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The adoption of Internet of Things (IoT) technologies in medical supervision enables real-

time patient monitoring but also introduces significant security challenges. Traditional 

approaches rely on Intrusion Detection Systems (IDS) or Trust Management Systems 

(TMS). Yet, each faces limitations when applied independently. This study proposes an 

IDS-based trust management framework that integrates both approaches to strengthen 

Internet of Medical Things (IoMT) security. In the proposed model, trust scores are 

dynamically assigned to entities according to IDS outcomes, where the IDS employs a 

deep learning (DL)-based Convolutional Neural Network (CNN) trained on the CIC-

IoMT2024 dataset. Blockchain is further incorporated to securely and transparently record 

trust score updates, ensuring accountability and traceability. Experimental results 

demonstrate the effectiveness of the framework: CNN achieves over 99% detection 

accuracy, outperforming existing methods on the same dataset. In addition, blockchain 

introduces an average latency of only 14 ms, while trust calculation requires 

approximately 3.6 ms. These findings indicate that the integration of IDS and TMS, 

supported by blockchain, provides a robust mechanism for accurate attack detection, 

secure trust evaluation, and immutable recording. The proposed framework, therefore, 

enhances the overall security posture of IoMT environments. 
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1. INTRODUCTION

New technologies moving from a physical phase to a digital 

phase have given rise to a new dimension in the management 

of patients' medical information. Internet of Things (IoT) 

systems, cloud, and other technologies aim to facilitate the 

management of data and services offered for both medical staff 

and patients. In this area of healthcare, security is a key pillar 

in terms of ethics and confidentiality. This cutting-edge system 

offers expanded proficiency and comfort; it also presents 

critical concerns with respect to framework security and 

potential vulnerabilities [1]. Actually, as mentioned in the 

study by Ibrahim et al. [2], more than 280 million individuals 

were influenced by miscellaneous cyberattacks, highlighting 

the need for continued monitoring and real-time activities. 

To face these challenges, researchers are working on the 

reliability, accessibility, and confidentiality of medical 

information to ensure security in the health sector [3, 4]. With 

the frequency of data breaches and internal attacks existing in 

this sector, a proposal for a scientific approach is necessary to 

address internal and external vulnerabilities. At this level, the 

famous obstacle exists at the level of communication between 

end-user devices and monitoring devices. Several models have 

been proposed, based on firewalls, Intrusion Detection 

Systems (IDS) [5], and blockchain [6]. It is therefore necessary 

to develop a secure model to protect data in healthcare 

applications. To address these challenges, there are various 

approaches [3, 4, 7-9] that implement intrusion detection in the 

healthcare data transmission, using innovative intelligent 

techniques. 

The most important issue in securing the medical 

environment is guaranteeing the trust of communications. To 

cater to those needs, we propose in this paper to assess trust 

based on several metrics, such as energy consumption and 

medical state. Nevertheless, computing several metrics is not 

sufficient when an attack may target the system. Therefore, we 

propose to implement trust management based on the intrusion 

detection process. The first step calculates the trust, then the 

intrusion detection module will implement the trust as a 

feature. Miscellaneous work relies only on trust assessment, 

which can be ineffective in the presence of anomalies related 

to attacks. Therefore, another security level is proposed to 

detect real-time attacks or abnormal behavior that may not be 

assessed by the trust score. 

Our main motivations in this work are: (i) Merging different 

metrics types to compute trust level of medical context 

entities, (ii) Supervising not only the environmental 

characteristics but also the patients’ data, (iii) Using an up-to-

date dataset for the intrusion detection process and (iv) 

Ensuring systems traceability to explore the attackers’ 

behavior and detect newer misbehaviors. These provided 

details can be used to build reports and move on to the 

forensics stage.  

The remaining part of this paper introduces some related 
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works building the trust using intrusion detection, artificial 

intelligence (AI), and blockchain for different environments 

and especially for the medical environment. Section 3 details 

our approach and the different components describing the 

architecture. Section 4 presents the performance study of our 

approach with a comparative study. Finally, Section 5 

concludes the paper with future work. 

2. RELATED WORKS

Managed medical information collected from different 

patient sensors is sensitive and has to be secured against 

attacks. New technologies such as cloud architecture are used 

by doctors to guarantee data availability by storing duplicate 

data continuously. In fact, these new technologies are also 

subject to attacks targeting the medical sensitive data. 

Therefore, administrators deploy recent intrusion detection 

approaches based on deep learning (DL) algorithms that are 

developed by researchers. In this field, Khatun et al. [7] gave 

a fundamental overview of IoT in healthcare. They presented 

privacy and data security challenges associated with machine 

learning (ML) and healthcare IoT (H-IoT) devices. Moreover, 

they focused on monitoring IoT layers in this domain, such as 

network, perception, and cloud. This study examines the key 

aspects of cybersecurity, big data, e-health, and cloud 

computing in the context of H-IoT. It explores the application 

of ML techniques, including anomaly detection, device 

classification, and their critical and access control. 

To trust the deployed system, several security requirements 

in the medical field have to be ensured, regarding the recorded 

data in the database and its transfer between patients and 

medical staff. To meet these challenges, some works [10] 

propose a reputation system deployment. Other works [11, 12] 

build trust using AI, whereas other works implemented 

blockchain-based health data. 

