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The adoption of Internet of Things (IoT) technologies in medical supervision enables real-
time patient monitoring but also introduces significant security challenges. Traditional
approaches rely on Intrusion Detection Systems (IDS) or Trust Management Systems
(TMS). Yet, each faces limitations when applied independently. This study proposes an
IDS-based trust management framework that integrates both approaches to strengthen
Internet of Medical Things (IoMT) security. In the proposed model, trust scores are
dynamically assigned to entities according to IDS outcomes, where the IDS employs a
deep learning (DL)-based Convolutional Neural Network (CNN) trained on the CIC-
1oMT2024 dataset. Blockchain is further incorporated to securely and transparently record
trust score updates, ensuring accountability and traceability. Experimental results
demonstrate the effectiveness of the framework: CNN achieves over 99% detection
accuracy, outperforming existing methods on the same dataset. In addition, blockchain
introduces an average latency of only 14 ms, while trust calculation requires
approximately 3.6 ms. These findings indicate that the integration of IDS and TMS,
supported by blockchain, provides a robust mechanism for accurate attack detection,
secure trust evaluation, and immutable recording. The proposed framework, therefore,

enhances the overall security posture of [oMT environments.

1. INTRODUCTION

New technologies moving from a physical phase to a digital
phase have given rise to a new dimension in the management
of patients' medical information. Internet of Things (IoT)
systems, cloud, and other technologies aim to facilitate the
management of data and services offered for both medical staff
and patients. In this area of healthcare, security is a key pillar
in terms of ethics and confidentiality. This cutting-edge system
offers expanded proficiency and comfort; it also presents
critical concerns with respect to framework security and
potential vulnerabilities [1]. Actually, as mentioned in the
study by Ibrahim et al. [2], more than 280 million individuals
were influenced by miscellaneous cyberattacks, highlighting
the need for continued monitoring and real-time activities.

To face these challenges, researchers are working on the
reliability, accessibility, and confidentiality of medical
information to ensure security in the health sector [3, 4]. With
the frequency of data breaches and internal attacks existing in
this sector, a proposal for a scientific approach is necessary to
address internal and external vulnerabilities. At this level, the
famous obstacle exists at the level of communication between
end-user devices and monitoring devices. Several models have
been proposed, based on firewalls, Intrusion Detection
Systems (IDS) [5], and blockchain [6]. It is therefore necessary
to develop a secure model to protect data in healthcare
applications. To address these challenges, there are various
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approaches [3, 4, 7-9] that implement intrusion detection in the
healthcare data transmission, using innovative intelligent
techniques.

The most important issue in securing the medical
environment is guaranteeing the trust of communications. To
cater to those needs, we propose in this paper to assess trust
based on several metrics, such as energy consumption and
medical state. Nevertheless, computing several metrics is not
sufficient when an attack may target the system. Therefore, we
propose to implement trust management based on the intrusion
detection process. The first step calculates the trust, then the
intrusion detection module will implement the trust as a
feature. Miscellaneous work relies only on trust assessment,
which can be ineffective in the presence of anomalies related
to attacks. Therefore, another security level is proposed to
detect real-time attacks or abnormal behavior that may not be
assessed by the trust score.

Our main motivations in this work are: (i) Merging different
metrics types to compute trust level of medical context
entities, (ii) Supervising not only the environmental
characteristics but also the patients’ data, (iii) Using an up-to-
date dataset for the intrusion detection process and (iv)
Ensuring systems traceability to explore the attackers’
behavior and detect newer misbehaviors. These provided
details can be used to build reports and move on to the
forensics stage.

The remaining part of this paper introduces some related
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works building the trust using intrusion detection, artificial
intelligence (Al), and blockchain for different environments
and especially for the medical environment. Section 3 details
our approach and the different components describing the
architecture. Section 4 presents the performance study of our
approach with a comparative study. Finally, Section 5
concludes the paper with future work.

2. RELATED WORKS

Managed medical information collected from different
patient sensors is sensitive and has to be secured against
attacks. New technologies such as cloud architecture are used
by doctors to guarantee data availability by storing duplicate
data continuously. In fact, these new technologies are also
subject to attacks targeting the medical sensitive data.
Therefore, administrators deploy recent intrusion detection
approaches based on deep learning (DL) algorithms that are
developed by researchers. In this field, Khatun et al. [7] gave
a fundamental overview of [oT in healthcare. They presented
privacy and data security challenges associated with machine
learning (ML) and healthcare [oT (H-IoT) devices. Moreover,
they focused on monitoring IoT layers in this domain, such as
network, perception, and cloud. This study examines the key
aspects of cybersecurity, big data, e-health, and cloud
computing in the context of H-IoT. It explores the application
of ML techniques, including anomaly detection, device
classification, and their critical and access control.

To trust the deployed system, several security requirements
in the medical field have to be ensured, regarding the recorded
data in the database and its transfer between patients and
medical staff. To meet these challenges, some works [10]
propose a reputation system deployment. Other works [11, 12]
build trust using AI, whereas other works implemented
blockchain-based health data.

