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Street lighting faults can compromise urban safety if not detected and addressed promptly.
This paper proposes an Internet of Things (IoT)-based streetlight monitoring architecture
integrated with an artificial intelligence (Al)-driven severity classification model. The
system continuously captures lamp status and traffic density using loT sensors and
classifies fault severity by analyzing adjacent lamp failures, road illumination levels, and
vehicle flow. A severity assessment algorithm is developed and evaluated using a
simulated real-world streetlight dataset containing balanced and minority high-severity
fault instances. Experimental results show an overall classification accuracy of 94%, with
precision and recall above 90% for minority high-severity classes, demonstrating robust
detection of critical outages. Confusion matrix analysis and performance comparisons
further confirm the model’s ability to differentiate urgent faults from lower-priority issues.
The proposed framework supports intelligent streetlight maintenance by enabling timely
identification of high-risk failures, contributing to safer and more efficient smart city

infrastructure.

1. INTRODUCTION

Reliable street lighting is essential for traffic safety and
crime prevention in modern cities. Numerous studies have
shown that well-lit streets significantly reduce nighttime
accidents and criminal activity. For example, insufficient
lighting makes it difficult for drivers to see road hazards or
pedestrians at night, increasing the risk of accidents. Similarly,
there is a longstanding correlation between poor street lighting
and higher crime rates; criminals often shift their activity to
dark streets when streetlights are out. Ensuring that streetlights
remain operational is thus a critical public safety concern.
However, traditional maintenance of streetlights largely relies
on passive approaches — waiting for citizens to report outages
or conducting infrequent manual inspections [1]. This reactive
model leads to lengthy downtimes for broken lights, especially
in remote or low-traffic areas where issues might go
unnoticed. These outages expose communities to avoidable
dangers such as collisions or opportunistic crime.

Recent Internet of Things (IoT) and artificial intelligence
(Al) advances offer a more proactive solution. Installing
streetlights with IoT sensors and connectivity makes it
possible to automatically detect lamp failures in real time and
immediately alert city maintenance crews. Prior work has
demonstrated the efficacy of loT-based streetlight monitoring.
For instance, Vamsi et al. [1] developed a centralized IoT
system where sensor nodes on each streetlight transmit
operational data to a cloud platform; a machine learning (ML)
model (98.8% accuracy) then predicts each streetlight's status
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and fault condition. The predicted status and fault details are
displayed on a web dashboard for officials, eliminating the
need for citizens to report outages. Venu [2] proposed an
automated street lighting system in which elevated lights
installed along roads or walkways operate at predefined times.
The system integrates LEDs with PIR, IR, and LDR sensors,
controlled by a Raspberry Pi and powered by a solar module
using an Arduino Uno to achieve efficient, motion-based, and
energy-conserving illumination. Researchers demonstrated
that this approach significantly expedites repairs and improves
maintenance efficiency by providing precise, real-time
knowledge of faults. Likewise, other researchers have used
light sensors (e.g., LDRs) on streetlamps to automatically
detect when a lamp fails to light up at night [3], enabling
immediate alerts. These studies underscore the potential of IoT
to transform streetlight maintenance from reactive to
predictive and responsive.

Beyond simply detecting faults, an intelligent system should
also assess how severe a streetlight outage is. Not all lamp
failures are equally urgent: a single lamp out in a well-lit urban
downtown might have minimal impact, whereas two or three
consecutive lamps out on a suburban road could plunge the
area into darkness. If an entire stretch of roadway is dimly lit
due to multiple failures or intentional dimming, it may create
hazardous conditions, inviting crime or accidents. The context
— such as the level of pedestrian/vehicle activity and the
location (remote versus central) — determines the risk posed by
a lighting failure. For example, an outage on a busy highway
or at an intersection with heavy nighttime traffic is a high
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priority because it can lead to collisions. Similarly, an outage
in a sparsely populated rural area is concerning because
darkness in isolated areas can "foster criminal activity" despite
low traffic. Current smart city research highlights the need to
integrate contextual data into infrastructure monitoring. In the
case of streetlights, combining traffic sensors or city mobility
data with lamp status can measure how critical each light is at
a given time. A fault on a high-usage road or during a special
event should be addressed sooner than on a rarely used street.

(a)

(b)

Figure 1. Street lane (a) with streetlight; (b) without
streetlight with incoming traffic; (c) with no traffic

(c)

Figure 1 depicts different conditions of the same road with
streetlight in power on mode when everything is visible.
Second scenario where the streetlight is in power off mode,
but light is there due to moving vehicles, and finally the
darkness when no vehicles are moving, and the streetlight is in
power off mode.

This work proposes an IoT-driven streetlight fault detection
and severity classification system that addresses the above
challenges. Each streetlight pole has sensors to monitor its
operating state (e.g., voltage/current or light output) and
possibly the ambient illumination. The devices are connected
via a wireless network to a central server. We incorporate an
ML model at the server that analyzes the streetlight's status and
local vehicle flow data to classify the severity of any detected
fault. The model is trained on features such as whether the
lamp is off/dim when it should be on, how many neighboring
lights malfunction, the traffic density around that location, and
other contextual cues (time of day, weather, special events,
etc.). The output is a severity level (e.g., Low, Medium, or
High severity), which informs how urgent the maintenance
response should be. High-severity alerts trigger immediate
notifications to maintenance crews for rapid repair, whereas
lower-severity issues can be scheduled in routine maintenance
routes.