2.1 Centralized trust-based approaches 

We notice that some researchers focus on the trust of 

communications in different areas. In fact, Umashankar 

Ghugar et al. [13] presented an approach called Dual-Layer 

Trust Based IDS (DLTIDS). It is based on trust to counter 

Blackhole attacks, where two layers of defense are deployed. 

The first layer is about the evaluation of the behavior of the 

nodes thanks to the packet transfer rate, the calculations of 

trust, and the reliability at the level of communications. The 

second layer is based on the improvement of security via the 

indirect measures of trust. Remya et al. [14] developed a 

system called Trust-Based IDS for RPL (TIDSRPL). They 

aimed to decrease the risk of resource exhaustion via this 

strategic transfer that conserves energy, computing resources, 

and storage at the node level. It uses a hybrid trust model and 

heartbeat monitoring, offloading complex computations to the 

root node. It employs Subjective Logic, incorporating trust, 

distrust, and uncertainty for flexible attack detection. Key 

parameters include trust propagation and Fault Threshold to 

reduce false positives. It outperforms the default objective 

function, Minimum Rank with Hysteresis Objective Function-

RPL (MRHOF-RPL), with a 33-45% improvement in energy 

efficiency and a 20-35% reduction in packet loss. It offers 45% 

better energy conservation during combined Selective 

Forwarding and Sinkhole attacks. 

These works present IDS implementation, but they consider 

trust as a metric in the intrusion detection process. Added to 

that, the proposed system is centralized, so it is exposed to 

vulnerabilities and integrity attacks. 

2.2 Blockchain-based trust approaches 

To mitigate the centralization threats, several works adopted 

the decentralized blockchain technology. Indeed, Yang et al. 

[10] proposed a secure and efficient blockchain-based data

sharing scheme for IoT. This system is based on an off-chain

storage strategy and then performs on-chain indexing to meet

the storage constraints in the blockchain, and uses a specific

smart contract for the purpose of access control, secure

querying, and sharing of data in IoT. At the data sharing

process level, they incorporate a reputation mechanism. In

addition, in this work, the system calculates the reputation of

nodes and stores them in the blockchain via a smart contract.

Any user announced as malicious is revoked.

To protect the HSN, Mutleg et al. [5] suggested a solution 

using Hyperledger blockchain to detect compromised Internet 

of Medical Things (IoMT) nodes and protect sensitive health 

information. They introduced a Clustered Hierarchical Trust 

Management System (CHTMS) designed to block malicious 

nodes. For securing health records, they use an embedded 

Elliptic Curve Cryptography (ECC), and they are interested in 

resistance against Denial of Service (DoS) attacks. About 

evaluation results, they indicate that integrating blockchain 

into the HSN enhances detection capabilities and outperforms 

current systems, demonstrating improved security and 

reliability compared to traditional databases. Bhan et al. [15] 

propose a Federated Friendly Learning (FCL) platform to 

ensure privacy in IoMT applications and secure data sharing. 

This study proposed a secure and collaborative federated Q-

learning model, integrating a blockchain-certified trust 

mechanism, which strengthens data privacy by restricting 

participation to only authenticated nodes. This architecture is 

based on a multi-layer model combining (1) a blockchain 

infrastructure, (2) a dynamic trust mechanism, (3) a federated 

learning framework and (4) secure communication protocols. 

Regarding the results of this work, there is an increase in the 

accuracy levels equal to 94.7% and privacy protection equal to 

92.4%.  

Another use of the blockchain is proposed by Babu et al. 

[16]. They deploy blockchain technology to protect the 

confidentiality of patient information and to secure data 

exchange. Trust is guaranteed by smart contracts based on 

keys and certificates. The chain codes manage actors’ 

authentication, registration, and verification. This also ensures 

chain traceability. 

2.3 Intrusion detection-based approaches 

In the related works on ML-enabled IDS for IoMT, a variety 

of innovative methodologies have been explored to improve 

feature selection and classification processes. The work 

presented by Ibrahim et al. [2] is based on a robust IDS for 

IoMT networks. It integrates a honeypot to divert attackers 

from critical systems and uses ML (K-Nearest Neighbor) to 

improve detection accuracy and resilience against 

cyberattacks. Researchers evaluated their models by testing 

two IoMT datasets, containing attacks such as Man-In-The-

Middle (MITM), Data Injection, and Distributed Denial of 

Service (DDoS). The results are 92.5% and 99.54% for 

accuracy and 96.74% and 99.23% for precision across all 
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datasets, highlighting the potential of IDS to secure IoMT 

networks. In the same field, Sudharson et al. [17] implemented 

ML-IDS to increase the security of smart health applications 

(medical IoT) and patient information in the interconnected 

world. They used AdaBoost classifier, giving a recall value of 

0.96. Their approach, tested on NSL-KDD dataset, focused on 

12 features to achieve high performance in detecting DoS, 

User-to-Root (U2R), Root-to-Local (R2L), and Probe attacks. 

This system demonstrated superior accuracy, recall, and 

precision metrics. The study highlights the effectiveness of 

using adaptive ML models and optimized feature selection to 

enhance the security of interconnected medical devices, 

providing critical insights into the development of robust 

IoMT security frameworks. 