2.1 Centralized trust-based approaches

We notice that some researchers focus on the trust of
communications in different areas. In fact, Umashankar
Ghugar et al. [13] presented an approach called Dual-Layer
Trust Based IDS (DLTIDS). It is based on trust to counter
Blackhole attacks, where two layers of defense are deployed.
The first layer is about the evaluation of the behavior of the
nodes thanks to the packet transfer rate, the calculations of
trust, and the reliability at the level of communications. The
second layer is based on the improvement of security via the
indirect measures of trust. Remya et al. [14] developed a
system called Trust-Based IDS for RPL (TIDSRPL). They
aimed to decrease the risk of resource exhaustion via this
strategic transfer that conserves energy, computing resources,
and storage at the node level. It uses a hybrid trust model and
heartbeat monitoring, offloading complex computations to the
root node. It employs Subjective Logic, incorporating trust,
distrust, and uncertainty for flexible attack detection. Key
parameters include trust propagation and Fault Threshold to
reduce false positives. It outperforms the default objective
function, Minimum Rank with Hysteresis Objective Function-
RPL (MRHOF-RPL), with a 33-45% improvement in energy
efficiency and a 20-35% reduction in packet loss. It offers 45%
better energy conservation during combined Selective
Forwarding and Sinkhole attacks.

These works present IDS implementation, but they consider
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trust as a metric in the intrusion detection process. Added to
that, the proposed system is centralized, so it is exposed to
vulnerabilities and integrity attacks.

2.2 Blockchain-based trust approaches

To mitigate the centralization threats, several works adopted
the decentralized blockchain technology. Indeed, Yang et al.
[10] proposed a secure and efficient blockchain-based data
sharing scheme for IoT. This system is based on an off-chain
storage strategy and then performs on-chain indexing to meet
the storage constraints in the blockchain, and uses a specific
smart contract for the purpose of access control, secure
querying, and sharing of data in IoT. At the data sharing
process level, they incorporate a reputation mechanism. In
addition, in this work, the system calculates the reputation of
nodes and stores them in the blockchain via a smart contract.
Any user announced as malicious is revoked.

To protect the HSN, Mutleg et al. [5] suggested a solution
using Hyperledger blockchain to detect compromised Internet
of Medical Things (IoMT) nodes and protect sensitive health
information. They introduced a Clustered Hierarchical Trust
Management System (CHTMS) designed to block malicious
nodes. For securing health records, they use an embedded
Elliptic Curve Cryptography (ECC), and they are interested in
resistance against Denial of Service (DoS) attacks. About
evaluation results, they indicate that integrating blockchain
into the HSN enhances detection capabilities and outperforms
current systems, demonstrating improved security and
reliability compared to traditional databases. Bhan et al. [15]
propose a Federated Friendly Learning (FCL) platform to
ensure privacy in [oMT applications and secure data sharing.
This study proposed a secure and collaborative federated Q-
learning model, integrating a blockchain-certified trust
mechanism, which strengthens data privacy by restricting
participation to only authenticated nodes. This architecture is
based on a multi-layer model combining (1) a blockchain
infrastructure, (2) a dynamic trust mechanism, (3) a federated
learning framework and (4) secure communication protocols.
Regarding the results of this work, there is an increase in the
accuracy levels equal to 94.7% and privacy protection equal to
92.4%.

Another use of the blockchain is proposed by Babu et al.
[16]. They deploy blockchain technology to protect the
confidentiality of patient information and to secure data
exchange. Trust is guaranteed by smart contracts based on
keys and certificates. The chain codes manage actors’
authentication, registration, and verification. This also ensures
chain traceability.

2.3 Intrusion detection-based approaches

In the related works on ML-enabled IDS for [oMT, a variety
of innovative methodologies have been explored to improve
feature selection and classification processes. The work
presented by Ibrahim et al. [2] is based on a robust IDS for
IoMT networks. It integrates a honeypot to divert attackers
from critical systems and uses ML (K-Nearest Neighbor) to
improve detection accuracy and resilience against
cyberattacks. Researchers evaluated their models by testing
two IoMT datasets, containing attacks such as Man-In-The-
Middle (MITM), Data Injection, and Distributed Denial of
Service (DDoS). The results are 92.5% and 99.54% for
accuracy and 96.74% and 99.23% for precision across all



datasets, highlighting the potential of IDS to secure IoMT
networks. In the same field, Sudharson et al. [17] implemented
ML-IDS to increase the security of smart health applications
(medical 10T) and patient information in the interconnected
world. They used AdaBoost classifier, giving a recall value of
0.96. Their approach, tested on NSL-KDD dataset, focused on
12 features to achieve high performance in detecting DoS,

User-to-Root (U2R), Root-to-Local (R2L), and Probe attacks.
This system demonstrated superior accuracy, recall, and
precision metrics. The study highlights the effectiveness of
using adaptive ML models and optimized feature selection to
enhance the security of interconnected medical devices,
providing critical insights into the development of robust
[oMT security frameworks.