2. RELATED WORK

IoT-Enabled Smart Street Lighting Systems: Modern urban
infrastructure has increasingly adopted IoT technologies to
transform traditional street lighting into smart, connected
systems. In a conventional setup, streetlights operate on fixed
timers or manual control, requiring periodic human inspection
for outages. IoT-based street lighting systems, by contrast,
embed networked sensors and controllers in each lamp,
enabling real-time remote monitoring and adaptive control.
These systems can dynamically adjust illumination levels
based on sensor inputs (e.g., ambient light, motion),
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substantially improving energy efficiency and road safety by
providing lighting on demand. For example, Denardin et al.
[4] demonstrated an intelligent street lighting control
architecture where each lamp’s status and power consumption
are reported to a central platform for active monitoring.
Pantoni et al. [5] described an edge-assisted network for
streetlights allows facility managers to control lights and
detect anomalies at scale remotely. This connectivity reduces
manual maintenance effort and supports advanced features
like scheduling, dimming, and fault alerts. The literature
agrees that [oT connectivity is a foundational enabler for smart
street lighting in future cities. However, deploying such IoT
infrastructure city-wide is not without challenges: high upfront
costs, interoperability issues, and the need for stable network
coverage (especially in remote areas) remain significant
concerns [6]. For instance, Dahan et al. [7] noted that smart
lighting projects often face reliability issues in underdeveloped
regions due to inconsistent internet connectivity and power
supply, underscoring the importance of robust network design.
Despite these challenges, IoT-driven lighting systems have
laid the groundwork for more intelligent maintenance and
control strategies, as discussed next.

Rule-based logic relies on fixed thresholds and therefore
struggles in real-world environments where sensor readings
are noisy, traffic patterns are highly non-linear, and
illumination levels fluctuate due to weather or vehicle
headlights. It also assumes complete and consistent data,
which is often not the case in [oT deployments where missing
or intermittent sensor inputs are common. In contrast, the ML
model learns the variability within the data and becomes more
robust to noise, missing values, and complex multi-feature
interactions that rules cannot easily encode. Our results further
show that ML reduces both false positives and false negatives
by capturing subtle patterns beyond the deterministic logic,
thereby providing more reliable severity predictions. Thus, the
ML component adds significant value by improving
robustness, handling imperfect data, and enhancing decision
accuracy in complex urban conditions where static rule-based
algorithms alone are insufficient.

Deterministic IF-THEN rules alone are often insufficient
for streetlight monitoring because they cannot reliably handle
sensor noise, fluctuating illumination from vehicle headlights,
or weather-induced variations. Fixed thresholds (e.g., “light
level < X”) frequently misclassify normal conditions as faults
or miss critical outages, especially in environments with non-
linear and rapidly changing traffic patterns. These rules also
lack the ability to account for contextual factors such as time
of day, surrounding lamp conditions, or road usage intensity.
ML overcomes these limitations by learning complex, non-
linear relationships from data, filtering noisy signals, and
producing more accurate severity assessments tailored to real-
world conditions. Hence, ML enhances decision-making
beyond what traditional rule-based approaches can achieve.

2.1 Fault
approaches

detection and predictive maintenance

Traditional streetlight maintenance: Crews respond to
citizen complaints or periodic inspections to fix outages. This
approach can lead to prolonged dark periods when lights fail,
negatively impacting public safety and confidence [8].
Researchers have explored automatic fault detection using
sensor data and predictive maintenance models to mitigate
this. In IoT-enabled systems, each lamp can report its



operational status (voltage, current, brightness, etc.), allowing
immediate identification of failures or abnormalities [9, 10],
For example, a telemetry manager for public lighting was
developed that continuously monitors lamp health and flags
faults in real time via a centralized dashboard. Such systems
reduce the need for manual night patrols by generating
automatic alerts when a bulb or driver malfunctions [11]. As
an illustration, recent work [l11] implemented a smart
streetlight network where if any light goes faulty, it is detected
without human intervention and reported through a web
application. This immediate visibility into failures allows
maintenance teams to respond faster, shortening dark outages.

Beyond detecting failures as they occur, an emerging trend
is predictive maintenance — forecasting lamp failures before
they happen. This is achieved by analyzing historical
performance data to predict remaining useful life or failure
probabilities. Accurate remaining-life prediction enables
proactive replacement of lamps prior to burnout, thus
eliminating unplanned outages. For instance, Segovia-Mufioz
et al. [12] applied degradation models (LM-80/TM-21
standards) to LED streetlights and developed an exponential
decay algorithm to estimate lumen depreciation and predict
when a lamp will fall below acceptable brightness. By
planning maintenance based on such predictions, cities can
maximize equipment life and minimize downtime. Several
studies report that predictive maintenance regimes, combined
with IoT telemetry, drastically reduce maintenance costs and
outage durations compared to reactive approaches.
Nonetheless, implementing predictive maintenance requires
reliable data collection over long periods and robust models;
many municipalities are still in the early pilot stages of these
technologies. The literature shows a clear evolution from
reactive repairs to automated fault detection and prediction-
driven maintenance in smart street lighting systems.

Al and ML Integration in Lighting Systems: Applying
Al and ML techniques to streetlight data is a relatively recent
area of research, but it is gaining momentum. Early smart
lighting deployments focused on rule-based control and
simple sensor thresholds (e.g., lights dim when no motion is
detected). Now, with large volumes of sensor and usage data
available, researchers are exploring data-driven Al models to
optimize performance and detect complex fault patterns [9]. A
systematic review [13] finds that the integration of Al in IoT-
based lighting (often termed AloT) is still in its infancy, with
the first notable works appearing only around 2019. Their
review highlights that most current smart lighting systems do
not fully exploit ML and that incorporating edge-based ML
could vastly improve adaptability and reliability.

