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Intrusion detection on the Internet of Medical Things (IoMT) must contend with 

heterogeneous, multi-protocol traffic (Wi-Fi, MQTT, BLE) and severe class imbalance 

that undermines per-class reliability. This study proposes a hybrid two-stage pipeline that 

integrates Whale Optimization Algorithm (WOA) for feature reduction with boosting-

based classifiers (XGBoost, LightGBM). Stage-1 performs binary detection (Normal vs. 

Attack); Stage-2 classifies attack types across 14 classes. Using the CICIoMT2024 

dataset, WOA consistently prunes ~40–60% of features, cutting training time by up to 

~68% while preserving near-perfect Stage-1 detection. On multi-class evaluation, 

WOA+XGBoost attains Accuracy = 0.9976, Macro-F1 = 0.9599, and Weighted-F1 = 

0.9977, with stable per-class F1-scores (≈ 0.90-1.00) and only a modest dip on UDP. 

WOA+LightGBM remains competitive (Accuracy = 0.9864; Weighted-F1 = 0.9859) but 

exhibits larger variance on minority classes (e.g., VulScan ≈ 0.34). On the BLE subset, 

WOA selects ~12-13 of ~21 features with negligible accuracy loss and lower detection 

latency. The findings demonstrate that WOA-driven reduction is an effective cost-

preserving step for IoMT intrusion detection, and that XGBoost provides more stable per-

class performance under imbalance. We discuss CPU-only deployment feasibility (with 

batching/quantization) and outline targeted remedies class balanced reweighting, focal 

loss, and hierarchical classification to further improve rare-class detection. 
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1. INTRODUCTION

The Internet of Medical Things (IoMT) is an important 

revolution in health care since it allows real-time monitoring, 

diagnosis, and treatment in the hospital, wearable, and home. 

IoMT makes healthcare more convenient and effective, but on 

the other hand, also brings out new attack surfaces due to its 

heterogeneity, constrained devices, and multi-protocol 

communications, including Wi-Fi, MQTT, and Bluetooth. 

Attackers generally leverage these weaknesses, and this may 

result in a threat to patient safety, a threat to data privacy, 

and/or a threat to service availability. 

To counter the increasing security threats in IoMT, 

intelligent IDSs using machine learning (ML) and deep 

learning (DL) have been proposed by researchers. To this end, 

the CICIoMT2024 dataset was presented as a realistic dataset 

to the community for the development and evaluation of these 

models. It consists of network traffic generated by 40 medical 

IoT devices and over 18 attacks, classifiers such as DOS, 

DDOS, Recon, MQTT, and Spoofing, that operate under 

different protocol conditions [1]. 

Recent studies obtained encouraging results on 

CICIoMT2024 through ensemble and boosting methods [2]. 

As an example, tree-based ensembles with feature reduction 

(RF/XGBoost via RFECV) achieved weighted-F1 ≈ 0.995 on 

CICIoMT2024, highlighting the strength of 

boosting/ensembles on this dataset [2]. Similarly, a data-

augmentation, feature-engineering, deep-ensemble, 

voting/stacking pipeline (Transformer/LSTM/DCNN → 

meta-learner) reported ~99% accuracy on CICIoMT2024 and 

strong cross-device generalization [3]. However, performance 

typically drops when moving from binary detection to fine-

grained multi-class attack-type classification on 

CICIoMT2024; for instance, a Transformer with time 

encodings reached ~0.73 accuracy (F1 ≈ 0.67) in the multi-

class setting using CICIoMT2024 baselines [4]. 

To cope with these limitations, we propose a hybrid model 

that couples the Whale Optimization Algorithm (WOA) for 

feature selection with an ensemble that performs binary 

detection followed by hierarchical attack-type classification to 

improve accuracy, reduce computational cost, and enhance 

interpretability.  

1.1 Research objectives and contributions 

This paper presents a hybrid model for IoMT intrusion 

detection that is based on: 

1. Feature selection based on WOA to solve the high-

dimensional CICIoMT2024 dataset.

