
A Hybrid Intrusion Detection System with Quantum Epigenetic Optimization and 
Autoencoder Feature Reduction 

Nadia Mahmood Hussien* , Methaq Talib Gaata

Department of Computer Science, College of Science, Mustansiriyah University, Baghdad 10001, Iraq 

Corresponding Author Email: nadia.cs89@uomustansiriyah.edu.iq 

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 
(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ijsse.151003 ABSTRACT 

Received: 23 September 2025 
Revised: 24 October 2025 
Accepted: 27 October 2025 
Available online: 31 October 2025 

One of the most important problems facing protocol detection systems (IDS) in the 
learning process is how to choose the gains (features) that lead to better output results, 
directly saving in reducing detection, computational and time costs. The fast-changing 
nature of cyber threats requires intrusion detection system (IDS) with high performance 
to effectively identify both known and new attacks in real time. This paper compares and 
contrasts various machine learning and deep learning methods of optimization in the 
context of IDS, such as the Random Forest (RF), Deep Neural Networks (DNN) and Long 
Short-Term Memory (LSTM) networks and Autoencoders-based feature compression. An 
algorithm known as Quantum Epigenetic Algorithm (QEA) was used to choose the best 
sets of features to enhance the level of detection, false positives, and latency on the 
computing side. RF and DNN when used on the raw UNSW-NB15 dataset had test 
accuracies of approximately 87% with an AUC of greater than 0.97. LSTM networks were 
also equal in performance; however, they needed sequential data preprocessing and more 
time training. Autoencoder compression to 64 latent dimensions, followed by RF and 
Gradient Boosting (GB) classifiers, produced test scores of 83.6% and 85.87 respectively 
GB test scores. The findings indicate that the evolutionary optimization of features and 
the use of both traditional and deep learning classifiers is an effective, scalable, and 
resource-saving IDS architecture. The study contributes to the development of 
cybersecurity systems because it shows that hybrid optimization and representation 
learning can be used to improve detection efficiency with nearly real-time performance. 
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1. INTRODUCTION

Digital threats represent one of the most prominent
challenges facing nations in the modern era, as electronic 
systems have become a fundamental component of economic 
infrastructure. In Iraq, the digital economy is gaining 
increasing importance in supporting and developing various 
sectors, such as industry, services, and trade. However, the 
country faces escalating threats from cyberattacks targeting 
protected information, whether it is personal data or data 
belonging to institutions or other groups. This includes 
sensitive data such as financial system information and data 
related to assets and the daily operations of companies and 
institutions, directly threatening the stability of the national 
economy [1, 2]. 

In order to identify and stop hostile activity in real time, an 
intrusion prevention system (IPS) continually analyses 
network as well as system traffic. By automatically stopping 
assaults before they cause harm, in addition to recognizing 
threats, it expands the capabilities of classical IDS, promptly 
detects and stops harmful traffic, maintains a constant watch 
on host and network activity, uses abnormality analysis, 
behaviour, and indicators, and applies automatic responses to 
stop incursions, which increases the visibility of security and 
lessens the effect of attacks [3, 4]. 

Even with the tremendous advancements in security 
detection technologies, a majority of those in use today still 
have basic problems. These include the need for individual 
feature selection, the large size of the information, which 
increases the level of computation as well as the number of 
false alarms, and the difficulties in attaining almost immediate 
effectiveness [5, 6]. 

Most IDSs are machine learning-based and use hand-chosen 
features, which can result in redundancy, overfitting, and 
higher computational costs [7, 8]. Also, deep learning models 
may have a high ability to capture complex patterns, but they 
normally require sequential data preparation and time-
consuming training; thus, it is difficult to implement them on 
a real-time basis. Additionally, evolutionary optimization [9] 
with deep learning hybrid approaches has not been intensively 
studied on large benchmark datasets, and therefore, a research 
gap exists in scaling and resource-efficient IDS systems. There 
is also a lack of systematic comparison between conventional 
and deep learning approaches, especially when feature 
compression methods are used [10, 11]. 