One promising application of Al is anomaly detection in
streetlight operations. Instead of waiting for a light to go
completely dark, ML models can analyze subtle deviations in
electrical parameters to predict failures or detect
malfunctioning components. Smiatkowski and Czyzewski [9]
demonstrate this using energy consumption data from smart
meters in a city lighting grid. Their system achieves real-time
detection of anomalies such as lamp failures or schedule
deviations by employing time-series forecasting (SARIMA
models) and neural networks (LSTM). Notably, both
statistical and deep learning approaches in that study enabled
a self-learning, online fault detection mechanism deployable
on edge devices, with the SARIMA model performing best for
timely alerts. Another study by Chen et al. [14] developed a
narrowband-loT-based streetlight monitoring system that uses
ML classifiers to distinguish regular operation from various
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fault conditions, improving detection accuracy over simple
threshold methods. These works illustrate the potential of Al
to enhance maintenance: instead of binary "on/off" sensing,
smart algorithms can estimate the severity of degradation,
filter out transient anomalies, and prioritize genuine issues for
repair. Additionally, Al has been applied for predictive
control. For example, the study by Sun et al. [15] built an ML-
driven predictive model (using time series analysis) to forecast
lighting needs and adjust lamp brightness pre-emptively,
achieving significant energy savings while maintaining
service quality.

Despite these advances, incorporating Al in municipal
lighting is not yet widespread. Key barriers noted in the
literature include the need for large labeled datasets for
training, system complexity concerns, and legacy
infrastructure integration. Nevertheless, the trajectory is clear:
Al and data analytics are set to play an increasing role in
making street lighting systems more intelligent, from fault
diagnostics to adaptive illumination strategies.

Vehicle Presence and Traffic-Aware Lighting: Another
vital aspect of smart street lighting is integrating traffic data —
specifically, detecting vehicles or pedestrians to modulate
lighting or assess maintenance criticality. In urban
environments, traffic density varies widely; a streetlight on a
busy highway serves far more road users at night than on a
quiet lane. Numerous studies have proposed traffic-responsive
lighting, where streetlights brighten or turn on only when
vehicles or pedestrians are present and dim otherwise, thereby
saving energy without compromising safety. Qaisar et al. [16]
built an early prototype using infrared sensors to sense vehicle
movement and then activating lights sequentially as vehicles
passed by, which demonstrated the basic feasibility of on-
demand illumination. In recent years, more sophisticated
approaches have leveraged computer vision and radar. These
systems highlight that coupling traffic sensing with lighting
control can maintain safety (adequate illumination when cars
or pedestrians are present) while optimizing energy use when
roads are empty.

Beyond energy optimization, traffic data can inform
maintenance decisions. A smart maintenance system might
prioritize fixing a streetlight on a high-traffic thoroughfare
over one on a seldom-used street since the impact of an outage
differs. Some frameworks have begun to incorporate such
considerations. For example, Gagliardi et al. [17] developed a
multi-sensor streetlight node that monitors lamp electrical
parameters and environmental and usage indicators, such as
motion or traffic volume, to provide a holistic view of each
lamp's importance and condition. In one case study, traffic-
aware lighting reduced complaints, as lights on busy routes
were rarely allowed to fail unnoticed. Moreover, adaptive
systems can change lighting levels based on real-time traffic
density. If a normally quiet street suddenly experiences heavy
traffic (e.g., due to a detour), smart lights can increase
brightness to enhance visibility. This on-demand adaptability
improves efficiency and safety and is a key selling point of
IoT-based street lighting. However, integrating continuous
traffic monitoring comes with data and communication
overhead. Recent works suggest using edge computing to
process video or sensor data locally at the lamp post, which
minimizes latency in reacting to vehicles and reduces
bandwidth usage [9]. In summary, vehicle detection and traffic
awareness have become integral to advanced streetlight
systems, enabling context-aware operation where lighting and
maintenance prioritize locations with more excellent human



activity or vehicular flow.

Safety Implications and Severity Assessment in Lighting
Failures: Street lighting is closely tied to public safety, and
research indicates that insufficient lighting can elevate both
accident and crime risks. Welsh and Farrington’s meta-
analysis of crime prevention (2008) reported that improved
street lighting was associated with a significant (~20%)
reduction in nighttime crime in the areas studied. More recent
field experiments support this: a randomized trial in New York
City public housing [18] found that adding temporary lighting
led to a 36% reduction in serious nighttime outdoor crimes.
Conversely, lighting outages tend to increase fear and potential
opportunity for crime. City incident data show that residents
are acutely sensitive to lighting failures — in New York City's
311 service request system (2010-2016), streetlight outages
were the third most common complaint type (about 5% of ~15
million complaints). Maintaining consistent illumination is
critical for perceived and actual safety. A dark street not only
hampers visibility for drivers and pedestrians, raising the risk
of accidents, but also may become a locus for opportunistic
crime. This is especially true in remote or sparsely populated
areas, where a single failed light can leave a long dark stretch
with no nearby light sources.

Literature on smart lighting increasingly calls for severity-
aware maintenance strategies that prioritize repairs based on
risk factors. Key factors identified include the number of
adjacent lights out, the location's characteristics (crime rate,
traffic volume), and the availability of alternate lighting. If
consecutive streetlights fail, the combined dark span is more
significant, compounding safety risks exponentially.
However, most technical studies have focused on detecting
faults rather than ranking their urgency. City engineering
guidelines sometimes note that multiple contiguous outages
should be the highest priority (as seen in municipal
maintenance policies), but academic research on automated
severity scoring is sparse. One relevant thread is in power
distribution networks, where faults are classified by criticality
to prioritize grid repairs; analogous concepts are now applied
to smart city lighting. For instance, Yoomak and Ngaopitakkul
[19] conducted a feasibility analysis of solar street lighting and
noted the importance of fast response in critical outage
scenarios to ensure public safety — essentially highlighting that
not all lamp failures are equal in impact. Despite such insights,
there is a gap in the literature: few, if any, Al-driven streetlight
maintenance models explicitly combine crime data, traffic
density, and outage patterns to compute a composite severity
index for each failure incident. This represents an open
research challenge and an opportunity for innovation, as our
proposed system aims to address.

