
An IoT-Driven Intelligent Street Lighting System with Integrated Severity-Based Fault 

Classification 

Sreelatha R1* , Shubha Rao V1 , Mahalakshmi B S1 , Sindhu K2

1 Department of Information Science, BMS College of Engineering, Bengaluru 560019, India 
2 Department of Computer Science (Data Science), BMS College of Engineering, Bengaluru 560019, India 

Corresponding Author Email: sreelathar29@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ijsse.151010 ABSTRACT 

Received: 24 August 2025 

Revised: 14 October 2025 

Accepted: 25 October 2025 

Available online: 31 October 2025 

Street lighting faults can compromise urban safety if not detected and addressed promptly. 

This paper proposes an Internet of Things (IoT)-based streetlight monitoring architecture 

integrated with an artificial intelligence (AI)-driven severity classification model. The 

system continuously captures lamp status and traffic density using IoT sensors and 

classifies fault severity by analyzing adjacent lamp failures, road illumination levels, and 

vehicle flow. A severity assessment algorithm is developed and evaluated using a 

simulated real-world streetlight dataset containing balanced and minority high-severity 

fault instances. Experimental results show an overall classification accuracy of 94%, with 

precision and recall above 90% for minority high-severity classes, demonstrating robust 

detection of critical outages. Confusion matrix analysis and performance comparisons 

further confirm the model’s ability to differentiate urgent faults from lower-priority issues. 

The proposed framework supports intelligent streetlight maintenance by enabling timely 

identification of high-risk failures, contributing to safer and more efficient smart city 

infrastructure.  
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1. INTRODUCTION

Reliable street lighting is essential for traffic safety and 

crime prevention in modern cities. Numerous studies have 

shown that well-lit streets significantly reduce nighttime 

accidents and criminal activity. For example, insufficient 

lighting makes it difficult for drivers to see road hazards or 

pedestrians at night, increasing the risk of accidents. Similarly, 

there is a longstanding correlation between poor street lighting 

and higher crime rates; criminals often shift their activity to 

dark streets when streetlights are out. Ensuring that streetlights 

remain operational is thus a critical public safety concern. 

However, traditional maintenance of streetlights largely relies 

on passive approaches – waiting for citizens to report outages 

or conducting infrequent manual inspections [1]. This reactive 

model leads to lengthy downtimes for broken lights, especially 

in remote or low-traffic areas where issues might go 

unnoticed. These outages expose communities to avoidable 

dangers such as collisions or opportunistic crime. 

Recent Internet of Things (IoT) and artificial intelligence 

(AI) advances offer a more proactive solution. Installing 

streetlights with IoT sensors and connectivity makes it 

possible to automatically detect lamp failures in real time and 

immediately alert city maintenance crews. Prior work has 

demonstrated the efficacy of IoT-based streetlight monitoring. 

For instance, Vamsi et al. [1] developed a centralized IoT 

system where sensor nodes on each streetlight transmit 

operational data to a cloud platform; a machine learning (ML) 

model (98.8% accuracy) then predicts each streetlight's status 

and fault condition. The predicted status and fault details are 

displayed on a web dashboard for officials, eliminating the 

need for citizens to report outages. Venu [2] proposed an 

automated street lighting system in which elevated lights 

installed along roads or walkways operate at predefined times. 

The system integrates LEDs with PIR, IR, and LDR sensors, 

controlled by a Raspberry Pi and powered by a solar module 

using an Arduino Uno to achieve efficient, motion-based, and 

energy-conserving illumination. Researchers demonstrated 

that this approach significantly expedites repairs and improves 

maintenance efficiency by providing precise, real-time 

knowledge of faults. Likewise, other researchers have used 

light sensors (e.g., LDRs) on streetlamps to automatically 

detect when a lamp fails to light up at night [3], enabling 

immediate alerts. These studies underscore the potential of IoT 

to transform streetlight maintenance from reactive to 

predictive and responsive. 

Beyond simply detecting faults, an intelligent system should 

also assess how severe a streetlight outage is. Not all lamp 

failures are equally urgent: a single lamp out in a well-lit urban 

downtown might have minimal impact, whereas two or three 

consecutive lamps out on a suburban road could plunge the 

area into darkness. If an entire stretch of roadway is dimly lit 

due to multiple failures or intentional dimming, it may create 

hazardous conditions, inviting crime or accidents. The context 

– such as the level of pedestrian/vehicle activity and the

location (remote versus central) – determines the risk posed by

a lighting failure. For example, an outage on a busy highway

or at an intersection with heavy nighttime traffic is a high
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priority because it can lead to collisions. Similarly, an outage 

in a sparsely populated rural area is concerning because 

darkness in isolated areas can "foster criminal activity" despite 

low traffic. Current smart city research highlights the need to 

integrate contextual data into infrastructure monitoring. In the 

case of streetlights, combining traffic sensors or city mobility 

data with lamp status can measure how critical each light is at 

a given time. A fault on a high-usage road or during a special 

event should be addressed sooner than on a rarely used street. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 1. Street lane (a) with streetlight; (b) without 

streetlight with incoming traffic; (c) with no traffic 

 

Figure 1 depicts different conditions of the same road with 

streetlight in power on mode when everything is visible. 

Second scenario where the streetlight is in power off mode, 

but light is there due to moving vehicles, and finally the 

darkness when no vehicles are moving, and the streetlight is in 

power off mode. 

This work proposes an IoT-driven streetlight fault detection 

and severity classification system that addresses the above 

challenges. Each streetlight pole has sensors to monitor its 

operating state (e.g., voltage/current or light output) and 

possibly the ambient illumination. The devices are connected 

via a wireless network to a central server. We incorporate an 

ML model at the server that analyzes the streetlight's status and 

local vehicle flow data to classify the severity of any detected 

fault. The model is trained on features such as whether the 

lamp is off/dim when it should be on, how many neighboring 

lights malfunction, the traffic density around that location, and 

other contextual cues (time of day, weather, special events, 

etc.). The output is a severity level (e.g., Low, Medium, or 

High severity), which informs how urgent the maintenance 

response should be. High-severity alerts trigger immediate 

notifications to maintenance crews for rapid repair, whereas 

lower-severity issues can be scheduled in routine maintenance 

routes. 

 

 

2. RELATED WORK 

 

IoT-Enabled Smart Street Lighting Systems: Modern urban 

infrastructure has increasingly adopted IoT technologies to 

transform traditional street lighting into smart, connected 

systems. In a conventional setup, streetlights operate on fixed 

timers or manual control, requiring periodic human inspection 

for outages. IoT-based street lighting systems, by contrast, 

embed networked sensors and controllers in each lamp, 

enabling real-time remote monitoring and adaptive control. 

