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Intrusion detection on the Internet of Medical Things (IoMT) must contend with
heterogeneous, multi-protocol traffic (Wi-Fi, MQTT, BLE) and severe class imbalance
that undermines per-class reliability. This study proposes a hybrid two-stage pipeline that
integrates Whale Optimization Algorithm (WOA) for feature reduction with boosting-
based classifiers (XGBoost, LightGBM). Stage-1 performs binary detection (Normal vs.
Attack); Stage-2 classifies attack types across 14 classes. Using the CICIoMT2024
dataset, WOA consistently prunes ~40-60% of features, cutting training time by up to
~68% while preserving near-perfect Stage-1 detection. On multi-class evaluation,
WOA+XGBoost attains Accuracy = 0.9976, Macro-F1 = 0.9599, and Weighted-F1 =
0.9977, with stable per-class F1-scores (= 0.90-1.00) and only a modest dip on UDP.
WOA+LightGBM remains competitive (Accuracy = 0.9864; Weighted-F1 = 0.9859) but
exhibits larger variance on minority classes (e.g., VulScan = 0.34). On the BLE subset,
WOA selects ~12-13 of ~21 features with negligible accuracy loss and lower detection
latency. The findings demonstrate that WOA-driven reduction is an effective cost-
preserving step for loMT intrusion detection, and that XGBoost provides more stable per-
class performance under imbalance. We discuss CPU-only deployment feasibility (with
batching/quantization) and outline targeted remedies class balanced reweighting, focal

loss, and hierarchical classification to further improve rare-class detection.

1. INTRODUCTION

The Internet of Medical Things (IoMT) is an important
revolution in health care since it allows real-time monitoring,
diagnosis, and treatment in the hospital, wearable, and home.
IoMT makes healthcare more convenient and effective, but on
the other hand, also brings out new attack surfaces due to its
heterogeneity, constrained devices, and multi-protocol
communications, including Wi-Fi, MQTT, and Bluetooth.
Attackers generally leverage these weaknesses, and this may
result in a threat to patient safety, a threat to data privacy,
and/or a threat to service availability.

To counter the increasing security threats in IloMT,
intelligent IDSs using machine learning (ML) and deep
learning (DL) have been proposed by researchers. To this end,
the CICIoMT2024 dataset was presented as a realistic dataset
to the community for the development and evaluation of these
models. It consists of network traffic generated by 40 medical
IoT devices and over 18 attacks, classifiers such as DOS,
DDOS, Recon, MQTT, and Spoofing, that operate under
different protocol conditions [1].

Recent studies obtained encouraging results on
CICIoMT2024 through ensemble and boosting methods [2].
As an example, tree-based ensembles with feature reduction
(RF/XGBoost via RFECV) achieved weighted-F1 ~ 0.995 on
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CICloMT2024, highlighting the strength of
boosting/ensembles on this dataset [2]. Similarly, a data-
augmentation, feature-engineering, deep-ensemble,
voting/stacking pipeline (Transformer/LSTM/DCNN —
meta-learner) reported ~99% accuracy on CICloMT2024 and
strong cross-device generalization [3]. However, performance
typically drops when moving from binary detection to fine-
grained  multi-class  attack-type  classification  on
CICIoMT2024; for instance, a Transformer with time
encodings reached ~0.73 accuracy (F1 = 0.67) in the multi-
class setting using CICIoMT2024 baselines [4].

To cope with these limitations, we propose a hybrid model
that couples the Whale Optimization Algorithm (WOA) for
feature selection with an ensemble that performs binary
detection followed by hierarchical attack-type classification to
improve accuracy, reduce computational cost, and enhance
interpretability.

1.1 Research objectives and contributions

This paper presents a hybrid model for IoMT intrusion
detection that is based on:
1. Feature selection based on WOA to solve the high-
dimensional CICloMT2024 dataset.
2. accurate detection and classification by boosting
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classifiers (XGBoost and LightGBM).
3. Accuracy and execution time-based performance
evaluation approach.
1.2 Key contributions
1. WOA-driven feature reduction for CICIoMT2024 that
removes 40-60% of features while preserving near-
perfect Stage-1 detection.
A protocol-aware design that treats Wi-Fi/MQTT and
BLE slices separately, with tailored WOA settings and
feature subsets for each protocol family.
A systematic comparison of XGBoost and LightGBM
on full vs WOA-reduced features for both binary and
multi-class loMT intrusion detection.
A detailed CPU-only runtime and latency analysis
demonstrating the feasibility of deploying the proposed
pipeline on resource-constrained loMT edge gateways.