Research Gaps and Emerging Challenges: The above
review shows that while significant progress has been made in
IoT-based street lighting and smart maintenance, several gaps
remain for future work. First, the integration of multi-modal
data for severity analysis is largely missing. Prior studies treat
energy efficiency, fault detection, and public safety
independently. An ingenious maintenance system would
ingest diverse data — lighting status, sensor readings, traffic
counts, neighborhood crime statistics — and intelligently
prioritize interventions. Such a holistic approach is only now
becoming feasible with AloT advancements. Some research
notes that the convergence of Al with IoT for lighting is
nascent, and many possibilities (like advanced decision-
making algorithms at the edge) remain unexplored. Our review
found no published framework that, for example, increases a
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fault's priority because it occurs in a high-crime, low-traffic
area on a dark stretch — a scenario our proposed system
explicitly targets.

Second, scalability and real-time performance pose
challenges. City-wide deployments may involve tens of
thousands of lights. Detecting faults and computing severity in
real time requires efficient distributed computing. Edge
computing has been suggested as a solution to reduce latency
and network dependency, but deploying Al models on edge
devices (like lamp-mounted controllers) must overcome
constraints in power and processing. Early experiments with
edge ML in lighting (e.g., using microcontrollers for anomaly
detection) show promise, yet issues of the edge devices' model
updating, security, and maintenance are open questions.
Cybersecurity is another concern: as streetlights become
networked endpoints, they could be targets of hacking or data
manipulation, which can have dangerous implications if not
addressed (e.g., false outage reports or malicious switching off
of lights). Ensuring robust encryption and fail-safes in the
maintenance system is thus crucial, though few papers in this
domain delve into security beyond basic network encryption.

Lastly, there is the challenge of interdisciplinary
integration. Smart lighting maintenance does not exist in a
vacuum; it overlaps with urban planning, law enforcement,
and transportation management. Lighting improvements have
been linked to lower crime and increased community
confidence and economic activity after dark. Thus, city
authorities are interested in solutions that can justify
maintenance investments in terms of broader social benefits.
However, academic studies seldom quantify these broader
impacts when proposing technical solutions. This gap suggests
the need for collaborative research that combines engineering
with social science to evaluate how Al-based maintenance
scheduling might influence crime patterns or traffic safety
over time.

The literature study shows a clear trend toward smarter
streetlight infrastructure with IoT connectivity, automated
fault detection, and preliminary uses of Al. Energy efficiency
and basic adaptive lighting are well-documented benefits of
such systems. The novel contribution needed — and which our
proposed system aims to provide — is a unified Al-driven
maintenance framework that factors in the severity of
streetlight faults by analyzing their spatial context (e.g.,
consecutive dark lamps), safety implications (crime risk,
remote area), and real-time usage (vehicle and pedestrian
density). By addressing these gaps, the next generation of
smart street lighting systems can save energy, reduce
downtime, and improve urban safety and quality of life. The
study by Mona et al. [20] has shown how the ToT plays a
crucial role in the development of smart cities and smart
homes, particularly in enhancing public safety and security.
The open challenges identified (data integration, edge Al
deployment, and cross-domain impact evaluation) form the
basis for the research questions the proposed work will tackle
as we strive to advance state-of-the-art smart city lighting
maintenance.

3. METHODOLOGY

Figure 2 describes the IoT-based streetlight monitoring
system architecture. The proposed system comprises
distributed sensor nodes on streetlights and a centralized cloud
intelligence platform. At the lowest level, each streetlight node



has a microcontroller and sensors to monitor the lamp's status
(e.g., an LDR to sense light output or a current sensor to detect
power flow) and environmental conditions. These nodes also
include communication modules (such as LoRa, Zigbee, or
cellular transmitters) that form an IoT wireless network.

The Intelligent Streetlight Dataset used in this work is a
synthetic, simulation-based dataset created because no public
dataset combines lamp status, traffic density, ambient light,
weather, and contextual indicators required for severity
analysis. The dataset models a 30-day urban streetlight
network, with readings generated at 1-minute intervals using
realistic assumptions based on commonly deployed IoT
sensors (LDR for ambient light, current/power-state sensors,
traffic counters, and dim-level controllers). Traffic flow,
weather variations, and lamp failures (both isolated and
consecutive) follow probabilistic patterns typical of mid-sized
urban environments. Geographic coordinates are abstracted
and used only to represent adjacency between lamps. This
controlled simulation ensures sufficient representation of
minority high-severity faults and provides a reliable testbed
for evaluating the proposed Al-based classification
framework.

As illustrated in Figure 2, multiple streetlight sensor nodes
send real-time data through a gateway or network hub to the
cloud server. The gateway aggregates local data (it may be a
streetlight group controller or an edge device) and forwards it
via the Internet to the central system. The cloud/edge server
hosts the analytics engine — in our case, the AI/ML model and
decision logic for severity assessment. It processes incoming
data streams from all streetlights, runs the fault detection and
severity classification algorithms, and generates alerts. The
server is also connected to a city dashboard interface where
officials can visualize streetlight statuses on a map and see
alerts. For urgent cases, the system pushes notifications
directly to the maintenance team (e.g., via a mobile app or
SMS), prompting immediate dispatch of repair crews. Non-
critical issues are logged for scheduled maintenance. This two-
tier architecture (field sensing layer + cloud intelligence layer)
ensures scalability: additional streetlights can be added by
deploying more IoT nodes, and the central analysis can
leverage computational power to run advanced models.
Wireless [oT connectivity enables coverage across a city
without relying on manual reporting. Overall, the architecture
provides an end-to-end pipeline from data collection at each
streetlight to automated decision-making and actionable alerts,
thus embodying an intelligent street lighting management

[oT Street Light Nodes

system.
(Light & Sensors) ]

1 |
Yy Vv
ToT Network (wireless
Gateway)

Traffic sensors /Data

v

Cloud /Edge server Al
severity Analysis

I 1
Figure 2. IoT-based streetlight monitoring system
architecture

[

City Dashboard

Maintenance team
Alerts/ Dispatch
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3.1 Severity analysis and alert workflow

Once the data from streetlight sensors is integrated into the
system, the next step is to determine if a fault has occurred and
how severe it is. The severity analysis process is designed as a
flow of logical steps that consider both sensor inputs and
contextual data. Figure 3 depicts the flow diagram of our
severity assessment and maintenance alert generation
procedure.