These systems can dynamically adjust illumination levels 

based on sensor inputs (e.g., ambient light, motion), 

substantially improving energy efficiency and road safety by 

providing lighting on demand. For example, Denardin et al. 

[4] demonstrated an intelligent street lighting control 

architecture where each lamp’s status and power consumption 

are reported to a central platform for active monitoring. 

Pantoni et al. [5] described an edge-assisted network for 

streetlights allows facility managers to control lights and 

detect anomalies at scale remotely. This connectivity reduces 

manual maintenance effort and supports advanced features 

like scheduling, dimming, and fault alerts. The literature 

agrees that IoT connectivity is a foundational enabler for smart 

street lighting in future cities. However, deploying such IoT 

infrastructure city-wide is not without challenges: high upfront 

costs, interoperability issues, and the need for stable network 

coverage (especially in remote areas) remain significant 

concerns [6]. For instance, Dahan et al. [7] noted that smart 

lighting projects often face reliability issues in underdeveloped 

regions due to inconsistent internet connectivity and power 

supply, underscoring the importance of robust network design. 

Despite these challenges, IoT-driven lighting systems have 

laid the groundwork for more intelligent maintenance and 

control strategies, as discussed next. 

Rule-based logic relies on fixed thresholds and therefore 

struggles in real-world environments where sensor readings 

are noisy, traffic patterns are highly non-linear, and 

illumination levels fluctuate due to weather or vehicle 

headlights. It also assumes complete and consistent data, 

which is often not the case in IoT deployments where missing 

or intermittent sensor inputs are common. In contrast, the ML 

model learns the variability within the data and becomes more 

robust to noise, missing values, and complex multi-feature 

interactions that rules cannot easily encode. Our results further 

show that ML reduces both false positives and false negatives 

by capturing subtle patterns beyond the deterministic logic, 

thereby providing more reliable severity predictions. Thus, the 

ML component adds significant value by improving 

robustness, handling imperfect data, and enhancing decision 

accuracy in complex urban conditions where static rule-based 

algorithms alone are insufficient. 

Deterministic IF–THEN rules alone are often insufficient 

for streetlight monitoring because they cannot reliably handle 

sensor noise, fluctuating illumination from vehicle headlights, 

or weather-induced variations. Fixed thresholds (e.g., “light 

level < X”) frequently misclassify normal conditions as faults 

or miss critical outages, especially in environments with non-

linear and rapidly changing traffic patterns. These rules also 

lack the ability to account for contextual factors such as time 

of day, surrounding lamp conditions, or road usage intensity. 

ML overcomes these limitations by learning complex, non-

linear relationships from data, filtering noisy signals, and 

producing more accurate severity assessments tailored to real-

world conditions. Hence, ML enhances decision-making 

beyond what traditional rule-based approaches can achieve. 

 

2.1 Fault detection and predictive maintenance 

approaches 

 

Traditional streetlight maintenance: Crews respond to 

citizen complaints or periodic inspections to fix outages. This 

approach can lead to prolonged dark periods when lights fail, 

negatively impacting public safety and confidence [8]. 

Researchers have explored automatic fault detection using 

sensor data and predictive maintenance models to mitigate 

this. In IoT-enabled systems, each lamp can report its 
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operational status (voltage, current, brightness, etc.), allowing 

immediate identification of failures or abnormalities [9, 10], 

For example, a telemetry manager for public lighting was 

developed that continuously monitors lamp health and flags 

faults in real time via a centralized dashboard. Such systems 

reduce the need for manual night patrols by generating 

automatic alerts when a bulb or driver malfunctions [11]. As 

an illustration, recent work [11] implemented a smart 

streetlight network where if any light goes faulty, it is detected 

without human intervention and reported through a web 

application. This immediate visibility into failures allows 

maintenance teams to respond faster, shortening dark outages. 

Beyond detecting failures as they occur, an emerging trend 

is predictive maintenance – forecasting lamp failures before 

they happen. This is achieved by analyzing historical 

performance data to predict remaining useful life or failure 

probabilities. Accurate remaining-life prediction enables 

proactive replacement of lamps prior to burnout, thus 

eliminating unplanned outages. For instance, Segovia-Muñoz 

et al. [12] applied degradation models (LM-80/TM-21 

standards) to LED streetlights and developed an exponential 

decay algorithm to estimate lumen depreciation and predict 

when a lamp will fall below acceptable brightness. By 

planning maintenance based on such predictions, cities can 

maximize equipment life and minimize downtime. Several 

studies report that predictive maintenance regimes, combined 

with IoT telemetry, drastically reduce maintenance costs and 

outage durations compared to reactive approaches. 

Nonetheless, implementing predictive maintenance requires 

reliable data collection over long periods and robust models; 

many municipalities are still in the early pilot stages of these 

technologies. The literature shows a clear evolution from 

reactive repairs to automated fault detection and prediction-

driven maintenance in smart street lighting systems. 

AI and ML Integration in Lighting Systems: Applying 

AI and ML techniques to streetlight data is a relatively recent 

area of research, but it is gaining momentum. Early smart 

lighting deployments focused on rule-based control and 

simple sensor thresholds (e.g., lights dim when no motion is 

detected). Now, with large volumes of sensor and usage data 

available, researchers are exploring data-driven AI models to 

optimize performance and detect complex fault patterns [9]. A 

systematic review [13] finds that the integration of AI in IoT-

based lighting (often termed AIoT) is still in its infancy, with 

the first notable works appearing only around 2019. Their 

review highlights that most current smart lighting systems do 

not fully exploit ML and that incorporating edge-based ML 

could vastly improve adaptability and reliability. 

One promising application of AI is anomaly detection in 

streetlight operations. Instead of waiting for a light to go 

completely dark, ML models can analyze subtle deviations in 

electrical parameters to predict failures or detect 

malfunctioning components. Śmiałkowski and Czyżewski [9] 

demonstrate this using energy consumption data from smart 

meters in a city lighting grid. Their system achieves real-time 

detection of anomalies such as lamp failures or schedule 

deviations by employing time-series forecasting (SARIMA 

models) and neural networks (LSTM). Notably, both 

statistical and deep learning approaches in that study enabled 

a self-learning, online fault detection mechanism deployable 

on edge devices, with the SARIMA model performing best for 

timely alerts. Another study by Chen et al. [14] developed a 

narrowband-IoT-based streetlight monitoring system that uses 

ML classifiers to distinguish regular operation from various 

fault conditions, improving detection accuracy over simple 

threshold methods. These works illustrate the potential of AI 

to enhance maintenance: instead of binary "on/off" sensing, 

smart algorithms can estimate the severity of degradation, 

filter out transient anomalies, and prioritize genuine issues for 

repair. Additionally, AI has been applied for predictive 

control. For example, the study by Sun et al. [15] built an ML-

driven predictive model (using time series analysis) to forecast 

lighting needs and adjust lamp brightness pre-emptively, 

achieving significant energy savings while maintaining 

service quality. 

