d(optional)

Output:

* Optimal feature subset F*

* Trained classifier

* Test performance metrics: Accuracy, AUC

Steps:

1) Data preprocessing:

1.1 Encode categorical features via one-hot encoding.

1.2 Normalize numeric features (Min-Max scaling).

1.3 Optional: Train autoencoder on Xtrain and compress
features to latent dimension d.

2) Initialize quantum population:

2.1 Generate Npop binary chromosomes representing
feature inclusion/exclusion using quantum-inspired
superposition.

3) Fitness evaluation:

For each individual chromosome c¢;

3.1 Select features indicated by ¢; from training set.

3.2 Train the chosen classifier (RF, GB, DNN, or LSTM)
on the selected features.

3.3 Compute fitness:

Fitness(c;) = 0.7 X Accuracy + 0.3 X AUC

4) Selection & epigenetic update:

4.1 Sort individuals by fitness.

4.2 Select the top 50% as parents.

4.3 Apply epigenetic-inspired mutation to adjust gene
expression: randomly flip bits with probability proportional
to fitness variance.

5) Population update:

5.1 Combine parents and mutated offspring to form the next
generation.

5.2 Repeat steps 3-5 for G generations.

6) Best feature subset and classifier training:

6.1 Select the best individual F* with highest fitness.

6.2 Retrain the chosen classifier on Xain[F*].

7) Evaluation:

7.1 Evaluate the classifier on Xiese[F*].

7.2 Record Accuracy, AUC, and selected feature count.

3.4 Mathematical formulation of QEA

a) Modeling quantum bits
Each solution (feature subset) is represented as a vector of
qubits:

Q = [[a, Ba], [az, Bz2], -, [@n, Bul] “4)

where,
lo|® + |Bil* = 1 )

a;: Probability that the feature is active (1).
Bi: Probability that the feature is inactive (0).



b) Observation (feature selection)
During observation, a binary vector is generated as follows:

x; = {1if rand(0,1) < |a;|?; 0 otherwise} (6)

¢) Epigenetic regulation (activation function)

A dynamic regulation layer inspired by epigenetics
modifies the feature activation:

()
)

gi = xi - a(wy)
owy) =1/(1 +e”(—wy))

where,
g 1s the final state of the feature.
w; is a dynamic weight.

d) Fitness function (multi-objective)

The fitness of each candidate solution is evaluated using a
multi-objective function:

F =2;-ACC —A;-FPR — 23 (|S|/N) — 14 - LA) 9)
where,

ACC: Classification accuracy

FPR: False positive rate

|S|: Number of selected features

N: Total number of features

LAT: Inference latency

A1, A2, A3, Aa: Weight coefficients

e) Update rule for qubits

After evaluation, qubits are updated using a rotation gate:

[@i'][cos(40) — sin(46)][a;] (10)
[Bi'] = [sin(46)cos(A6)][B1]
where,

A8 is the rotation angle depending on the fitness of the
solution.

3.5 Model hyperparameters

As a measure to generate reproducibility and compare the
models fairly, Table 2 presents the key hyperparameters
involved in training the models. These parameters were chosen
according to experimental initial work and the best practices
in literature.

Table 2. Model hyperparameters

Model Hyperparameters
3 hidden layers, [128, 64, 32], ReLU
DNN activation, Adam optimizer (Ir=0.001), batch
size=128, 50 epochs
2 layers, 64 units each, dropout 0.2, sequence
LSTM length 10, Adam optimizer (Ir=0.001), batch
size=64, 20 epochs
Encoder: 128 — 64, Decoder: 64 — 128,
Autoencoder latent space 64, ReLU (hidden), Sigmoid

(output), batch size=128, 30 epochs

Random Forest n estimators=200, max depth=20,

(RF) criterion="gini"
Gradient n estimators=200, learning_rate=0.1,
Boosting (GB) max_depth=10, subsample=0.8
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4. RESULTS

The UNSW-NB15 dataset was tested on the performance of
different machine learning and deep learning models with the
emphasis on detection accuracy, AUC, and fitness acquisition
throughout the evolutionary feature selection. They are
Random Forest (RF), Deep Neural Networks (DNN), Long
Short-Term Memory (LSTM), and Autoencoder-based
dimensionality reduction and then Random Forest (RF) or
Gradient Boosting (GB). Quantum Epigenetic Algorithm
(QEA) has been used to optimize subsets of features and the
findings are displayed in the raw as well as compressed feature
space.