TFault
YES Detected?

Evaluate Severity Level
Adjacent Faults / Entire Lane
Dim / Traffic High or Remote

Area

Schedule Maintenance
(Priority)

Immediate Alert
Maintenance

Log Issue for Routine
Check

Continue
Monitorin;

Figure 3. Flowchart of fault detection and severity-based
response

The routine begins with continuously monitoring all
streetlight data streams ("Start/Continuous Monitoring"). The
system evaluates each streetlight's status in real-time. When a
fault is detected — for example, a lamp that should be ON
during nighttime is found to be OFF or not drawing power —
the process enters the severity evaluation stage. If no fault is
detected for a streetlight, the system continues monitoring
(looping back to the start). For any detected outage, the
algorithm first checks if the fault is isolated or part of a larger
cluster of failures. Specifically, it asks: Are adjacent
streetlights also faulty? If yes, two or more consecutive lamps
on the same road are out; this condition triggers the highest
severity classification. In the flowchart, this situation follows
the "Yes" branch to an outcome of High severity, which leads
directly to an "Immediate Alert to Maintenance." This reflects
the rule that consecutive failures (a dark stretch of road)
present a high danger and thus warrant urgent action. If the
answer is no (the fault is a single-lamp failure), the system
performs a more nuanced context evaluation to assign either
Medium or Low severity. It considers whether the entire lane
or area is dimly lit and the traffic conditions. For instance, if
all lights in the vicinity are dimmed (perhaps due to an
automated energy-saving mode or a localized power issue),
that effectively creates very low illumination similar to
multiple failures, so the flowchart would elevate the case to
High severity as well. If the lighting issue is not so extreme,
the system asks: Is the traffic or critical? This includes
checking the vehicle density around the faulty light and
whether the location/time is sensitive (e.g., a special event is
underway or it is a known high-crime area). If the affected
street has heavy traffic at that time, or if it is a remote area with
heightened safety concerns, the severity is raised to Medium
(if it was Low) — indicating it should be fixed soon, though not
an emergency. Likewise, certain contextual flags, such as a
"Special Event" (from city event schedules), could elevate a
single outage to Medium because many pedestrians may be
expected in that area. After considering these factors, the



outcome will be the fault classification as either High,
Medium, or Low severity. The final part of the flow (bottom
of Figure 3) shows the actions taken for each level. High
severity results in an immediate alert sent to maintenance
crews (for example, technicians receive a prioritized work
order or phone notification to fix that streetlight as soon as
possible). Medium severity leads to scheduling the repair at
the earliest convenient slot (marked "Schedule Maintenance
(Priority)" in the flowchart) — these might be addressed within
the next day or two as part of planned rounds. Low-severity
cases (minor issues) are logged for routine maintenance (they
might be fixed during the next regular inspection cycle if they
do not escalate). In all cases, once the decision and any alerts
are issued, the system returns to continuous monitoring,
thereby constantly looping and updating the status of all lights.
This closed-loop ensures that if a situation worsens (for
example, a second adjacent light fails, turning a previously
Low severity single outage into a High severity cluster
outage), the system will catch it and upgrade the alert
accordingly.

3.2 Severity classification algorithm

The logic described above can be implemented using a
pseudocode algorithm. The algorithm operates on incoming
data records from streetlight sensors and associated context
(traffic data, etc.) and produces a severity level classification
for each incident. The pseudocode for the severity assessment
is given below:

Algorithm: Severity Classification Algorithm
Input: Real-time data stream of streetlight status and context
Output: severityAlerts (list of {lightID,severityLevel})

for each streetlight reading in data_stream:

# Step 1: Fault detection
if reading.time is night AND reading.power_state

== OFF:
faultDetected = True
else:
faultDetected = False
if faultDetected:

# Step 2: Initialize severity as Low for a single fault
severity = "Low"

# Step 3: Check for adjacent faults (consecutive lights
out)
if neighbor_light_status[reading.lightlD — 1]
== OFF (night)
or neighbor_light_status[reading.lightID
+ 1] == OFF (night):
severity
"High" # escalate if adjacent lamp is also out

# Step 4: Check if entire lane/area is dimly lit
if all_lights_in_segment_dim_or_of f (reading.
severity
"High" # escalate to High because whole area is da

# Step 5: Incorporate vehicle traffic and location context
if severity!
"High": # only consider if not already high
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if reading.traffic_density is VERY_HIGH or rec

== True:
# heavy usage area or special event ongoing
if severity == "Low™:
severity = "Medium" # elevate one level
if reading.traffic_density is VERY_LOW or rea
== "Remote":
# remote
/isolated area (low traf fic but high crime risk when
if severity == "Low™:
severity = "Medium"

# Step 6: Output or log the severity classification and
trigger alerts
generateAlert(reading.lightID, severity)
end if
end for

In this pseudocode, we first verify a fault condition: the
streetlight should be on (nighttime or dark) but is detected as
off (power_state == OFF, or no energy draw). We then assign
a default severity of “Low” for an isolated outage. Next, we
check neighbors (using the neighbor light_status array, which
holds the recent status of adjacent lights by ID); if a neighbor
is also off, we mark the severity "High" immediately. We then
check if an entire segment is dark or dim
(all_lights in_segment dim_or_ off would inspect a group of
streetlights, e.g., on the same feeder or road, to see if
essentially none are fully lit). If so, that indicates a broad
lighting failure — the algorithm sets the severity to "High."
After these rule-based checks, if the severity is still not high,
we use contextual thresholds for the traffic density and
location. In our implementation, "VERY HIGH" and
"VERY_LOW" can be defined statistically (for example,
above the 90th percentile or below the 10th percentile of traffic
density observed). A Low severity would be raised to Medium
for a very high traffic situation or an ongoing special event
near that light (indicating many people present). Likewise, if
the location is remote (approximated here by very low traffic
density or a known remote area), we also elevate Low to
Medium — reflecting that even a single outage in a remote dark
area warrants concern. Finally, the algorithm calls
generateAlert to create an alert entry with the streetlight's
ID/location and the determined severity level. The system then
handles this alert (e.g., logging it to the dashboard and
notifying maintenance if the severity is Medium/High as per
policy). The loop continues for each incoming reading,
meaning the system continuously updates and assesses each
streetlight's condition in real-time.