 

Table 1. Comparison of the studied related work 

 

Ref. 
For Medical 

Environment? 
Trust Metrics 

Intrusion Detection 

Method 

Deployed AI 

Algorithm 

Evaluation 

Results of the 

AI 

Deployed 

Blockchain (Type/ 

Name) 

Trust-based Approaches 

[15] 
Yes: IoMT: 

HSN 

Sliding Time Window-based 

Trust Metrics, Direct and 

Indirect Trust, Cluster-based 

Trust 

Lightweight SNORT 

IDS: Communication 

Component, Traffic 

Monitor and 

Blocklist 

N.A. N.A. 

*) Private 

blockchain 

*) Hyperledger 

Fabric 

[16] Yes: IoMT 

Smart contract-based 

registration, identification, 

and authentication 

N.A. N.A. N.A. 

*) Private 

blockchain 

*) Hyperledger 

Fabric 

[10] No: IoT 

IoT users Feedback: 

Negative Ratings (NR) and 

Positive Ratings (PR) 

N.A. N.A. N.A. 

*) Private 

blockchain 

*) Ethereum: 

Ganache 

[13] No: WSN 
Direct Trust and Indirect 

Trust (Watchdog Metrics) 

Dual-Layer Trust-

Based IDS for 

Blackhole Attacks 

N.A. N.A. N.A. 

[14] 
No: RPL for 

LLNs 

Subjective Logic (Trust, 

Distrust, and Uncertainty), 

Fault Threshold 

Trust-Based Hybrid 

IDS with Heartbeat 

Monitoring 

N.A. N.A. N.A. 

[17] Yes: IoMT 

Interaction score between 

devices 

Penalization for malicious 

behavior 

N.A. N.A. N.A. 
*) Blockchain type 

not mentioned 

AI-based Intrusion Detection Approaches 

[18] 

Yes: 

IoT-based 

healthcare 

system 

N.A. 

Edge-based IDS with 

Multi-attack 

Detection 

Dwarf 

Mongoose 

Optimized 

ANN (DMO-

ANN) 

Accuracy: 

97.2%; Recall: 

96.15% 

*) Blockchain type 

not mentioned 

[19] Yes: IoMT N.A. 

Attacks 

Classification (like 

DoS, R2L, and U2R) 

Naïve Bayes 

KNN 

AdaBoost 

Best results 

with AdaBoost 

classifier: 

Recall = 96% 

Accuracy = 

98.5% 

N.A. 

[9] 

Yes: Medical 

data 

transmission 

N.A. 

weight function: 

WO-DBN: Weight-

Optimized Deep 

Belief Network 

LSTM + DNN 
Best Accuracy 

rate = 98.6% 

*) Blockchain + 

IPFS 

*) Type not 

mentioned 

[2] 

Yes: Smart 

healthcare 

systems 

N.A. 
Anomaly-based 

detection 
Random Forest 

92% accuracy 

in detecting 

unauthorized 

data access 

N.A. 

[20] Yes: IoMT N.A. 

Attacks’ 

Classification 

Architecture: The 

output of Base-

learners is served as 

input to Meta-learner 

Base-learners: 

MLP, CNN, 

and LSTM 

Meta-learner: 

ANN 

AccIoTHealthcare-

Security = 

99.95% 

AccWUSTL-

EHMS-2020 = 

99.65% 

N.A. 

Tyagi and Manju Bargavi [18] introduced a blockchain-

based approach in their study, where they proposed a method 

called FIDANN, which is an intelligent intrusion detection 

mechanism. This method protects the confidentiality of 

medical information using Artificial Neural Networks (ANN) 

optimized by Dwarf Mongoose and uses a Federated Learning 

technique. This work used blockchain technology to save the 

updated model’s weights. Thus, they guarantee integrity in a 

decentralized system. Actually, Kanna et al. [9] proposed an 

approach based on DL to secure medical information. In this 
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work, the data acquisition phase is done via online sources and 

then verified by the weight function (WO-DBN: Weight-

Optimized Deep Belief Network). Regarding the security of 

medical data, the authors base their approach on chaotic map 

assisted encryption coupled with the optimal key generation of 

existing images in the database and blockchain technology. 

The final phase is about disease diagnosis, where the 

decrypted data are sent to classify the node with or without 

malicious intrusion. This phase is done via Res-LSTM + 

DNN: the support of a residual network (Resnet101), Long 

Short-Term Memory (LSTM), and the Deep Neural Network 

(DNN). In the validation part of this work, the accuracy rate of 

the approach is 98.6%. Another approach named SNN-IoMT 

(Stacked Neural Network Ensemble for IoMT Security) was 

proposed by Sun et al. [19]. It consists of an AI-based IDS 

framework designed to secure dynamic IoMT environments. 

This article is based on a DL architecture of STM, MLP 

(stacked combining multi-layer perceptron), and 

Convolutional Neural Network (CNN). It presents a model for 

optimizing data management and integration while ensuring 

system scalability and interoperability. The experiments are 

based on both IoTHealthcare-Security and WUSTL-EHMS-

2020 datasets, providing respectively 99.95% and 99.65% 

accuracy. 

Although the trust-based IDS demonstrates robust energy 

efficiency and enhanced security against various routing 

attacks, it is not without limitations. One notable challenge is 

its reliance on offloading computational tasks to the root node 

in high traffic scenarios. Furthermore, the effectiveness of the 

system depends on fine-tuning parameters, such as trust 

thresholds and Fault Threshold values, which may vary across 

network environments and require context-specific 

optimization. Moreover, as presented in Table 1, to ensure 

traceability, blockchain technology is used without focusing 

on IDS output, which may detect an attack that is not 

considered in the blockchain update, which is essential in the 

medical environment using sensitive data. 