4.

2. RELATED WORK
2.1 10T intrusion detection feature selection

Efficient feature selection is crucial in 10T to reduce issues
such as redundancy, high dimensionality, and low detection,
as highlighted in recent studies. The study by Ayad et al. [5]
suggested a combination of a filter-wrapper approach to
anomaly-based intrusion detection in loT. By using SMOTE
on class imbalance, it was then shown that a hierarchical
system, which first classifies the network packets as normal or
attack, and then the type of the attack, can achieve high
accuracy (99.82-100%) with fast ID time on BoT-10T, TON-
10T, and CIC-DD0S2019 datasets [5].

To improve the feature selection of the dimensionality
reduction methods, we proposed a two-stage feature selection
method suitable for 10T [6], and the method filtered the
features more effectively [6] and achieved better detection
performance.

Going deeper into metaheuristic search, a hybrid WOA-
GWO has been recently used for feature selection in loT
intrusion detection. The model deals with global and local
search optimization; global optimal convergence can be
achieved early, and local optimal refinement can occur later,
addressing the shortcomings of single-algorithm approaches
[7].

Additionally, AL-Husseini et al. [8] presented the wrapped
feature selection pipeline and implemented the WOA coupled
with LSTM classifiers. When applied to CICIDS 2017 and
NSL KDD datasets, this technique helped in a reduction in the
number of features (78 — 68), leading to the effect of WOA
in terms of dimensionality reduction and classification
effectiveness (DDoS detection accuracy was 99.62%) [8].

2.2 10T security with boosting algorithms

Ensemble methods and boosting classifiers have been
highly promising in loT-based IDS. Adewole et al. [9]
considered the ensemble approaches that involve the
combination of RF, AB, XGBoost, LightGBM, and CatBoost.
Their results indicated that XGBoost performed better than
others in binary and multi-class 10T intrusion detection, in
addition to providing explainability [9].

The study by Hafid et al. [10] also suggested a high-
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performance cyber security architecture based on fine-tuning
of an XGBoost classifier boosted with SHAP Explanations
(XAl) and late fusion. The model performed with 0.97
accuracy and perfect recall (1.00), presenting a rather balanced
performance, and was deemed suitable for IoMT applications
where security is a priority [10].

2.3 New deep learning and feature engineering methods

Enriching traditional ML, DL, and representation learning
has formed two spots of light in IDS research:

Inspired by a genetic sequence classification problem with
heterogeneous inputs, the MIAE architecture introduces a
feature-selection layer to efficiently handle inputs from
multiple sources. When combined with Random Forest,
MIAEFS achieved up to 96.5% accuracy on the NSL-KDD
and UNSW-NB15 datasets, using compact models (< 1 MB)
and delivering fast detection times (~1.7 <107 s) [11].

Jouhari et al. [12] presented an effective IDS model
comprising of y* feature selection combined with a CNN—
BILSTM classification model. On UNSW NB15, the
performance was 97.90% for binary tasks and 97.09% for
multi-class classification with low inference time, which is
suitable for resource-limited IoT devices [12].

Ghubaish et al. [13] introduced LEMDA, a lightweight
means decreases in accuracy of feature engineering. LEMDA
outperformed state-of-the-art algorithms on several loT
datasets by significantly enhancing Fl-scores (average: +
34%) and reducing both detection and training times, a feature
that is particularly useful for deployable 10T systems [13].

2.4 Summary of gaps and positioning of our work

Building on the gaps summarized in Table 1, our work
addresses the key gap that no prior study has systematically
combined WOA-driven feature reduction with XGBoost and
LightGBM on protocol-specific medical loT data (BLE vs.
Wi-Fi/MQTT). We propose a unified framework that uses
WOA to optimize feature subsets and then trains boosting
classifiers—XGBoost and LightGBM—on the CICIoMT2024
dataset, rigorously evaluating both classification performance
and runtime efficiency for scalable, protocol-specific loT
intrusion detection.