Table 1. Comparison of the studied related work

. . . Evaluation Deployed
Ref. Fm: Medical Trust Metrics Intrusion Detection Deploy.e d Al Results of the  Blockchain (Type/
Environment? Method Algorithm
Al Name)
Trust-based Approaches
Sliding Time Window-based Lightweight SNORT *) Private
. . IDS: Communication .
[15] Yes: [oMT: Trust Metrics, Direct and Component. Traffic NA NA blockchain
HSN Indirect Trust, Cluster-based ponent, d o o *) Hyperledger
Trust Monitor an Fabric
Blocklist
£ Do
Smart contract-based bl)ofl?c‘;f:ien
[16] Yes: loMT registration, identification, N.A. N.A. N.A. %
. ) Hyperledger
and authentication .
Fabric
) Do
10T users Feedback: bl)ofl?c‘l/;tien
[10] No: [oT Negative Ratings (NR) and N.A. N.A. N.A. *) Eth )
Positive Ratings (PR) ) Ethereum:
Ganache
. . Dual-Layer Trust-
[13] No: WSN TDn‘lr;C(t\;g‘tlsltlggd ﬁggfgst) Based IDS for NA. NA. NA.
& Blackhole Attacks
No: RPL for Subjective Logic (Trust, Trust-Based Hybrid
[14] LLNs Distrust, and Uncertainty), IDS with Heartbeat N.A. N.A. N.A.
Fault Threshold Monitoring
Interaction score between
. * .
[17] Yes: ToMT _ devices NA. N.A. N.A. ) Blockehain type
Penalization for malicious not mentioned
behavior
Al-based Intrusion Detection Approaches
Yes: Dwarf
) Edge-based IDS with Mongoose Accuracy: " .
[18] 111‘;:] tll’]iiercel NA. Multi-attack Optimized 97.2%; Recall: )gt"g‘eﬁ?éﬁgpe
Detection ANN (DMO- 96.15%
system ANN)
Best results
Attacks Naive Bayes Wltc}};:g%lzgost
[19] Yes: oMT N.A. Classification (like KNN Recall = 96'0/ N.A.
DoS, R2L, and U2R) AdaBoost e
Accuracy =
98.5%
. weight function: *) Blockchain +
Yes: Medical g
[9] data NA. WO-DBN. Weight- LSTM + DNN Best ljccureicy . IPFS
transmission Optimized Deep rate = 98.6% ) Type not
Belief Network mentioned
0,
Yes: Smart Anomaly-based 9i2n/(<):1:tceccliiricy
[2] healthcare N.A. Y Random Forest ng N.A.
detection unauthorized
systems
data access
Attacks’ B 1 . AcCioTHealthcare-
Classification ase-1earners: Security =
Architecture: Th MLP, CNN, 99.95%
[20] Yes: IToMT NA. chitecture: 1he and LSTM 7270 N.A.
output of Base- AccwusTL-
. Meta-learner:
learners is served as ANN EHMS-2020 =
input to Meta-learner 99.65%

Tyagi and Manju Bargavi [18] introduced a blockchain-
based approach in their study, where they proposed a method
called FIDANN, which is an intelligent intrusion detection
mechanism. This method protects the confidentiality of
medical information using Artificial Neural Networks (ANN)
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optimized by Dwarf Mongoose and uses a Federated Learning
technique. This work used blockchain technology to save the
updated model’s weights. Thus, they guarantee integrity in a
decentralized system. Actually, Kanna et al. [9] proposed an
approach based on DL to secure medical information. In this



work, the data acquisition phase is done via online sources and
then verified by the weight function (WO-DBN: Weight-
Optimized Deep Belief Network). Regarding the security of
medical data, the authors base their approach on chaotic map
assisted encryption coupled with the optimal key generation of
existing images in the database and blockchain technology.
The final phase is about disease diagnosis, where the
decrypted data are sent to classify the node with or without
malicious intrusion. This phase is done via Res-LSTM +
DNN: the support of a residual network (Resnetl01), Long
Short-Term Memory (LSTM), and the Deep Neural Network
(DNN). In the validation part of this work, the accuracy rate of
the approach is 98.6%. Another approach named SNN-IoMT
(Stacked Neural Network Ensemble for [oMT Security) was
proposed by Sun et al. [19]. It consists of an Al-based IDS
framework designed to secure dynamic IoMT environments.
This article is based on a DL architecture of STM, MLP
(stacked combining  multi-layer  perceptron),  and
Convolutional Neural Network (CNN). It presents a model for
optimizing data management and integration while ensuring
system scalability and interoperability. The experiments are
based on both IoTHealthcare-Security and WUSTL-EHMS-
2020 datasets, providing respectively 99.95% and 99.65%
accuracy.

Although the trust-based IDS demonstrates robust energy
efficiency and enhanced security against various routing
attacks, it is not without limitations. One notable challenge is
its reliance on offloading computational tasks to the root node

in high traffic scenarios. Furthermore, the effectiveness of the
system depends on fine-tuning parameters, such as trust
thresholds and Fault Threshold values, which may vary across
network environments and require  context-specific
optimization. Moreover, as presented in Table 1, to ensure
traceability, blockchain technology is used without focusing
on IDS output, which may detect an attack that is not
considered in the blockchain update, which is essential in the
medical environment using sensitive data.