It should be noted that the above algorithm can be
implemented in a streaming fashion or at a batch interval. In
practice, sensor readings come at fixed intervals (e.g., every
minute). The system can evaluate the status of each interval
and detect changes. An alert will be created immediately if a
previously functioning light becomes unresponsive.
Conversely, if a light flagged as faulty gets repaired, the next
reading would show it as ON, and the system can clear or
downgrade the alert. The pseudocode is designed to be
lightweight — most checks are simple conditionals so that it can
run on an edge device or cloud server with minimal latency.

3.3 Data and model training

For the experimental evaluation of our system, we utilized



an Intelligent Streetlight Dataset (provided as an uploaded
CSV file) that contains streetlight sensor readings and
contextual information. Each record in the dataset corresponds
to a particular streetlight's status at a given timestamp, along
with features such as traffic levels and environmental
conditions. The key attributes included in the dataset are
summarized below.

Timestamp, Street ID, Day/Night: These identifiers
indicate when and where the reading was taken. The
Day/Night flag indicates whether it is daytime or after
sunset (when streetlights should be on).

Traffic Count, Traffic Density, Traffic Speed:
Metrics capturing the vehicle flow near that
streetlight. Traffic Count may represent the number
of vehicles in a period, while Traffic Density could
be a normalized measure (vehicles per unit time or
road length). These indicate how busy or critical the
location is at that time.

Ambient Light (lux): The ambient illumination level.
That helps infer whether the streetlight should be
active if it is dark enough. (E.g., high lux in daytime
means no need for the lamp, whereas low lux at night
means the area is dark).

Weather: Categorical data (e.g., clear, cloudy, rainy)
can influence ambient light conditions and potentially
the level of urgency (for example, rain combined with
darkness poses greater risk to drivers). An intentional
off event and a dim level of 50% may indicate that
the lighting was reduced for energy-saving purposes.
Power State and Dim Level: The lamp's operational
state (on/off) and dimming level setting (0—100%).
For instance, a Power State of 0 (off) at night implies
a faulty light (or intentional off event), and a Dim
Level of 50% might indicate it was dimmed for
energy savings.

Latitude and longitude: The streetlight's location (for
mapping and possibly determining if an area is
remote).

Special Event, Holiday/Weekend: Binary flags
indicate whether a special event is happening nearby
or if the day is a holiday or weekend—both can
correlate with unusual traffic patterns or different
safety requirements.

From this dataset, we derive the inputs needed for our ML
severity model and the ground truth labels for severity (which
we generated based on earlier rules since the dataset itself did
not label severity explicitly). Per the algorithm's logic, we
processed the data to mark each record with a SeverityLabel
of High, Medium, Low, or Normal (no fault). About 24.7% of
the nighttime records in the data had lamp faults, of which
roughly 75% were classified as High severity (often due to
adjacent outages) and the remainder as Medium or Low. These
labeled examples were then used to train and evaluate various
ML classifiers.

For model training, we chose a supervised classification
approach. We experimented with three different algorithms,
Logistic Regression, Decision Tree, and Random Forest, to
predict the severity class from the input features. The features
given to the model included the traffic metrics, the time
(Day/Night), weather, special event indicator, etc., and,
importantly, the lamp's Power State and Dim Level. (In a real
deployment, one might train a model to predict severity from
all sensor inputs directly; here, since our labels are derived
from a known logic, the model validates that such patterns are
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learnable and potentially capture more complex combinations
of factors.) We split the dataset into training and test sets
(70/30 split), ensuring that all severity classes were
represented proportionally in both sets. The models were then
trained on the training set: Logistic Regression as a baseline
linear model, a Decision Tree to capture non-linear rules, and
a Random Forest as an ensemble for potentially higher
accuracy. To avoid overfitting, we tuned hyperparameters
through cross-validation (for example, trying different tree
depths).

The performance was primarily evaluated regarding
classification accuracy (the percentage of instances where the
predicted severity matched the true label). However, given the
class imbalance (many "Normal" readings with no fault, fewer
in Low/Medium severity), we also examine the confusion
matrix and per-class performance to ensure the model is
effectively identifying the important positive cases
(Medium/High severity). The following section presents these
results along with visualizations.

4. RESULTS
4.1 ML model performance

We first compare the performance of the three ML models
(Logistic Regression, Decision Tree, and Random Forest) on
the severity classification task. The models were tested on the
held-out 30% of the data (300 samples). Figure 4 shows the
accuracy achieved by each model.
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Figure 4. Accuracy of different ML models for severity
classification

Figure 4 shows the accuracy of different ML models for
severity classification. The Random Forest classifier attained
the highest accuracy (~94.3%), slightly outperforming
Logistic Regression (~94.0%) and notably outperforming the
Decision Tree (~92.3%). All models performed relatively
well, with accuracies above 92%, indicating that the features
in the dataset contain sufficient information to distinguish the
severity levels in most cases. The Random Forest's slight edge
likely comes from its ability to handle the non-linear
interactions between features (for example, the combination of
"Nighttime + Power State Off + high traffic" indicating a
certain severity) better than a single Decision Tree or linear
model. Despite its simplicity, we also note that Logistic
Regression did quite well; this suggests that the underlying
decision boundaries between classes might be approximately
linear or that a few key features dominate the prediction
(indeed, whether a fault is isolated or not could be a primary
separator). The Decision Tree's performance was lower,



possibly due to limited depth (we pruned it to prevent
overfitting) or some minor classes (Low, Medium) that were
more challenging to identify with limited data.