Table 1. Summary of gaps in the literature and positioning of

our work
Domain Gaps Addressed
Hybrid methods like WOA-GWO or filter—
Feature wrapper excel on generic datasets but have not
Selection been applied to multi-protocol loMT datasets
like CICloMT2024.
Boosti Boosting algorithms show strong performance,
oosting : .
Models yet require evaluation on heterogeneous_,
multi-class loMT data with feature reduction.
DL and Advanced_architectures like MIAEFS and
Feature LEMDA exist but are )_/et to pe _tested for real
; . Io0MT datasets combining Wi Fi, MQTT, and
Engineering

BLE traffic with boosting classifiers.

2.5 Recent IJSSE contributions on 10T/IoOMT security

Recent works in the International Journal of Safety and
Security Engineering (IJSSE) have addressed 10T and 1oMT
security from complementary angles. Mutleg et al. [14]



provided a comprehensive review of cyber-attacks targeting
IoT systems and corresponding security —measures,
emphasizing the evolving threat landscape and generic defense
strategies. Other work by the same group developed DL-based
intrusion detection models for loT technology and explicitly
studied the trade-off between detection accuracy and
computational complexity on the ToN-loT dataset [15].
Additional 1JSSE contributions explore machine- and deep-
learning-based  intrusion  detection in  specialized
environments, such as enhanced SVM/RNN classifiers for
underwater wireless sensor networks and intelligent intrusion
detection frameworks based on federated learning for
distributed 10T networks [16, 17]. In contrast to these works,
our study provides a protocol-aware, WOA-driven feature
reduction framework combined with boosting classifiers and a
detailed runtime analysis on CICloMT2024

3. METHODOLOGY

In this section, we detail the four main stages of our
proposed approach: data description and splitting,
preprocessing, feature selection via WOA, and training of
boosting classifiers. Tables summarize key parameters and
results, and a workflow diagram illustrates the pipeline.

3.1 Data description and splitting

As summarized in Table 2, the CICIoMT2024 dataset
includes 40 devices (25 real and 15 simulated), spans Wi-Fi,
MQTT, and BLE protocols, and comprises 18 attack types. For
both benign and attack traffic, we adopt an 80/20 train—test
split, as detailed in Table 2.

For the Wi-Fi/MQTT branch, the Stage-1 binary detector is
trained on 6,564,824 flows, including 504,696 normal and
6,060,128 attack flows, and evaluated on 1,050,981 flows,
with 115,599 normal and 935,382 attack flows.

For the BLE branch, the binary detector is trained on
1,230,190 BLE flow records and evaluated on 320,615 BLE
flows, of which 3,577 are normal, and 317,038 are attack
flows. In the BLE subset analysis, we further focus on the
309,451 BLE attack flows in the test split, including 249,179
DosS flows and 60,272 non-DoS attack flows.

Table 2. Data description and splitting

Feature Value
No. of 40 totals: 25 real devices and 15 simulated
Devices devices (unb.ca)
Protocols Wi-Fi, MQTT, BLE
No. of Attack 18 distinct attacks grouped into five categories:
Types DDoS, DoS, Recon, MQTT, Spoofing (unb.ca)
. 80% of captured PCARP files for training, 20%
Data Splits

for testing (both attacks and benign/profiling)

3.2 Preprocessing

Prior to feature selection and classification, we perform:

1. Missing TTL Imputation: Copy Time_To_Live from
profiling data into attack records was missing.

2. Zero-Variance Removal: Drop columns with standard
deviation = 0 (e.g., Drate).

3. Categorical Encoding: Apply LabelEncoder to textual

fields (e.g., Protocol Type).
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4., Numerical Normalization: Standardized continuous
features using z-score:

" X— Hirain
O-train

X

M)

where, turain @nd oirain are computed on the training subset and
applied to the test data.

3.3 Feature selection with WOA

We apply WOA to reduce dimensionality while preserving
detection performance. The configuration is:
Agents (Whales): 30
Max Iterations: 20
Early Stopping: halt after 3 generations without
improvement
Fitness Function: see in Eq. (2)

Fitness(x):aAUC(X)+,BF1(X)—/I@ )

where,
e AUC(X) is the area under the ROC curve for feature

subset X.

F1(X) is the F1-score (harmonic mean of precision and

recall) for X.

[X| = K is the number of selected features.

P = is the total original feature count.

P =49 for Wi-Fi & MQTT

P =23 for BLE

a=0.8,3=0.2(soa+p=1),prioritizing AUC.

