
Design and Implementation of a Smart Dual-Stage Fire Crisis Management System Using 

Raspberry Pi for Safety and Security Applications 

Irianto1 , Jamil Abedalrahim Jamil Alsayaydeh2* , Adam Wong Yoon Khang2 , Mazen Farid3 , 

Safarudin Gazali Herawan4  

1 Department of General Education, Faculty of Resilience, Rabdan Academy, Abu Dhabi 22401, United Arab Emirates  
2 Department of Engineering Technology, Fakulti Teknologi Dan Kejuruteraan Elektronik Dan Komputer (FTKEK), Universiti 

Teknikal Malaysia Melaka (UTeM), Melaka 76100, Malaysia  
3 Faculty of Information Science and Technology, Multimedia University, Melaka 75450, Malaysia 
4 Department of Industrial Engineering, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia 

Corresponding Author Email: jamil@utem.edu.my

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ijsse.151011 ABSTRACT 

Received: 5 September 2025 

Revised: 6 October 2025 

Accepted: 17 October 2025 

Available online: 31 October 2025 

Advances in Internet of Things (IoT) and embedded computing have made it possible to 

build smarter fire alarms that reduce false triggering, not just detect heat or smoke. This 

study presents a Raspberry Pi–based fire crisis controller that uses two-stage verification: 

an infrared flame sensor triggers first, then a Pi Camera runs OpenCV-based image checks 

to confirm fire before an alert is escalated. Requiring agreement between hardware 

sensing and vision helps suppress nuisance activations. The prototype integrates the flame 

sensor, camera, and a piezo buzzer with software for image filtering, database logging, 

and web-based IoT alerts. In 30 controlled indoor trials, it achieved 98% average detection 

accuracy and reduced false alarms by 92% compared with a baseline single-sensor flame 

detector. End-to-end response from ignition to alert activation averaged 9.4 s and stayed 

under 10 s in all scenarios. After confirmation, the controller sounds the buzzer and posts 

an alert through the web interface, enabling faster response. Overall, the results show early 

detection with strong false-alarm suppression using low-cost hardware suitable for 

residential and small industrial settings. Future work will add smoke and temperature 

sensing, support offline operation during network outages, and explore RFID tracking of 

safety equipment to improve on-site coordination.  

Keywords: 

fire detection and prevention, safety and 

security engineering, crisis management 

system, Raspberry Pi, IoT-based alerting, 

false alarm reduction 

1. INTRODUCTION

Fire accidents remain a serious risk to life and property, so 

detecting an incipient event in real time is critical for early 

evacuation and faster firefighting response [1, 2]. Yet many 

deployed alarms still rely on a single trigger, usually smoke or 

heat. In normal indoor settings, dust, steam, and cooking 

aerosols can disturb these sensors, raising the likelihood of 

false alarms [3, 4]. False triggers carry real consequences. 

They disrupt activities, prompt unnecessary evacuations, and 

add avoidable costs. Repeated nuisance alarms also cause 

alarm fatigue, where people react more slowly or stop taking 

alerts seriously, even during genuine emergencies [5]. The 

takeaway is clear: fire detection needs smarter decision logic 

that filters non-fire conditions without delaying a real warning. 

Fire-safety surveys report that single-sensor alarms can 

produce frequent nuisance triggering in real deployments, 

especially under steam, dust, and reflective lighting. Reported 

ranges include about 25-35% in residential settings and up to 

roughly 40% in some industrial conditions (see recent fire-

safety survey reports for these figures). These rates waste time, 

burden responders, and often lead users to silence or disable 

the alarm. A similar limitation appears in many Raspberry Pi 

prototypes that rely on one modality only, either a flame sensor 

or vision. Under fire-like disturbances such as sunlight flicker 

or hot reflections, reported false positive rates can exceed 20% 

in stressed tests. Many of these systems also stop at local 

logging or a buzzer, which limits real-time coordination. 

This motivates a dual-stage sensor plus vision verification 

design tied to web-based alerting, aiming to suppress false 

alarms without delaying notification. 

Recent progress in Internet of Things (IoT) and embedded 

computing has made fire monitoring more capable than what 

single-sensor alarms can offer, and the Raspberry Pi is often 

used as the hub for these low-cost systems. It is compact, 

supports Wi-Fi and cameras, and exposes simple GPIO 

interfaces, so it can read sensors and run lightweight analytics 

on the same device. When the Raspberry Pi is paired with 

multiple sensors and basic image processing, the design can 

become both faster and more selective. Vision algorithms can 

examine flame cues, such as motion and color patterns, and 

reject common “fire-like” disturbances that would otherwise 

trigger false alarms [6]. In the same direction, industry 

evaluations of multi-sensor detectors show that combining 

smoke, heat, and flame signals reduces nuisance alarms while 

still supporting early detection, because a single noisy channel 
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is less likely to dominate the decision. 

This project addresses a practical gap in low-cost fire 

alarms: many systems trigger on a single unverified signal, 

which increases false alarms, while others lack real-time IoT 

notification that supports coordinated response. The result is 

all too often either annoying false alarms popping up without 

ceasing or a delayed response when time is of the essence. To 

bridge that gaping hole between detection and reaction, we've 

developed a compact, cost-effective controller centered 

around two-stage verification. A hardware flame sensor zaps 

out an initial trigger fast, then a camera on a Raspberry Pi kicks 

in to run some image analysis checks to verify whether what 

it's seeing actually looks like a genuine fire scenario. Only 

once the fire's confirmed does the controller send out a web-

based alert to all the relevant people, like building managers, 

response teams, and anyone else who needs the heads up, so 

it's not just a local buzzer that goes off. 