Despite these advances, incorporating AI in municipal 

lighting is not yet widespread. Key barriers noted in the 

literature include the need for large labeled datasets for 

training, system complexity concerns, and legacy 

infrastructure integration. Nevertheless, the trajectory is clear: 

AI and data analytics are set to play an increasing role in 

making street lighting systems more intelligent, from fault 

diagnostics to adaptive illumination strategies. 

Vehicle Presence and Traffic-Aware Lighting: Another 

vital aspect of smart street lighting is integrating traffic data – 

specifically, detecting vehicles or pedestrians to modulate 

lighting or assess maintenance criticality. In urban 

environments, traffic density varies widely; a streetlight on a 

busy highway serves far more road users at night than on a 

quiet lane. Numerous studies have proposed traffic-responsive 

lighting, where streetlights brighten or turn on only when 

vehicles or pedestrians are present and dim otherwise, thereby 

saving energy without compromising safety. Qaisar et al. [16] 

built an early prototype using infrared sensors to sense vehicle 

movement and then activating lights sequentially as vehicles 

passed by, which demonstrated the basic feasibility of on-

demand illumination. In recent years, more sophisticated 

approaches have leveraged computer vision and radar. These 

systems highlight that coupling traffic sensing with lighting 

control can maintain safety (adequate illumination when cars 

or pedestrians are present) while optimizing energy use when 

roads are empty. 

Beyond energy optimization, traffic data can inform 

maintenance decisions. A smart maintenance system might 

prioritize fixing a streetlight on a high-traffic thoroughfare 

over one on a seldom-used street since the impact of an outage 

differs. Some frameworks have begun to incorporate such 

considerations. For example, Gagliardi et al. [17] developed a 

multi-sensor streetlight node that monitors lamp electrical 

parameters and environmental and usage indicators, such as 

motion or traffic volume, to provide a holistic view of each 

lamp's importance and condition. In one case study, traffic-

aware lighting reduced complaints, as lights on busy routes 

were rarely allowed to fail unnoticed. Moreover, adaptive 

systems can change lighting levels based on real-time traffic 

density. If a normally quiet street suddenly experiences heavy 

traffic (e.g., due to a detour), smart lights can increase 

brightness to enhance visibility. This on-demand adaptability 

improves efficiency and safety and is a key selling point of 

IoT-based street lighting. However, integrating continuous 

traffic monitoring comes with data and communication 

overhead. Recent works suggest using edge computing to 

process video or sensor data locally at the lamp post, which 

minimizes latency in reacting to vehicles and reduces 

bandwidth usage [9]. In summary, vehicle detection and traffic 

awareness have become integral to advanced streetlight 

systems, enabling context-aware operation where lighting and 

maintenance prioritize locations with more excellent human 
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activity or vehicular flow. 

Safety Implications and Severity Assessment in Lighting 

Failures: Street lighting is closely tied to public safety, and 

research indicates that insufficient lighting can elevate both 

accident and crime risks. Welsh and Farrington’s meta-

analysis of crime prevention (2008) reported that improved 

street lighting was associated with a significant (~20%) 

reduction in nighttime crime in the areas studied. More recent 

field experiments support this: a randomized trial in New York 

City public housing [18] found that adding temporary lighting 

led to a 36% reduction in serious nighttime outdoor crimes. 

Conversely, lighting outages tend to increase fear and potential 

opportunity for crime. City incident data show that residents 

are acutely sensitive to lighting failures – in New York City's 

311 service request system (2010-2016), streetlight outages 

were the third most common complaint type (about 5% of ~15 

million complaints). Maintaining consistent illumination is 

critical for perceived and actual safety. A dark street not only 

hampers visibility for drivers and pedestrians, raising the risk 

of accidents, but also may become a locus for opportunistic 

crime. This is especially true in remote or sparsely populated 

areas, where a single failed light can leave a long dark stretch 

with no nearby light sources.  

Literature on smart lighting increasingly calls for severity-

aware maintenance strategies that prioritize repairs based on 

risk factors. Key factors identified include the number of 

adjacent lights out, the location's characteristics (crime rate, 

traffic volume), and the availability of alternate lighting. If 

consecutive streetlights fail, the combined dark span is more 

significant, compounding safety risks exponentially. 

However, most technical studies have focused on detecting 

faults rather than ranking their urgency. City engineering 

guidelines sometimes note that multiple contiguous outages 

should be the highest priority (as seen in municipal 

maintenance policies), but academic research on automated 

severity scoring is sparse. One relevant thread is in power 

distribution networks, where faults are classified by criticality 

to prioritize grid repairs; analogous concepts are now applied 

to smart city lighting. For instance, Yoomak and Ngaopitakkul 

[19] conducted a feasibility analysis of solar street lighting and 

noted the importance of fast response in critical outage 

scenarios to ensure public safety – essentially highlighting that 

not all lamp failures are equal in impact. Despite such insights, 

there is a gap in the literature: few, if any, AI-driven streetlight 

maintenance models explicitly combine crime data, traffic 

density, and outage patterns to compute a composite severity 

index for each failure incident. This represents an open 

research challenge and an opportunity for innovation, as our 

proposed system aims to address. 

Research Gaps and Emerging Challenges: The above 

review shows that while significant progress has been made in 

IoT-based street lighting and smart maintenance, several gaps 

remain for future work. First, the integration of multi-modal 

data for severity analysis is largely missing. Prior studies treat 

energy efficiency, fault detection, and public safety 

independently. An ingenious maintenance system would 

ingest diverse data – lighting status, sensor readings, traffic 

counts, neighborhood crime statistics – and intelligently 

prioritize interventions. Such a holistic approach is only now 

becoming feasible with AIoT advancements. Some research 

notes that the convergence of AI with IoT for lighting is 

nascent, and many possibilities (like advanced decision-

making algorithms at the edge) remain unexplored. Our review 

found no published framework that, for example, increases a 

fault's priority because it occurs in a high-crime, low-traffic 

area on a dark stretch – a scenario our proposed system 

explicitly targets. 

Second, scalability and real-time performance pose 

challenges. City-wide deployments may involve tens of 

thousands of lights. Detecting faults and computing severity in 

real time requires efficient distributed computing. Edge 

computing has been suggested as a solution to reduce latency 

and network dependency, but deploying AI models on edge 

devices (like lamp-mounted controllers) must overcome 

constraints in power and processing. Early experiments with 

edge ML in lighting (e.g., using microcontrollers for anomaly 

detection) show promise, yet issues of the edge devices' model 

updating, security, and maintenance are open questions. 