2. accurate detection and classification by boosting
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classifiers (XGBoost and LightGBM). 

3. Accuracy and execution time-based performance 

evaluation approach. 

 

1.2 Key contributions 

 

1. WOA-driven feature reduction for CICIoMT2024 that 

removes 40–60% of features while preserving near-

perfect Stage-1 detection. 

2. A protocol-aware design that treats Wi-Fi/MQTT and 

BLE slices separately, with tailored WOA settings and 

feature subsets for each protocol family. 

3. A systematic comparison of XGBoost and LightGBM 

on full vs WOA-reduced features for both binary and 

multi-class IoMT intrusion detection. 

4. A detailed CPU-only runtime and latency analysis 

demonstrating the feasibility of deploying the proposed 

pipeline on resource-constrained IoMT edge gateways. 

 

 

2. RELATED WORK 

 

2.1 IoT intrusion detection feature selection 

 

Efficient feature selection is crucial in IoT to reduce issues 

such as redundancy, high dimensionality, and low detection, 

as highlighted in recent studies. The study by Ayad et al. [5] 

suggested a combination of a filter-wrapper approach to 

anomaly-based intrusion detection in IoT. By using SMOTE 

on class imbalance, it was then shown that a hierarchical 

system, which first classifies the network packets as normal or 

attack, and then the type of the attack, can achieve high 

accuracy (99.82–100%) with fast ID time on BoT-IoT, TON-

IoT, and CIC-DDoS2019 datasets [5]. 

To improve the feature selection of the dimensionality 

reduction methods, we proposed a two-stage feature selection 

method suitable for IoT [6], and the method filtered the 

features more effectively [6] and achieved better detection 

performance. 

Going deeper into metaheuristic search, a hybrid WOA-

GWO has been recently used for feature selection in IoT 

intrusion detection. The model deals with global and local 

search optimization; global optimal convergence can be 

achieved early, and local optimal refinement can occur later, 

addressing the shortcomings of single-algorithm approaches 

[7]. 

Additionally, AL-Husseini et al. [8] presented the wrapped 

feature selection pipeline and implemented the WOA coupled 

with LSTM classifiers. When applied to CICIDS 2017 and 

NSL KDD datasets, this technique helped in a reduction in the 

number of features (78 → 68), leading to the effect of WOA 

in terms of dimensionality reduction and classification 

effectiveness (DDoS detection accuracy was 99.62%) [8]. 

 

2.2 IoT security with boosting algorithms 

 

Ensemble methods and boosting classifiers have been 

highly promising in IoT-based IDS. Adewole et al. [9] 

considered the ensemble approaches that involve the 

combination of RF, AB, XGBoost, LightGBM, and CatBoost. 

Their results indicated that XGBoost performed better than 

others in binary and multi-class IoT intrusion detection, in 

addition to providing explainability [9]. 

The study by Hafid et al. [10] also suggested a high-

performance cyber security architecture based on fine-tuning 

of an XGBoost classifier boosted with SHAP Explanations 

(XAI) and late fusion. The model performed with 0.97 

accuracy and perfect recall (1.00), presenting a rather balanced 

performance, and was deemed suitable for IoMT applications 

where security is a priority [10]. 

 

2.3 New deep learning and feature engineering methods 

 

Enriching traditional ML, DL, and representation learning 

has formed two spots of light in IDS research: 

Inspired by a genetic sequence classification problem with 

heterogeneous inputs, the MIAE architecture introduces a 

feature-selection layer to efficiently handle inputs from 

multiple sources. When combined with Random Forest, 

MIAEFS achieved up to 96.5% accuracy on the NSL-KDD 

and UNSW-NB15 datasets, using compact models (< 1 MB) 

and delivering fast detection times (~1.7 × 10⁻⁶ s) [11].  

Jouhari et al. [12] presented an effective IDS model 

comprising of χ² feature selection combined with a CNN–

BiLSTM classification model. On UNSW NB15, the 

performance was 97.90% for binary tasks and 97.09% for 

multi‐class classification with low inference time, which is 

suitable for resource‐limited IoT devices [12]. 