Another important gap is in the assessment of the metrics 
and the reliability of IDS models with different types of 
attacks. Most research documents indicate that a classifier can 
be highly accurate on a particular set of attacks but cannot be 
generalized to handle different sets of threats [12, 13]. Besides, 
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the effect of feature compression on model interpretability and 
detection speed is not well studied. The following gaps reveal 
why it is important to have a holistic framework that 
incorporates evolutionary feature optimization, 
dimensionality reduction, and conventional and deep learning 
classifiers to deliver robust, scalable, and near real-time IDS 
performance [14]. 

Quantum computing is a paradigm shift in the way data is 
processed, and it is able to do things that classical computers 
cannot, because of the characteristics of superposition and 
entanglement, which can process large volumes of data at once 
[14]. Quantum computing is becoming a crucial component of 
intrusion detection systems (IDS) development in the area of 
cybersecurity because these systems are experiencing 
considerable pressure due to the sheer rise in the amount of 
data, the complexity of cyberattacks, and the sophistication 
behind the current types of intrusions. It is no longer enough 
to use classical computing to guarantee the detection of 
complex attacks or the reduction of false positive rates; 
therefore, the so-called hybrid Quantum-Classical IDS, where 
quantum computing can be used to process high-dimensional 
data and classical computing is used to perform regular tasks, 
has appeared [14, 15].  

It is now possible to produce more accurate, sensitive, and 
false-positive suspicious activity detection, including large-
scale, multi-layered attacks, with Quantum Machine Learning 
(QML) algorithms like Quantum Neural Networks (QNNs) 
and Quantum Support Vector Machines (QSVMs). In 
addition, quantum computing strengthens network security 
through Quantum Cryptography, such as Quantum Key 
Distribution (QKD), which ensures security against future 
attacks, including those that may be based on quantum 
computing. Also, quantum algorithms like Grover's Search 
can scan millions of possible scenarios of network activities in 
a short time, significantly reducing response time and 
increasing the system's ability to identify complex malicious 
behaviors that a classical system may fail to detect [14, 16]. 
Overall, quantum computing is seen as an enabling technology 
for the future of cybersecurity, offering advanced solutions to 
enhance the effectiveness and accuracy of intrusion detection 
systems and opening possibilities for designing smarter and 
more flexible systems capable of responding to constantly 
changing cyber threats, making it a major part of modern 
information security policies [14, 17]. 

 
1.1 Problem statement 

 
High efficiency, computing economy, and immediate 

performance are challenges faced by modern IDS. Deep neural 
network algorithms are expensive and require lengthy training 
periods, while individually selecting characteristics leads to 
redundant or unimportant characteristics. Although techniques 
like quantum autoencoder and Quantum Epigenetic Algorithm 
(QEA) have been successful in raising precision and 
decreasing false positives, there are few studies on the 
detection of anomalies using quantum computing [18-21]. To 
achieve quick, precise, and sustainable detection, blended 
frameworks combining deep learning and quantum computing 
must be developed. 

 
1.2 Purpose of the study 

 
This research aims to create a strong, scalable, and resource-

saving IDS structure by: 

• Features subset optimization using a Quantum Epigenetic 
Algorithm (QEA); 

• Incorporating feature compression (Autoencoders) to 
compress the data; 

• Comparison and evaluation of the performance of the 
classical classifiers (Random Forest, Gradient Boosting) and 
deep learning architectures (DNN, LSTM) on the UNSW-
NB15 benchmark dataset; 

• Providing evidence that hybrid optimization and 
representation learning can enhance detection accuracy, 
reduce false positives, and still perform in near real time. 

The rest of this paper is structured as follows: Section 2 
presents related works. The methodology is provided in 
Section 3. Section 4 presents results and discussion, with 
comparative analysis. Section 5 provides the conclusion, 
summarizing findings, contributions, limitations, and future 
research recommendations. 