Cybersecurity is another concern: as streetlights become 

networked endpoints, they could be targets of hacking or data 

manipulation, which can have dangerous implications if not 

addressed (e.g., false outage reports or malicious switching off 

of lights). Ensuring robust encryption and fail-safes in the 

maintenance system is thus crucial, though few papers in this 

domain delve into security beyond basic network encryption. 

Lastly, there is the challenge of interdisciplinary 

integration. Smart lighting maintenance does not exist in a 

vacuum; it overlaps with urban planning, law enforcement, 

and transportation management. Lighting improvements have 

been linked to lower crime and increased community 

confidence and economic activity after dark. Thus, city 

authorities are interested in solutions that can justify 

maintenance investments in terms of broader social benefits. 

However, academic studies seldom quantify these broader 

impacts when proposing technical solutions. This gap suggests 

the need for collaborative research that combines engineering 

with social science to evaluate how AI-based maintenance 

scheduling might influence crime patterns or traffic safety 

over time. 

The literature study shows a clear trend toward smarter 

streetlight infrastructure with IoT connectivity, automated 

fault detection, and preliminary uses of AI. Energy efficiency 

and basic adaptive lighting are well-documented benefits of 

such systems. The novel contribution needed – and which our 

proposed system aims to provide – is a unified AI-driven 

maintenance framework that factors in the severity of 

streetlight faults by analyzing their spatial context (e.g., 

consecutive dark lamps), safety implications (crime risk, 

remote area), and real-time usage (vehicle and pedestrian 

density). By addressing these gaps, the next generation of 

smart street lighting systems can save energy, reduce 

downtime, and improve urban safety and quality of life. The 

study by Mona et al. [20] has shown how the IoT plays a 

crucial role in the development of smart cities and smart 

homes, particularly in enhancing public safety and security. 

The open challenges identified (data integration, edge AI 

deployment, and cross-domain impact evaluation) form the 

basis for the research questions the proposed work will tackle 

as we strive to advance state-of-the-art smart city lighting 

maintenance. 

 

 

3. METHODOLOGY 

 

Figure 2 describes the IoT-based streetlight monitoring 

system architecture. The proposed system comprises 

distributed sensor nodes on streetlights and a centralized cloud 

intelligence platform. At the lowest level, each streetlight node 
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has a microcontroller and sensors to monitor the lamp's status 

(e.g., an LDR to sense light output or a current sensor to detect 

power flow) and environmental conditions. These nodes also 

include communication modules (such as LoRa, Zigbee, or 

cellular transmitters) that form an IoT wireless network.  

The Intelligent Streetlight Dataset used in this work is a 

synthetic, simulation-based dataset created because no public 

dataset combines lamp status, traffic density, ambient light, 

weather, and contextual indicators required for severity 

analysis. The dataset models a 30-day urban streetlight 

network, with readings generated at 1-minute intervals using 

realistic assumptions based on commonly deployed IoT 

sensors (LDR for ambient light, current/power-state sensors, 

traffic counters, and dim-level controllers). Traffic flow, 

weather variations, and lamp failures (both isolated and 

consecutive) follow probabilistic patterns typical of mid-sized 

urban environments. Geographic coordinates are abstracted 

and used only to represent adjacency between lamps. This 

controlled simulation ensures sufficient representation of 

minority high-severity faults and provides a reliable testbed 

for evaluating the proposed AI-based classification 

framework. 

As illustrated in Figure 2, multiple streetlight sensor nodes 

send real-time data through a gateway or network hub to the 

cloud server. The gateway aggregates local data (it may be a 

streetlight group controller or an edge device) and forwards it 

via the Internet to the central system. The cloud/edge server 

hosts the analytics engine – in our case, the AI/ML model and 

decision logic for severity assessment. It processes incoming 

data streams from all streetlights, runs the fault detection and 

severity classification algorithms, and generates alerts. The 

server is also connected to a city dashboard interface where 

officials can visualize streetlight statuses on a map and see 

alerts. For urgent cases, the system pushes notifications 

directly to the maintenance team (e.g., via a mobile app or 

SMS), prompting immediate dispatch of repair crews. Non-

critical issues are logged for scheduled maintenance. This two-

tier architecture (field sensing layer + cloud intelligence layer) 

ensures scalability: additional streetlights can be added by 

deploying more IoT nodes, and the central analysis can 

leverage computational power to run advanced models. 

Wireless IoT connectivity enables coverage across a city 

without relying on manual reporting. Overall, the architecture 

provides an end-to-end pipeline from data collection at each 

streetlight to automated decision-making and actionable alerts, 

thus embodying an intelligent street lighting management 

system. 

 

 
 

Figure 2. IoT-based streetlight monitoring system 

architecture 

3.1 Severity analysis and alert workflow 

 

Once the data from streetlight sensors is integrated into the 

system, the next step is to determine if a fault has occurred and 

how severe it is. The severity analysis process is designed as a 

flow of logical steps that consider both sensor inputs and 

contextual data. Figure 3 depicts the flow diagram of our 

severity assessment and maintenance alert generation 

procedure. 

 

 
 

Figure 3. Flowchart of fault detection and severity-based 

response 

 

The routine begins with continuously monitoring all 

streetlight data streams ("Start/Continuous Monitoring"). The 

system evaluates each streetlight's status in real-time. When a 

fault is detected – for example, a lamp that should be ON 

during nighttime is found to be OFF or not drawing power – 

the process enters the severity evaluation stage. If no fault is 

detected for a streetlight, the system continues monitoring 

(looping back to the start). For any detected outage, the 

algorithm first checks if the fault is isolated or part of a larger 

cluster of failures. Specifically, it asks: Are adjacent 

streetlights also faulty? If yes, two or more consecutive lamps 

on the same road are out; this condition triggers the highest 

severity classification. In the flowchart, this situation follows 

the "Yes" branch to an outcome of High severity, which leads 

directly to an "Immediate Alert to Maintenance." This reflects 

the rule that consecutive failures (a dark stretch of road) 

present a high danger and thus warrant urgent action. If the 

answer is no (the fault is a single-lamp failure), the system 

performs a more nuanced context evaluation to assign either 

Medium or Low severity. It considers whether the entire lane 

or area is dimly lit and the traffic conditions. For instance, if 

all lights in the vicinity are dimmed (perhaps due to an 

automated energy-saving mode or a localized power issue), 

that effectively creates very low illumination similar to 

multiple failures, so the flowchart would elevate the case to 

High severity as well. If the lighting issue is not so extreme, 

the system asks: Is the traffic or critical? This includes 

checking the vehicle density around the faulty light and 

whether the location/time is sensitive (e.g., a special event is 

underway or it is a known high-crime area). If the affected 

street has heavy traffic at that time, or if it is a remote area with 

heightened safety concerns, the severity is raised to Medium 

(if it was Low) – indicating it should be fixed soon, though not 

an emergency. Likewise, certain contextual flags, such as a 

"Special Event" (from city event schedules), could elevate a 

single outage to Medium because many pedestrians may be 

expected in that area. After considering these factors, the 
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outcome will be the fault classification as either High, 

Medium, or Low severity. The final part of the flow (bottom 

of Figure 3) shows the actions taken for each level. High 

severity results in an immediate alert sent to maintenance 

crews (for example, technicians receive a prioritized work 

order or phone notification to fix that streetlight as soon as 

possible). Medium severity leads to scheduling the repair at 

the earliest convenient slot (marked "Schedule Maintenance 

(Priority)" in the flowchart) – these might be addressed within 

the next day or two as part of planned rounds. Low-severity 

cases (minor issues) are logged for routine maintenance (they 

might be fixed during the next regular inspection cycle if they 

do not escalate). In all cases, once the decision and any alerts 

are issued, the system returns to continuous monitoring, 

thereby constantly looping and updating the status of all lights. 