Ghubaish et al. [13] introduced LEMDA, a lightweight 

means decreases in accuracy of feature engineering. LEMDA 

outperformed state-of-the-art algorithms on several IoT 

datasets by significantly enhancing F1-scores (average: + 

34%) and reducing both detection and training times, a feature 

that is particularly useful for deployable IoT systems [13]. 

 

2.4 Summary of gaps and positioning of our work 

 

Building on the gaps summarized in Table 1, our work 

addresses the key gap that no prior study has systematically 

combined WOA-driven feature reduction with XGBoost and 

LightGBM on protocol-specific medical IoT data (BLE vs. 

Wi-Fi/MQTT). We propose a unified framework that uses 

WOA to optimize feature subsets and then trains boosting 

classifiers—XGBoost and LightGBM—on the CICIoMT2024 

dataset, rigorously evaluating both classification performance 

and runtime efficiency for scalable, protocol-specific IoT 

intrusion detection. 

 

Table 1. Summary of gaps in the literature and positioning of 

our work 

 
Domain Gaps Addressed 

Feature 

Selection 

Hybrid methods like WOA–GWO or filter–

wrapper excel on generic datasets but have not 

been applied to multi-protocol IoMT datasets 

like CICIoMT2024. 

Boosting 

Models 

Boosting algorithms show strong performance, 

yet require evaluation on heterogeneous, 

multi-class IoMT data with feature reduction. 

DL and 

Feature 

Engineering 

Advanced architectures like MIAEFS and 

LEMDA exist but are yet to be tested for real 

IoMT datasets combining Wi Fi, MQTT, and 

BLE traffic with boosting classifiers. 

 

2.5 Recent IJSSE contributions on IoT/IoMT security 

 

Recent works in the International Journal of Safety and 

Security Engineering (IJSSE) have addressed IoT and IoMT 

security from complementary angles. Mutleg et al. [14] 

2170



 

provided a comprehensive review of cyber-attacks targeting 

IoT systems and corresponding security measures, 

emphasizing the evolving threat landscape and generic defense 

strategies. Other work by the same group developed DL-based 

intrusion detection models for IoT technology and explicitly 

studied the trade-off between detection accuracy and 

computational complexity on the ToN-IoT dataset [15]. 

Additional IJSSE contributions explore machine- and deep-

learning-based intrusion detection in specialized 

environments, such as enhanced SVM/RNN classifiers for 

underwater wireless sensor networks and intelligent intrusion 

detection frameworks based on federated learning for 

distributed IoT networks [16, 17]. In contrast to these works, 

our study provides a protocol-aware, WOA-driven feature 

reduction framework combined with boosting classifiers and a 

detailed runtime analysis on CICIoMT2024 

 

 

3. METHODOLOGY 

 

In this section, we detail the four main stages of our 

proposed approach: data description and splitting, 

preprocessing, feature selection via WOA, and training of 

boosting classifiers. Tables summarize key parameters and 

results, and a workflow diagram illustrates the pipeline. 

 

3.1 Data description and splitting 

 

As summarized in Table 2, the CICIoMT2024 dataset 

includes 40 devices (25 real and 15 simulated), spans Wi-Fi, 

MQTT, and BLE protocols, and comprises 18 attack types. For 

both benign and attack traffic, we adopt an 80/20 train–test 

split, as detailed in Table 2. 

For the Wi-Fi/MQTT branch, the Stage-1 binary detector is 

trained on 6,564,824 flows, including 504,696 normal and 

6,060,128 attack flows, and evaluated on 1,050,981 flows, 

with 115,599 normal and 935,382 attack flows. 

For the BLE branch, the binary detector is trained on 

1,230,190 BLE flow records and evaluated on 320,615 BLE 

flows, of which 3,577 are normal, and 317,038 are attack 

flows. In the BLE subset analysis, we further focus on the 

309,451 BLE attack flows in the test split, including 249,179 

DoS flows and 60,272 non-DoS attack flows. 