3. METHODOLOGY

3.1 Trust management 

To overcome the limitations of existing trust-related works, 

we propose in this paper a trust-based management 

architecture deploying blockchain techniques for the medical 

environment. Indeed, the former deploys sensitive 

information, where human lives are impacted if the network is 

threatened. Thus, our main objective is tracking the user’s 

behavior by monitoring all the components of the architecture. 

The monitoring consists of a trust-based assessment. 

However, this can also be attacked and modified. For this 

reason, we propose to use blockchain technology to guarantee 

the integrity of the stored information about the monitored 

component. In fact, to implement our solution, we base our 

study on a medical-based architecture, depicted in Figure 1. 

Figure 1. Proposed architecture based on blockchain 

In fact, two actors are presented in the system: the medical 

staff and the patient. Trust ensures that the medical system 

accesses the data only if the environment is announced as 

trusted. The patient is surrounded by different sensors 

collecting miscellaneous data. It can be either a medical or an 

environmental sensor. Those sensors send periodically data to 

the Treatment Unit (TU) periodically, which in turn sends the 

processed data to the gateway. It also handles the needed 

calculations. Moreover, an IDS is installed in the environment 

to supervise the network. 

The TMS proceeds through different stages to perform trust 

calculation and storage [20]. The first step is data collection, 

where different metrics are stored. After that, the collected 

data is used to calculate the trust before the propagation of this 

new trust. 

In this proposed process, following the flowchart of Figure 

2, the following steps are executed: 

Step 1: User U requests a connection to the network to have 

remote medical control. 

Step 2: The gateway activates continuous monitoring 

(Intrusion detection process and trust-related data storage), 

and it processes immediately to the trust calculation using a set 

of parameters and the output of the IDS. 

Step 3: If the trust calculation procedure is done, the 

gateway checks if the device is always allowed. In parallel, we 

should launch the write action in the blockchain to ensure 

traceability. This action is a transaction that generates a 

transaction hash. This hash will be the link between trust and 
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the related transaction. 

Figure 2. System's general algorithm 

Step 4: If the obtained trust is higher than the trust threshold, 

then 

Step 4.1: The user, either a new patient or an old one, is 

allowed to access the system and we continue the monitoring 

and the calculation. 

Step 5: Otherwise, 

Step 5.1: if it is his first access, then it is rejected and 

reported as a non-trustworthy entity. 

Step 5.2: If not, then the gateway checks the average of the 

last three trust scores. The objective here is to check whether 

the trust score dropped out for just one instance, or the 

behavior is degrading. 

Step 5.2.1: If the behavior persists and the average does not 

attain the threshold, then the user is refused and added to the 

firewall’s blacklist. 

Step 5.2.2: Else, the user is kept in the system, and the 

gateway continues the trust calculation process. 

We detail in the following the main modules in the 

considered architecture of Figure 1. 

3.1.1 Data collection 

In our network, there are environmental sensors and 

medical sensors, capturing different types of data. Since we 

aim to ensure more trust, we monitor each sensor to obtain our 

trust metrics. 

For continuous monitoring, at each time interval, the 

gateway receives information from both sensors and IDS. 

Then, the CIC-flow meter will be applied to the data to get 

statistical output. Next, our DL model is applied to obtained 

output to get the attack probability. Added to that, the collected 

values from medical sensors are supervised with the energy 

consumption rate and the Packet Delivery Ratio (PDR). Thus, 

we have all the needed information to perform trust 

calculation. The IoT edge computing will take the computation 

task. Once trust is calculated, it will be stored in the blockchain 

network and on the IoT edge. 

3.1.2 Trust calculation 

After data collection by the gateway, trust metrics are 

pretreated and then used in the trust calculation process. Data 

treatment and the trust calculation are executed as described in 

the published articles [21, 22]. The used metrics are direct 

observations obtained in our network. In fact, each device 

reports the energy consumption e and eventually medical data 

to the gateway. Medical data is one of the trust indicators 

associated with the trust value Tmed. Tmed represents an 

indication of anomalies in the medical data. Moreover, energy 

consumption is another indicator supervising if there is any 

suspicious behavior depleting resources. It reflects the energy 

consumption rate of all existing sensors. This metric is 

selected to tackle attacks like DoS in the physical layer. 

Also, we calculate the ratio between received packets and 

total sent packets, called PDR. Then, the gateway calculates 

trust based on energy consumption e, PDR, and medical data 

trust Tmed as proposed in the paper [21]. It is important to 

highlight that each feature is bounded between 0 and 1. To 

increase the precision of the trust level, we propose adding the 

IDS decision as a trust feature, as described in Figure 3. 

Figure 3. Trust calculation 

The proposed intrusion detection mechanism is based on AI 

by training the model. The output of the model is the attack 

probability p. If the probability is high (upper than a threshold 

defined by the administrator), it reflects a danger to our 

system. So, the related attribute should reflect the non-trust, as 

considered in Eq. (1). 