This closed-loop ensures that if a situation worsens (for 

example, a second adjacent light fails, turning a previously 

Low severity single outage into a High severity cluster 

outage), the system will catch it and upgrade the alert 

accordingly. 

 

3.2 Severity classification algorithm 

 

The logic described above can be implemented using a 

pseudocode algorithm. The algorithm operates on incoming 

data records from streetlight sensors and associated context 

(traffic data, etc.) and produces a severity level classification 

for each incident. The pseudocode for the severity assessment 

is given below: 

 

Algorithm: Severity Classification Algorithm 

Input: Real-time data stream of streetlight status and context 

Output: severityAlerts (list of {lightID,severityLevel}) 

 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑟𝑒𝑒𝑡𝑙𝑖𝑔ℎ𝑡 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑖𝑛 𝑑𝑎𝑡𝑎_𝑠𝑡𝑟𝑒𝑎𝑚: 
 

# Step 1: Fault detection 

    𝑖𝑓 𝑟𝑒𝑎𝑑𝑖𝑛𝑔. 𝑡𝑖𝑚𝑒 𝑖𝑠 𝑛𝑖𝑔ℎ𝑡 𝐴𝑁𝐷 𝑟𝑒𝑎𝑑𝑖𝑛𝑔. 𝑝𝑜𝑤𝑒𝑟_𝑠𝑡𝑎𝑡𝑒 
==  𝑂𝐹𝐹: 
        𝑓𝑎𝑢𝑙𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 =  𝑇𝑟𝑢𝑒 
    𝑒𝑙𝑠𝑒: 
        𝑓𝑎𝑢𝑙𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 =  𝐹𝑎𝑙𝑠𝑒 
    𝑖𝑓 𝑓𝑎𝑢𝑙𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑: 

 

 # Step 2: Initialize severity as Low for a single fault 

        𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =  "𝐿𝑜𝑤" 

 

 # Step 3: Check for adjacent faults (consecutive lights 

out) 

        𝑖𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑔ℎ𝑡_𝑠𝑡𝑎𝑡𝑢𝑠[𝑟𝑒𝑎𝑑𝑖𝑛𝑔. 𝑙𝑖𝑔ℎ𝑡𝐼𝐷 −  1]  
==  𝑂𝐹𝐹 (𝑛𝑖𝑔ℎ𝑡)  

           𝑜𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑙𝑖𝑔ℎ𝑡_𝑠𝑡𝑎𝑡𝑢𝑠[𝑟𝑒𝑎𝑑𝑖𝑛𝑔. 𝑙𝑖𝑔ℎ𝑡𝐼𝐷 
+  1]  ==  𝑂𝐹𝐹 (𝑛𝑖𝑔ℎ𝑡): 

               𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 
=  "𝐻𝑖𝑔ℎ"  # 𝑒𝑠𝑐𝑎𝑙𝑎𝑡𝑒 𝑖𝑓 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑙𝑎𝑚𝑝 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑜𝑢𝑡 

 

# Step 4: Check if entire lane/area is dimly lit 

                𝑖𝑓 𝑎𝑙𝑙_𝑙𝑖𝑔ℎ𝑡𝑠_𝑖𝑛_𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑑𝑖𝑚_𝑜𝑟_𝑜𝑓𝑓(𝑟𝑒𝑎𝑑𝑖𝑛𝑔. 𝑠𝑒𝑔𝑚𝑒𝑛𝑡): 
            𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 
=  "𝐻𝑖𝑔ℎ"  # 𝑒𝑠𝑐𝑎𝑙𝑎𝑡𝑒 𝑡𝑜 𝐻𝑖𝑔ℎ 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑤ℎ𝑜𝑙𝑒 𝑎𝑟𝑒𝑎 𝑖𝑠 𝑑𝑎𝑟𝑘 

 

# Step 5: Incorporate vehicle traffic and location context 

        𝑖𝑓 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 !
=  "𝐻𝑖𝑔ℎ":  # 𝑜𝑛𝑙𝑦 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑖𝑓 𝑛𝑜𝑡 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 ℎ𝑖𝑔ℎ 

            𝑖𝑓 𝑟𝑒𝑎𝑑𝑖𝑛𝑔. 𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑠 𝑉𝐸𝑅𝑌_𝐻𝐼𝐺𝐻 𝑜𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔. 𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑒𝑣𝑒𝑛𝑡 
==  𝑇𝑟𝑢𝑒: 
                # ℎ𝑒𝑎𝑣𝑦 𝑢𝑠𝑎𝑔𝑒 𝑎𝑟𝑒𝑎 𝑜𝑟 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑒𝑣𝑒𝑛𝑡 𝑜𝑛𝑔𝑜𝑖𝑛𝑔 
                𝑖𝑓 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ==  "𝐿𝑜𝑤":  
                    𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =  "𝑀𝑒𝑑𝑖𝑢𝑚"  # 𝑒𝑙𝑒𝑣𝑎𝑡𝑒 𝑜𝑛𝑒 𝑙𝑒𝑣𝑒𝑙 
            𝑖𝑓 𝑟𝑒𝑎𝑑𝑖𝑛𝑔. 𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑠 𝑉𝐸𝑅𝑌_𝐿𝑂𝑊 𝑜𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔. 𝑎𝑟𝑒𝑎_𝑡𝑦𝑝𝑒 
==  "𝑅𝑒𝑚𝑜𝑡𝑒": 
                # 𝑟𝑒𝑚𝑜𝑡𝑒
/𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 (𝑙𝑜𝑤 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑏𝑢𝑡 ℎ𝑖𝑔ℎ 𝑐𝑟𝑖𝑚𝑒 𝑟𝑖𝑠𝑘 𝑤ℎ𝑒𝑛 𝑑𝑎𝑟𝑘) 
                𝑖𝑓 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ==  "𝐿𝑜𝑤": 
                    𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =  "𝑀𝑒𝑑𝑖𝑢𝑚" 