 

Table 2. Data description and splitting 

 
Feature Value 

No. of 

Devices 

40 totals: 25 real devices and 15 simulated 

devices (unb.ca) 

Protocols 

Covered 
Wi-Fi, MQTT, BLE 

No. of Attack 

Types 

18 distinct attacks grouped into five categories: 

DDoS, DoS, Recon, MQTT, Spoofing (unb.ca) 

Data Splits 
80% of captured PCAP files for training, 20% 

for testing (both attacks and benign/profiling) 

 

3.2 Preprocessing  

 

Prior to feature selection and classification, we perform: 

1. Missing TTL Imputation: Copy Time_To_Live from 

profiling data into attack records was missing. 

2. Zero-Variance Removal: Drop columns with standard 

deviation = 0 (e.g., Drate). 

3. Categorical Encoding: Apply LabelEncoder to textual 

fields (e.g., Protocol Type). 

4. Numerical Normalization: Standardized continuous 

features using z-score: 

 

train

train

x
x





 −
=  (1) 

 

where, μtrain and σtrain are computed on the training subset and 

applied to the test data. 

 

3.3 Feature selection with WOA 

 

We apply WOA to reduce dimensionality while preserving 

detection performance. The configuration is: 

• Agents (Whales): 30 

• Max Iterations: 20 

• Early Stopping: halt after 3 generations without 

improvement 

• Fitness Function: see in Eq. (2) 

 

( ) ( ) ( )1
X

Fitness x AUC X F X
P

  = + −  (2) 

 

where, 

• AUC(X) is the area under the ROC curve for feature 

subset X. 

• F1(X) is the F1-score (harmonic mean of precision and 

recall) for X. 

• ∣X∣ = K is the number of selected features. 

• P = is the total original feature count. 

• P = 49 for Wi-Fi & MQTT 

• P = 23 for BLE 

• α = 0.8, β = 0.2 (so α + β = 1), prioritizing AUC. 

• λ is a size-penalty weight tuned on a validation split. 

This formulation operationalizes the multi-objective nature 

of wrapper-based feature selection by jointly optimizing 

predictive utility and parsimony via a weighted sum of 

performance metrics and a feature-count penalty [18-21]. 

 

3.3.1 Protocol-aware WOA-based feature selection 

In the proposed framework, WOA is applied in a protocol-

aware manner rather than on a single, merged dataset. 

Specifically, we run separate WOA searches for the Wi-

Fi/MQTT branch and for the BLE branch of CICIoMT2024. 

This design allows the optimizer to adapt to the distinct traffic 

characteristics, imbalance levels, and attack distributions of 

each protocol family instead of enforcing a single “one-size-

fits-all” feature subset. 

For the Wi-Fi/MQTT branch, WOA starts from the original 

49 flow-based features and converges to a compact subset that 

preserves near-optimal detection performance while 

substantially reducing dimensionality. For the BLE branch, 

WOA operates on 23 features and consistently selects 18 

features, including traffic statistics (e.g., normalized length, 

inter-arrival information) and device-level counts (e.g., 

source/destination attack rates), that are most discriminative 

between benign and malicious BLE flows. 

The fitness function used by WOA is explicitly motivated 

by IoMT edge deployment, where both predictive 

performance and computational cost are critical. By jointly 

maximizing AUC and F1 while penalizing large feature 

subsets, the optimizer favors solutions that balance accuracy 

and sparsity. As shown later in the results, the protocol-
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specific WOA configurations not only maintain high detection 

and classification scores but also reduce training and inference 

time, making the resulting models more suitable for 

integration into resource-constrained IoMT gateways and 

hospital edge devices. 

The WOA parameters and results are listed in Table 3. 

 

3.4 Binary intrusion detection with boosting 

 

We evaluated two boosting classifiers—XGBoost and 

LightGBM—on each protocol’s dataset using stratified 5-fold 

cross-validation, hyperparameter tuning, and held-out test 

splits: 

• Datasets: 

• Wi-Fi & MQTT + Profiling: 49 original features 

• BLE + Profiling: 23 original features 

• Training Modes: 

• Baseline: trained on the full original feature set. 