This study has three objectives. First, we implement a two-

tier fire detection workflow that uses a flame sensor for rapid 

triggering and computer vision for confirmation, so the alarm 

is based on validated evidence rather than a single noisy signal. 

Second, we develop a connected management layer that 

records the locations of fire-safety equipment and automates 

emergency notifications to the right people when an event is 

confirmed. Third, we evaluate the complete system under 

realistic conditions and report its performance, with emphasis 

on false-alarm reduction and response time. By combining IoT 

alerting with sensor plus vision validation, the system is 

designed to improve situational awareness and support faster, 

better coordinated action during an incident. The rest of the 

paper describes the architecture and implementation in the 

Methodology section, presents the evaluation in Results and 

Discussion, and closes with key findings and future 

improvements. 

Most related work focuses on one path at a time. Some 

studies rely on a single sensor, while others use vision-based 

detection, but they are often implemented in isolation and do 

not cross-check decisions across modalities. The same pattern 

appears in many Raspberry Pi prototypes: They detect locally 

and stop there, with limited support for IoT dashboards, event 

logging, or automated notification workflows. This study 

responds to those gaps with a dual-stage verification design. A 

flame sensor provides a fast first trigger, then image analysis 

confirms whether the trigger matches true fire behavior, which 

helps reduce false alarms without slowing the response. 

Beyond detection, the system includes a web-based 

monitoring and alerting layer. It logs events in real time and 

supports coordination, including guiding responders to the 

recorded locations of safety equipment. This work contributes 

three elements. First, a low-cost Raspberry Pi controller that 

pairs a flame sensor with vision verification, so triggers are 

confirmed before escalation. Second, an alert and management 

module that pushes notifications to the right stakeholders 

through a web interface and keeps a complete event log. Third, 

an experimental validation under varied conditions showed 

higher detection accuracy, fewer false alarms, and response 

times measured in seconds, as reported in this study. 

 

 

2. LITERATURE REVIEW 

 

Fire alarm systems are built for early detection and 

coordinated response. A standard setup includes a control 

panel, initiating devices such as manual call points or 

automatic detectors, notification devices like sirens and 

strobes, and interfaces that support evacuation and 

suppression. In practice, many installations still rely on a 

single cue, usually smoke or heat, and that creates a known 

weakness. Dust, steam, and cooking aerosols can mimic fire 

signatures indoors, increasing false alarms [7, 8]. These 

nuisance events disrupt operations and reduce trust, and 

repeated triggers can cause alarm fatigue and slower reactions 

during real emergencies [9]. To improve early-stage detection, 

researchers have expanded sensing and communication. Early 

electronic nose systems used gas-sensor arrays to detect 

combustion products, and Charumporn et al. [10] showed they 

can detect smoke-related gases early, although selectivity 

limits still produced nuisance triggers. Later work [11, 12] 

adopted wireless architectures for easier deployment and 

remote monitoring, with Dong et al. [12] reporting lower 

power use and improved flexibility in low-cost wireless 

designs. Wireless sensor networks, including ZigBee-based 

topologies, then enabled multi-sensor fusion using inputs such 

as temperature, humidity, and dust, improving coverage and 

reducing false alarms relative to single sensor triggering [13]. 

Because each sensor behaves differently, Table 1 compares 

flame, smoke, and temperature sensing. This study emphasizes 

flame sensing due to its fast response and low cost, while 

smoke and temperature sensors, although useful in specific 

cases, can be more expensive and more sensitive to benign 

indoor conditions that cause false alarms [14]. Takeaway: 

dependable detection comes from designs that match real 

indoor noise sources, not ideal lab conditions. 

Computer vision can strengthen fire alarms that rely only on 

sensors because it adds visible evidence. Instead of triggering 

on a single threshold, image processing looks for flame cues 

such as color patterns, irregular contours, and flicker dynamics 

over time. Thengade et al. [15] showed a Raspberry Pi pipeline 

that improves frame quality using kernel filtering and 

morphological operations before running flame detection, 

which increased reliability in small and open areas. The 

takeaway is that vision works best as a confirmation step; it 

helps cut false triggers when it verifies a sensor trigger rather 

than replacing it. 

 

Table 1. Comparison of fire detection sensors 

 
Sensor Type Detection Principle Advantages Limitations 

Flame sensor 
Detects infrared radiation (760–1100 

nm) emitted by open flames 

Fast response; cost-effective; accurate for 

visible fire 

Cannot detect smouldering fires; 

sensitive to IR light sources 

Smoke sensor 

Detects smoke particles (ionization, 

photoelectric, aspirating, or laser-

based) 

Detects smouldering and concealed fires; 

widely used in commercial systems 

Higher cost; prone to false alarms 

from dust, steam, and aerosols 

Temperature 

sensor 

Monitors a sudden rise in ambient 

temperature 

Effective for monitoring heat-sensitive 

environments; reliable for high-temperature 

thresholds 

Slower response to incipient fires; 

less suitable for rapid evacuation 

needs 
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Raspberry Pi–based vision systems can detect visible 

flames with high accuracy by using cues such as color, contour 

shape, and flicker dynamics. For example, Thengade et al. [15] 

and Khan et al. [16] reported that contour-based detection and 

color segmentation are effective in small and open 

environments where the flame is clearly visible. The limitation 

is also clear: image-only decisions can be misled by 

reflections, bright lighting, or objects that resemble fire, which 

increases the risk of false positives in real rooms and corridors. 