1 IDST p−= (1) 
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3.1.3 Trust update 

At each time interval ∆𝑡, the gateway calculates the trust for 

this current interval ∆𝑡 . The obtained trust will not be the 

adopted trust for the network. Otherwise, it will be integrated 

into a weighted sum to bring attention to the old trust, since we 

assume that the node’s behavior cannot vary suddenly. Each 

interval ∆𝑡 , a trust calculation is proceeded. The gateway 

collects data and calculates current trust using Eq. (2).  

( ) * * * ? *T t PDR T e T
med IDS

    = + + + (2) 

The network trust follows Eq. (3) by taking into 

consideration that the weights 𝜆 < 𝜇, 𝜆 + 𝜇 = 1 and 𝜆 <= 0.4, 

as we aim to prioritize the new trust value. 

( )( ) ( )     1 * ?patientT T t T t =  −  (3) 

Figure 4. Trust update further to attack detection 

If an intrusion alert is generated during the time interval, the 

gateway instantly calculates a new trust, as explained in Figure 

4. This calculation is based on the attacks’ probability. In fact,

if we get a probability of attack p more than a predefined

threshold, the current trust is updated as indicated in Eq. (4).

The new trust will be recalculated according to Eq. (3). The

thresholds in our system are defined and fitted by the network

administrator.

( )  IDST t T = (4) 

3.1.4 Trust propagation 

To share the trust score between entities, we used the 

blockchain network. The node connected to the blockchain can 

execute two different functions: the “set” function to change 

the ledger and the “get” function to retrieve the trust value. 

Thus, to preserve the new score, the gateway will invoke the 

update function with the new score and features. 

To ensure more access speed, we propose having a database 

storage on the IoT Computing edge. At each time interval, ∆𝑡, 

the information will be stored in the database. If the trust value 

is deemed significant—such as a notable increase or decrease, 

or a value exceeding a predefined trust threshold—it will also 

be recorded on the blockchain. This update will be associated 

with the corresponding transaction hash for traceability data 

stored on the edge, which will be verified periodically to 

ensure information integrity and conformity to the blockchain 

to avoid or detect alteration. 

3.2 Blockchain-based trust 

To ensure more security and traceability, we opted for a 

blockchain network to store trust variations. We choose a 

private blockchain to guarantee the privacy of the medical 

environment. To access the blockchain, every entity should be 

connected to a blockchain node as described in Figure 5. 

Figure 5. Blockchain architecture 

In our architecture, every node is the member’s gateway. 

The member is either a patient or a medical institution. If an 

entity does not have a node in the blockchain, a new node is 

created. The used blockchain will be a private blockchain 

since we are dealing with a medical context.  

To manage the trust updates, a smart contract is used. Every 

operation is traced in the blockchain via this smart contract. 

This smart contract will allow every node to either update or 

retrieve the appropriate trust score. The update function allows 

every patient side to update the trust value, and the retrieve 

function permits both the edge and the medical side to get the 

trust value assigned to the patient. 
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The distributed ledger will track down every transaction 

which will be structured in blocks approved by the validators. 

Each block can contain one or more transactions. The 

transaction includes many fields indicating information 

relative to the update trust function. In fact, each transaction is 

defined by a “transaction hash”. The sender is defined by the 

gateway aiming to upload the new trust value. It is presented 

by the patient’s address account. The destination field will 

contain, in our case, the contract address since we are invoking 

methods from it. Regarding the data, it englobes the encoded 

form of the invoked function and the given parameters. 

 

3.3 Detection module 

 

The IDS accepts analyzed traffic and detects if there are any 

intrusions that may cause instability in the system. The 

anomaly-based IDS aims to detect suspicious behavior based 

on ML. In fact, the IDS is trained on the network normal 

behavior. A deviation from the normal baseline is accounted 

as an attack. Indeed, learning-based IDS tailored for medical 

settings is proposed to enhance security by identifying threats 

while minimizing disruptions. Continuous monitoring and 

real-time intrusion detection have to be ensured because of the 

sensitivity of medical data. It is also designed to detect 

abnormal behavior of the user and the device, as well as 

unauthorized access to the medical records by patients and 

medical staff. 

 

Table 2. CNN parameters 

 
Parameters Value 

Convolutional layers number 3 

Activation function ReLU 

First dropout layer rate 0.2 

Second dropout layer rate 0.3 

 

For that, we propose applying DL, where we go through 

four phases: data preprocessing, building the proposed model, 

applying the model on training and validation data, and finally 

applying the model on the test data. Data preprocessing 

consists of 1) selecting and building the dataset, 2) selecting 

pertinent features, 3) One Hot encoding and 4) features 

scaling. 

When the data is ready, we focus on building a CNN model. 

This model consists of both Convolutional layers and fully 

connected layers. Also, it englobes 3 Batch normalization 

layers. Added to that, we introduced 2 dropout layers to avoid 

overfitting and pooling layers, helping to minimize the 

computational complexity. The output layer uses the 

activation function sigmoid since we are performing binary 

classification. The used parameters are explained in Table 2. 

 

 

4. RESULTS AND DISCUSSION 

 

The simulation environment is a Virtual machine with the 

operating system Ubuntu 20.04. The virtual material of the 

virtual machine is: 8 vCPU and 16 GB of RAM. In the 

following, we will describe the evaluation of each part of our 

system. 