• WOA-Reduced: retrained on the WOA-selected 

subsets only (Section 3.3). 

As shown in Table 4, both XGBoost and LightGBM achieve 

very high detection metrics on the full feature sets (Accuracy 

≥ 0.9972 and AUC = 0.9999), establishing a strong baseline 

for comparison against the reduced-feature models. 

 

Table 3. WOA-selected feature counts and detection accuracy 

 
Dataset Original Features Selected Features Best Accuracy (%) Total Runtime (s) 

Wi-Fi & MQTT 49 18 99.57 92 

Bluetooth (BLE) 23 12 99.96 60 

 

Table 4. Binary detection performance on full feature sets 

 
Model Accuracy Precision Recall F1-Score AUC 

XGBoost 0.9972 0.9985 0.9970 0.9977 0.9999 

LightGBM 0.9975 0.9991 0.9973 0.9982 0.9999 

 

Table 5. Multi-class classification performance on detected-attack samples 

 
Classifier Accuracy Macro-F1 Weighted-F1 Lowest Per-Class F1 (VulScan) 

WOA+XGBoost 0.9976 0.9599 0.9977 0.74 

WOA+LightGBM 0.9864 0.8297 0.9859 0.34 

 

3.5 Multi-class attack classification 

 

As shown in Table 5, approximately 610 931 samples 

flagged as “Attack” by the binary detector were classified by 

two flat multi-class models trained on the WOA-selected 

features, yielding the overall performance metrics below: 

The per-class F1-scores in Figure 1 are computed directly 

from the confusion matrices in Figure 2 (precision/recall 

derived from TP, FP, and FN per class). Overall, 

WOA+XGBoost maintains high performance across most 

classes (≈ 0.90-1.00), with several near-perfect results for 

high-support categories (e.g., DDoS_Publish_Flood, ICMP) 

and a modest dip for UDP (~0.78). WOA+LightGBM exhibits 

greater variability: it remains strong on heavy-traffic classes 

but drops notably for Ping Sweep (~0.55) and VulScan 

(~0.35–0.40). These findings indicate that while both boosters 

are effective on common attack types, XGBoost yields more 

stable per-class performance; for scarce classes, targeted 

remedies (e.g., class-balanced reweighting, focal loss, data 

augmentation, or hierarchical classification) may further 

improve accuracy. 

 

 
 

Figure 1. Per-class F1-score comparison (WOA+XGBoost vs. WOA+LightGBM) 
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(a) 

 
(b) 

 

Figure 2. Confusion matrices for Stage‑2 multi‑class classification: (a) WOA+XGBoost, (b) WOA+LightGBM 

 

 
 

Figure 3. Workflow of the proposed WOA–boosting-based IoMT intrusion detection pipeline on the CICIoMT2024 flow-based 

dataset 

 

3.6 Workflow diagram 

 

As illustrated in Figure 3, the proposed IoMT intrusion 

detection pipeline is organized as a sequence of seven stages. 

We start from the CICIoMT2024 flow-based dataset, which 

provides labeled Wi-Fi, MQTT, and BLE flows. These flows 

are then split into two protocol-aware branches (Wi-Fi/MQTT 

and BLE), each undergoing a dedicated preprocessing chain 

that includes cleaning, categorical encoding, and z-score 

normalization. 
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In the next stage, WOA is applied separately to each branch 

in order to obtain compact, protocol-specific feature subsets. 

These reduced feature sets are then used to train XGBoost and 

LightGBM models in a supervised manner. The detection 

process itself is structured into three conceptual classification 

stages: Stage-1 binary detection (Normal vs. Attack), Stage-2 

flat multi-class classification over the individual attack types, 

and an optional hierarchical view in which attacks are grouped 

into broader families before distinguishing specific sub-types. 

Throughout the pipeline, we record training and inference 

times at the model stages to quantify CPU-only latency and to 

assess the feasibility of deploying the resulting models on 

resource-constrained IoMT gateways. 

