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Advances in Internet of Things (IoT) and embedded computing have made it possible to
build smarter fire alarms that reduce false triggering, not just detect heat or smoke. This
study presents a Raspberry Pi—based fire crisis controller that uses two-stage verification:
an infrared flame sensor triggers first, then a Pi Camera runs OpenCV-based image checks
to confirm fire before an alert is escalated. Requiring agreement between hardware
sensing and vision helps suppress nuisance activations. The prototype integrates the flame
sensor, camera, and a piezo buzzer with software for image filtering, database logging,
and web-based [oT alerts. In 30 controlled indoor trials, it achieved 98% average detection
accuracy and reduced false alarms by 92% compared with a baseline single-sensor flame
detector. End-to-end response from ignition to alert activation averaged 9.4 s and stayed
under 10 s in all scenarios. After confirmation, the controller sounds the buzzer and posts
an alert through the web interface, enabling faster response. Overall, the results show early
detection with strong false-alarm suppression using low-cost hardware suitable for
residential and small industrial settings. Future work will add smoke and temperature
sensing, support offline operation during network outages, and explore RFID tracking of

safety equipment to improve on-site coordination.

1. INTRODUCTION

Fire accidents remain a serious risk to life and property, so
detecting an incipient event in real time is critical for early
evacuation and faster firefighting response [1, 2]. Yet many
deployed alarms still rely on a single trigger, usually smoke or
heat. In normal indoor settings, dust, steam, and cooking
aerosols can disturb these sensors, raising the likelihood of
false alarms [3, 4]. False triggers carry real consequences.
They disrupt activities, prompt unnecessary evacuations, and
add avoidable costs. Repeated nuisance alarms also cause
alarm fatigue, where people react more slowly or stop taking
alerts seriously, even during genuine emergencies [5]. The
takeaway is clear: fire detection needs smarter decision logic
that filters non-fire conditions without delaying a real warning.

Fire-safety surveys report that single-sensor alarms can
produce frequent nuisance triggering in real deployments,
especially under steam, dust, and reflective lighting. Reported
ranges include about 25-35% in residential settings and up to
roughly 40% in some industrial conditions (see recent fire-
safety survey reports for these figures). These rates waste time,
burden responders, and often lead users to silence or disable
the alarm. A similar limitation appears in many Raspberry Pi

prototypes that rely on one modality only, either a flame sensor
or vision. Under fire-like disturbances such as sunlight flicker
or hot reflections, reported false positive rates can exceed 20%
in stressed tests. Many of these systems also stop at local
logging or a buzzer, which limits real-time coordination.

This motivates a dual-stage sensor plus vision verification
design tied to web-based alerting, aiming to suppress false
alarms without delaying notification.

Recent progress in Internet of Things (IoT) and embedded
computing has made fire monitoring more capable than what
single-sensor alarms can offer, and the Raspberry Pi is often
used as the hub for these low-cost systems. It is compact,
supports Wi-Fi and cameras, and exposes simple GPIO
interfaces, so it can read sensors and run lightweight analytics
on the same device. When the Raspberry Pi is paired with
multiple sensors and basic image processing, the design can
become both faster and more selective. Vision algorithms can
examine flame cues, such as motion and color patterns, and
reject common “fire-like” disturbances that would otherwise
trigger false alarms [6]. In the same direction, industry
evaluations of multi-sensor detectors show that combining
smoke, heat, and flame signals reduces nuisance alarms while
still supporting early detection, because a single noisy channel
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is less likely to dominate the decision.

This project addresses a practical gap in low-cost fire
alarms: many systems trigger on a single unverified signal,
which increases false alarms, while others lack real-time IoT
notification that supports coordinated response. The result is
all too often either annoying false alarms popping up without
ceasing or a delayed response when time is of the essence. To
bridge that gaping hole between detection and reaction, we've
developed a compact, cost-effective controller centered
around two-stage verification. A hardware flame sensor zaps
out an initial trigger fast, then a camera on a Raspberry Pi kicks
in to run some image analysis checks to verify whether what
it's seeing actually looks like a genuine fire scenario. Only
once the fire's confirmed does the controller send out a web-
based alert to all the relevant people, like building managers,
response teams, and anyone else who needs the heads up, so
it's not just a local buzzer that goes off.

This study has three objectives. First, we implement a two-
tier fire detection workflow that uses a flame sensor for rapid
triggering and computer vision for confirmation, so the alarm
is based on validated evidence rather than a single noisy signal.
Second, we develop a connected management layer that
records the locations of fire-safety equipment and automates
emergency notifications to the right people when an event is
confirmed. Third, we evaluate the complete system under
realistic conditions and report its performance, with emphasis
on false-alarm reduction and response time. By combining loT
alerting with sensor plus vision validation, the system is
designed to improve situational awareness and support faster,
better coordinated action during an incident. The rest of the
paper describes the architecture and implementation in the
Methodology section, presents the evaluation in Results and
Discussion, and closes with key findings and future
improvements.