Several studies have tried to make these systems more 

operational. Dhanujalakshmi et al. [17] coupled camera-based 

detection with Wi-Fi or GSM messaging to reduce notification 

delay, but the design still lacks multimodal verification and 

can increase bandwidth and processing load. For larger spaces, 

Wong and Fong [18] used richer spatial, spectral, and temporal 

video indicators to improve robustness and track flame spread, 

yet continuous video analysis raises computational cost, which 

is difficult to justify for low-cost residential deployment. The 

takeaway is that vision improves recognition, but vision alone 

remains fragile. A hybrid workflow, where a fast sensor trigger 

is confirmed by image analysis, better matches the constraints 

and noise sources of practical deployments. Overall, vision-

based approaches show high recognition accuracy, with 

modern models achieving over 95–98% detection accuracy 

while reducing false positives from “fire-like” phenomena 

such as reflections or bright lights [19]. The reliance on vision 

alone is also not sufficient, highlighting the need for a hybrid 

design. Comparative work has shown that vision systems can 

complement sensors by providing verification, thus 

minimizing nuisance triggers. This motivates the proposed 

two-tier design. 

Wu et al. [20] explains about a smart fire alarm system that 

is integrated with a wireless sensor network using ZigBee. 

This project is proposed for a fire alarm system that uses the 

ZigBee mesh topology. There are many sensors used in this 

project, which are temperature, humidity, pressure, and dust 

sensors. The proposed system uses an intelligent way of 

detecting smoke that can distinguish the air more accurately 

and thus reduce false fire alarms. 

Despite the strengths of vision-based methods, reliance on 

a single modality remains a limitation. Industrial studies 

confirm that multi-sensor detectors (combining smoke, heat, 

flame, and vision) achieve far fewer false alarms than single-

sensor systems [21]. This principle underpins recent 

innovations where IoT-enabled devices integrate sensing, data 

logging, and real-time communication. Modern IoT fire 

monitoring systems combine edge computing (for rapid local 

detection) with cloud platforms that log data, visualize status 

on dashboards, and send automated SMS/email alerts [22]. 

Keano and Jose [23] reported that adding IoT connectivity to 

fire-safety systems can improve evacuation management and 

reduce delays in mobilizing first responders, because alerts are 

delivered quickly to the right stakeholders rather than staying 

local to the device [23, 24]. This is reflective of a wider trend 

in the field: moving away from just detecting fires to 

implementing systems that can actually support decision 

making, coordination, and folks being able to bounce back 

after an incident. In that regard, connecting up lots of different 

devices via the internet is definitely a step forward, but on its 

own, it's just not enough. Many earlier prototypes still rely on 

a single detection modality, either sensors alone or vision 

alone, which leaves them exposed to nuisance triggers or 

visual confusion. Table 2 summarizes these related systems 

and contrasts their limitations with the dual-tier, IoT-enabled 

design proposed in this study. The takeaway is that the 

strongest designs couple actionable notification with verified 

detection, not one without the other. 

 

Table 2. Comparative summary of related fire detection systems 

 

Study / 

Approach 

Hardware 

Platform 
Detection Method Additional Features Limitations 

Dong et al. [12] 
Wireless sensor 

nodes 

Temperature, humidity, 

dust sensors (ZigBee 

WSN) 

Distributed monitoring, low 

power 

Lacks visual confirmation; prone to 

false triggers from environmental 

noise 

Thengade et al. 

[15] 

Raspberry Pi + 

Camera 

Image processing (color 

segmentation, contour 

detection) 

Buzzer and LED indicators 

Reliable in small areas, but prone to 

false alarms from fire-like 

phenomena; no IoT integration 

Dhanujalakshmi 

et al. [17] 

Raspberry Pi + 

Camera 

Image-based detection 

with Wi-Fi/GSM alerts 

Real-time image transmission 

to users 

Higher cost and bandwidth demand; 

no multi-sensor verification 

Wong and Fong 

[18] 

Video cameras 

(PC-based) 

Video fire detection 

with spatial, spectral, 

and temporal indicators 

Flame spread tracking and 

prediction 

Complex setup, not cost-effective for 

residential/SME use 

BRE Group [25] 
Industrial multi-

sensor detectors 

Smoke + heat + flame 

fusion 

Commercial-grade accuracy; 

reduced false alarms 

High cost, limited scalability for 

small installations 

Proposed study 

Raspberry Pi + 

Flame Sensor + 

Camera 

Two-stage verification 

(sensor + vision) 

IoT-enabled dashboard, 

automated emergency 

notifications, event logging, 

and equipment guidance 

Achieves > 95% detection 

accuracy, > 90% reduction in false 

alarms, response time < 10 s; 

scalable and economical 

 

Selecting the appropriate hardware platform is critical. 