 
 

2. LITERATURE REVIEW 
 
Although intrusion detection is of critical importance in 

contemporary networks, minimal literature has been done on 
quantum-based anomaly detection. Very few studies have 
investigated how quantum computing and deep learning are 
incorporated in enhancing detection of network anomalies. 
Recent works have suggested hybrid programs that integrate a 
quantum autoencoder with a quantum random forest, quantum 
k-nearest neighbor, and quantum one-class support vector 
machine, and have shown the capability of quantum 
frameworks to identify anomalies with high accuracy in both 
conventional computer networks and Internet of Things (IoT) 
network flows. Among them, the autoencoder-based quantum 
k-nearest neighbor approach showed the best results, which 
underscores how quantum-based frameworks can help to boost 
network security [19].  

There are other works dedicated to the optimization of deep 
learning models in terms of the anomaly detector in order to 
minimize false positives and class imbalance. As an example, 
incorporating Long Short-Term Memory (LSTM) with 
Autoencoder models and further improved by Particle Swarm 
Optimization (PSO) has been demonstrated to reach 
remarkably high detection rates (up to 0.9989) and detect 
previously unknown attacks that do not conform to the regular 
network operation [20]. 

Also, the publication of Quantum Epigenetic Algorithm 
(QEA) is a new optimization strategy in intrusion detection. 
QEA is a synergistic quantum-inspired probabilistic 
representation approach that uses epigenetic regulation 
processes to conduct successful and versatile feature 
elimination. Benchmark tests on datasets like UNSW-NB15, 
CIC-IDS2017, CIC-IDS2018, and TON IoT showed that QEA 
can be much more effective than classical optimization tools 
like Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO), providing high accuracy in classification 
(97.12%), low false positive rates (as small as 1.68%), and 
effective feature selection, even under real-time constraints 
[21]. In general, these investigations point to the bright 
perspectives of quantum methods in intrusion detection. 
Nevertheless, it remains clear that there are still limited works 
that have incorporated both quantum computing and IDS, 
which provide a lot of room to create more efficient, accurate, 
and scalable quantum-based models of anomaly detection. 
This relative lack of preceding research indicates the 
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importance and originality of the current research, where 
hybrid quantum-deep learning models are being examined to 
overcome the existing deficiencies in the performance of IDS 

and detection efficiency. Table 1 illustrates comparison of 
related work and proposed hybrid quantum-deep learning IDS 
approach. 

 
Table 1. Comparison of related work and proposed hybrid quantum-deep learning IDS approach 

 
Study/ Work Method / Model Dataset Key Features Performance / 

Accuracy Limitations / Notes 

Quantum 
autoencoder + 

quantum random 
forest / KNN / One-

class SVM [19] 

Hybrid quantum 
models 

Computer 
networks and IoT 

flows 

Quantum autoencoder 
+ quantum ML models 

Best: Quantum AE 
+ KNN 

Limited frameworks; 
small-scale datasets; 

few real-time 
evaluations 

LSTM + autoencoder 
+ PSO [20] 

Deep learning 
optimized 

IDS benchmark 
datasets 

Sequence learning 
(LSTM), autoencoder 
for normal behavior, 
PSO for optimization 

Detection 
accuracy: 0.9989 

Classical deep 
learning only; 
preprocessing 

overhead; scalability 
concerns 

QEA [21] Quantum-inspired 
optimization 

UNSW-NB15, 
CIC-IDS2017, 
CIC-IDS2018, 

TON_IoT 

Feature selection using 
quantum superposition 

+ epigenetic 
mechanism 

Accuracy: 97.12% 
False positive: 

1.68% 

Limited dataset 
evaluation; not 

combined with deep 
learning classifiers 

Proposed work 
(This study) 