Most related work focuses on one path at a time. Some
studies rely on a single sensor, while others use vision-based
detection, but they are often implemented in isolation and do
not cross-check decisions across modalities. The same pattern
appears in many Raspberry Pi prototypes: They detect locally
and stop there, with limited support for IoT dashboards, event
logging, or automated notification workflows. This study
responds to those gaps with a dual-stage verification design. A
flame sensor provides a fast first trigger, then image analysis
confirms whether the trigger matches true fire behavior, which
helps reduce false alarms without slowing the response.
Beyond detection, the system includes a web-based
monitoring and alerting layer. It logs events in real time and
supports coordination, including guiding responders to the
recorded locations of safety equipment. This work contributes
three elements. First, a low-cost Raspberry Pi controller that
pairs a flame sensor with vision verification, so triggers are
confirmed before escalation. Second, an alert and management

module that pushes notifications to the right stakeholders
through a web interface and keeps a complete event log. Third,
an experimental validation under varied conditions showed
higher detection accuracy, fewer false alarms, and response
times measured in seconds, as reported in this study.

2. LITERATURE REVIEW

Fire alarm systems are built for early detection and
coordinated response. A standard setup includes a control
panel, initiating devices such as manual call points or
automatic detectors, notification devices like sirens and
strobes, and interfaces that support evacuation and
suppression. In practice, many installations still rely on a
single cue, usually smoke or heat, and that creates a known
weakness. Dust, steam, and cooking aerosols can mimic fire
signatures indoors, increasing false alarms [7, 8]. These
nuisance events disrupt operations and reduce trust, and
repeated triggers can cause alarm fatigue and slower reactions
during real emergencies [9]. To improve early-stage detection,
researchers have expanded sensing and communication. Early
electronic nose systems used gas-sensor arrays to detect
combustion products, and Charumporn et al. [10] showed they
can detect smoke-related gases early, although selectivity
limits still produced nuisance triggers. Later work [11, 12]
adopted wireless architectures for easier deployment and
remote monitoring, with Dong et al. [12] reporting lower
power use and improved flexibility in low-cost wireless
designs. Wireless sensor networks, including ZigBee-based
topologies, then enabled multi-sensor fusion using inputs such
as temperature, humidity, and dust, improving coverage and
reducing false alarms relative to single sensor triggering [13].

Because each sensor behaves differently, Table 1 compares
flame, smoke, and temperature sensing. This study emphasizes
flame sensing due to its fast response and low cost, while
smoke and temperature sensors, although useful in specific
cases, can be more expensive and more sensitive to benign
indoor conditions that cause false alarms [14]. Takeaway:
dependable detection comes from designs that match real
indoor noise sources, not ideal lab conditions.

Computer vision can strengthen fire alarms that rely only on
sensors because it adds visible evidence. Instead of triggering
on a single threshold, image processing looks for flame cues
such as color patterns, irregular contours, and flicker dynamics
over time. Thengade et al. [15] showed a Raspberry Pi pipeline
that improves frame quality using kernel filtering and
morphological operations before running flame detection,
which increased reliability in small and open areas. The
takeaway is that vision works best as a confirmation step; it
helps cut false triggers when it verifies a sensor trigger rather
than replacing it.

Table 1. Comparison of fire detection sensors

Sensor Type Detection Principle

Advantages Limitations

Detects infrared radiation (760—1100
nm) emitted by open flames
Detects smoke particles (ionization,
photoelectric, aspirating, or laser-

Flame sensor

Smoke sensor

based)
Temperature Monitors a sudden rise in ambient
sensor temperature

Fast response; cost-effective; accurate for

Detects smouldering and concealed fires;
widely used in commercial systems

Effective for monitoring heat-sensitive
environments; reliable for high-temperature

Cannot detect smouldering fires;

visible fire sensitive to IR light sources

Higher cost; prone to false alarms
from dust, steam, and aerosols

Slower response to incipient fires;
less suitable for rapid evacuation
thresholds needs




Raspberry Pi-based vision systems can detect visible
flames with high accuracy by using cues such as color, contour
shape, and flicker dynamics. For example, Thengade et al. [15]
and Khan et al. [16] reported that contour-based detection and
color segmentation are effective in small and open
environments where the flame is clearly visible. The limitation
is also clear: image-only decisions can be misled by
reflections, bright lighting, or objects that resemble fire, which
increases the risk of false positives in real rooms and corridors.