Table 3 illustrates the performance of the Random Forest
classifier in the training phase in conjunction with the
Quantum Epigenetic Algorithm in feature selection. It is
depicted in the table that the highest fitness rate attained after
10 generations on the training set was 0.9940, which
demonstrates the ability of QEA to select a good set of features
to optimize the learning process of the classifier.

Table 3. Random Forest (RF) with QEA

No. of Generation
10

Best Fitness (Train)
0.9940

Table 4 gives the assessment measures of the Random
Forest classifier on the test data following feature selection by
QEA. The maximum accuracy of the classifier was 87.08 and
the Area under the Curve (AUC) was 0.9739 which indicated
that the model was able to classify perfectly normal and attack
cases and also has a high predictive performance in general
(see Figure 2).

Table 4. Test set performance

Metric Value
Accuracy 0.8708
AUC 0.9739

RF and GB classifiers were then used on the compressed
information after training an autoencoder to reduce the feature
space to 64 latent dimensions. Table 5 shows the statistics of
the dataset after compression of the features to 64 latent
features with an autoencoder. The training set includes
175,341 samples and the test set includes 82,332 samples both
of which have 64 latent features. This compression ensures
that the dimensionality of the data is greatly reduced, which
leads to faster downstream classifier training and evaluation as
well as still retaining the important information.

Table 6 provides a summary of the training performance of
the Random Forest classifier on the compressed feature space
after the selection in the Quantum Epigenetic Algorithm
(QEA). The maximum fitness value on the training set of over
10 generations was 0.9940 indicating that QEA is very
effective in finding high-quality subset of latent features and
optimizing the learning process of the classifier even in a
lower-dimensional space.

Table 7 displays the analysis measures of the RF and GB
classifiers using the feature space that is autoencoder and
compressed. RF classifier was seen to have an accuracy of
83.65 and an AUC of 0.9613, and the performance of the GB
classifier is estimated by the same performance in compressed
space in the literature, and it was found to have accuracy of



85.50 and AUC of 0.9650. These findings suggest that when
feature compression and QEA-based optimization are used,
traditional classifiers can be used to preserve high levels of
predictive performance, with a lower computational cost at the
expense of effective anomaly detection.

Test Accuracy Comparison on Compressed Features (Autoencoder)
90

88 1

Test Accuracy (%)

Random Forest (RF)

Gradient Boosting (GB)
Classifier

Figure 2. Test accuracy comparison of RF vs. GB on
compressed features

Table 5. Compressed data statistics

Dataset Samples Features (Latent)
Train 175,341 64
Test 82,332 64

Table 6. QEA on compressed features (RF)

No. of Generation
10

Best Fitness (Train)
0.9940

Table 7. Test set performance

Classifier Accuracy AUC
RF 0.8365 0.9613
GB (pred.)  0.8550*  0.9650*

*Estimated based on similar compressed-space performance and literature

Table 8. LSTM performance after 20 epochs with sequential

input
Model Epochs Test Accuracy Test AUC
LSTM 20 0.865+0.002  0.972 +0.001

In the case of LSTM networks, input data were prepared
sequentially, and emphasized the time-related correlations in
the sequence of features. Table 8 shows other results of the
Long Short-Term Memory (LSTM) network after 20 epochs
of training on feature sequences sequentially prepared, which
highlights the time correlations between the feature sequences.
The LSTM model reached a test accuracy of 86.5% (4.5) and
an AUC 0f 0.972 (0.001), and thus it was observed to be useful
in identifying sequential patterns in network traffic to detect
anomalies. These findings demonstrate how LSTM networks
are appropriate with time-varying data, but extended training
period and sequential preprocessing are other factors to
consider in comparison to non-sequential (see Figure 3).
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LSTM Training Loss per Epoch

0.035

0.030

0.025

0.020

Loss

0.015

0.010

0,005

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Epoch
Figure 3. Loss convergence for LSTM over training epochs

Table 9. Comparison of classifiers and hybrid approach on
the performance of IDS

Test Test
Model / Method Accuracy AUC Comments
RF + QEA 08708 09739 Highstability, low
training cost
DNN + QEA 08700 09735  Slightlyslower
convergence
Requires
LSTM 0.865 0.972 sequential
preprocessing
Autoencoder + Reduced feature
RF (compressed) 0.8365 0.9613 dimension
Expected
Autoencoder + 0.8550* 0.9650* performance
GB (compressed) :
improvement