3. METHODOLOGY
3.1 Trust management

To overcome the limitations of existing trust-related works,
we propose in this paper a trust-based management
architecture deploying blockchain techniques for the medical
environment. Indeed, the former deploys sensitive
information, where human lives are impacted if the network is
threatened. Thus, our main objective is tracking the user’s
behavior by monitoring all the components of the architecture.
The monitoring consists of a trust-based assessment.
However, this can also be attacked and modified. For this
reason, we propose to use blockchain technology to guarantee
the integrity of the stored information about the monitored
component. In fact, to implement our solution, we base our
study on a medical-based architecture, depicted in Figure 1.
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Figure 1. Proposed architecture based on blockchain

In fact, two actors are presented in the system: the medical
staff and the patient. Trust ensures that the medical system
accesses the data only if the environment is announced as
trusted. The patient is surrounded by different sensors
collecting miscellaneous data. It can be either a medical or an
environmental sensor. Those sensors send periodically data to
the Treatment Unit (TU) periodically, which in turn sends the
processed data to the gateway. It also handles the needed
calculations. Moreover, an IDS is installed in the environment
to supervise the network.

The TMS proceeds through different stages to perform trust
calculation and storage [20]. The first step is data collection,
where different metrics are stored. After that, the collected
data is used to calculate the trust before the propagation of this
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new trust.

In this proposed process, following the flowchart of Figure
2, the following steps are executed:

Step 1: User U requests a connection to the network to have
remote medical control.

Step 2: The gateway activates continuous monitoring
(Intrusion detection process and trust-related data storage),
and it processes immediately to the trust calculation using a set
of parameters and the output of the IDS.

Step 3: If the trust calculation procedure is done, the
gateway checks if the device is always allowed. In parallel, we
should launch the write action in the blockchain to ensure
traceability. This action is a transaction that generates a
transaction hash. This hash will be the link between trust and



the related transaction.

‘ User U requests Access ‘

’

‘ Activate Continuous Monitoring ‘

1 T(At) = Calculate Trust Level T(At) with flowchart 3 ‘
V T@y

Tmm.,“= calculate Final Patient
Trust with equation 3

patient

|T

v

trx_hash=launch "store" action in
blockchain

> Threshold_trust? trx_hash

patient

Save T e and trx_hash in IoT
edge

Yes

mean (latest 3 trust) <
threshold_trust?

Refuse connexion (Block with Firewall) }(*

Figure 2. System's general algorithm

Step 4: If the obtained trust is higher than the trust threshold,
then

Step 4.1: The user, either a new patient or an old one, is
allowed to access the system and we continue the monitoring
and the calculation.

Step 5: Otherwise,

Step 5.1: if it is his first access, then it is rejected and
reported as a non-trustworthy entity.

Step 5.2: If not, then the gateway checks the average of the
last three trust scores. The objective here is to check whether
the trust score dropped out for just one instance, or the
behavior is degrading.

Step 5.2.1: If the behavior persists and the average does not
attain the threshold, then the user is refused and added to the

firewall’s blacklist.

Step 5.2.2: Else, the user is kept in the system, and the
gateway continues the trust calculation process.

We detail in the following the main modules in the
considered architecture of Figure 1.

3.1.1 Data collection

In our network, there are environmental sensors and
medical sensors, capturing different types of data. Since we
aim to ensure more trust, we monitor each sensor to obtain our
trust metrics.

For continuous monitoring, at each time interval, the
gateway receives information from both sensors and IDS.
Then, the CIC-flow meter will be applied to the data to get
statistical output. Next, our DL model is applied to obtained
output to get the attack probability. Added to that, the collected
values from medical sensors are supervised with the energy
consumption rate and the Packet Delivery Ratio (PDR). Thus,
we have all the needed information to perform trust
calculation. The IoT edge computing will take the computation
task. Once trust is calculated, it will be stored in the blockchain
network and on the IoT edge.

3.1.2 Trust calculation

After data collection by the gateway, trust metrics are
pretreated and then used in the trust calculation process. Data
treatment and the trust calculation are executed as described in
the published articles [21, 22]. The used metrics are direct
observations obtained in our network. In fact, each device
reports the energy consumption e and eventually medical data
to the gateway. Medical data is one of the trust indicators
associated with the trust value Tmed. Tmed represents an
indication of anomalies in the medical data. Moreover, energy
consumption is another indicator supervising if there is any
suspicious behavior depleting resources. It reflects the energy
consumption rate of all existing sensors. This metric is
selected to tackle attacks like DoS in the physical layer.

Also, we calculate the ratio between received packets and
total sent packets, called PDR. Then, the gateway calculates
trust based on energy consumption e, PDR, and medical data
trust Tmeda as proposed in the paper [21]. It is important to
highlight that each feature is bounded between 0 and 1. To
increase the precision of the trust level, we propose adding the
IDS decision as a trust feature, as described in Figure 3.

IDS

+ Medical trust

NS Trust Trust S
ST . rust Score
. N ~So a o

Environmental __----+  PDR »| Computation Tyt

SO 3 patient
sensors ~~1y,  Energy 4 N

consumption 2
Figure 3. Trust calculation

The proposed intrusion detection mechanism is based on Al
by training the model. The output of the model is the attack
probability p. If the probability is high (upper than a threshold
defined by the administrator), it reflects a danger to our
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system. So, the related attribute should reflect the non-trust, as
considered in Eq. (1).