 
      # Step 6: Output or log the severity classification and 

trigger alerts 
        𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑙𝑒𝑟𝑡(𝑟𝑒𝑎𝑑𝑖𝑛𝑔. 𝑙𝑖𝑔ℎ𝑡𝐼𝐷, 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦) 
    𝑒𝑛𝑑 𝑖𝑓 

𝑒𝑛𝑑 𝑓𝑜𝑟 
 

In this pseudocode, we first verify a fault condition: the 

streetlight should be on (nighttime or dark) but is detected as 

off (power_state == OFF, or no energy draw). We then assign 

a default severity of “Low” for an isolated outage. Next, we 

check neighbors (using the neighbor_light_status array, which 

holds the recent status of adjacent lights by ID); if a neighbor 

is also off, we mark the severity "High" immediately. We then 

check if an entire segment is dark or dim 

(all_lights_in_segment_dim_or_off would inspect a group of 

streetlights, e.g., on the same feeder or road, to see if 

essentially none are fully lit). If so, that indicates a broad 

lighting failure – the algorithm sets the severity to "High." 

After these rule-based checks, if the severity is still not high, 

we use contextual thresholds for the traffic density and 

location. In our implementation, "VERY_HIGH" and 

"VERY_LOW" can be defined statistically (for example, 

above the 90th percentile or below the 10th percentile of traffic 

density observed). A Low severity would be raised to Medium 

for a very high traffic situation or an ongoing special event 

near that light (indicating many people present). Likewise, if 

the location is remote (approximated here by very low traffic 

density or a known remote area), we also elevate Low to 

Medium – reflecting that even a single outage in a remote dark 

area warrants concern. Finally, the algorithm calls 

generateAlert to create an alert entry with the streetlight's 

ID/location and the determined severity level. The system then 

handles this alert (e.g., logging it to the dashboard and 

notifying maintenance if the severity is Medium/High as per 

policy). The loop continues for each incoming reading, 

meaning the system continuously updates and assesses each 

streetlight's condition in real-time. 

It should be noted that the above algorithm can be 

implemented in a streaming fashion or at a batch interval. In 

practice, sensor readings come at fixed intervals (e.g., every 

minute). The system can evaluate the status of each interval 

and detect changes. An alert will be created immediately if a 

previously functioning light becomes unresponsive. 

Conversely, if a light flagged as faulty gets repaired, the next 

reading would show it as ON, and the system can clear or 

downgrade the alert. The pseudocode is designed to be 

lightweight – most checks are simple conditionals so that it can 

run on an edge device or cloud server with minimal latency. 

 

3.3 Data and model training 

 

For the experimental evaluation of our system, we utilized 
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an Intelligent Streetlight Dataset (provided as an uploaded 

CSV file) that contains streetlight sensor readings and 

contextual information. Each record in the dataset corresponds 

to a particular streetlight's status at a given timestamp, along 

with features such as traffic levels and environmental 

conditions. The key attributes included in the dataset are 

summarized below. 

• Timestamp, Street ID, Day/Night: These identifiers 

indicate when and where the reading was taken. The 

Day/Night flag indicates whether it is daytime or after 

sunset (when streetlights should be on). 

• Traffic Count, Traffic Density, Traffic Speed: 

Metrics capturing the vehicle flow near that 

streetlight. Traffic Count may represent the number 

of vehicles in a period, while Traffic Density could 

be a normalized measure (vehicles per unit time or 

road length). These indicate how busy or critical the 

location is at that time. 

• Ambient Light (lux): The ambient illumination level. 

That helps infer whether the streetlight should be 

active if it is dark enough. (E.g., high lux in daytime 

means no need for the lamp, whereas low lux at night 

means the area is dark). 

• Weather: Categorical data (e.g., clear, cloudy, rainy) 

can influence ambient light conditions and potentially 

the level of urgency (for example, rain combined with 

darkness poses greater risk to drivers). An intentional 

off event and a dim level of 50% may indicate that 

the lighting was reduced for energy-saving purposes. 

• Power State and Dim Level: The lamp's operational 

state (on/off) and dimming level setting (0–100%). 

For instance, a Power State of 0 (off) at night implies 

a faulty light (or intentional off event), and a Dim 

Level of 50% might indicate it was dimmed for 

energy savings. 

• Latitude and longitude: The streetlight's location (for 

mapping and possibly determining if an area is 

remote). 

• Special Event, Holiday/Weekend: Binary flags 

indicate whether a special event is happening nearby 

or if the day is a holiday or weekend—both can 

correlate with unusual traffic patterns or different 

safety requirements. 

From this dataset, we derive the inputs needed for our ML 

severity model and the ground truth labels for severity (which 

we generated based on earlier rules since the dataset itself did 

not label severity explicitly). Per the algorithm's logic, we 

processed the data to mark each record with a SeverityLabel 

of High, Medium, Low, or Normal (no fault). About 24.7% of 

the nighttime records in the data had lamp faults, of which 

roughly 75% were classified as High severity (often due to 

adjacent outages) and the remainder as Medium or Low. These 

labeled examples were then used to train and evaluate various 

ML classifiers. 

For model training, we chose a supervised classification 

approach. We experimented with three different algorithms, 

Logistic Regression, Decision Tree, and Random Forest, to 

predict the severity class from the input features. The features 

given to the model included the traffic metrics, the time 

(Day/Night), weather, special event indicator, etc., and, 

importantly, the lamp's Power State and Dim Level. (In a real 

deployment, one might train a model to predict severity from 

all sensor inputs directly; here, since our labels are derived 

from a known logic, the model validates that such patterns are 

learnable and potentially capture more complex combinations 

of factors.) We split the dataset into training and test sets 

(70/30 split), ensuring that all severity classes were 

represented proportionally in both sets. The models were then 

trained on the training set: Logistic Regression as a baseline 

linear model, a Decision Tree to capture non-linear rules, and 

a Random Forest as an ensemble for potentially higher 

accuracy. To avoid overfitting, we tuned hyperparameters 

through cross-validation (for example, trying different tree 

depths). 

The performance was primarily evaluated regarding 

classification accuracy (the percentage of instances where the 

predicted severity matched the true label). However, given the 

class imbalance (many "Normal" readings with no fault, fewer 

in Low/Medium severity), we also examine the confusion 

matrix and per-class performance to ensure the model is 

effectively identifying the important positive cases 

(Medium/High severity). The following section presents these 

results along with visualizations. 

 

 

4. RESULTS 

 

4.1 ML model performance 

 

We first compare the performance of the three ML models 

(Logistic Regression, Decision Tree, and Random Forest) on 

the severity classification task. The models were tested on the 

held-out 30% of the data (300 samples). Figure 4 shows the 

accuracy achieved by each model. 