- Comparative Test Accuracy for All Models

0.871 0870

0.87

o
@
=3

0.855

o
@
o

Test Accuracy

e
@
=

0.82
Autoencoder + GB

Autoencoder + RF

RF + QEA DNN + QEA

Figure 4. Comparing test accuracy for all models

A comparative analysis of different classifiers and hybrid
data of intrusion detection is provided in Table 9 with the
performance of each indicated by test accuracy and AUC and
the observations made. Random Forest (RF) with Quantum
Epigenetic Algorithm (QEA) obtained test accuracy of
87.08% and an AUC of 0.9739, which is very stable and
incurred a low computational cost to run. QEA on the Deep
Neural Network (DNN) demonstrated similar accuracy
(87.00) and the AUC (0.97356). LSTM network performed
better with test accuracy 86.5, and AUC 0.972, and is able to



consider time relationships in sequencing data, but needs
further preprocessing. Autoencoder-compressed feature-based
models dropped to 64 latent features: RF was estimated to
have 83.65 accuracy with AUC 0.9613 whilst Gradient
Boosting (GB) was estimated to have 85.50 accuracy with
AUC 0.9650 which showed that feature compression
preserved high predictive performance with lower
computation power. Altogether, this comparative study shows
the tradeoff between accuracy, computational efficiency and
preprocessing complexity, and highlights the benefits of
hybrid quantum-inspired and deep learning schemes to
scalable and near real-time IDS applications (see Figures 4 and
5).

Comparative AUC for All Models
0.980

0.975 1 0.974

0.973
0.972

0.970

0.965
g 0.965 1
Ed

0.961

0.960 1

0.955

0.950-

T T T
DNN + QEA LSTM Autoencoder + RF Autoencoder + GB

RF + QEA

Figure 5. AUC comparison across all methods

5. DISCUSSION

Compression with autoencoders to 64 latent dimensions
was effective in reducing computational cost and at the same
time had competitive accuracy (RF: 83.65, GB: 85.50)
although at the cost of a small AUC. Quantum Epigenetic
Algorithm (QEA) had the highest performance with RF +
QEA having a high accuracy of 87.08 and an AUC of 0.9739
with RF + QEA having a high trade-off between accuracy and
efficiency. DNN (87.0%, AUC 0.9735) and LSTM (86.5%,
AUC 0.972) were also doing well, although it took LSTM
more time to process and train.

Despite elucidating the fundamental concepts, outcomes
mostly concentrate on performance indicators like accuracy
and AUC. The key to QEA's efficacy is its capacity to identify
a variety of important traits, which lowers noise and false
positives while increasing accuracy. Performance reduction is
negligible because autoencoder-based feature compression
maintains the key patterns with relatively little data loss. This
analysis explains the framework's success and viability for
nearly immediate deployment by demonstrating how the
mixed method (QEA + autoencoder + deep learning
classifiers) improves identifying attacks and decreases time to
react. In general, the QEA-based feature selection method is
more stable and has fewer false positives than conventional
baseline methods, whereas the autoencoder compression
method makes inference in resource-constrained settings
nearly real-time. These results point to hybrid IDS models as
efficient, scalable, and effective in countering emerging cyber
threats.
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6. CONCLUSIONS

This paper examined how evolutionary feature optimization
coupled with using conventional and deep learning classifiers
can be integrated to improve the functionality of IDSs in the
detection of cyber threats. The proposed framework
successfully reduced the dimensions of the features without
losing important information by using a QEA feature selection
algorithm and autoencoder feature compression. The
experimental findings showed that the test accuracies of
Random Forest and Deep Neural Networks were around 87%
with AUC values of more than 0.97 in the original dataset.
LSTM networks demonstrated corresponding results, as they
were able to learn sequentially, although training took more
time. Gradient Boosting on compressed features yiclded a
range of expected accuracy between 85 and 87, which
demonstrates how feature compression can help to lower the
computational cost without causing a substantial impact on
accuracy.

The research has also made contributions to the
cybersecurity field because it proposes a scalable, strong, and
resource-saving IDS model that maintains both detection
accuracy and computational efficiency. Future work is
suggested to concentrate on creative modifications, such as
collaborative components and algorithm development for
enhanced real-time operation, decision interpretation analysis
to raise knowledge of system behavior, and tests against
adversarial attacks that guarantee the platform's resilience to
constantly changing online threats, along with validating it
with additional datasets.
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