To gain deeper insight into how well the model
distinguishes the individual severity categories, we present the
confusion matrix of the best-performing model (Random
Forest) in Figure 5.

Confusion Matrix for Severity Classification (Random Forest)
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Figure 5. Confusion matrix for severity classification
(Random Forest model)

This matrix breaks down the model's predictions versus the
true labels for the four classes: Normal (no issue), Low,
Medium, and High severity. The diagonal elements (in dark
blue) represent correct predictions. We can see that Normal
status (no fault) and High-severity faults are identified almost
perfectly by the model. All 226 normal test instances (no fault)
were correctly classified as Normal, and all 56 instances of
truly High severity were predicted as High. This is important
because High-severity cases are the most critical to catch (we
want no false negatives in that category), and the model
achieved 100% recall for High-severity cases in this test.

On the other hand, the matrix shows that cases of Low and
Medium severity were often misclassified. In the test set, there
were seven instances of Low and 11 of Medium severity (these
are relatively small numbers). The model tended to predict
most of those as High. For example, out of 11 true Medium
cases, 10 were predicted as High, and only one was correctly
as Medium; none of the 7 Low cases were predicted as Low
(all were marked High). This indicates a bias of the classifier
to err on the side of higher severity for ambiguous cases. From
an application perspective, this bias is not entirely undesirable
— it means the system would treat some moderate issues as if
they were high priority, which is a safer error than
underestimating a serious fault. However, it also means the
model is not yet finely distinguishing the nuances between
isolated minor faults (Low) and more significant single faults
(Medium). The likely reason is the class imbalance and the
rule-based nature of our labels: most fault instances were
either High (adjacent outages) or labeled Medium due to an
extreme context, with very few true Low examples. The model
thus had limited data to learn what constitutes a "Low" severity
fault, and it defaulted to classifying any fault as at least
Medium/High. In a more balanced training scenario (or with
further model calibration), we would aim to improve the
precision for Medium and Low classes. As per-class
performance summary (precision, recall, and F1-score) for the
Random Forest classifier, which achieved the highest overall
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accuracy. Table 1 presents these metrics for the four severity

classes.

Table 1. Per-class precision, recall and F1-score for the
Random Forest model

Class Precision Recall F1-Score
Normal 1.00 1.00 1.00

Low 0.00 0.00 0.00
Medium 0.09 0.09 0.09

High 0.88 1.00 0.94

Overall, the Random Forest model successfully detected all
actual fault cases (no missed faults, since no Normal was
misclassified as something else) and incorrectly flagged the
truly urgent cases. The accuracy of ~94% reflects that out of
300 test instances, only ~18 were misclassified (and these
misclassifications essentially treated some Medium/Low as
High). The high accuracy and recall for critical cases
demonstrate that an AI model can reliably automate the
decision process encoded by our severity rules. In practical
terms, this means the system can take the sensor inputs and
immediately determine the appropriate level of response with
high fidelity, matching what an expert might decide using the
same information.

4.2 Visualization of severity vs. traffic

An important aspect of our system is integrating traffic
(vehicle density) data into the severity determination. We
performed an analysis to understand the relationship between
traffic levels and the severity assigned to our results.
Intuitively, one expects higher traffic to lead to higher severity
classifications (because more people are affected by an
outage). However, extremely low traffic (remote areas) can
also lead to an elevated severity due to security concerns. Our
model was designed to account for both extremes by bumping
severity for high or low traffic conditions. We examined the
distribution of Traffic Density values for each severity
category in the dataset. The correlation between numerical
severity level (treating Normal = 0, Low = 1, Medium = 2,
High = 3) and traffic density was near zero (Pearson
correlation ~0.005), indicating no simple linear relationship.
This is not surprising because the rules were nonlinear:
Medium severity occurs at both ends of the traffic spectrum
(very high or very low traffic). High severity was dominated
by the adjacency of faults (independent of traffic). We did
observe the following trends: Medium severity incidents
largely corresponded to cases with either very low traffic
(bottom 10th percentile) or very high traffic (top 10th
percentile) — consistent with our definition that those contexts
raise a single outage's importance. High-severity incidents
(multiple outages) occurred across a range of moderate to high
traffic densities; in about 73% of high-traffic fault cases, the
system ended up classifying them as High severity, and
similarly, about 75% of low-traffic fault cases were High
severity (those had multiple outages in remote areas).
Meanwhile, Low severity was assigned only to a few faults
under moderate traffic conditions without other exacerbating
factors.

The dataset evaluation confirms that incorporating vehicle
flow data into the decision process can differentiate scenarios
that would otherwise look similar from a purely electrical
perspective. In our ground truth labeling, a single lamp failure
during rush hour got a higher severity (Medium) than an



identical failure late at night with light traffic (Low severity).
Our Al model learned this pattern to some extent (though it
tended to over-predict High, as noted). This indicates that the
model is sensitive to the features of traffic and timing that we
intended it to be. In a deployed system, one could further refine
this by providing the model with more direct criticality
indicators (for example, a precomputed risk score for each
location that considers crime rates and traffic together). Our
results demonstrate that fusing loT sensor data with contextual
city data (traffic) effectively assesses maintenance priority.
The classification performance achieved suggests that city
maintenance departments could trust such a model to triage
streetlight outages automatically.

5. DISCUSSION

The results show that our loT-based streetlight monitoring
and severity classification system is feasible and effective. In
this section, we delve into the implications of these findings,
discuss the limitations of the current implementation, and
outline potential improvements and future work to enhance the
system's robustness and utility.