Iips =1-p (1)



3.1.3 Trust update

At each time interval At, the gateway calculates the trust for
this current interval At. The obtained trust will not be the
adopted trust for the network. Otherwise, it will be integrated
into a weighted sum to bring attention to the old trust, since we
assume that the node’s behavior cannot vary suddenly. Each
interval At, a trust calculation is proceeded. The gateway
collects data and calculates current trust using Eq. (2).

T(At)=a*PDR+S*T,  +7*e+8*T)ne @)

The network trust follows Eq. (3) by taking into
consideration that the weights A <u, A+ pu = 1and 1 <= 0.4,
as we aim to prioritize the new trust value.

Tuiem =AT(A(t=1))* T (Ar) 3)

ki

’ Receive and collect information

Receive alert from ids with probability p

v

P> Threshold attack?

Cut off At

Calculate trust
with eq (4)

Calculate trust
with eq (2)

Figure 4. Trust update further to attack detection

If an intrusion alert is generated during the time interval, the
gateway instantly calculates a new trust, as explained in Figure
4. This calculation is based on the attacks’ probability. In fact,
if we get a probability of attack p more than a predefined
threshold, the current trust is updated as indicated in Eq. (4).
The new trust will be recalculated according to Eq. (3). The
thresholds in our system are defined and fitted by the network
administrator.

T(At)=Tpps “4)
3.1.4 Trust propagation

To share the trust score between entities, we used the
blockchain network. The node connected to the blockchain can
execute two different functions: the “set” function to change
the ledger and the “get” function to retrieve the trust value.
Thus, to preserve the new score, the gateway will invoke the
update function with the new score and features.

To ensure more access speed, we propose having a database
storage on the [oT Computing edge. At each time interval, At,
the information will be stored in the database. If the trust value
is deemed significant—such as a notable increase or decrease,
or a value exceeding a predefined trust threshold—it will also
be recorded on the blockchain. This update will be associated
with the corresponding transaction hash for traceability data
stored on the edge, which will be verified periodically to
ensure information integrity and conformity to the blockchain
to avoid or detect alteration.

3.2 Blockchain-based trust

To ensure more security and traceability, we opted for a
blockchain network to store trust variations. We choose a
private blockchain to guarantee the privacy of the medical
environment. To access the blockchain, every entity should be
connected to a blockchain node as described in Figure 5.

Figure 5. Blockchain architecture

In our architecture, every node is the member’s gateway.
The member is either a patient or a medical institution. If an
entity does not have a node in the blockchain, a new node is
created. The used blockchain will be a private blockchain
since we are dealing with a medical context.

To manage the trust updates, a smart contract is used. Every
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operation is traced in the blockchain via this smart contract.
This smart contract will allow every node to either update or
retrieve the appropriate trust score. The update function allows
every patient side to update the trust value, and the retrieve
function permits both the edge and the medical side to get the
trust value assigned to the patient.



The distributed ledger will track down every transaction
which will be structured in blocks approved by the validators.
Each block can contain one or more transactions. The
transaction includes many fields indicating information
relative to the update trust function. In fact, each transaction is
defined by a “transaction hash”. The sender is defined by the
gateway aiming to upload the new trust value. It is presented
by the patient’s address account. The destination field will
contain, in our case, the contract address since we are invoking
methods from it. Regarding the data, it englobes the encoded
form of the invoked function and the given parameters.

3.3 Detection module

The IDS accepts analyzed traffic and detects if there are any
intrusions that may cause instability in the system. The
anomaly-based IDS aims to detect suspicious behavior based
on ML. In fact, the IDS is trained on the network normal
behavior. A deviation from the normal baseline is accounted
as an attack. Indeed, learning-based IDS tailored for medical
settings is proposed to enhance security by identifying threats
while minimizing disruptions. Continuous monitoring and
real-time intrusion detection have to be ensured because of the
sensitivity of medical data. It is also designed to detect
abnormal behavior of the user and the device, as well as
unauthorized access to the medical records by patients and
medical staff.

Table 2. CNN parameters

Parameters Value
Convolutional layers number 3
Activation function ReLU
First dropout layer rate 0.2
Second dropout layer rate 0.3

For that, we propose applying DL, where we go through
four phases: data preprocessing, building the proposed model,
applying the model on training and validation data, and finally
applying the model on the test data. Data preprocessing
consists of 1) selecting and building the dataset, 2) selecting
pertinent features, 3) One Hot encoding and 4) features
scaling.

When the data is ready, we focus on building a CNN model.
This model consists of both Convolutional layers and fully
connected layers. Also, it englobes 3 Batch normalization

leb

layers. Added to that, we introduced 2 dropout layers to avoid
overfitting and pooling layers, helping to minimize the
computational complexity. The output layer uses the
activation function sigmoid since we are performing binary
classification. The used parameters are explained in Table 2.

4. RESULTS AND DISCUSSION

The simulation environment is a Virtual machine with the
operating system Ubuntu 20.04. The virtual material of the
virtual machine is: 8 vCPU and 16 GB of RAM. In the
following, we will describe the evaluation of each part of our
system.