A is a size-penalty weight tuned on a validation split.
This formulation operationalizes the multi-objective nature

of wrapper-based feature selection by jointly optimizing

predictive utility and parsimony via a weighted sum of

performance metrics and a feature-count penalty [18-21].

3.3.1 Protocol-aware WOA-based feature selection

In the proposed framework, WOA is applied in a protocol-
aware manner rather than on a single, merged dataset.
Specifically, we run separate WOA searches for the Wi-
Fi/MQTT branch and for the BLE branch of CICIoMT2024.
This design allows the optimizer to adapt to the distinct traffic
characteristics, imbalance levels, and attack distributions of
each protocol family instead of enforcing a single “one-size-
fits-all” feature subset.

For the Wi-Fi/MQTT branch, WOA starts from the original
49 flow-based features and converges to a compact subset that
preserves near-optimal detection performance while
substantially reducing dimensionality. For the BLE branch,
WOA operates on 23 features and consistently selects 18
features, including traffic statistics (e.g., normalized length,
inter-arrival information) and device-level counts (e.g.,
source/destination attack rates), that are most discriminative
between benign and malicious BLE flows.

The fitness function used by WOA is explicitly motivated
by I1oMT edge deployment, where both predictive
performance and computational cost are critical. By jointly
maximizing AUC and F1 while penalizing large feature
subsets, the optimizer favors solutions that balance accuracy
and sparsity. As shown later in the results, the protocol-
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specific WOA configurations not only maintain high detection
and classification scores but also reduce training and inference
time, making the resulting models more suitable for
integration into resource-constrained IoMT gateways and
hospital edge devices.

The WOA parameters and results are listed in Table 3.

3.4 Binary intrusion detection with boosting

We evaluated two boosting classifiers—XGBoost and
LightGBM—on each protocol’s dataset using stratified 5-fold
cross-validation, hyperparameter tuning, and held-out test
splits:

Datasets:

Wi-Fi & MQTT + Profiling: 49 original features

BLE + Profiling: 23 original features

Training Modes:

Baseline: trained on the full original feature set.
WOA-Reduced: retrained on the WOA-selected
subsets only (Section 3.3).

As shown in Table 4, both XGBoost and LightGBM achieve
very high detection metrics on the full feature sets (Accuracy
>0.9972 and AUC = 0.9999), establishing a strong baseline
for comparison against the reduced-feature models.

Table 3. WOA-selected feature counts and detection accuracy

Dataset Original Features  Selected Features Best Accuracy (%) Total Runtime (s)
Wi-Fi & MQTT 49 18 99.57 92
Bluetooth (BLE) 23 12 99.96 60

Table 4. Binary detection performance on full feature sets

Model Accuracy Precision Recall F1-Score AUC
XGBoost 0.9972 0.9985  0.9970  0.9977  0.9999
LightGBM 0.9975 0.9991  0.9973  0.9982  0.9999

Table 5. Multi-class classification performance on detected-attack samples

Classifier Accuracy Macro-F1  Weighted-F1  Lowest Per-Class F1 (VulScan)
WOA+XGBoost 0.9976 0.9599 0.9977 0.74
WOA+LightGBM  0.9864 0.8297 0.9859 0.34

3.5 Multi-class attack classification

As shown in Table 5, approximately 610 931 samples
flagged as “Attack” by the binary detector were classified by
two flat multi-class models trained on the WOA-selected
features, yielding the overall performance metrics below:

The per-class F1-scores in Figure 1 are computed directly
from the confusion matrices in Figure 2 (precision/recall
derived from TP, FP, and FN per class). Overall,
WOA+XGBoost maintains high performance across most
classes (= 0.90-1.00), with several near-perfect results for

high-support categories (e.g., DDoS_Publish_Flood, ICMP)
and a modest dip for UDP (~0.78). WOA+LightGBM exhibits
greater variability: it remains strong on heavy-traffic classes
but drops notably for Ping Sweep (~0.55) and VulScan
(~0.35-0.40). These findings indicate that while both boosters
are effective on common attack types, XGBoost yields more
stable per-class performance; for scarce classes, targeted
remedies (e.g., class-balanced reweighting, focal loss, data
augmentation, or hierarchical classification) may further
improve accuracy.