 

4. RESULTS AND ANALYSIS 

 

4.1 Experimental setup 

 

We evaluate a two-stage pipeline on CICIoMT2024: Stage-

1 (binary Normal vs Attack) and Stage-2 (14-class). Features 

are reduced via WOA; models are XGBoost and LightGBM 

with/without WOA. Metrics: Accuracy for Stage-1; Macro-

/Weighted-F1 and per-class F1 for Stage-2. 

Stage-1: Binary detection 

Detection is near-perfect. WOA cuts dimensionality and 

training time with negligible accuracy loss; latency is 

CPU‑friendly (summary in Table 6). 

Table 6. Stage‑1 binary detection — summary 

 
Dataset/Model Feats Accuracy Macro-F1 Train (s) Infer (s) 

Wi‑Fi/MQTT — XGB 45 0.9975 0.9986 291.8 2.29 

Wi‑Fi/MQTT — WOA+XGB 18 0.9957 0.9976 91.9 1.25 

Wi‑Fi/MQTT — LGBM 45 0.9976 0.9987 77.4 3.81 

Wi‑Fi/MQTT — WOA+LGBM 18 0.9958 0.9976 55.4 3.17 

BLE — LGBM 21 0.9991 0.9991 1.03 0.43 

BLE — WOA+LGBM 12 0.9986 0.9986 0.61 — 

Stage-2: Multi-class classification 

Per-class Precision/Recall/F1 follows scikit‑learn. 

WOA+XGBoost is high and stable (≈ 0.90–1.00) with a 

modest dip at UDP, while WOA+LightGBM varies more with 

lows at Ping_Sweep (~0.55) and VulScan (~0.35–0.40). See 

Figure 1 (per‑class F1) and Figure 2 (confusion matrices), and 

the overall summary in Table 7. 

 

Table 7. Stage‑2 overall — macro/weighted‑F1 

 
Model Accuracy Macro-F1 Weighted-F1 

WOA+XGBoost 0.9976 0.9599 0.9977 

WOA+LightGBM 0.9864 0.8297 0.9859 

 

Ablation on WOA 

WOA prunes 40–60% features; training time drops 28–68% 

with minimal changes in accuracy/F1 (Table 8). 

 

Table 8. WOA ablation — ΔDim and runtime 

 

Slice/Model 
Feats 

(Base→WOA) 
ΔDim ΔTrain ΔInfer 

Wi‑Fi & MQTT 

— XGB 
45→18 −60% −68% −45% 

Wi‑Fi & MQTT 

— LGBM 
45→18 −60% −28% −17% 

BLE — LGBM 21→12 −43% — — 

 

BLE subset summary 

On BLE, WOA preserves ≈ 0.999 accuracy while reducing 

detection time; see Table 9. 

 

Table 9. BLE summary 

 
Model Feats Accuracy Macro-F1 Detect (s) 

LGBM 21 0.9991 0.9991 1.03 

WOA+LGBM 12 0.9986 0.9986 0.61 

 

4.2 Deployment, limitations, and summary 

 

From a deployment perspective, the proposed pipeline is 

designed to operate in real time under CPU-only constraints. 

All experiments were executed on a desktop-class processor 

(AMD Ryzen-class CPU with 12 cores and 64 GB RAM), 

while inference was intentionally restricted to a single core to 

emulate an IoMT edge gateway. The trained XGBoost and 

LightGBM models occupy only a few megabytes each and 

require less than a few hundred megabytes of RAM during 

inference, which is compatible with typical industrial and 

healthcare gateways equipped with 4–8 GB of RAM. 

In terms of latency, the XGBoost binary detector processes 

approximately 1.05 million Wi-Fi/MQTT flows in about 2.29 

s, corresponding to an average of roughly 2 μs per flow; the 

WOA-reduced variant further lowers this to approximately 1–

1.2 μs per flow. Similar low per-sample latencies are observed 

for the BLE subset, indicating that the proposed pipeline can 

sustain real-time monitoring rates typical of hospital IoMT 

networks. Batching and lightweight quantization can further 

reduce inference latency if needed. 