4.1 Al-based IDS

4.1.1 Dataset description

We trained and tested our model on the CIC-IoMT2024
dataset [23]. This dataset is produced in a real environment
with a miscellaneous type of sensors (healthcare sensors, home
devices...) established by the Canadian Institute for
Cybersecurity. Also, different protocols are used in the
collected data, such as Bluetooth and Wi-Fi. The collected
traffic contains benign and malicious flows. Malicious traffic
contains mainly five attack families: recon, spoofing, DoS,
DDoS, and malformed data.

We propose to deploy our IDS on this dataset. We have
chosen to perform different classifications as Table 3 details.
The benign and the recon traffic contain varied protocols. The
Denial-of-Service Traffic was parsed into either MQTT or
TCP/IP protocol.

Table 3. Selected dataset description

Attack Protocol
Benign Any
Spoofing ARP
Recon Any
ICMP
DoS MQTT TCP/IP: TCP/SYN
UDP
ICMP
DDoS MQTT TCP/IP: TCP/SYN
UDP
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The proposed dataset separates training data from test data.
Thus, we trained our model on the training dataset, and then
the test phase uses the provided test dataset. Our model is
executed on the train files provided by the Canadian Institute
for Cybersecurity. We split the file into 70% train and 30%
validation. Then, to evaluate our model, we test it on the
offered test files. The distribution of different classes’
instances in the provided train data is illustrated in Figure 6.

4.1.2 Evaluation metrics

To evaluate a model, numerous metrics exist apart from
accuracy. To extend our approach study, we focus on:
confusion matrix (CM), precision, recall, and F1-score [24,
25].

Confusion matrix (CM): In the CM: Rows, reflect actual
classes marked True and False. As for columns, they present
predicted values. If the prediction is correct, it is considered
Positive. Otherwise, it is Negative. This matrix is summarized
in Eq. (5).

_IP FP

FN TN )
where,

TP: True Positive: information correctly detected as attack.

FP: False Positive: incorrectly detected benign as attack.

FN: False Negative: incorrectly classified attacks as benign.

TN: True Negative: benign information correctly classified.

Accuracy (ACC): The Accuracy metric is measured by the
proportion of correctly classified observations (both TP and
TN) out of the total observations. This metric is represented by

Eq. (6).

Precision: This metric considers the samples classified as
positive. It presents the correctly classified positive samples
percentage to both TP and FP. This metric is presented by Eq.

).

P

o ()
TP+ FP

Recall: It evaluates the effectiveness of a model to correctly
identify all labels. It is presented by Eq. (8).

Precision=

TP

Recall = ——
TP+FN

(®)

Fl-score: The Fl-score is the average of the precision
presented by Eq. (7) and the recall obtained by Eq. (8). This
parameter provides a balance between recall and precision. It
is detailed in Eq. (9).

Precision* Recall

F1—Score=2% ©)

Precision+ Recall

4.1.3 Model results

After selecting the dataset, we initiated the learning process
through creating the DL model described earlier, based on
CNN. We trained and tested the model using three different
class distributions, detailed in Figure 7 alongside other
existing distributions. The first distribution is Boolean,
classifying traffic as either benign or DoS. The second
includes an additional attack type: reconnaissance (recon). The
third distribution treats each category separately,
encompassing 19 classes in total—benign plus 18 distinct
attack types. Due to the large size of the dataset and limitations
of our hardware, we reduced the amount of data related to DoS

TN +TP) . e
ACC = ( (6) and DDoS attacks during training.
(TN +TP+FP+FN)
Classes distribution
Category Attack 2cl 2cl 6cl 3 classes 19 classes
ours ours
Benign BENIGN BENIGN BENIGN BENIGN BENIGN
Spoofing ARP Spoofing - SPOOFING - ARP SPOOFING
Ping sweep Ping sweep
Recon Recon VulScan RECON RECON Recon VulScan
OS scan OS scan
Port scan
Malformed data Malformed data
DoS connect flood DoS connect flood
MQTT Do publish flood DDOS DosS publish flood
DDoS publish flood <
DDoS connect flood
DoS ICMP
DoS UDP
Dos DoS TCP
-
DoS SYN
DDoS ICMP
DDoS UDP
DDOS MQTT DDoS UDP
DDoS TCP DDoS TCP
DDoS SYN DDoS SYN

Figure 7. Different proposed distributions

In the 2-class and 3-class classification scenarios, accuracy
exceeds 99%, achieving 99.6% and 99%, respectively.
However, in the 19-class classification, accuracy drops to
73%. To better understand these results, we analyzed the
confusion matrices shown in Figures 8, 9 and 10. In the binary
classification, the number of false positives (FP) and false
negatives (FN) remain very low relative to the overall traffic.