Hybrid quantum-
deep learning with 

evolutionary feature 
optimization 

UNSW-NB15 

QEA for feature 
selection + RF, DNN, 
LSTM, autoencoder 

compression 

RF/DNN: ~87% 
accuracy, AUC > 
0.97; autoencoder 
+ RF/GB: 83.6% 

Hybrid approach 
improves detection 
efficiency, nearly 

real-time 
performance, scalable 
and resource-saving 

 
 

3. METHODOLOGY 
 
The adopted research design in this study is hybrid in nature 

and combines evolutionary optimization with the traditional 
and deep learning classifiers to compare the performance of 
intrusion detection. Its design includes consecutive phases of 
data preprocessing, feature selection, feature compression, and 
classification so that it could be reproducible and scalable. It 
takes advantage of the UNSW-NB15 data benchmark where a 
normal, as well as attack network traffic, is provided. The 
study design is quantitative, in which the measures of 
predictive performance including accuracy, the area under the 
curve, and little computational time are measured to compare 
the results. Figure 1 shows the phases of the hybrid 
experimental research design that will be used in this study. 

The process will start with loading the UNSW-NB15 
dataset and then data preprocessing which involves encoding 
categorical features and normalization of numeric features. In 
the case of feature compression, an autoencoder will compress 
the dimensions of the input features; in this situation, the raw 
features are used. Quantum Epigenetic Algorithm (QEA) is 
subsequently used to perform the process of feature selection 
iteratively by incorporating the aspect of fitness evaluation, 
selection of the most performing individuals and generation of 
offspring in the course of several generations. QEA is a 
quantum-inspired classical algorithm and does not require 
actual quantum hardware. After selecting the optimal set of 
features, several different classifiers are trained and tested, 
such as Random Forest (RF), Gradient Boosting (GB), Deep 
Neural Networks (DNN), as well as Long Short-Term 
Memory (LSTM) networks. This pipeline guarantees the 
optimization of features and classifier validation 
systematically, intending to maximize detection performance, 
minimize false positives and preserve computational 
efficiency. 

 
 

Figure 1. Workflow of proposed system diagram 
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3.1 Sampling method 
 
The data will consist of 175,341 training samples and 

82,332 test samples, with 49 raw features and a class label of 
each. The stratified sampling approach was used to maintain 
the ratio of attack and normal classes in training and testing 
sets and reduce the effects of class imbalance. This method 
guarantees that the training and evaluation stages have a 
similar proportion of known and novel types of attack, 
enhancing generalization [3, 4]. The sampling can also be used 
to cross-validate in the process of evaluating the feature 
selection and classification methods and can be used to make 
statistically significant comparisons. 

 
3.2 Data collection techniques 
 

Data was collected from the UNSW-NB15 dataset, which 
aggregates synthetic and real network traffic, simulating 
modern cyber-attack scenarios. The raw dataset includes 
numeric and categorical features, requiring preprocessing 
steps such as one-hot encoding for categorical attributes and 
normalization for numerical attributes. Preprocessing was 
conducted as follows: 

• Categorical encoding: All nominal features were 
transformed using one-hot encoding to convert them into 
numerical format suitable for machine learning algorithms. 

• Normalization: Features were scaled between 0 and 1 
using min-max normalization to facilitate neural network 
convergence. 

• Feature compression: An autoencoder-based architecture 
was trained to reduce dimensionality while preserving critical 
information, resulting in a latent feature space of 64 
dimensions. 

 
3.3 Data analysis methods 

 
The analysis will use three key steps as follows: (1) feature 

optimization, (2) model training and (3) evaluation. An 
algorithm called Quantum Epigenetic Algorithm (QEA) was 
used to identify the best subsets of features by maximizing a 
fitness function comprising accuracy and AUC. The fitness is 
determined as follows: 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.7 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 0.3 × 𝐴𝐴𝐴𝐴𝐴𝐴 (1) 