Performance and Accuracy: The high accuracy achieved
(over 94%) in classifying fault severity is encouraging. A
relatively straightforward model (Random Forest with basic
features) can replicate the expert rules for prioritizing
streetlight repairs. Notably, the system could automatically
identify all severe outage scenarios (no high-severity situation
went undetected in the test). This level of performance meets
a critical requirement for a safety-critical application — it
minimizes the risk of a dangerous outage being overlooked.
The slight bias of the model toward overestimating severity
can be viewed as a conservative approach, ensuring caution.
In practice, treating a Medium issue as High would result in a
faster response than necessary, which is a minor cost
compared to the inverse error (treating a High issue as Low
and responding too late). That said, for efficient resource
allocation, it would be beneficial for the model to distinguish
better single-light faults that genuinely do not need immediate
action. This could be improved by gathering more training
data for those scenarios or by adjusting the decision threshold
(for instance, the Random Forest could output a probability for
High vs. Medium, and one could calibrate a cutoff to balance
precision/recall for the Medium class).

Integration of IoT and AI: Our system exemplifies the
integration of IoT sensing with Al analytics in a smart city
context. The IoT component (sensors + connectivity) provides
the raw observability of the infrastructure — it ensures that we
know almost instantly when and where a streetlight fails,
which is a vast improvement over legacy approaches relying
on citizen complaints. The AI component then adds an
intelligence layer by interpreting that data in context and
deciding on an appropriate action. This demonstrates a move
from just automated detection to automated decision-making.
In the literature, loT-based fault detection systems without Al
raise flags for any fault, whereas our approach can say, "This
fault is critical; fix it now," versus "This fault can wait a bit."
This is an important distinction because it prevents
overwhelming maintenance crews with alarms of equal
priority. City resources are limited, and an intelligent system
must detect problems and help prioritize them. By successfully
combining sensor inputs (like an LDR indicating lamp-off)
with external data (traffic from perhaps cameras or loop
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detectors) through an ML model, we have validated that such
a prioritization is practical and data-driven. Some of the main
features of this system are discussed as follows.

To make the edge—cloud deployment discussion more
concrete, we evaluated the computational footprint of the
proposed Random Forest severity-classification model. The
trained model is lightweight, with a serialized size of
approximately 85-90 kB, which fits comfortably within the
memory constraints of typical loT-grade streetlight controllers
such as ESP32, STM32, or other ARM-based
microcontrollers. Inference benchmarks on an embedded-class
processor (= 240 MHz) indicate that each prediction requires
only 3-5 ms, confirming that the model can run locally without
noticeable delay. These results demonstrate that on-edge
deployment is technically feasible for real-time fault and
severity assessment, particularly in locations with intermittent
network connectivity. While cloud processing remains
advantageous for large-scale data aggregation, visualization,
and periodic retraining, the ability to execute the model
directly on lamppost controllers enables faster response times
and greater robustness in practical smart street lighting
deployments.

5.1 Maintenance decision support

The outcome of our system is a decision support tool for city
maintenance. It can send prioritized alerts to crews. This has
several implications:

(1) Faster Response: As reported in similar systems, having
automated alerts allows repair teams to fix issues often before
citizens even notice them, significantly improving public
satisfaction and safety.

(2) Efficient Crew Deployment: By classifying severity, the
city can ensure that the most critical issues are dealt with first,
which is especially important if resources are stretched. Our
system could be integrated with a workflow management
system that schedules crew routes optimally — for instance,
handle all High severity within hours and Medium within
days.

(3) Data-driven Policy: The data collected can inform
infrastructure improvements over time. If certain areas
frequently register High-severity lighting issues (perhaps due
to an old power line causing serial outages), the city can
proactively upgrade those circuits.

5.2 Security and reliability

An IToT-based system introduces security concerns (e.g.,
sensor nodes could be tampered with, or false data could be
injected). Ensuring secure communication and authentication
of devices is crucial so that the system cannot be tricked into
false alarms or missing real ones. Additionally, the system's
reliability needs to be high; it should have fail-safes such as
backup communication or redundancy. We do not want to
miss a critical outage if the network goes down. These aspects
were outside the scope of our current project, but need
consideration in real deployments.

5.3 Generalizability

While we focused on streetlights, combining IoT
monitoring with Al severity assessment can extend to other
smart city applications — for example, smart traffic signals,
water pipeline monitoring, etc., where not all alerts are equal



and context matters. In streetlighting, an interesting extension
would be to include smart dimming control. Many smart city
projects dim lights during low-traffic periods to save energy.
Our system could interface with such lighting control: if crime
risk is high in a remote area, the system might suggest not
dimming below a certain level even if traffic is low. This
higher-level decision balances energy saving with public
safety, and Al can help optimize that.

6. CONCLUSIONS

This paper presented a comprehensive IoT and Al-based
solution for intelligent streetlight maintenance in smart cities,
focusing on automated fault detection and severity
classification. The key contribution of the work is the
integration of real-time sensor monitoring with a machine-
learning model that assesses the urgency of each streetlight
outage. Unlike conventional systems that merely detect
whether a light is on or off, our system determines how critical
an outage is by considering factors such as adjacent light
failures and vehicle traffic around the affected area, enabling
a prioritized maintenance response that improves safety and
optimizes resource use. A complete system architecture was
designed and implemented, comprising streetlight-mounted
IoT sensor nodes, a wireless communication network, and a
central cloud server hosting the Al analytics and user interface.
Using this architecture, a rule-based algorithm enhanced with
ML classified faults into High, Medium, or Low severity,
where High severity captures scenarios like consecutive
streetlights being out or an entire stretch becoming too dark.
Experimental results showed that the model achieves high
accuracy, with the Random Forest classifier reaching ~94%
accuracy and 100% recall for High-severity outages,
demonstrating its reliability for critical alert detection.
However, the study has limitations, such as reliance on rule-
derived severity labels and limited contextual features, which
may restrict the model’s ability to distinguish finer-grained
severity levels. Future work can address these by incorporating
real-world annotated severity data, integrating richer
contextual information (e.g., crime risk or pedestrian activity),
and exploring edge-based ML deployment for scalable, low-
latency operation in large smart-city environments.
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