Several studies have tried to make these systems more
operational. Dhanujalakshmi et al. [17] coupled camera-based
detection with Wi-Fi or GSM messaging to reduce notification
delay, but the design still lacks multimodal verification and
can increase bandwidth and processing load. For larger spaces,
Wong and Fong [ 18] used richer spatial, spectral, and temporal
video indicators to improve robustness and track flame spread,
yet continuous video analysis raises computational cost, which
is difficult to justify for low-cost residential deployment. The
takeaway is that vision improves recognition, but vision alone
remains fragile. A hybrid workflow, where a fast sensor trigger
is confirmed by image analysis, better matches the constraints
and noise sources of practical deployments. Overall, vision-
based approaches show high recognition accuracy, with
modern models achieving over 95-98% detection accuracy
while reducing false positives from “fire-like” phenomena
such as reflections or bright lights [19]. The reliance on vision
alone is also not sufficient, highlighting the need for a hybrid
design. Comparative work has shown that vision systems can
complement sensors by providing verification, thus
minimizing nuisance triggers. This motivates the proposed
two-tier design.

Wu et al. [20] explains about a smart fire alarm system that
is integrated with a wireless sensor network using ZigBee.
This project is proposed for a fire alarm system that uses the

ZigBee mesh topology. There are many sensors used in this
project, which are temperature, humidity, pressure, and dust
sensors. The proposed system uses an intelligent way of
detecting smoke that can distinguish the air more accurately
and thus reduce false fire alarms.

Despite the strengths of vision-based methods, reliance on
a single modality remains a limitation. Industrial studies
confirm that multi-sensor detectors (combining smoke, heat,
flame, and vision) achieve far fewer false alarms than single-
sensor systems [21]. This principle underpins recent
innovations where IoT-enabled devices integrate sensing, data
logging, and real-time communication. Modern IoT fire
monitoring systems combine edge computing (for rapid local
detection) with cloud platforms that log data, visualize status
on dashboards, and send automated SMS/email alerts [22].
Keano and Jose [23] reported that adding IoT connectivity to
fire-safety systems can improve evacuation management and
reduce delays in mobilizing first responders, because alerts are
delivered quickly to the right stakeholders rather than staying
local to the device [23, 24]. This is reflective of a wider trend
in the field: moving away from just detecting fires to
implementing systems that can actually support decision
making, coordination, and folks being able to bounce back
after an incident. In that regard, connecting up lots of different
devices via the internet is definitely a step forward, but on its
own, it's just not enough. Many earlier prototypes still rely on
a single detection modality, either sensors alone or vision
alone, which leaves them exposed to nuisance triggers or
visual confusion. Table 2 summarizes these related systems
and contrasts their limitations with the dual-tier, IoT-enabled
design proposed in this study. The takeaway is that the
strongest designs couple actionable notification with verified
detection, not one without the other.

Table 2. Comparative summary of related fire detection systems

Study /
Approach

Hardware
Platform

Detection Method

Additional Features

Limitations

Dong et al. [12]
Thengade et al.
[15]

Dhanujalakshmi
etal. [17]

Wong and Fong
[18]

BRE Group [25]

Proposed study

Wireless sensor
nodes

Raspberry Pi +
Camera

Raspberry Pi +
Camera

Video cameras
(PC-based)

Industrial multi-
sensor detectors

Raspberry Pi +
Flame Sensor +
Camera

Temperature, humidity,
dust sensors (ZigBee
WSN)

Image processing (color
segmentation, contour
detection)
Image-based detection
with Wi-Fi/GSM alerts
Video fire detection
with spatial, spectral,
and temporal indicators
Smoke + heat + flame
fusion

Two-stage verification
(sensor + vision)

Distributed monitoring, low
power

Buzzer and LED indicators

Real-time image transmission
to users

Flame spread tracking and
prediction

Commercial-grade accuracy;
reduced false alarms
IoT-enabled dashboard,
automated emergency
notifications, event logging,
and equipment guidance

Lacks visual confirmation; prone to
false triggers from environmental
noise
Reliable in small areas, but prone to
false alarms from fire-like
phenomena; no IoT integration
Higher cost and bandwidth demand;
no multi-sensor verification

Complex setup, not cost-effective for
residential/ SME use

High cost, limited scalability for
small installations
Achieves > 95% detection
accuracy, > 90% reduction in false
alarms, response time < 10 s;
scalable and economical

Selecting the appropriate hardware platform is critical.

and real-time

image analysis

are required [20, 26].

Arduino and 8051 microcontrollers are often used for simple,
repetitive tasks such as temperature logging or buzzer control,
but they lack built-in support for networking and multimedia
processing. In contrast, the Raspberry Pi is a single-board
computer that offers higher computational power, USB and
HDMI ports, Wi-Fi and Bluetooth, and camera integration.
These features make the Raspberry Pi especially suitable for
edge Al and IoT-based fire detection, where local processing

Comparative studies consistently show that Raspberry Pi
outperforms Arduino and AVR boards in complex monitoring
tasks where connectivity and multimedia support are essential.