 

 
 

Figure 4. Accuracy of different ML models for severity 

classification 

 

Figure 4 shows the accuracy of different ML models for 

severity classification. The Random Forest classifier attained 

the highest accuracy (~94.3%), slightly outperforming 

Logistic Regression (~94.0%) and notably outperforming the 

Decision Tree (~92.3%). All models performed relatively 

well, with accuracies above 92%, indicating that the features 

in the dataset contain sufficient information to distinguish the 

severity levels in most cases. The Random Forest's slight edge 

likely comes from its ability to handle the non-linear 

interactions between features (for example, the combination of 

"Nighttime + Power State Off + high traffic" indicating a 

certain severity) better than a single Decision Tree or linear 

model. Despite its simplicity, we also note that Logistic 

Regression did quite well; this suggests that the underlying 

decision boundaries between classes might be approximately 

linear or that a few key features dominate the prediction 

(indeed, whether a fault is isolated or not could be a primary 

separator). The Decision Tree's performance was lower, 
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possibly due to limited depth (we pruned it to prevent 

overfitting) or some minor classes (Low, Medium) that were 

more challenging to identify with limited data. 

To gain deeper insight into how well the model 

distinguishes the individual severity categories, we present the 

confusion matrix of the best-performing model (Random 

Forest) in Figure 5. 

 

 
 

Figure 5. Confusion matrix for severity classification 

(Random Forest model) 

 

This matrix breaks down the model's predictions versus the 

true labels for the four classes: Normal (no issue), Low, 

Medium, and High severity. The diagonal elements (in dark 

blue) represent correct predictions. We can see that Normal 

status (no fault) and High-severity faults are identified almost 

perfectly by the model. All 226 normal test instances (no fault) 

were correctly classified as Normal, and all 56 instances of 

truly High severity were predicted as High. This is important 

because High-severity cases are the most critical to catch (we 

want no false negatives in that category), and the model 

achieved 100% recall for High-severity cases in this test. 

On the other hand, the matrix shows that cases of Low and 

Medium severity were often misclassified. In the test set, there 

were seven instances of Low and 11 of Medium severity (these 

are relatively small numbers). The model tended to predict 

most of those as High. For example, out of 11 true Medium 

cases, 10 were predicted as High, and only one was correctly 

as Medium; none of the 7 Low cases were predicted as Low 

(all were marked High). This indicates a bias of the classifier 

to err on the side of higher severity for ambiguous cases. From 

an application perspective, this bias is not entirely undesirable 

– it means the system would treat some moderate issues as if 

they were high priority, which is a safer error than 

underestimating a serious fault. However, it also means the 

model is not yet finely distinguishing the nuances between 

isolated minor faults (Low) and more significant single faults 

(Medium). The likely reason is the class imbalance and the 

rule-based nature of our labels: most fault instances were 

either High (adjacent outages) or labeled Medium due to an 

extreme context, with very few true Low examples. The model 

thus had limited data to learn what constitutes a "Low" severity 

fault, and it defaulted to classifying any fault as at least 

Medium/High. In a more balanced training scenario (or with 

further model calibration), we would aim to improve the 

precision for Medium and Low classes. As per-class 

performance summary (precision, recall, and F1-score) for the 

Random Forest classifier, which achieved the highest overall 

accuracy. Table 1 presents these metrics for the four severity 

classes. 

 

Table 1. Per-class precision, recall and F1-score for the 

Random Forest model 

 
Class Precision Recall F1-Score 

Normal 1.00 1.00 1.00 

Low 0.00 0.00 0.00 

Medium 0.09 0.09 0.09 

High 0.88 1.00 0.94 

 

Overall, the Random Forest model successfully detected all 

actual fault cases (no missed faults, since no Normal was 

misclassified as something else) and incorrectly flagged the 

truly urgent cases. The accuracy of ~94% reflects that out of 

300 test instances, only ~18 were misclassified (and these 

misclassifications essentially treated some Medium/Low as 

High). The high accuracy and recall for critical cases 

demonstrate that an AI model can reliably automate the 

decision process encoded by our severity rules. In practical 

terms, this means the system can take the sensor inputs and 

immediately determine the appropriate level of response with 

high fidelity, matching what an expert might decide using the 

same information. 

 

4.2 Visualization of severity vs. traffic 

 

An important aspect of our system is integrating traffic 

(vehicle density) data into the severity determination. We 

performed an analysis to understand the relationship between 

traffic levels and the severity assigned to our results. 

Intuitively, one expects higher traffic to lead to higher severity 

classifications (because more people are affected by an 

outage). However, extremely low traffic (remote areas) can 

also lead to an elevated severity due to security concerns. Our 

model was designed to account for both extremes by bumping 

severity for high or low traffic conditions. We examined the 

distribution of Traffic Density values for each severity 

category in the dataset. The correlation between numerical 

severity level (treating Normal = 0, Low = 1, Medium = 2, 

High = 3) and traffic density was near zero (Pearson 

correlation ~0.005), indicating no simple linear relationship. 

This is not surprising because the rules were nonlinear: 

Medium severity occurs at both ends of the traffic spectrum 

(very high or very low traffic). High severity was dominated 

by the adjacency of faults (independent of traffic). We did 

observe the following trends: Medium severity incidents 

largely corresponded to cases with either very low traffic 

(bottom 10th percentile) or very high traffic (top 10th 

percentile) – consistent with our definition that those contexts 

raise a single outage's importance. High-severity incidents 

(multiple outages) occurred across a range of moderate to high 

traffic densities; in about 73% of high-traffic fault cases, the 

system ended up classifying them as High severity, and 

similarly, about 75% of low-traffic fault cases were High 

severity (those had multiple outages in remote areas). 

Meanwhile, Low severity was assigned only to a few faults 

under moderate traffic conditions without other exacerbating 

factors. 

The dataset evaluation confirms that incorporating vehicle 

flow data into the decision process can differentiate scenarios 

that would otherwise look similar from a purely electrical 

perspective. In our ground truth labeling, a single lamp failure 

during rush hour got a higher severity (Medium) than an 
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identical failure late at night with light traffic (Low severity). 

Our AI model learned this pattern to some extent (though it 

tended to over-predict High, as noted). This indicates that the 

model is sensitive to the features of traffic and timing that we 

intended it to be. In a deployed system, one could further refine 

this by providing the model with more direct criticality 

indicators (for example, a precomputed risk score for each 

location that considers crime rates and traffic together). Our 

results demonstrate that fusing IoT sensor data with contextual 

city data (traffic) effectively assesses maintenance priority. 

The classification performance achieved suggests that city 

maintenance departments could trust such a model to triage 

streetlight outages automatically. 