 
RF, DNN and LSTM classifiers were then trained using 

selected feature subsets. In the case of LSTM, data was 
sequentially preprocessed using each sample as a temporal 
sequence of features. RF and Gradient Boosting (GB) 
classifiers were used to assess the Autoencoder-compressed 
information. The accuracy, Area Under the ROC Curve 
(AUC), and confusion matrices were used to evaluate model 
performance. Eq. (2) represents the measure of accuracy: 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇/𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 (2) 

 
and Eq. (3) represents AUC measure: 

 

𝐴𝐴𝐴𝐴𝐴𝐴 = �
1

𝑇𝑇𝑇𝑇𝑇𝑇�𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥)�
𝑑𝑑𝑑𝑑

0

1
 (3) 

 
where, TP, TN, FP, and FN denote true positives, true 
negatives, false positives, and false negatives, respectively. 

The QEFO Algorithm illustrates as: 

Algorithm 1: Quantum epigenetic feature optimization for 
IDS 
Input: 
• Training dataset Xtrain, ytrain 
• Testing dataset Xtest, ytest 
• Population size Npop 
• Number of generations G 
• Classifier type: {Random Forest, Gradient Boosting, 
DNN, LSTM} 
• Autoencoder latent dimension d(optional) 
Output: 
• Optimal feature subset F*  
• Trained classifier 
• Test performance metrics: Accuracy, AUC 
Steps: 
1) Data preprocessing: 
1.1 Encode categorical features via one-hot encoding. 
1.2 Normalize numeric features (Min-Max scaling). 
1.3 Optional: Train autoencoder on Xtrain and compress 
features to latent dimension d. 
2) Initialize quantum population: 
2.1 Generate Npop binary chromosomes representing 
feature inclusion/exclusion using quantum-inspired 
superposition. 
3) Fitness evaluation: 
For each individual chromosome ci 
3.1 Select features indicated by ci from training set. 
3.2 Train the chosen classifier (RF, GB, DNN, or LSTM) 
on the selected features. 
3.3 Compute fitness: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑐𝑐𝑖𝑖) = 0.7 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 0.3 × 𝐴𝐴𝐴𝐴𝐴𝐴 
 
4) Selection & epigenetic update: 
4.1 Sort individuals by fitness. 
4.2 Select the top 50% as parents. 
4.3 Apply epigenetic-inspired mutation to adjust gene 
expression: randomly flip bits with probability proportional 
to fitness variance. 
5) Population update: 
5.1 Combine parents and mutated offspring to form the next 
generation. 
5.2 Repeat steps 3-5 for G generations. 
6) Best feature subset and classifier training: 
6.1 Select the best individual F* with highest fitness. 
6.2 Retrain the chosen classifier on Xtrain[F∗]. 
7) Evaluation: 
7.1 Evaluate the classifier on Xtest[F∗]. 
7.2 Record Accuracy, AUC, and selected feature count. 

 
3.4 Mathematical formulation of QEA 

 
a) Modeling quantum bits 
Each solution (feature subset) is represented as a vector of 

qubits: 
 

𝑄𝑄 = [[𝛼𝛼₁,𝛽𝛽₁], [𝛼𝛼₂,𝛽𝛽₂], … , [𝛼𝛼ₙ,𝛽𝛽ₙ]] (4) 
 

where, 
 

|𝛼𝛼ᵢ|2 + |𝛽𝛽ᵢ|2 = 1 (5) 
 
αᵢ: Probability that the feature is active (1). 
βᵢ: Probability that the feature is inactive (0). 
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b) Observation (feature selection) 
During observation, a binary vector is generated as follows: 
 
𝑥𝑥ᵢ = {1 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) < |𝛼𝛼ᵢ|2;  0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} (6) 

 
c) Epigenetic regulation (activation function) 
A dynamic regulation layer inspired by epigenetics 

modifies the feature activation: 
 

𝑔𝑔ᵢ = 𝑥𝑥ᵢ · 𝜎𝜎(𝑤𝑤ᵢ) (7) 
 

𝜎𝜎(𝑤𝑤ᵢ) = 1/(1 + 𝑒𝑒^(−𝑤𝑤ᵢ)) (8) 
 

where, 
gᵢ is the final state of the feature. 
wᵢ is a dynamic weight. 