The literature points to three clear gaps. Many Raspberry
Pi-based systems use either sensors or vision alone, and few
apply dual-stage verification where one trigger is confirmed
by the other before raising an alarm. IoT support is also
limited, with many prototypes stopping at local alerts instead
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of dashboards and automated notifications. A third gap is cost-
effective fusion. Industrial systems show the wvalue of
combining modalities, yet academic prototypes often overlook
simple, low-cost pairings like a flame sensor plus a camera that
could improve reliability. Recent studies published in the
International Journal of Safety and Security Engineering have
highlighted complementary aspects of fire safety research,
including the influence of building geometry on fire spread
dynamics and the role of user awareness in effective fire
emergency response [27, 28]. While these works focus on
structural fire behavior and human factors, respectively, they
do not address real-time fire detection or automated
verification mechanisms, reinforcing the need for intelligent,
sensor- and vision-based fire detection systems such as the one
proposed in this study.

This study closes the identified gaps with a dual-tier
detection workflow. A flame sensor provides rapid
preliminary triggering, then a Raspberry Pi camera performs
vision-based confirmation before the alarm is escalated. This
cross-checking reduces the false alarms that are common when
a system depends on a single trigger. Beyond detection, the
design includes a web-based crisis management layer that logs
events, shows live status, and sends real-time notifications to
emergency contacts, so coordination begins immediately
rather than relying on someone noticing a local buzzer. The
literature review informs these choices by clarifying what past
systems do well and where they fail, especially around false
triggers, notification latency, and edge-device constraints. It
also guides practical component selection by matching
hardware and software capabilities to real indoor conditions.
In this work, components were selected based on evidence
from prior studies and targeted testing, with the aim of
improving reliability without increasing cost or complexity.

3. METHOD
3.1 System overview

The Smart Fire Crisis Controller is a two-stage detection
system built on a Raspberry Pi that combines IoT reporting
with computer vision verification. It first detects early fire cues
using an infrared flame sensor, then confirms the event using
camera-based image analysis before activating an alarm or
issuing notifications. This hybrid workflow preserves fast
sensor response while reducing false alarms through visual
confirmation. The architecture is modular and organized into
three layers. The sensing layer contains the flame sensor and
camera for data capture. The processing and control layer runs
on a Raspberry Pi 3 Model B+, which executes the decision
logic and image checks. The notification and response layer
includes a piezoelectric buzzer and a web dashboard for alerts,
event logging, and remote monitoring. Figure 1 summarizes
the full flow, from sensor input to verified event reporting on
the IoT dashboard.

3.2 Design methodology

The system was developed using a modified Waterfall
approach with defined stages and small refinements within
each stage. Work began with requirements analysis to capture
user needs and practical constraints on hardware, power, and
software. The design stage then fixed the overall architecture,
selected components, prepared the circuit layout, and defined
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the detection logic. Implementation integrated the hardware
with Python modules on the Raspberry Pi, followed by testing
to confirm functionality, detection accuracy, and response
time under both controlled and variable conditions.
Deployment finalized the web server and database
configuration, and maintenance focused on tuning based on
test outcomes. Figure 2 summarizes this sequence. The
takeaway is that a staged workflow reduced integration
mistakes by keeping each step testable before moving on.

Camera
Module

Image fapture

AMafm Signal

Buzzer

Raspberry Pi Alana

Controller

Web Dashboard
& Database

Figure 1. System architecture and communication layers

Requirement Analysis

I

System Design

I

Implementation

1

Testing & Evaluation

I

Deployment & Maintenance

Oy Y ) )
 / J J

Figure 2. Modified waterfall design process
3.3 Hardware design

3.3.1 Central controller

The Raspberry Pi 3 Model B+ serves as the central
controller because it balances capability and cost. Its 1.4 GHz
quad-core 64-bit processor and 1 GB RAM are sufficient for
on-device OpenCV processing, while built-in Wi-Fi and
Bluetooth support networked alerts without extra modules.
GPIO pins allow direct sensor interfacing, and the CSI port
enables a simple, low-latency connection to the Pi Camera.

3.3.2 Sensing components

The sensing layer uses three components with clear roles.
An infrared flame sensor, sensitive in the 760—1100 nm band,
serves as the first trigger and sends a digital HIGH signal to
the Raspberry Pi when flame radiation is detected. Once
triggered, the camera module captures frames for verification



using a 5-megapixel sensor at 2592 x 1944 resolution, with
capture delay kept below 0.5 s per frame. A piezoelectric
buzzer provides local warning, producing a long beep at the
initial trigger and switching to a continuous alarm after fire is
confirmed.

3.3.3 Connectivity and power

The controller connects to the web server over IEEE 802.11
Wi-Fi to support real-time notifications and event logging.
Power is provided by a regulated 5 V, 2.5 A supply for the
Raspberry Pi and connected peripherals. To reduce energy use,
the camera remains off during standby and is activated only
after the flame sensor triggers. Figure 3 presents the wiring and
GPIO connections between the Raspberry Pi, sensor, camera,
and buzzer.