In the multi-class setting, confusion occurs primarily
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between benign traffic and both ARP spoofing and
reconnaissance attacks. This is due to certain features that are
not sufficiently discriminative for these classes but are
important for distinguishing DoS attacks. Moreover, these
types of attacks do not alter the system’s state, making them
harder to detect [25]. Additional confusion is observed within
the DoS traffic, particularly between TCP-IP and MQTT
traffic, as they exhibit similar behaviors.
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4.1.4 Comparison of classification results

Table 4 summarizes classification results across different
studies, which mainly follow two common class distributions.
The first is a binary classification setting, where [21, 26, 27]
categorize data into benign and attack classes, achieving
accuracies of 99.6%, 97%, and 99.92%, respectively. Our
model outperforms accuracies reported in the previous studies
[21, 26], while remaining consistent with the study by Hafid
et al. [27]. The second setting involves a 19-class distribution,
used in the previous studies [21, 26], where they achieved

accuracies of 73.3% and 87.96%, respectively. Our model
attains comparable accuracy to the study by Fourati et al. [21];
however, Mezina et al. [26] reported superior results due to
their use of a hybrid model that incorporates deeper and more
complex learning architectures. In contrast, we introduced a
novel 3-class distribution with a different class split. Using our
CNN model under this setup, we achieved an accuracy of 99%,
a Recall 0f 95.21%, a Precision of 94.77%, and an F1-score of
94.77%. The relatively lower Fl-score can be attributed to
class imbalance within the training dataset.

Table 4. Comparative results

Classes . Accuracy Recall Precision F1-Score
Number Classes Ref. Algorithm (%) (%) (%) (%)
RF 99.6 95.1 97.1 96.1
[23] AdaBoost 99.6 96.1 95.9 95.9
Benign, Attack DNN 99.6 94.8 95.6 952
2 ’ [26] UNet++ +LSTM 99.92 99.84 99.99 99.92

[27] XGBoost 97 100 96 98

Ours CNN 99.64 98.67 94.14 96.29
Benign, DoS Ours CNN 99.99 99.99 99.99 99.99
3 Benign, Recon, DoS Ours CNN 99 95.21 94.77 94.95
6 Benign, Recon, spoofing, [23] RF 73.5 71.3 73.5 67.6
DDoS, DOS, MQTT Logistic regression 72.9 71.2 74.8 69.4
[23] RF 73.3 57.7 69.1 55.1
19 Each attack separately [26] UNet++ +LSTM 87.96 93.31 94.55 86.47
Ours CNN 73.59 51.85 56 48.34

4.2 Blockchain configuration

The chosen blockchain network is the permissioned
blockchain GoQuorum. It represents an open-source
Ethereum-based blockchain. This blockchain is a real
blockchain that can be implemented in a production
environment. It proposes different consensus algorithms: Raft,
IBFT, and QBFT. The selected consensus algorithm is RAFT,
as it offers rapidity. After the installation of Geth (Go
Ethereum) proposed by GoQuorum, we proceeded with the
creation of the blockchain network, specifying the initial
node’s number and the consensus algorithm. Our GoQuorum
blockchain network is formed by 5 nodes using the Raft
consensus algorithm. A node is defined by an IP address and a
port where the service is running.

We prepared the script of our smart contract and then
compiled it. As a result, we have the ABI and the bytecode
distinguishing the contract. We then deployed our smart
contract to the blockchain network using the Ethereum library
web3 via the Application Programming Interface (API) JSON-
RPC [28]. This API allows our program to make calls with the
Ethereum client. Once the contract is deployed, a contract
address is generated to identify our contract and make
interaction with it possible. This is a primordial action so that
our nodes update the trust level. After accomplishing these
requirements, every node can establish the actions’ call.

4.3 Delay-based evaluation

Our system contains different computational operations:
prediction operation, trust calculation, and transaction
publishing in a blockchain network. We propose to study the
computational time of those main operations in Table 5.

In the gateway, when the system is about to update the trust,
we have two main operations namely prediction and the
update. The old trust recuperation is from the IoT edge and not
from the blockchain. Thus, the trust calculation will be equal
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to 0.0036 seconds. Compared to prediction and trust
calculation, the process, including blockchain communication,
is higher. However, it does not affect our system performance
since it does not depend on direct communication with the
blockchain but rather on the IoT edge. Additionally, trust
modification will only be triggered when a notable change in
the trust score is detected. Minor variations or unchanged trust
levels will not be recorded on the blockchain in order to
minimize processing time.

Table 5. Time-based evaluation

Operation Time (s)
Prediction 0.1117
Trust calculation 0.0036
Store 1.04
Blockchain operations Retrieve 1.03
Contract deployment 1.05

4.4 Comparative study

In this section, a comparative study is established between
our work and Yang et al’s work [10]. They present an approach
in an IoT environment with the deployment of trust based on
blockchain. Table 6 details the simulation environments.

First, we tried to compare the reputation evolution. The
authors presented the effect of the NR and PR decrease on their
reputation score. We will present our reputation progress with
values variating in PDR, Energy consumption, and medical
trust, and with modifying in each time period the attack
probability. We fitted updated weights as follows: A = 0.3 and
p = 0.7. Regarding weights of metrics: a, B, and y equal 0.2
while 6 = 0.4.

The first curve in Figure 11, having PR equal to 5 with no
NR, is increasing. Our approach has different attributes and
uses the IDS decision in calculating trust. We obtain a decrease
in trust when the attack probability increases. In fact, the



probability p starts with a value of 1 in instant At = 0, but when
it becomes p = 0, we find that the trust value is under the trust
threshold fixed by Yang et al. [10]. Added to that, the last three
occurrences in the curve have values inferior to the threshold.
As a result, following our proposed algorithm, this node is
rejected from the network.