 

4.1 AI-based IDS 

 

4.1.1 Dataset description 

We trained and tested our model on the CIC-IoMT2024 

dataset [23]. This dataset is produced in a real environment 

with a miscellaneous type of sensors (healthcare sensors, home 

devices…) established by the Canadian Institute for 

Cybersecurity. Also, different protocols are used in the 

collected data, such as Bluetooth and Wi-Fi. The collected 

traffic contains benign and malicious flows. Malicious traffic 

contains mainly five attack families: recon, spoofing, DoS, 

DDoS, and malformed data.  

We propose to deploy our IDS on this dataset. We have 

chosen to perform different classifications as Table 3 details. 

The benign and the recon traffic contain varied protocols. The 

Denial-of-Service Traffic was parsed into either MQTT or 

TCP/IP protocol. 

 

Table 3. Selected dataset description 

 
Attack Protocol 

Benign Any 

Spoofing ARP 

Recon Any 

DoS MQTT TCP/IP: 

ICMP 

TCP/SYN 

UDP 

DDoS MQTT TCP/IP: 

ICMP 

TCP/SYN 

UDP 

 

 

 
 

Figure 6. Class distribution in training dataset 
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The proposed dataset separates training data from test data. 

Thus, we trained our model on the training dataset, and then 

the test phase uses the provided test dataset. Our model is 

executed on the train files provided by the Canadian Institute 

for Cybersecurity. We split the file into 70% train and 30% 

validation. Then, to evaluate our model, we test it on the 

offered test files. The distribution of different classes’ 

instances in the provided train data is illustrated in Figure 6. 

 

4.1.2 Evaluation metrics 

To evaluate a model, numerous metrics exist apart from 

accuracy. To extend our approach study, we focus on: 

confusion matrix (CM), precision, recall, and F1-score [24, 

25].  

Confusion matrix (CM): In the CM: Rows, reflect actual 

classes marked True and False. As for columns, they present 

predicted values. If the prediction is correct, it is considered 

Positive. Otherwise, it is Negative. This matrix is summarized 

in Eq. (5). 

 

CM
TP FP

FN TN
=  (5) 

 

where, 

TP: True Positive: information correctly detected as attack.  

FP: False Positive: incorrectly detected benign as attack. 

FN: False Negative: incorrectly classified attacks as benign.  

TN: True Negative: benign information correctly classified. 

Accuracy (ACC): The Accuracy metric is measured by the 

proportion of correctly classified observations (both TP and 

TN) out of the total observations. This metric is represented by 

Eq. (6). 

 

( )
( )

TN TP
ACC

TN TP FP FN

+
=

+ + +
 (6) 

Precision: This metric considers the samples classified as 

positive. It presents the correctly classified positive samples 

percentage to both TP and FP. This metric is presented by Eq. 

(7). 

 

 
TP

Precision
TP FP

=
+

 (7) 

Recall: It evaluates the effectiveness of a model to correctly 

identify all labels. It is presented by Eq. (8). 

 

 
   

TP
Recall

TP FN
=

+
 (8) 

 

F1-score: The F1-score is the average of the precision 

presented by Eq. (7) and the recall obtained by Eq. (8). This 

parameter provides a balance between recall and precision. It 

is detailed in Eq. (9). 

 

*
1 2*

Precision Recall
F Score

Precision Recall
− =

+
 (9) 

 

4.1.3 Model results 

After selecting the dataset, we initiated the learning process 

through creating the DL model described earlier, based on 

CNN. We trained and tested the model using three different 

class distributions, detailed in Figure 7 alongside other 

existing distributions. The first distribution is Boolean, 

classifying traffic as either benign or DoS. The second 

includes an additional attack type: reconnaissance (recon). The 

third distribution treats each category separately, 

encompassing 19 classes in total—benign plus 18 distinct 

attack types. Due to the large size of the dataset and limitations 

of our hardware, we reduced the amount of data related to DoS 

and DDoS attacks during training. 

 

 
 

Figure 7. Different proposed distributions 

 

In the 2-class and 3-class classification scenarios, accuracy 

exceeds 99%, achieving 99.6% and 99%, respectively. 

However, in the 19-class classification, accuracy drops to 

73%. To better understand these results, we analyzed the 

confusion matrices shown in Figures 8, 9 and 10. In the binary 

classification, the number of false positives (FP) and false 

negatives (FN) remain very low relative to the overall traffic. 

In the multi-class setting, confusion occurs primarily 

between benign traffic and both ARP spoofing and 

reconnaissance attacks. This is due to certain features that are 

not sufficiently discriminative for these classes but are 

important for distinguishing DoS attacks. Moreover, these 

types of attacks do not alter the system’s state, making them 

harder to detect [25]. Additional confusion is observed within 

the DoS traffic, particularly between TCP-IP and MQTT 

traffic, as they exhibit similar behaviors. 
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(a) Benign and DoS 

 
(b) Benign and attack 

 

Figure 8. 2 Classes' confusion matrix 

 

 
 

Figure 9. Confusion matrix for 3 classes’ classification 

 

 
 

Figure 10. Confusion matrix for 19 classes 
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4.1.4 Comparison of classification results 

Table 4 summarizes classification results across different 

studies, which mainly follow two common class distributions. 