Camera Module
(Csl Port)

I

Raspberry Pi
(Controller)

5V Power Supply

Piezo Buzzer
(GPIO Output)

Flame Sensor
(GPIO Input)

Figure 3. Hardware integration and wiring diagram

3.3.4 Hardware selection rationale

Component selection focused on accuracy, cost, and ease of
deployment. The Raspberry Pi offers built-in Wi-Fi and direct
camera support, avoiding extra communication or imaging
modules that are often needed with Arduino-based designs.
The infrared flame sensor was chosen for fast response and
low cost while still supporting early flame detection. The piezo
buzzer provides a strong audible alert with low current draw,
under 20 mA, which suits continuous standby operation.

3.4 Software design

The software was developed primarily in Python 3 using
several libraries:

e OpenCV: Performs image filtering, color
segmentation, and contour analysis for flame
recognition.

RPi.GPIO: Handles digital input/output between the
Raspberry Pi and connected sensors.

smtplib and Requests: Manage automated email or
SMS notifications to remote users.

Flask / PHP + MySQL: Implement the lightweight web
server and database backend for event logging.

The software runs as a continuous loop that reads the flame
sensor in real time. When the sensor indicates a possible fire,
the Raspberry Pi turns on the camera and performs a short
verification step before escalating the alarm. Each frame is
converted from RGB to HSV to make color filtering more
stable under lighting changes. The algorithm then isolates
flame-like pixels using hue 0-50 with saturation above 150
and value above 200, applies erosion and dilation to remove
noise, and checks contour properties such as area and
boundary shape. If the frame passes verification, the alarm and
notification routines are triggered. If not, the event is logged
as a false trigger, and the system returns to standby.

2085

3.4.1 Flame-interferent discrimination and parameter selection

To reduce false positives from incandescent bulbs, sunlight
glare, reflections, and hot surfaces, the vision stage combines
three constraints: color, intensity, and geometry. HSV
segmentation is used because it is less sensitive to illumination
shifts than RGB. In our indoor trials using candles and lighters,
true flames consistently fell within hue 0-50° with high
saturation and value, while many artificial lights showed lower
saturation and more uniform brightness. After segmentation,
erosion and dilation with a 5 % 5 kernel suppresses isolated
pixels while preserving connected regions, and the kernel size
was chosen empirically to balance noise removal against shape
distortion. Final verification uses contour filtering. Regions
smaller than 500 pixels are rejected because reflection artifacts
and light flicker tend to produce small, unstable blobs, and
accepted contours must show irregular boundaries that better
match real flame edges. These thresholds and limits were
tuned iteratively across varied indoor conditions, including
reflective surfaces and ambient lighting. The takeaway is that
combining simple constraints makes the verification step more
selective, reducing false confirmations without adding heavy
computation.

Figure 4 summarizes the two-tier verification logic. The
flame sensor provides the first trigger, then the system runs
image-based confirmation before escalating the alarm.

The pipeline runs in real time on the Raspberry Pi’s
multicore CPU. Frame processing latency remains below 1 s
on average, and when combined with the sensor’s near-instant
trigger, the end-to-end detection to alert cycle stays under 10 s
in the reported tests.

Start & Monitor Flame Sensor

—*—

Flame Detected?

A

Capture Image with Camera

A
Process Image using OpenCV

——

Fire Confirmed?

v

Trigger BUZ)Y + Send Alert

Log Event as False Alarm & Return to Monitoring

No Yes

oYY Y Y
S LI

Figure 4. Pseudocode of the two-stage fire detection
algorithm incorporating HSV-based flame filtering,
morphological noise suppression, and contour-area validation

3.5 System workflow

Figure 5 presents the end-to-end workflow. The flame
sensor runs continuously in standby, watching its field of view.
When it detects a possible heat or flame source, it triggers the
Raspberry Pi to start the verification stage. The Raspberry Pi
activates the camera, captures an image, and runs the analysis



pipeline. If the image does not confirm fire, the event is logged
as a false trigger, and the system returns to monitoring. If fire
is confirmed, the buzzer sounds immediately and the controller
uploads the event record, including timestamp, location, and
image evidence, to the database and dashboard. The web
interface will update in real-time and automatically send out
alerts to the emergency team as soon as something happens.
The way the system works, from the moment it's turned on
right through to sending out those IoT alerts, is laid out in
detail in Figure 5, that's where you'll see the if-then logic at
play for distinguishing between actual fires and false alarms.

System Start & Initialization

Continuous Flame Sensor Monitoring

Flame Detected?

o Y Ye

Activate Camera Module

Imade Captured & Processed (OpenCV)

Fire Confirmed?