 
d) Fitness function (multi-objective) 
The fitness of each candidate solution is evaluated using a 

multi-objective function: 
 
𝐹𝐹 = 𝜆𝜆₁ · 𝐴𝐴𝐴𝐴𝐴𝐴 − 𝜆𝜆₂ · 𝐹𝐹𝐹𝐹𝐹𝐹 − 𝜆𝜆₃ · (|𝑆𝑆|/𝑁𝑁) − 𝜆𝜆₄ · 𝐿𝐿𝐿𝐿) (9) 
 

where, 
ACC: Classification accuracy 
FPR: False positive rate 
|S|: Number of selected features 
N: Total number of features 
LAT: Inference latency 
λ₁, λ₂, λ₃, λ₄: Weight coefficients 
e) Update rule for qubits 
After evaluation, qubits are updated using a rotation gate: 
 

[𝛼𝛼ᵢ′][cos(𝛥𝛥𝛥𝛥) − sin(𝛥𝛥𝛥𝛥)][𝛼𝛼ᵢ] 
[𝛽𝛽ᵢ′] = [𝑠𝑠𝑠𝑠𝑠𝑠(𝛥𝛥𝛥𝛥)𝑐𝑐𝑐𝑐𝑐𝑐(𝛥𝛥𝛥𝛥)][𝛽𝛽ᵢ] (10) 

 
where, 

Δθ is the rotation angle depending on the fitness of the 
solution. 
 
3.5 Model hyperparameters 

 
As a measure to generate reproducibility and compare the 

models fairly, Table 2 presents the key hyperparameters 
involved in training the models. These parameters were chosen 
according to experimental initial work and the best practices 
in literature. 

 
Table 2. Model hyperparameters 

 
Model Hyperparameters 

DNN 
3 hidden layers, [128, 64, 32], ReLU 

activation, Adam optimizer (lr=0.001), batch 
size=128, 50 epochs 

LSTM 
2 layers, 64 units each, dropout 0.2, sequence 
length 10, Adam optimizer (lr=0.001), batch 

size=64, 20 epochs 

Autoencoder 
Encoder: 128 → 64, Decoder: 64 → 128, 
latent space 64, ReLU (hidden), Sigmoid 

(output), batch size=128, 30 epochs 
Random Forest 

(RF) 
n estimators=200, max depth=20, 

criterion="gini" 
Gradient 

Boosting (GB) 
n estimators=200, learning_rate=0.1, 

max_depth=10, subsample=0.8 
 

4. RESULTS 
 

The UNSW-NB15 dataset was tested on the performance of 
different machine learning and deep learning models with the 
emphasis on detection accuracy, AUC, and fitness acquisition 
throughout the evolutionary feature selection. They are 
Random Forest (RF), Deep Neural Networks (DNN), Long 
Short-Term Memory (LSTM), and Autoencoder-based 
dimensionality reduction and then Random Forest (RF) or 
Gradient Boosting (GB). Quantum Epigenetic Algorithm 
(QEA) has been used to optimize subsets of features and the 
findings are displayed in the raw as well as compressed feature 
space. 

Table 3 illustrates the performance of the Random Forest 
classifier in the training phase in conjunction with the 
Quantum Epigenetic Algorithm in feature selection. It is 
depicted in the table that the highest fitness rate attained after 
10 generations on the training set was 0.9940, which 
demonstrates the ability of QEA to select a good set of features 
to optimize the learning process of the classifier. 

 
Table 3. Random Forest (RF) with QEA 

 
No. of Generation Best Fitness (Train) 

10 0.9940 
 
Table 4 gives the assessment measures of the Random 

Forest classifier on the test data following feature selection by 
QEA. The maximum accuracy of the classifier was 87.08 and 
the Area under the Curve (AUC) was 0.9739 which indicated 
that the model was able to classify perfectly normal and attack 
cases and also has a high predictive performance in general 
(see Figure 2). 