Per-Class F1 Scores: WOA + XGBoost vs. WOA + LightGBM
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Figure 1. Per-class F1-score comparison (WOA+XGBoost vs. WOA+LightGBM)
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Figure 3. Workflow of the proposed WOA-boosting-based IoMT intrusion detection pipeline on the CICIoMT2024 flow-based

dataset
3.6 Workflow diagram provides labeled Wi-Fi, MQTT, and BLE flows. These flows
are then split into two protocol-aware branches (Wi-Fi/MQTT
As illustrated in Figure 3, the proposed I0MT intrusion and BLE), each undergoing a dedicated preprocessing chain
detection pipeline is organized as a sequence of seven stages. that includes cleaning, categorical encoding, and z-score
We start from the CICIoMT2024 flow-based dataset, which normalization.
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In the next stage, WOA is applied separately to each branch
in order to obtain compact, protocol-specific feature subsets.
These reduced feature sets are then used to train XGBoost and
LightGBM models in a supervised manner. The detection
process itself is structured into three conceptual classification
stages: Stage-1 binary detection (Normal vs. Attack), Stage-2
flat multi-class classification over the individual attack types,
and an optional hierarchical view in which attacks are grouped
into broader families before distinguishing specific sub-types.
Throughout the pipeline, we record training and inference
times at the model stages to quantify CPU-only latency and to
assess the feasibility of deploying the resulting models on
resource-constrained loMT gateways.

4. RESULTS AND ANALYSIS
4.1 Experimental setup

We evaluate a two-stage pipeline on CICIoMT2024: Stage-
1 (binary Normal vs Attack) and Stage-2 (14-class). Features
are reduced via WOA,; models are XGBoost and LightGBM
with/without WOA.. Metrics: Accuracy for Stage-1; Macro-
/Weighted-F1 and per-class F1 for Stage-2.

Stage-1: Binary detection

Detection is near-perfect. WOA cuts dimensionality and
training time with negligible accuracy loss; latency is
CPU-friendly (summary in Table 6).

Table 6. Stage-1 binary detection — summary

Dataset/Model Feats Accuracy Macro-F1 Train(s) Infer (s)
Wi-Fi/MQTT — XGB 45 0.9975 0.9986 291.8 2.29
Wi-Fi/IMQTT — WOA+XGB 18 0.9957 0.9976 91.9 1.25
Wi-Fi/MQTT — LGBM 45 0.9976 0.9987 77.4 381
Wi-FI/MQTT — WOA+LGBM 18 0.9958 0.9976 55.4 3.17
BLE — LGBM 21 0.9991 0.9991 1.03 0.43
BLE — WOA+LGBM 12 0.9986 0.9986 0.61 —

Stage-2: Multi-class classification

Per-class  Precision/Recall/F1  follows scikit-learn.
WOA+XGBoost is high and stable (= 0.90-1.00) with a
modest dip at UDP, while WOA+LightGBM varies more with
lows at Ping_Sweep (~0.55) and VulScan (~0.35-0.40). See
Figure 1 (per-class F1) and Figure 2 (confusion matrices), and
the overall summary in Table 7.

Table 7. Stage-2 overall — macro/weighted-F1

Model Accuracy Macro-F1  Weighted-F1
WOA+XGBoost 0.9976 0.9599 0.9977
WOA+LightGBM 0.9864 0.8297 0.9859

Ablation on WOA
WOA prunes 40-60% features; training time drops 28-68%
with minimal changes in accuracy/F1 (Table 8).

Table 8. WOA ablation — ADim and runtime

Feats

Slice/Model (Base—WOA) ADim ATrain Alnfer
WEREMOTT 4518 —60%  —68%  —45%
Wi-Fi é’éﬁﬁ 4518 —60% —28%  —17%
BLE — LGBM 215512 —43%  — —

BLE subset summary
On BLE, WOA preserves ~ 0.999 accuracy while reducing
detection time; see Table 9.

Table 9. BLE summary

Model Feats Accuracy Macro-F1 Detect (s)
LGBM 21 0.9991 0.9991 1.03
WOA+LGBM 12 0.9986 0.9986 0.61

4.2 Deployment, limitations, and summary

From a deployment perspective, the proposed pipeline is
designed to operate in real time under CPU-only constraints.
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All experiments were executed on a desktop-class processor
(AMD Ryzen-class CPU with 12 cores and 64 GB RAM),
while inference was intentionally restricted to a single core to
emulate an 1oMT edge gateway. The trained XGBoost and
LightGBM models occupy only a few megabytes each and
require less than a few hundred megabytes of RAM during
inference, which is compatible with typical industrial and
healthcare gateways equipped with 4-8 GB of RAM.