Yo

Trigger Buzzer Alarm

Send loT Alert to Web Dashboard

NN YY)
S/ )

Log Event & Reset to Monitoring

Figure 5. System workflow and decision process flowchart
3.6 Testing and evaluation

3.6.1 Experimental setup

Testing was done in a controlled indoor environment, using
a very particular setup: a candle and a lighter were placed at
distances ranging from 10 cm to 60 cm to create a variety of
flame intensities and angles of view. To make sure our system
could handle a false alarm, we also ran some tests under
artificial lighting conditions and near shiny surfaces. Figure 6
shows the setup in all its glory, the flame source, the Raspberry
Pi unit, and the camera view all in one place.

3.6.2 Performance metrics

System performance was put through its paces using three
key metrics: detection accuracy, false alarm reduction, and
how quickly it responded to situations. And the results are laid
out in Table 3, which gives us the nitty-gritty and tells us how
to interpret what we're looking at.

Table 3 shows that the system's nail detection accuracy at
95% plus and actually does a much better job than usual of
avoiding false alarms, more than 90% better, to be precise.
And the average time it took for the system to respond was a
snappy 10 seconds or less, which is no bad thing. Plus, the
system was able to keep chugging along at a 98% reliability
rate, a pretty impressive feat of continuous operation. The
same trends are mirrored in Figure 7, which gives us a
snapshot of the system's performance and shows 95%
accuracy and less than 10% false alarms, a clear step up from
the usual single-sensor alarms.

Indoor Controlled Testing Envir: \d

Raspberry Pi System

Distance: 10-60 cm
>

Flame Source
(Candle/Lighter)

(Camera + Flame Sensor)

Safety Precautions Applied: Fire-resistant surface, extinguishing tools nearby

Figure 6. Experimental setup and testing environment

100y 95% .
[ Detection Accuracy (%)
3 False Alarm Rate (%)
80% 80%
80
g 60
v
>
o
<
T
=
& 40f
20
10%
0

Proposed System Conventional Alarm

Figure 7. Performance graph — Detection accuracy vs. false
alarm rate

Table 3. Performance metrics and evaluation criteria of the proposed fire detection system

Evaluation Criteria

Parameter Observed Value / Result
Detection accuracy >95%
False-alarm reduction >90%
Response time <10s
System uptime / Reliability 98%

Percentage of correctly detected real fires vs. false negatives
Reduction in false triggers compared with single-sensor alarms

Time from flame ignition to alarm activation

Stability of operation over a continuous 12-hour runtime

3.6.3 Web application testing

We also tested how the web application performed in real-
time - not just when things were going smoothly, but when
something actually needed to be reported. And what we found
was that once an event had been confirmed, the dashboard
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would kick in straight away with the sensor ID, the exact time
it happened, and a big, clear status indicator - green for all
good, red for a problem. And for good measure, all the events
were stored away in a MySQL database, just in case we needed
to go back and review them later. Figure 8 gives us a peek at



how the web app and database work together - and how
seamlessly the alerts and logs keep getting updated.

System Normal

MysQL
Database
(Server)

Active Fire Alert Data Sync

—

X X

Sensar Triggered {Awaiting Image Verificatign)

Recent Alerts Log

#001 Fire Confirmed 10:45:22 RaspberryFi0l

#002
#003

False Alarm 11:10:54 RaspherryPi0l

RaspberryPi02

Fire Confirmed 11:35:10

Figure 8. Web application dashboard and database interface

3.6.4 Discussion of results

The results indicate that dual-stage verification can be both
fast and selective. In the reported tests, detection-to-alert
remained under 10 s, reliability exceeded 95%, and false
alarms dropped by more than 90%. Because image analysis
runs locally on the Raspberry Pi, the buzzer and web alerts can
be triggered immediately, without cloud delay. In practice, the
controller links three steps into one workflow: rapid flame
sensing, camera-based confirmation, and IoT reporting for
real-time visibility.

Future work will strengthen robustness and extend
coverage. Adding smoke and temperature sensors can improve
early warning when flames are obscured or visibility is poor.
We also plan to evaluate lightweight machine learning
classifiers to handle more complex scenes and lighting.
Finally, a multi-node deployment with coordinated
dashboards would improve resilience and coverage for larger
residential and industrial facilities.

4. RESULTS AND DISCUSSION
4.1 Experimental setup

The dual-stage fire detection system was evaluated through
controlled laboratory experiments to confirm real operating
behavior. A complete prototype was assembled, integrating
the flame sensor, Raspberry Pi camera module, buzzer, and the
IoT web interface described earlier.

Testing was carried out under varied indoor lighting and
across multiple flame distances to assess robustness to
environmental changes. In each run, a small open flame, using
a candle or lighter, was placed at incremental distances from
10 cm up to 2 m. Each experiment was repeated 30
independent times under identical conditions, resulting in a
total of 30 trials per test scenario. Performance metrics were
logged automatically in the system database through the IoT
dashboard for real-time monitoring and post-analysis. The
experimental performance results across multiple flame
distances are illustrated in Figure 9.