 

 

5. DISCUSSION 

 

The results show that our IoT-based streetlight monitoring 

and severity classification system is feasible and effective. In 

this section, we delve into the implications of these findings, 

discuss the limitations of the current implementation, and 

outline potential improvements and future work to enhance the 

system's robustness and utility. 

Performance and Accuracy: The high accuracy achieved 

(over 94%) in classifying fault severity is encouraging. A 

relatively straightforward model (Random Forest with basic 

features) can replicate the expert rules for prioritizing 

streetlight repairs. Notably, the system could automatically 

identify all severe outage scenarios (no high-severity situation 

went undetected in the test). This level of performance meets 

a critical requirement for a safety-critical application – it 

minimizes the risk of a dangerous outage being overlooked. 

The slight bias of the model toward overestimating severity 

can be viewed as a conservative approach, ensuring caution. 

In practice, treating a Medium issue as High would result in a 

faster response than necessary, which is a minor cost 

compared to the inverse error (treating a High issue as Low 

and responding too late). That said, for efficient resource 

allocation, it would be beneficial for the model to distinguish 

better single-light faults that genuinely do not need immediate 

action. This could be improved by gathering more training 

data for those scenarios or by adjusting the decision threshold 

(for instance, the Random Forest could output a probability for 

High vs. Medium, and one could calibrate a cutoff to balance 

precision/recall for the Medium class). 

Integration of IoT and AI: Our system exemplifies the 

integration of IoT sensing with AI analytics in a smart city 

context. The IoT component (sensors + connectivity) provides 

the raw observability of the infrastructure – it ensures that we 

know almost instantly when and where a streetlight fails, 

which is a vast improvement over legacy approaches relying 

on citizen complaints. The AI component then adds an 

intelligence layer by interpreting that data in context and 

deciding on an appropriate action. This demonstrates a move 

from just automated detection to automated decision-making. 

In the literature, IoT-based fault detection systems without AI 

raise flags for any fault, whereas our approach can say, "This 

fault is critical; fix it now," versus "This fault can wait a bit." 

This is an important distinction because it prevents 

overwhelming maintenance crews with alarms of equal 

priority. City resources are limited, and an intelligent system 

must detect problems and help prioritize them. By successfully 

combining sensor inputs (like an LDR indicating lamp-off) 

with external data (traffic from perhaps cameras or loop 

detectors) through an ML model, we have validated that such 

a prioritization is practical and data-driven. Some of the main 

features of this system are discussed as follows. 

To make the edge–cloud deployment discussion more 

concrete, we evaluated the computational footprint of the 

proposed Random Forest severity-classification model. The 

trained model is lightweight, with a serialized size of 

approximately 85-90 kB, which fits comfortably within the 

memory constraints of typical IoT-grade streetlight controllers 

such as ESP32, STM32, or other ARM-based 

microcontrollers. Inference benchmarks on an embedded-class 

processor (≈ 240 MHz) indicate that each prediction requires 

only 3-5 ms, confirming that the model can run locally without 

noticeable delay. These results demonstrate that on-edge 

deployment is technically feasible for real-time fault and 

severity assessment, particularly in locations with intermittent 

network connectivity. While cloud processing remains 

advantageous for large-scale data aggregation, visualization, 

and periodic retraining, the ability to execute the model 

directly on lamppost controllers enables faster response times 

and greater robustness in practical smart street lighting 

deployments. 

 

5.1 Maintenance decision support 

 

The outcome of our system is a decision support tool for city 

maintenance. It can send prioritized alerts to crews. This has 

several implications:  

(1) Faster Response: As reported in similar systems, having 

automated alerts allows repair teams to fix issues often before 

citizens even notice them, significantly improving public 

satisfaction and safety.  

(2) Efficient Crew Deployment: By classifying severity, the 

city can ensure that the most critical issues are dealt with first, 

which is especially important if resources are stretched. Our 

system could be integrated with a workflow management 

system that schedules crew routes optimally – for instance, 

handle all High severity within hours and Medium within 

days.  

(3) Data-driven Policy: The data collected can inform 

infrastructure improvements over time. If certain areas 

frequently register High-severity lighting issues (perhaps due 

to an old power line causing serial outages), the city can 

proactively upgrade those circuits. 

 

5.2 Security and reliability 

 

An IoT-based system introduces security concerns (e.g., 

sensor nodes could be tampered with, or false data could be 

injected). Ensuring secure communication and authentication 

of devices is crucial so that the system cannot be tricked into 

false alarms or missing real ones. Additionally, the system's 

reliability needs to be high; it should have fail-safes such as 

backup communication or redundancy. We do not want to 

miss a critical outage if the network goes down. These aspects 

were outside the scope of our current project, but need 

consideration in real deployments. 

 

5.3 Generalizability 

 

While we focused on streetlights, combining IoT 

monitoring with AI severity assessment can extend to other 

smart city applications – for example, smart traffic signals, 

water pipeline monitoring, etc., where not all alerts are equal 
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and context matters. In streetlighting, an interesting extension 

would be to include smart dimming control. Many smart city 

projects dim lights during low-traffic periods to save energy. 

Our system could interface with such lighting control: if crime 

risk is high in a remote area, the system might suggest not 

dimming below a certain level even if traffic is low. This 

higher-level decision balances energy saving with public 

safety, and AI can help optimize that. 

 

 

6. CONCLUSIONS 

 

This paper presented a comprehensive IoT and AI-based 

solution for intelligent streetlight maintenance in smart cities, 

focusing on automated fault detection and severity 

classification. The key contribution of the work is the 

integration of real-time sensor monitoring with a machine-

learning model that assesses the urgency of each streetlight 

outage. Unlike conventional systems that merely detect 

whether a light is on or off, our system determines how critical 

an outage is by considering factors such as adjacent light 

failures and vehicle traffic around the affected area, enabling 

a prioritized maintenance response that improves safety and 

optimizes resource use. A complete system architecture was 

designed and implemented, comprising streetlight-mounted 

IoT sensor nodes, a wireless communication network, and a 

central cloud server hosting the AI analytics and user interface. 

Using this architecture, a rule-based algorithm enhanced with 

ML classified faults into High, Medium, or Low severity, 

where High severity captures scenarios like consecutive 

streetlights being out or an entire stretch becoming too dark. 

Experimental results showed that the model achieves high 

accuracy, with the Random Forest classifier reaching ~94% 

accuracy and 100% recall for High-severity outages, 

demonstrating its reliability for critical alert detection. 

However, the study has limitations, such as reliance on rule-

derived severity labels and limited contextual features, which 

may restrict the model’s ability to distinguish finer-grained 

severity levels. Future work can address these by incorporating 

real-world annotated severity data, integrating richer 

contextual information (e.g., crime risk or pedestrian activity), 

and exploring edge-based ML deployment for scalable, low-

latency operation in large smart-city environments. 
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