Arduino and 8051 microcontrollers are often used for simple, 

repetitive tasks such as temperature logging or buzzer control, 

but they lack built-in support for networking and multimedia 

processing. In contrast, the Raspberry Pi is a single-board 

computer that offers higher computational power, USB and 

HDMI ports, Wi-Fi and Bluetooth, and camera integration. 

These features make the Raspberry Pi especially suitable for 

edge AI and IoT-based fire detection, where local processing 

and real-time image analysis are required [20, 26]. 

Comparative studies consistently show that Raspberry Pi 

outperforms Arduino and AVR boards in complex monitoring 

tasks where connectivity and multimedia support are essential. 

The literature points to three clear gaps. Many Raspberry 

Pi–based systems use either sensors or vision alone, and few 

apply dual-stage verification where one trigger is confirmed 

by the other before raising an alarm. IoT support is also 

limited, with many prototypes stopping at local alerts instead 
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of dashboards and automated notifications. A third gap is cost-

effective fusion. Industrial systems show the value of 

combining modalities, yet academic prototypes often overlook 

simple, low-cost pairings like a flame sensor plus a camera that 

could improve reliability. Recent studies published in the 

International Journal of Safety and Security Engineering have 

highlighted complementary aspects of fire safety research, 

including the influence of building geometry on fire spread 

dynamics and the role of user awareness in effective fire 

emergency response [27, 28]. While these works focus on 

structural fire behavior and human factors, respectively, they 

do not address real-time fire detection or automated 

verification mechanisms, reinforcing the need for intelligent, 

sensor- and vision-based fire detection systems such as the one 

proposed in this study. 

This study closes the identified gaps with a dual-tier 

detection workflow. A flame sensor provides rapid 

preliminary triggering, then a Raspberry Pi camera performs 

vision-based confirmation before the alarm is escalated. This 

cross-checking reduces the false alarms that are common when 

a system depends on a single trigger. Beyond detection, the 

design includes a web-based crisis management layer that logs 

events, shows live status, and sends real-time notifications to 

emergency contacts, so coordination begins immediately 

rather than relying on someone noticing a local buzzer. The 

literature review informs these choices by clarifying what past 

systems do well and where they fail, especially around false 

triggers, notification latency, and edge-device constraints. It 

also guides practical component selection by matching 

hardware and software capabilities to real indoor conditions. 

In this work, components were selected based on evidence 

from prior studies and targeted testing, with the aim of 

improving reliability without increasing cost or complexity. 

 

 

3. METHOD 

 

3.1 System overview 

 

The Smart Fire Crisis Controller is a two-stage detection 

system built on a Raspberry Pi that combines IoT reporting 

with computer vision verification. It first detects early fire cues 

using an infrared flame sensor, then confirms the event using 

camera-based image analysis before activating an alarm or 

issuing notifications. This hybrid workflow preserves fast 

sensor response while reducing false alarms through visual 

confirmation. The architecture is modular and organized into 

three layers. The sensing layer contains the flame sensor and 

camera for data capture. The processing and control layer runs 

on a Raspberry Pi 3 Model B+, which executes the decision 

logic and image checks. The notification and response layer 

includes a piezoelectric buzzer and a web dashboard for alerts, 

event logging, and remote monitoring. Figure 1 summarizes 

the full flow, from sensor input to verified event reporting on 

the IoT dashboard. 

 

3.2 Design methodology 

 

The system was developed using a modified Waterfall 

approach with defined stages and small refinements within 

each stage. Work began with requirements analysis to capture 

user needs and practical constraints on hardware, power, and 

software. The design stage then fixed the overall architecture, 

selected components, prepared the circuit layout, and defined 

the detection logic. Implementation integrated the hardware 

with Python modules on the Raspberry Pi, followed by testing 

to confirm functionality, detection accuracy, and response 

time under both controlled and variable conditions. 

Deployment finalized the web server and database 

configuration, and maintenance focused on tuning based on 

test outcomes. Figure 2 summarizes this sequence. The 

takeaway is that a staged workflow reduced integration 

mistakes by keeping each step testable before moving on. 

 

 
 

Figure 1. System architecture and communication layers 

 

 
 

Figure 2. Modified waterfall design process 

 

3.3 Hardware design 

 

3.3.1 Central controller 

The Raspberry Pi 3 Model B+ serves as the central 

controller because it balances capability and cost. Its 1.4 GHz 

quad-core 64-bit processor and 1 GB RAM are sufficient for 

on-device OpenCV processing, while built-in Wi-Fi and 

Bluetooth support networked alerts without extra modules. 

GPIO pins allow direct sensor interfacing, and the CSI port 

enables a simple, low-latency connection to the Pi Camera. 

 

3.3.2 Sensing components 

The sensing layer uses three components with clear roles. 

An infrared flame sensor, sensitive in the 760–1100 nm band, 

serves as the first trigger and sends a digital HIGH signal to 

the Raspberry Pi when flame radiation is detected. Once 

triggered, the camera module captures frames for verification 

2084



 

using a 5-megapixel sensor at 2592 × 1944 resolution, with 

capture delay kept below 0.5 s per frame. A piezoelectric 

buzzer provides local warning, producing a long beep at the 

initial trigger and switching to a continuous alarm after fire is 

confirmed. 