Figure 9 summarizes the empirical trends across flame
distance. Detection accuracy stays above 95% up to about 50
cm, then declines gradually as the flame moves farther away.
Response time rises slightly with distance but remains under
10 s. False triggers are rare and mainly appear at longer ranges
under strong ambient light, as shown by the red bars. The
figure also reflects the controlled indoor setup, including flame
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positioning and the Raspberry Pi sensor camera alignment.
Distances, flame intensity, and lighting were kept consistent
across trials. All evidence, including sensor activations,
vision-confirmed alarms, and database logs, was used for the
quantitative evaluation.
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Figure 9. Experimental performance overview showing
detection accuracy, response time, and false-alarm behavior
across tested flame distances

4.2 Sensor validation

The flame sensor acted as a fast first-stage trigger across the
tested distances. In Figure 6, its digital output switches to
logic-high almost immediately when a flame appears, and
detection typically occurs in under 1 s after ignition, which is
consistent with its IR sensitivity range of 760-1100 nm.
Within 2 m, the sensor maintained a detection rate above 95%,
with noticeable signal weakening mainly beyond that range. A
small number of false triggers occurred under strong ambient
lighting or near reflective surfaces. These events were logged
in the database, but did not escalate to a full alarm because the
second-stage verification rejected them. Overall, the sensor
works well as a rapid, high-recall trigger, while discrimination
is handled by the vision stage.

4.3 Image-based fire confirmation

The second stage validates whether a sensor trigger
corresponds to a real fire. After the flame sensor activates, the
Raspberry Pi camera captures frames, and the OpenCV
pipeline analyzes them to confirm fire evidence before alarms
and notifications are issued. The decision-making process of
the proposed dual-stage detection algorithm is illustrated in
Figure 10, showing the validation flow and event sequence
from sensor trigger to alert logging. shows the real-time
progression from sensor trigger — image analysis — database
logging, including time stamps (t = 0-9 s).

Figure 10 summarizes real-time event handling in the dual-
stage detection algorithm. It starts with the flame sensor
trigger, then moves through image-based confirmation, alarm
activation, database logging, and an automated reset. Each
stage follows the response timing measured in the
experiments, spanning roughly t = 0 to 9 s. In testing, every
real flame that appeared within the camera’s field of view was
confirmed, giving 100% confirmation accuracy for detected
fires. No false confirmations were recorded under common
disturbances such as sunlight glare or sudden illumination
changes. Image capture and analysis added about 1-2 s, so the
total detection-to-alert latency stayed under 10 s.
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Figure 11. Performance comparison of the proposed system
vs. the conventional alarm

In practice, this second stage functions as a verification
filter. It confirms true fire events and prevents nuisance
triggers from escalating into full alarms. Figure 11 shows the
impact of this design through a direct comparison with a
conventional alarm.

The figure visually compares the proposed dual-stage
Raspberry Pi-based system against a conventional single-
stage alarm using three core metrics. Detection accuracy
increases from 80% to 96%, false alarms drop from 80% to
9%, and response time improves from 15 s to 8 s. Taken
together, the chart shows a clear shift toward practical
reliability. The dual-stage verification step keeps alerts fast
while filtering out noisy triggers, so the system delivers a
stronger balance of speed and trust than the conventional
approach.

4.4 Integrated system performance

Integrating sensor-based detection with image-based
verification produced a dual-stage pipeline that stays fast
while improving accuracy and robustness. Across 30
independent trials, the system achieved a mean detection
accuracy of 96.4% (+ 1.8%), while the false-alarm rate was
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reduced by 91.7% relative to the baseline single-sensor
configuration. The mean end-to-end response time was 8.6 s
(£ 0.9 s), measured from flame ignition to alarm activation,
with all trials remaining below the 10 s threshold. The mean
end-to-end response time was 8.6 s (£ 0.9 s), measured from
flame ignition to alarm activation, and all trials stayed below
10 s. This keeps the alert latency under the target threshold
while still logging and sounding the alarm promptly, which is
important for early fire detection scenarios (Table 4). Table 4
summarizes the measured outcomes from the experimental
trials and shows that the system detects fire events reliably
while keeping false alerts low. In addition to point-in-time
tests, we ran the device continuously for 12 hours and
observed 98% operational uptime, indicating stable hardware
behavior and consistent software execution under sustained
use (Table 4).

Table 4. Quantitative performance summary of the proposed
fire detection system

. Experimental .
Metric Observation Interpretation
High reliability in
Detection o recognizing genuine fire
96.4%
accuracy events under all test
conditions
Dual-stage verification
False-alarm o o .
reduction 91.7% §11m1nates most nuisance
triggers (dust, light flicker)
Average Rapid activation from flame
response 8.6 L
: ignition to confirmed alarm
time
System Stable continuous operation;
uptime (12 h 98.3% no system crash or
run) communication fault
Data logein All valid events have been
gemng 100% successfully logged to the

success rate 10T dashboard and database

Figure 12 shows the IoT dashboard used during testing. It
displays real-time system states, such as normal, sensor-
triggered, and fire confirmed, and it records event IDs,
timestamps, device source, and verification outcomes. All
entries were synchronized automatically to a MySQL database
to support traceability and remote monitoring.