 
Table 4. Test set performance 

 
Metric Value 

Accuracy 0.8708 
AUC 0.9739 

 
RF and GB classifiers were then used on the compressed 

information after training an autoencoder to reduce the feature 
space to 64 latent dimensions. Table 5 shows the statistics of 
the dataset after compression of the features to 64 latent 
features with an autoencoder. The training set includes 
175,341 samples and the test set includes 82,332 samples both 
of which have 64 latent features. This compression ensures 
that the dimensionality of the data is greatly reduced, which 
leads to faster downstream classifier training and evaluation as 
well as still retaining the important information. 

Table 6 provides a summary of the training performance of 
the Random Forest classifier on the compressed feature space 
after the selection in the Quantum Epigenetic Algorithm 
(QEA). The maximum fitness value on the training set of over 
10 generations was 0.9940 indicating that QEA is very 
effective in finding high-quality subset of latent features and 
optimizing the learning process of the classifier even in a 
lower-dimensional space. 

Table 7 displays the analysis measures of the RF and GB 
classifiers using the feature space that is autoencoder and 
compressed. RF classifier was seen to have an accuracy of 
83.65 and an AUC of 0.9613, and the performance of the GB 
classifier is estimated by the same performance in compressed 
space in the literature, and it was found to have accuracy of 
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85.50 and AUC of 0.9650. These findings suggest that when 
feature compression and QEA-based optimization are used, 
traditional classifiers can be used to preserve high levels of 
predictive performance, with a lower computational cost at the 
expense of effective anomaly detection. 

 

 
 

Figure 2. Test accuracy comparison of RF vs. GB on 
compressed features 

 
Table 5. Compressed data statistics 

 
Dataset Samples Features (Latent) 

Train 175,341 64 
Test 82,332 64 

 
Table 6. QEA on compressed features (RF) 

 
No. of Generation Best Fitness (Train) 

10 0.9940 
 

Table 7. Test set performance 
 

Classifier Accuracy AUC 
RF 0.8365 0.9613 

GB (pred.) 0.8550* 0.9650* 
*Estimated based on similar compressed-space performance and literature 

 
Table 8. LSTM performance after 20 epochs with sequential 

input 
 

Model Epochs Test Accuracy Test AUC 
LSTM 20 0.865 ± 0.002 0.972 ± 0.001 

 
In the case of LSTM networks, input data were prepared 

sequentially, and emphasized the time-related correlations in 
the sequence of features. Table 8 shows other results of the 
Long Short-Term Memory (LSTM) network after 20 epochs 
of training on feature sequences sequentially prepared, which 
highlights the time correlations between the feature sequences. 
The LSTM model reached a test accuracy of 86.5% (4.5) and 
an AUC of 0.972 (0.001), and thus it was observed to be useful 
in identifying sequential patterns in network traffic to detect 
anomalies. These findings demonstrate how LSTM networks 
are appropriate with time-varying data, but extended training 
period and sequential preprocessing are other factors to 
consider in comparison to non-sequential (see Figure 3). 

 
 

Figure 3. Loss convergence for LSTM over training epochs 
 

Table 9. Comparison of classifiers and hybrid approach on 
the performance of IDS 

 
Model / Method Test 

Accuracy 
Test 
AUC Comments 

RF + QEA 0.8708 0.9739 High stability, low 
training cost 

DNN + QEA 0.8700 0.9735 Slightly slower 
convergence 

LSTM 0.865 0.972 
Requires 

sequential 
preprocessing 

Autoencoder + 
RF (compressed) 0.8365 0.9613 Reduced feature 

dimension 

Autoencoder + 
GB (compressed) 0.8550* 0.9650* 

Expected 
performance 
improvement 

 

 
 