The first is a binary classification setting, where [21, 26, 27] 

categorize data into benign and attack classes, achieving 

accuracies of 99.6%, 97%, and 99.92%, respectively. Our 

model outperforms accuracies reported in the previous studies 

[21, 26], while remaining consistent with the study by Hafid 

et al. [27]. The second setting involves a 19-class distribution, 

used in the previous studies [21, 26], where they achieved 

accuracies of 73.3% and 87.96%, respectively. Our model 

attains comparable accuracy to the study by Fourati et al. [21]; 

however, Mezina et al. [26] reported superior results due to 

their use of a hybrid model that incorporates deeper and more 

complex learning architectures. In contrast, we introduced a 

novel 3-class distribution with a different class split. Using our 

CNN model under this setup, we achieved an accuracy of 99%, 

a Recall of 95.21%, a Precision of 94.77%, and an F1-score of 

94.77%. The relatively lower F1-score can be attributed to 

class imbalance within the training dataset. 

Table 4. Comparative results 

Classes 

Number 
Classes Ref. Algorithm 

Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 

F1-Score 

(%) 

2 
Benign, Attack 

[23] 

RF 99.6 95.1 97.1 96.1 

AdaBoost 99.6 96.1 95.9 95.9 

DNN 99.6 94.8 95.6 95.2 

[26] UNet++ +LSTM 99.92 99.84 99.99 99.92 

[27] XGBoost 97 100 96 98 

Ours CNN 99.64 98.67 94.14 96.29 

Benign, DoS Ours CNN 99.99 99.99 99.99 99.99 

3 Benign, Recon, DoS Ours CNN 99 95.21 94.77 94.95 

6 
Benign, Recon, spoofing, 

DDoS, DOS, MQTT 

[23] RF 73.5 71.3 73.5 67.6 

Logistic regression 72.9 71.2 74.8 69.4 

19 Each attack separately 

[23] RF 73.3 57.7 69.1 55.1 

[26] UNet++ +LSTM 87.96 93.31 94.55 86.47 

Ours CNN 73.59 51.85 56 48.34 

4.2 Blockchain configuration 

The chosen blockchain network is the permissioned 

blockchain GoQuorum. It represents an open-source 

Ethereum-based blockchain. This blockchain is a real 

blockchain that can be implemented in a production 

environment. It proposes different consensus algorithms: Raft, 

IBFT, and QBFT. The selected consensus algorithm is RAFT, 

as it offers rapidity. After the installation of Geth (Go 

Ethereum) proposed by GoQuorum, we proceeded with the 

creation of the blockchain network, specifying the initial 

node’s number and the consensus algorithm. Our GoQuorum 

blockchain network is formed by 5 nodes using the Raft 

consensus algorithm. A node is defined by an IP address and a 

port where the service is running. 

We prepared the script of our smart contract and then 

compiled it. As a result, we have the ABI and the bytecode 

distinguishing the contract. We then deployed our smart 

contract to the blockchain network using the Ethereum library 

web3 via the Application Programming Interface (API) JSON-

RPC [28]. This API allows our program to make calls with the 

Ethereum client. Once the contract is deployed, a contract 

address is generated to identify our contract and make 

interaction with it possible. This is a primordial action so that 

our nodes update the trust level. After accomplishing these 

requirements, every node can establish the actions’ call. 

4.3 Delay-based evaluation 

Our system contains different computational operations: 

prediction operation, trust calculation, and transaction 

publishing in a blockchain network. We propose to study the 

computational time of those main operations in Table 5. 

In the gateway, when the system is about to update the trust, 

we have two main operations namely prediction and the 

update. The old trust recuperation is from the IoT edge and not 

from the blockchain. Thus, the trust calculation will be equal 

to 0.0036 seconds. Compared to prediction and trust 

calculation, the process, including blockchain communication, 

is higher. However, it does not affect our system performance 

since it does not depend on direct communication with the 

blockchain but rather on the IoT edge. Additionally, trust 

modification will only be triggered when a notable change in 

the trust score is detected. Minor variations or unchanged trust 

levels will not be recorded on the blockchain in order to 

minimize processing time. 

Table 5. Time-based evaluation 

Operation Time (s) 

Prediction 0.1117 

Trust calculation 0.0036 

Blockchain operations 

Store 1.04 

Retrieve 1.03 

Contract deployment 1.05 

4.4 Comparative study 

In this section, a comparative study is established between 

our work and Yang et al’s work [10]. They present an approach 

in an IoT environment with the deployment of trust based on 

blockchain. Table 6 details the simulation environments. 

First, we tried to compare the reputation evolution. The 

authors presented the effect of the NR and PR decrease on their 

reputation score. We will present our reputation progress with 

values variating in PDR, Energy consumption, and medical 

trust, and with modifying in each time period the attack 

probability. We fitted updated weights as follows: λ = 0.3 and 

μ = 0.7. Regarding weights of metrics: α, β, and γ equal 0.2 

while δ = 0.4. 

The first curve in Figure 11, having PR equal to 5 with no 

NR, is increasing. Our approach has different attributes and 

uses the IDS decision in calculating trust. We obtain a decrease 

in trust when the attack probability increases. In fact, the 
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probability p starts with a value of 1 in instant ∆t = 0, but when 

it becomes p = 0, we find that the trust value is under the trust 

threshold fixed by Yang et al. [10]. Added to that, the last three 

occurrences in the curve have values inferior to the threshold. 

As a result, following our proposed algorithm, this node is 

rejected from the network. 