 

3.3.3 Connectivity and power 

The controller connects to the web server over IEEE 802.11 

Wi-Fi to support real-time notifications and event logging. 

Power is provided by a regulated 5 V, 2.5 A supply for the 

Raspberry Pi and connected peripherals. To reduce energy use, 

the camera remains off during standby and is activated only 

after the flame sensor triggers. Figure 3 presents the wiring and 

GPIO connections between the Raspberry Pi, sensor, camera, 

and buzzer. 

 

 
 

Figure 3. Hardware integration and wiring diagram 

 

3.3.4 Hardware selection rationale 

Component selection focused on accuracy, cost, and ease of 

deployment. The Raspberry Pi offers built-in Wi-Fi and direct 

camera support, avoiding extra communication or imaging 

modules that are often needed with Arduino-based designs. 

The infrared flame sensor was chosen for fast response and 

low cost while still supporting early flame detection. The piezo 

buzzer provides a strong audible alert with low current draw, 

under 20 mA, which suits continuous standby operation. 

 

3.4 Software design 

 

The software was developed primarily in Python 3 using 

several libraries: 

• OpenCV: Performs image filtering, color 

segmentation, and contour analysis for flame 

recognition. 

• RPi.GPIO: Handles digital input/output between the 

Raspberry Pi and connected sensors. 

• smtplib and Requests: Manage automated email or 

SMS notifications to remote users. 

• Flask / PHP + MySQL: Implement the lightweight web 

server and database backend for event logging. 

The software runs as a continuous loop that reads the flame 

sensor in real time. When the sensor indicates a possible fire, 

the Raspberry Pi turns on the camera and performs a short 

verification step before escalating the alarm. Each frame is 

converted from RGB to HSV to make color filtering more 

stable under lighting changes. The algorithm then isolates 

flame-like pixels using hue 0–50 with saturation above 150 

and value above 200, applies erosion and dilation to remove 

noise, and checks contour properties such as area and 

boundary shape. If the frame passes verification, the alarm and 

notification routines are triggered. If not, the event is logged 

as a false trigger, and the system returns to standby. 

3.4.1 Flame-interferent discrimination and parameter selection 

To reduce false positives from incandescent bulbs, sunlight 

glare, reflections, and hot surfaces, the vision stage combines 

three constraints: color, intensity, and geometry. HSV 

segmentation is used because it is less sensitive to illumination 

shifts than RGB. In our indoor trials using candles and lighters, 

true flames consistently fell within hue 0–50° with high 

saturation and value, while many artificial lights showed lower 

saturation and more uniform brightness. After segmentation, 

erosion and dilation with a 5 × 5 kernel suppresses isolated 

pixels while preserving connected regions, and the kernel size 

was chosen empirically to balance noise removal against shape 

distortion. Final verification uses contour filtering. Regions 

smaller than 500 pixels are rejected because reflection artifacts 

and light flicker tend to produce small, unstable blobs, and 

accepted contours must show irregular boundaries that better 

match real flame edges. These thresholds and limits were 

tuned iteratively across varied indoor conditions, including 

reflective surfaces and ambient lighting. The takeaway is that 

combining simple constraints makes the verification step more 

selective, reducing false confirmations without adding heavy 

computation. 

Figure 4 summarizes the two-tier verification logic. The 

flame sensor provides the first trigger, then the system runs 

image-based confirmation before escalating the alarm. 

The pipeline runs in real time on the Raspberry Pi’s 

multicore CPU. Frame processing latency remains below 1 s 

on average, and when combined with the sensor’s near-instant 

trigger, the end-to-end detection to alert cycle stays under 10 s 

in the reported tests. 

 

 
 

Figure 4. Pseudocode of the two-stage fire detection 

algorithm incorporating HSV-based flame filtering, 

morphological noise suppression, and contour-area validation 

 

3.5 System workflow 

 

Figure 5 presents the end-to-end workflow. The flame 

sensor runs continuously in standby, watching its field of view. 

When it detects a possible heat or flame source, it triggers the 

Raspberry Pi to start the verification stage. The Raspberry Pi 

activates the camera, captures an image, and runs the analysis 
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pipeline. If the image does not confirm fire, the event is logged 

as a false trigger, and the system returns to monitoring. If fire 

is confirmed, the buzzer sounds immediately and the controller 

uploads the event record, including timestamp, location, and 

image evidence, to the database and dashboard. The web 

interface will update in real-time and automatically send out 

alerts to the emergency team as soon as something happens. 

The way the system works, from the moment it's turned on 

right through to sending out those IoT alerts, is laid out in 

detail in Figure 5, that's where you'll see the if-then logic at 

play for distinguishing between actual fires and false alarms. 

 

 
 

Figure 5. System workflow and decision process flowchart 

 

3.6 Testing and evaluation 

 

3.6.1 Experimental setup 

Testing was done in a controlled indoor environment, using 

a very particular setup: a candle and a lighter were placed at 

distances ranging from 10 cm to 60 cm to create a variety of 

flame intensities and angles of view. To make sure our system 

could handle a false alarm, we also ran some tests under 

artificial lighting conditions and near shiny surfaces. Figure 6 

shows the setup in all its glory, the flame source, the Raspberry 

Pi unit, and the camera view all in one place. 