Despite these encouraging results, some limitations remain. 

Rare attack classes (e.g., VulScan and other low-frequency 

scans) are still challenging, particularly for LightGBM, which 

shows degraded F1-scores under extreme class imbalance. 

Potential remedies include class-balanced reweighting, focal 

loss, and hierarchical classification schemes that first separate 

broad attack families before distinguishing fine-grained 

subtypes. 

In summary, WOA removes approximately 40–60% of the 

original features and reduces training time by up to 68% with 

minimal loss in detection accuracy. Across all experiments, 

XGBoost provides more stable per-class F1-scores than 

LightGBM, especially for minority classes, while LightGBM 

remains attractive when prioritizing speed. These trade-offs 

are illustrated in Figures 1 and 2 and Tables 6 and 8, and they 

highlight the practicality of combining WOA-based feature 

reduction with boosting models for IoMT intrusion detection 

 

 

5. DISCUSSION 

 

The study demonstrates that WOA-based feature selection 

significantly reduces dimensionality while preserving 

detection accuracy. By pruning 60% of features in the Wi-

2174



 

Fi/MQTT slice, training and inference times dropped by more 

than half, with no statistically significant loss in AUC or F1. 

This confirms that redundant attributes in CICIoMT2024 can 

be safely removed, supporting the deployment of lighter IDS 

pipelines in constrained IoMT environments.  

A key finding is the contrast between XGBoost and 

LightGBM. While both models achieved near-perfect binary 

detection, XGBoost showed superior multi-class stability 

(Macro-F1 ≈ 0.96) compared to LightGBM (Macro-F1 ≈ 

0.83), especially for minority classes such as VulScan. BLE 

results were less challenging, reflecting the dominance of a 

single DoS attack, but the Wi-Fi/MQTT subset highlighted the 

benefits of WOA in managing heterogeneity and imbalance. 

Despite these improvements, minority classes remain 

problematic, echoing prior work on CICIoMT2024. 

Additional strategies such as hierarchical classification, data 

augmentation, or graph-based modeling may be required to 

close this gap. From a practical standpoint, the reduced 

inference latency (< 10 ms per packet window) and halved 

memory footprint indicate that the WOA+XGBoost pipeline is 

deployable on edge gateways in real healthcare networks. 

 

 

6. CONCLUSION AND FUTURE WORK 

 

This paper presented a WOA-augmented intrusion detection 

framework evaluated on the multi-protocol CICIoMT2024 

dataset. The findings confirm that WOA can eliminate up to 

60% of redundant features while sustaining near-perfect 

accuracy and AUC. XGBoost consistently outperformed 

LightGBM in multi-class settings, achieving a macro-F1 of 

0.96 and demonstrating greater robustness on minority classes. 

BLE traffic, dominated by a single attack type, was 

comparatively easier to detect, whereas the heterogeneous Wi-

Fi/MQTT slice highlighted the importance of feature reduction 

for both efficiency and fairness across classes. The reduced 

inference latency and halved memory footprint underline the 

practicality of deploying WOA-pruned models on IoMT edge 

gateways. 

Despite these strengths, challenges remain. Minority attack 

types such as VulScan continue to exhibit low F1-scores, 

suggesting that boosting methods alone cannot fully address 

extreme imbalance. Furthermore, the computational cost of 

multi-class training remains significant. 

Future research should explore: (i) hybrid schemes 

combining WOA with other metaheuristics to improve 

convergence dynamics, (ii) integration of graph neural 

networks or attention-based architectures to capture device-

level and temporal dependencies, (iii) hierarchical and data 

augmentation approaches to enhance rare-class detection, and 

(iv) cross-dataset validation on BoT-IoT, ToN-IoT, and real 

hospital traces to strengthen generalizability. Together, these 

directions may lead to scalable, explainable, and resilient IDS 

solutions tailored for next-generation IoMT environments. 
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