Table 6. Test environment comparison 

Parameters Ref. [10] Ours 

Trust metrics 

NR: negative 

ratings number 

PR: positive ratings 

number 

PDR, Energy, 

Medical-related trust, 

and Attack 

probability 

Used blockchain 
Ganache 

(Ethereum) 

GoQuorum 

(Ethereum-based) 

Web3 library Web3.py Web3.js 

Environment Virtual machine: Ubuntu 

VM 

configuration 

RAM: 4 GB 

8 vCPU 2.30GHZ 

RAM: 16 GB 

8 vCPU 2.99 GHZ 

Figure 11. Trust score variation 

Second, we moved forward to the blockchain evaluation. 

We tested the write transaction latency, where we tested the 

different delays when the transaction number per second 

varies. The work by Yang et al. [10] used ganache in 

simulation, representing one node (defined by an IP address 

and a port). To get a fair comparison, we fix our test on one 

node in the GoQuorum blockchain. The latency chart in Figure 

12 shows that our blockchain network returns an increasing 

latency value proportionally to the transaction rate as proposed 

in the paper. Compared to other processes in our approach, the 

latency value remains acceptable and ensures the rapidity of 

the transaction process. 

Added to that, we evaluated the trust update throughput 

values as illustrated in Figure 13. In Figure 13(a), we 

represented the throughput of our blockchain. Throughput, 

expressed in Transaction Per Second (TPS), is defined as the 

average number of correctly handled transactions according to 

received transaction flow per second [28].  

In fact, as the number of transactions increases, the 

throughput rises accordingly. For comparison purposes, we 

selected a specific window from our performance curve to use 

in the comparison analysis with the Yang et al’s [10] 

throughput values in Figure 13(b). The Value remains 

acceptable since it does not exceed 30 TPS. 

Figure 12. Write transactions latency 

(a) Our system’s throughput

(b) Throughput comparison

Figure 13. Throughput comparison for updating trust 

To evaluate blockchain throughput, we conducted multiple 

tests, each varying the number of threads. In this context, a 

thread represents a user interacting with the blockchain. As the 

number of threads increases, the volume of transactions rises 

proportionally. As illustrated in Figure 14, the throughput 

curves exhibit an upward trend, indicating that the throughput 

improves with higher transaction rates. This demonstrates 

GoQuorum's capability to efficiently handle a high volume of 

transactions. For instance, with three concurrent users, the 

throughput peaks at a maximum of 480 TPS. 

To summarize, our trust model maintains a level of security 
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since it always controls the network, and the trust score reflects 

the degree of network reliability. Moreover, the permissioned 

blockchain network is a real network that can be upgraded to 

a production environment. It offers an average latency of 9.06 

ms and a throughput attaining 260 TPS for a high transaction 

volume. 

 

 
 

Figure 14. Throughput variation 

 

 

5. CONCLUSIONS 

 

This study presents a trust architecture for the IoMT, 

designed to enhance security, reliability, and traceability in 

medical IoT environments. The proposed framework 

integrates an IDS with a TMS, where each entity in the 

network is assigned a dynamic trust score reflecting its 

behavior and reliability. To ensure secure and tamper-proof 

record keeping, blockchain technology is employed, providing 

transparency, accountability, and immutable traceability of all 

trust-related operations. 

The evaluation of the trust computation demonstrates that 

the proposed system efficiently reflects the reliability of 

entities, with minimal computation time. Any decline in 

performance metrics or anomalies detected by the IDS yields 

a proportional decrease in trust score, ensuring that the system 

accurately represents entity behavior over time. The IDS is 

implemented using a CNN trained on CIC-IoMT 2024 dataset. 

It achieves classification accuracy exceeding 99% in binary 

tasks, outperforming existing methods and demonstrating the 

effectiveness of DL for real-time attack detection. 

Blockchain integration was evaluated in a realistic 

deployment using GoQuorum, showing low latency (14 ms for 

300 TPS) and the ability to handle high transaction rates from 

multiple users, confirming the practical applicability of the 

system in production environments. 

Overall, this research demonstrates that combining IDS-

based trust management with blockchain technology provides 

a comprehensive and effective approach to foster the security 

posture of medical IoT networks. 

At this stage of analysis, we would assert that this research 

can be regarded as valuable and promising in terms of laying 

the ground for fruitful lines of investigation and paving the 

way for new research directions. Indeed, further research is 

needed to focus on boosting blockchain capabilities, 

particularly through smart contracts to automate key security 

functions such as access control and authentication. 

Additionally, full-scale deployment in a real IoMT 

environment is planned to further assess system robustness, 

scalability, and resilience against sophisticated attacks. 
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NOMENCLATURE 

𝑒 
associated trust to the sensors’ energy 

consumption 

𝑃𝐷𝑅 Packet Delivery Ratio  

𝑇𝑚𝑒𝑑 trust related to medical signal 

∆𝑡 time interval (window) 

p 
attack probability issued from the deep 

learning model 

𝑇𝐼𝐷𝑆 IDS trust 

𝑇(∆𝑡) 
current trust value calculated for the ∆𝑡 

interval 

𝑇(∆(𝑡 − 1)) old trust 

𝑇𝑝𝑎𝑡𝑖𝑒𝑛𝑡 final trust value 

Greek symbols 

𝛼 PDR weight in current trust 

𝛽 medical trust weight in current trust 

𝛾 energy weight in current trust 

𝛿 IDS decision weight in current trust 

𝜆 weight of old trust 

𝜇 weight of new trust 
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