3.6.2 Performance metrics 

System performance was put through its paces using three 

key metrics: detection accuracy, false alarm reduction, and 

how quickly it responded to situations. And the results are laid 

out in Table 3, which gives us the nitty-gritty and tells us how 

to interpret what we're looking at.  

Table 3 shows that the system's nail detection accuracy at 

95% plus and actually does a much better job than usual of 

avoiding false alarms, more than 90% better, to be precise. 

And the average time it took for the system to respond was a 

snappy 10 seconds or less, which is no bad thing. Plus, the 

system was able to keep chugging along at a 98% reliability 

rate, a pretty impressive feat of continuous operation. The 

same trends are mirrored in Figure 7, which gives us a 

snapshot of the system's performance and shows 95% 

accuracy and less than 10% false alarms, a clear step up from 

the usual single-sensor alarms. 

 

 
 

Figure 6. Experimental setup and testing environment 

 

 
 

Figure 7. Performance graph – Detection accuracy vs. false 

alarm rate 

 

Table 3. Performance metrics and evaluation criteria of the proposed fire detection system 

 
Parameter Observed Value / Result Evaluation Criteria 

Detection accuracy > 95% Percentage of correctly detected real fires vs. false negatives 

False-alarm reduction > 90% Reduction in false triggers compared with single-sensor alarms 

Response time < 10 s Time from flame ignition to alarm activation 

System uptime / Reliability 98% Stability of operation over a continuous 12-hour runtime 

 

3.6.3 Web application testing 

We also tested how the web application performed in real-

time - not just when things were going smoothly, but when 

something actually needed to be reported. And what we found 

was that once an event had been confirmed, the dashboard 

would kick in straight away with the sensor ID, the exact time 

it happened, and a big, clear status indicator - green for all 

good, red for a problem. And for good measure, all the events 

were stored away in a MySQL database, just in case we needed 

to go back and review them later. Figure 8 gives us a peek at 
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how the web app and database work together - and how 

seamlessly the alerts and logs keep getting updated. 

 

 
 

Figure 8. Web application dashboard and database interface 

 

3.6.4 Discussion of results 

The results indicate that dual-stage verification can be both 

fast and selective. In the reported tests, detection-to-alert 

remained under 10 s, reliability exceeded 95%, and false 

alarms dropped by more than 90%. Because image analysis 

runs locally on the Raspberry Pi, the buzzer and web alerts can 

be triggered immediately, without cloud delay. In practice, the 

controller links three steps into one workflow: rapid flame 

sensing, camera-based confirmation, and IoT reporting for 

real-time visibility. 

Future work will strengthen robustness and extend 

coverage. Adding smoke and temperature sensors can improve 

early warning when flames are obscured or visibility is poor. 

We also plan to evaluate lightweight machine learning 

classifiers to handle more complex scenes and lighting. 

Finally, a multi-node deployment with coordinated 

dashboards would improve resilience and coverage for larger 

residential and industrial facilities. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Experimental setup 

 

The dual-stage fire detection system was evaluated through 

controlled laboratory experiments to confirm real operating 

behavior. A complete prototype was assembled, integrating 

the flame sensor, Raspberry Pi camera module, buzzer, and the 

IoT web interface described earlier. 

Testing was carried out under varied indoor lighting and 

across multiple flame distances to assess robustness to 

environmental changes. In each run, a small open flame, using 

a candle or lighter, was placed at incremental distances from 

10 cm up to 2 m. Each experiment was repeated 30 

independent times under identical conditions, resulting in a 

total of 30 trials per test scenario. Performance metrics were 

logged automatically in the system database through the IoT 

dashboard for real-time monitoring and post-analysis. The 

experimental performance results across multiple flame 

distances are illustrated in Figure 9. 

Figure 9 summarizes the empirical trends across flame 

distance. Detection accuracy stays above 95% up to about 50 

cm, then declines gradually as the flame moves farther away. 

Response time rises slightly with distance but remains under 

10 s. False triggers are rare and mainly appear at longer ranges 

under strong ambient light, as shown by the red bars. The 

figure also reflects the controlled indoor setup, including flame 

positioning and the Raspberry Pi sensor camera alignment. 

Distances, flame intensity, and lighting were kept consistent 

across trials. All evidence, including sensor activations, 

vision-confirmed alarms, and database logs, was used for the 

quantitative evaluation. 

 

 
 

Figure 9. Experimental performance overview showing 

detection accuracy, response time, and false-alarm behavior 

across tested flame distances 

 

4.2 Sensor validation 

 

The flame sensor acted as a fast first-stage trigger across the 

tested distances. In Figure 6, its digital output switches to 

logic-high almost immediately when a flame appears, and 

detection typically occurs in under 1 s after ignition, which is 

consistent with its IR sensitivity range of 760–1100 nm. 

Within 2 m, the sensor maintained a detection rate above 95%, 

with noticeable signal weakening mainly beyond that range. A 

small number of false triggers occurred under strong ambient 

lighting or near reflective surfaces. These events were logged 

in the database, but did not escalate to a full alarm because the 

second-stage verification rejected them. Overall, the sensor 

works well as a rapid, high-recall trigger, while discrimination 

is handled by the vision stage. 