Table 6. Test environment comparison

Parameters Ref. [10] Ours
NR: negative PDR, Energy,
Trust metrics ratings number Medical-related trust,
PR: positive ratings and Attack
number probability
. Ganache GoQuorum
Used blockchain (Ethereum) (Ethereum-based)
Web3 library Web3.py Web3.js
Environment Virtual machine: Ubuntu
VM RAM: 4 GB RAM: 16 GB
configuration 8 vCPU 2.30GHZ 8 vCPU 2.99 GHZ
1.0
0.8 1
0 0.6
o
?
0.4+
—e— PR=3; NR=2
0.2 1 —8— |Increasing attack probability
" | — Threshold
—>— PR=5; NR=0
—>— Decreasing attack probability
0.0 T T T T T
0 1 2 3 4 5

Time period
Figure 11. Trust score variation

Second, we moved forward to the blockchain evaluation.
We tested the write transaction latency, where we tested the
different delays when the transaction number per second
varies. The work by Yang et al. [10] used ganache in
simulation, representing one node (defined by an IP address
and a port). To get a fair comparison, we fix our test on one
node in the GoQuorum blockchain. The latency chart in Figure
12 shows that our blockchain network returns an increasing
latency value proportionally to the transaction rate as proposed
in the paper. Compared to other processes in our approach, the
latency value remains acceptable and ensures the rapidity of
the transaction process.

Added to that, we evaluated the trust update throughput
values as illustrated in Figure 13. In Figure 13(a), we
represented the throughput of our blockchain. Throughput,
expressed in Transaction Per Second (TPS), is defined as the
average number of correctly handled transactions according to
received transaction flow per second [28].

In fact, as the number of transactions increases, the
throughput rises accordingly. For comparison purposes, we
selected a specific window from our performance curve to use
in the comparison analysis with the Yang et al’s [10]
throughput values in Figure 13(b). The Value remains
acceptable since it does not exceed 30 TPS.
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Figure 13. Throughput comparison for updating trust

To evaluate blockchain throughput, we conducted multiple
tests, each varying the number of threads. In this context, a
thread represents a user interacting with the blockchain. As the
number of threads increases, the volume of transactions rises
proportionally. As illustrated in Figure 14, the throughput
curves exhibit an upward trend, indicating that the throughput
improves with higher transaction rates. This demonstrates
GoQuorum's capability to efficiently handle a high volume of
transactions. For instance, with three concurrent users, the
throughput peaks at a maximum of 480 TPS.

To summarize, our trust model maintains a level of security



since it always controls the network, and the trust score reflects
the degree of network reliability. Moreover, the permissioned
blockchain network is a real network that can be upgraded to
a production environment. It offers an average latency of 9.06
ms and a throughput attaining 260 TPS for a high transaction
volume.
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Figure 14. Throughput variation

5. CONCLUSIONS

This study presents a trust architecture for the IoMT,
designed to enhance security, reliability, and traceability in
medical [oT environments. The proposed framework
integrates an IDS with a TMS, where each entity in the
network is assigned a dynamic trust score reflecting its
behavior and reliability. To ensure secure and tamper-proof
record keeping, blockchain technology is employed, providing
transparency, accountability, and immutable traceability of all
trust-related operations.

The evaluation of the trust computation demonstrates that
the proposed system efficiently reflects the reliability of
entities, with minimal computation time. Any decline in
performance metrics or anomalies detected by the IDS yields
a proportional decrease in trust score, ensuring that the system
accurately represents entity behavior over time. The IDS is
implemented using a CNN trained on CIC-IoMT 2024 dataset.
It achieves classification accuracy exceeding 99% in binary
tasks, outperforming existing methods and demonstrating the
effectiveness of DL for real-time attack detection.

Blockchain integration was evaluated in a realistic
deployment using GoQuorum, showing low latency (14 ms for
300 TPS) and the ability to handle high transaction rates from
multiple users, confirming the practical applicability of the
system in production environments.

Overall, this research demonstrates that combining IDS-
based trust management with blockchain technology provides
a comprehensive and effective approach to foster the security
posture of medical IoT networks.

At this stage of analysis, we would assert that this research
can be regarded as valuable and promising in terms of laying
the ground for fruitful lines of investigation and paving the
way for new research directions. Indeed, further research is
needed to focus on boosting blockchain capabilities,
particularly through smart contracts to automate key security
functions such as access control and authentication.
Additionally, full-scale deployment in a real IoMT
environment is planned to further assess system robustness,
scalability, and resilience against sophisticated attacks.
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NOMENCLATURE

e associated trust to the sensors’ energy
consumption

PDR Packet Delivery Ratio

Ted trust related to medical signal

At time interval (window)
attack probability issued from the deep

P learning model

Tips IDS trust

T(A) current trust value calculated for the At
interval

T(A(t —1)) old trust

Toatient final trust value

Greek symbols

a PDR weight in current trust

B medical trust weight in current trust

y energy weight in current trust

1) IDS decision weight in current trust

A weight of old trust

U weight of new trust