In terms of latency, the XGBoost binary detector processes
approximately 1.05 million Wi-Fi/MQTT flows in about 2.29
s, corresponding to an average of roughly 2 us per flow; the
WOA-reduced variant further lowers this to approximately 1—
1.2 ps per flow. Similar low per-sample latencies are observed
for the BLE subset, indicating that the proposed pipeline can
sustain real-time monitoring rates typical of hospital loMT
networks. Batching and lightweight quantization can further
reduce inference latency if needed.

Despite these encouraging results, some limitations remain.
Rare attack classes (e.g., VulScan and other low-frequency
scans) are still challenging, particularly for LightGBM, which
shows degraded F1-scores under extreme class imbalance.
Potential remedies include class-balanced reweighting, focal
loss, and hierarchical classification schemes that first separate
broad attack families before distinguishing fine-grained
subtypes.

In summary, WOA removes approximately 40-60% of the
original features and reduces training time by up to 68% with
minimal loss in detection accuracy. Across all experiments,
XGBoost provides more stable per-class Fl-scores than
LightGBM, especially for minority classes, while LightGBM
remains attractive when prioritizing speed. These trade-offs
are illustrated in Figures 1 and 2 and Tables 6 and 8, and they
highlight the practicality of combining WOA-based feature
reduction with boosting models for loMT intrusion detection

5. DISCUSSION
The study demonstrates that WOA-based feature selection

significantly reduces dimensionality while preserving
detection accuracy. By pruning 60% of features in the Wi-



Fi/MQTT slice, training and inference times dropped by more
than half, with no statistically significant loss in AUC or F1.
This confirms that redundant attributes in CICIoMT2024 can
be safely removed, supporting the deployment of lighter IDS
pipelines in constrained loMT environments.

A key finding is the contrast between XGBoost and
LightGBM. While both models achieved near-perfect binary
detection, XGBoost showed superior multi-class stability
(Macro-F1 =~ 0.96) compared to LightGBM (Macro-FI =
0.83), especially for minority classes such as VulScan. BLE
results were less challenging, reflecting the dominance of a
single DoS attack, but the Wi-Fi/MQTT subset highlighted the
benefits of WOA in managing heterogeneity and imbalance.
Despite these improvements, minority classes remain
problematic, echoing prior work on CICloMT2024.
Additional strategies such as hierarchical classification, data
augmentation, or graph-based modeling may be required to
close this gap. From a practical standpoint, the reduced
inference latency (< 10 ms per packet window) and halved
memory footprint indicate that the WOA+XGBoost pipeline is
deployable on edge gateways in real healthcare networks.

6. CONCLUSION AND FUTURE WORK

This paper presented a WOA-augmented intrusion detection
framework evaluated on the multi-protocol CICIoMT2024
dataset. The findings confirm that WOA can eliminate up to
60% of redundant features while sustaining near-perfect
accuracy and AUC. XGBoost consistently outperformed
LightGBM in multi-class settings, achieving a macro-F1 of
0.96 and demonstrating greater robustness on minority classes.
BLE traffic, dominated by a single attack type, was
comparatively easier to detect, whereas the heterogeneous Wi-
Fi/MQTT slice highlighted the importance of feature reduction
for both efficiency and fairness across classes. The reduced
inference latency and halved memory footprint underline the
practicality of deploying WOA-pruned models on loMT edge
gateways.

Despite these strengths, challenges remain. Minority attack
types such as VulScan continue to exhibit low F1-scores,
suggesting that boosting methods alone cannot fully address
extreme imbalance. Furthermore, the computational cost of
multi-class training remains significant.

Future research should explore: (i) hybrid schemes
combining WOA with other metaheuristics to improve
convergence dynamics, (ii) integration of graph neural
networks or attention-based architectures to capture device-
level and temporal dependencies, (iii) hierarchical and data
augmentation approaches to enhance rare-class detection, and
(iv) cross-dataset validation on BoT-10T, ToN-loT, and real
hospital traces to strengthen generalizability. Together, these
directions may lead to scalable, explainable, and resilient IDS
solutions tailored for next-generation loMT environments.
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