 

4.3 Image-based fire confirmation 

 

The second stage validates whether a sensor trigger 

corresponds to a real fire. After the flame sensor activates, the 

Raspberry Pi camera captures frames, and the OpenCV 

pipeline analyzes them to confirm fire evidence before alarms 

and notifications are issued. The decision-making process of 

the proposed dual-stage detection algorithm is illustrated in 

Figure 10, showing the validation flow and event sequence 

from sensor trigger to alert logging. shows the real-time 

progression from sensor trigger → image analysis → database 

logging, including time stamps (t = 0–9 s). 

Figure 10 summarizes real-time event handling in the dual-

stage detection algorithm. It starts with the flame sensor 

trigger, then moves through image-based confirmation, alarm 

activation, database logging, and an automated reset. Each 

stage follows the response timing measured in the 

experiments, spanning roughly t = 0 to 9 s. In testing, every 

real flame that appeared within the camera’s field of view was 

confirmed, giving 100% confirmation accuracy for detected 

fires. No false confirmations were recorded under common 

disturbances such as sunlight glare or sudden illumination 

changes. Image capture and analysis added about 1-2 s, so the 

total detection-to-alert latency stayed under 10 s. 
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Figure 10. Algorithm validation flow and detection event 

sequence 

 

 
 

Figure 11. Performance comparison of the proposed system 

vs. the conventional alarm 

 

In practice, this second stage functions as a verification 

filter. It confirms true fire events and prevents nuisance 

triggers from escalating into full alarms. Figure 11 shows the 

impact of this design through a direct comparison with a 

conventional alarm. 

The figure visually compares the proposed dual-stage 

Raspberry Pi–based system against a conventional single-

stage alarm using three core metrics. Detection accuracy 

increases from 80% to 96%, false alarms drop from 80% to 

9%, and response time improves from 15 s to 8 s. Taken 

together, the chart shows a clear shift toward practical 

reliability. The dual-stage verification step keeps alerts fast 

while filtering out noisy triggers, so the system delivers a 

stronger balance of speed and trust than the conventional 

approach. 

 

4.4 Integrated system performance 

 

Integrating sensor-based detection with image-based 

verification produced a dual-stage pipeline that stays fast 

while improving accuracy and robustness. Across 30 

independent trials, the system achieved a mean detection 

accuracy of 96.4% (± 1.8%), while the false-alarm rate was 

reduced by 91.7% relative to the baseline single-sensor 

configuration. The mean end-to-end response time was 8.6 s 

(± 0.9 s), measured from flame ignition to alarm activation, 

with all trials remaining below the 10 s threshold. The mean 

end-to-end response time was 8.6 s (± 0.9 s), measured from 

flame ignition to alarm activation, and all trials stayed below 

10 s. This keeps the alert latency under the target threshold 

while still logging and sounding the alarm promptly, which is 

important for early fire detection scenarios (Table 4). Table 4 

summarizes the measured outcomes from the experimental 

trials and shows that the system detects fire events reliably 

while keeping false alerts low. In addition to point-in-time 

tests, we ran the device continuously for 12 hours and 

observed 98% operational uptime, indicating stable hardware 

behavior and consistent software execution under sustained 

use (Table 4). 

 

Table 4. Quantitative performance summary of the proposed 

fire detection system 

 

Metric 
Experimental 

Observation 
Interpretation 

Detection 

accuracy 
96.4% 

High reliability in 

recognizing genuine fire 

events under all test 

conditions 

False-alarm 

reduction 
91.7% 

Dual-stage verification 

eliminates most nuisance 

triggers (dust, light flicker) 

Average 

response 

time 

8.6 s 
Rapid activation from flame 

ignition to confirmed alarm 

System 

uptime (12 h 

run) 

98.3% 

Stable continuous operation; 

no system crash or 

communication fault 

Data logging 

success rate 
100% 

All valid events have been 

successfully logged to the 

IoT dashboard and database 

 

Figure 12 shows the IoT dashboard used during testing. It 

displays real-time system states, such as normal, sensor-

triggered, and fire confirmed, and it records event IDs, 

timestamps, device source, and verification outcomes. All 

entries were synchronized automatically to a MySQL database 

to support traceability and remote monitoring. 

Figure 13 analyzes those database logs over time. Sensor-

triggered events and confirmed fire incidents follow a 

consistent sequence, with only a small number of filtered 

anomalies, which reflects a low-noise detection process. The 

takeaway is that the system not only detects and verifies 

reliably, it also logs events in a way that supports auditing and 

post-incident review. 

 

 
 

Figure 12. IoT alert logs and database visualization during 

the experiment 
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Figure 13. Database event frequency over time during the 

experiment 

 

4.5 Comparison with previous work 

 

The reported results in the referenced studies were produced 

under different conditions, including flame type, distance, 

lighting, environment, and evaluation protocol. Because of 

these differences, the metrics in Table 5 are used for 

qualitative benchmarking, not direct one-to-one comparison. 

This comparison is included to place the proposed system in 

context against representative approaches in the literature. It is 

not intended to imply identical test setups or strictly equivalent 

numerical performance across all studies. 

Recent work has reported strong fire recognition using 

multi-modal fusion and deep learning, such as CNN-based 

video analysis, but these methods often assume higher 

compute, large labeled datasets, and continuous video 

processing, which can be difficult to sustain on low-cost edge 

devices in real time [29]. In contrast, the proposed system 

keeps processing lightweight by using a flame sensor for rapid 

triggering and vision only for confirmation, so computation is 

spent only when an event is suspected. The goal is operational 

response, verified detection, and IoT alerting, rather than 

modeling fire spread in buildings or measuring user-level 

safety awareness [30]. 