Figure 4. Comparing test accuracy for all models 
 

A comparative analysis of different classifiers and hybrid 
data of intrusion detection is provided in Table 9 with the 
performance of each indicated by test accuracy and AUC and 
the observations made. Random Forest (RF) with Quantum 
Epigenetic Algorithm (QEA) obtained test accuracy of 
87.08% and an AUC of 0.9739, which is very stable and 
incurred a low computational cost to run. QEA on the Deep 
Neural Network (DNN) demonstrated similar accuracy 
(87.00) and the AUC (0.97356). LSTM network performed 
better with test accuracy 86.5, and AUC 0.972, and is able to 
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consider time relationships in sequencing data, but needs 
further preprocessing. Autoencoder-compressed feature-based 
models dropped to 64 latent features: RF was estimated to 
have 83.65 accuracy with AUC 0.9613 whilst Gradient 
Boosting (GB) was estimated to have 85.50 accuracy with 
AUC 0.9650 which showed that feature compression 
preserved high predictive performance with lower 
computation power. Altogether, this comparative study shows 
the tradeoff between accuracy, computational efficiency and 
preprocessing complexity, and highlights the benefits of 
hybrid quantum-inspired and deep learning schemes to 
scalable and near real-time IDS applications (see Figures 4 and 
5). 

 

 
 

Figure 5. AUC comparison across all methods 
 

 
5. DISCUSSION 

 
Compression with autoencoders to 64 latent dimensions 

was effective in reducing computational cost and at the same 
time had competitive accuracy (RF: 83.65, GB: 85.50) 
although at the cost of a small AUC. Quantum Epigenetic 
Algorithm (QEA) had the highest performance with RF + 
QEA having a high accuracy of 87.08 and an AUC of 0.9739 
with RF + QEA having a high trade-off between accuracy and 
efficiency. DNN (87.0%, AUC 0.9735) and LSTM (86.5%, 
AUC 0.972) were also doing well, although it took LSTM 
more time to process and train.  

Despite elucidating the fundamental concepts, outcomes 
mostly concentrate on performance indicators like accuracy 
and AUC.  The key to QEA's efficacy is its capacity to identify 
a variety of important traits, which lowers noise and false 
positives while increasing accuracy.  Performance reduction is 
negligible because autoencoder-based feature compression 
maintains the key patterns with relatively little data loss.  This 
analysis explains the framework's success and viability for 
nearly immediate deployment by demonstrating how the 
mixed method (QEA + autoencoder + deep learning 
classifiers) improves identifying attacks and decreases time to 
react. In general, the QEA-based feature selection method is 
more stable and has fewer false positives than conventional 
baseline methods, whereas the autoencoder compression 
method makes inference in resource-constrained settings 
nearly real-time. These results point to hybrid IDS models as 
efficient, scalable, and effective in countering emerging cyber 
threats. 

6. CONCLUSIONS 
 
This paper examined how evolutionary feature optimization 

coupled with using conventional and deep learning classifiers 
can be integrated to improve the functionality of IDSs in the 
detection of cyber threats. The proposed framework 
successfully reduced the dimensions of the features without 
losing important information by using a QEA feature selection 
algorithm and autoencoder feature compression. The 
experimental findings showed that the test accuracies of 
Random Forest and Deep Neural Networks were around 87% 
with AUC values of more than 0.97 in the original dataset. 
LSTM networks demonstrated corresponding results, as they 
were able to learn sequentially, although training took more 
time. Gradient Boosting on compressed features yielded a 
range of expected accuracy between 85 and 87, which 
demonstrates how feature compression can help to lower the 
computational cost without causing a substantial impact on 
accuracy. 

The research has also made contributions to the 
cybersecurity field because it proposes a scalable, strong, and 
resource-saving IDS model that maintains both detection 
accuracy and computational efficiency. Future work is 
suggested to concentrate on creative modifications, such as 
collaborative components and algorithm development for 
enhanced real-time operation, decision interpretation analysis 
to raise knowledge of system behavior, and tests against 
adversarial attacks that guarantee the platform's resilience to 
constantly changing online threats, along with validating it 
with additional datasets. 
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