The comparison also clarifies the trade-offs across common 

designs. Single-sensor alarms respond quickly but can 

generate frequent false triggers because there is no verification 

step. Camera-only systems can improve detection specificity, 

but continuous video analysis increases compute load and can 

add latency. The proposed dual-stage workflow avoids that 

trade-off by using fast sensing for the initial trigger and 

running a short vision confirmation only when needed. In our 

tests, false alarms fell by about 90%, while accuracy and 

response time remained competitive, using a simple two-

component design suited to low-cost IoT deployment. 

 

Table 5. Comparative performance analysis with existing fire detection approaches 

 

Study / System 
False Alarm 

Rate 

Response 

Time 

IoT / Network 

Capability 
Remarks 

Thengade et al. [15] 25% ~15 s No 
Good accuracy but frequent false positives; no 

remote alerting 

Dhanujalakshmi et al. 

[17] 
18% ~12 s Yes 

Real-time image alerts; bandwidth-heavy; no 

multi-sensor logic 

Wu et al. [20] 10% 20–30 s Yes 
Reliable but slower; high cost and setup 

complexity 

BRE Group [25] 8% ~10 s Partial High cost; commercial-grade system 

Proposed system < 10% < 10 s 
Full (IoT + Web 

Dashboard) 

High accuracy (> 95%), scalable, economical, and 

IoT-ready 

 

4.6 Discussion of findings 

 

The findings support the two-tier verification approach as 

both fast and dependable. Across the reported experiments, 

accuracy exceeded 95%, end-to-end response stayed under 10 

s, and false alarms dropped by roughly 90% compared with 

single-stage triggering. Three strengths are clear. The 

hardware is low-cost, based on a Raspberry Pi and off-the-

shelf sensors. The IoT layer delivers real-time alerts and 

complete logs, which makes incidents traceable and 

actionable. The modular structure also keeps upgrades 

straightforward, whether that means adding sensors or 

enhancing verification with AI when resources allow. 

The low standard deviation observed across trials indicates 

stable system behavior and consistent detection performance 

under repeated experimental conditions. Figures 12 and 13 

show stable behavior across repeated runs, with consistent 

logging and verification outcomes, which support reliability 

for practical deployment in homes and small industrial sites. 

The main limitations are expected: detection depends on 

distance and a clear line of sight, so larger or obstructed spaces 

may require multiple units for coverage. The current prototype 

also targets open-flame detection, so adding smoke or 

temperature sensing would strengthen early warning in 

smoldering scenarios. Future work can improve adaptability 

and scale. One path is machine learning–based image 

classification for more complex lighting and backgrounds. 

Another is a networked multi-node design that coordinates 

several devices for wider-area monitoring. The validated 

results indicate a good balance of speed, verification, and IoT 

reporting, while the next gains will come from better coverage 

and broader sensing. 

 

4.6.1 Discussion of results 

Although evaluation was conducted indoors under 

controlled conditions, deployment realities were considered in 

the design. In real buildings, motion, clutter, smoke occlusion, 

and shifting lighting can introduce noise, but requiring both a 

sensor trigger and visual confirmation helps suppress transient 

artifacts. Network issues are handled by prioritizing local 

alarms first, so the buzzer activates even during connectivity 

drops. Power is also managed by keeping the camera off in 

standby and enabling it only after a trigger. For installation, an 

enclosure with an appropriate IP rating is recommended to 

protect against dust, humidity, and heat. 

 

 

5. CONCLUSIONS 

 

This study designed and validated a dual-stage, IoT-enabled 
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fire detection system built on a Raspberry Pi. An infrared 

flame sensor provides rapid triggering, then an image-

processing module confirms the event before the alarm is 

escalated. In the reported experiments, detection accuracy 

exceeded 95%, end-to-end response stayed under 10 s, and 

false alarms dropped by about 90% compared with single-

sensor alarms. The web dashboard added practical value by 

supporting real-time monitoring, automatic event logging, and 

immediate notifications, which improve situational awareness 

and response coordination. These results indicate that low-cost 

hardware can produce dependable fire alerts when verification 

is part of the workflow. The current design still has limits, 

mainly line-of-sight dependence and a focus on open-flame 

detection, but the modular architecture makes upgrades 

straightforward, such as adding smoke or temperature sensing 

or introducing AI-based classification for more complex 

scenes. The takeaway is that the proposed controller delivers a 

workable balance of speed, accuracy, and affordability for 

smart building safety. 

Future extensions will follow what we observed during 

testing. On the vision side, we will target the rare false triggers 

caused by strong reflections and sudden lighting changes by 

adopting adaptive HSV thresholds and simple temporal 

stability checks, where a flame region must persist across 

consecutive frames before confirmation. We will also harden 

communication under weak or congested networks. Based on 

the measured response and upload delays, the next version will 

prioritize local-first alarms, then use buffered IoT transmission 

so alerts and logs are still delivered reliably when connectivity 

recovers. Finally, adding smoke or temperature sensing will 

expand coverage to smoldering fires that may not produce a 

clear open flame. 
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