Figure 13 analyzes those database logs over time. Sensor-
triggered events and confirmed fire incidents follow a
consistent sequence, with only a small number of filtered
anomalies, which reflects a low-noise detection process. The
takeaway is that the system not only detects and verifies
reliably, it also logs events in a way that supports auditing and
post-incident review.

loT Fire Alert Dashboard (Experimental Logs)
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Figure 12. [oT alert logs and database visualization during
the experiment
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4.5 Comparison with previous work

The reported results in the referenced studies were produced
under different conditions, including flame type, distance,
lighting, environment, and evaluation protocol. Because of
these differences, the metrics in Table 5 are used for
qualitative benchmarking, not direct one-to-one comparison.
This comparison is included to place the proposed system in
context against representative approaches in the literature. It is

not intended to imply identical test setups or strictly equivalent
numerical performance across all studies.

Recent work has reported strong fire recognition using
multi-modal fusion and deep learning, such as CNN-based
video analysis, but these methods often assume higher
compute, large labeled datasets, and continuous video
processing, which can be difficult to sustain on low-cost edge
devices in real time [29]. In contrast, the proposed system
keeps processing lightweight by using a flame sensor for rapid
triggering and vision only for confirmation, so computation is
spent only when an event is suspected. The goal is operational
response, verified detection, and IoT alerting, rather than
modeling fire spread in buildings or measuring user-level
safety awareness [30].

The comparison also clarifies the trade-offs across common
designs. Single-sensor alarms respond quickly but can
generate frequent false triggers because there is no verification
step. Camera-only systems can improve detection specificity,
but continuous video analysis increases compute load and can
add latency. The proposed dual-stage workflow avoids that
trade-off by using fast sensing for the initial trigger and
running a short vision confirmation only when needed. In our
tests, false alarms fell by about 90%, while accuracy and
response time remained competitive, using a simple two-
component design suited to low-cost IoT deployment.

Table 5. Comparative performance analysis with existing fire detection approaches

False Alarm Response

IoT / Network

Study / System Rate Time Capability Remarks
Thengade et al. [15] 25% 155 No Good accuracy but frequent. false positives; no
remote alerting
Dhanujalakshmi et al. 18% 12 Ves Real-time image a}erts; band\yldth—heavy; no
[17] multi-sensor logic
Wu et al. [20] 10% 20-30 s Yes Reliable but slower; hlgh cost and setup
complexity
BRE Group [25] 8% ~10s Partial High cost; commercial-grade system
Full (IoT + Web High accuracy (> 95%), scalable, economical, and
0,
Proposed system <10% <10s Dashboard) ToT-ready

4.6 Discussion of findings

The findings support the two-tier verification approach as
both fast and dependable. Across the reported experiments,
accuracy exceeded 95%, end-to-end response stayed under 10
s, and false alarms dropped by roughly 90% compared with
single-stage triggering. Three strengths are clear. The
hardware is low-cost, based on a Raspberry Pi and off-the-
shelf sensors. The IoT layer delivers real-time alerts and
complete logs, which makes incidents traceable and
actionable. The modular structure also keeps upgrades
straightforward, whether that means adding sensors or
enhancing verification with Al when resources allow.

The low standard deviation observed across trials indicates
stable system behavior and consistent detection performance
under repeated experimental conditions. Figures 12 and 13
show stable behavior across repeated runs, with consistent
logging and verification outcomes, which support reliability
for practical deployment in homes and small industrial sites.
The main limitations are expected: detection depends on
distance and a clear line of sight, so larger or obstructed spaces
may require multiple units for coverage. The current prototype
also targets open-flame detection, so adding smoke or
temperature sensing would strengthen early warning in
smoldering scenarios. Future work can improve adaptability
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and scale. One path is machine learning—based image
classification for more complex lighting and backgrounds.
Another is a networked multi-node design that coordinates
several devices for wider-area monitoring. The validated
results indicate a good balance of speed, verification, and IoT
reporting, while the next gains will come from better coverage
and broader sensing.

4.6.1 Discussion of results

Although evaluation was conducted indoors under
controlled conditions, deployment realities were considered in
the design. In real buildings, motion, clutter, smoke occlusion,
and shifting lighting can introduce noise, but requiring both a
sensor trigger and visual confirmation helps suppress transient
artifacts. Network issues are handled by prioritizing local
alarms first, so the buzzer activates even during connectivity
drops. Power is also managed by keeping the camera off in
standby and enabling it only after a trigger. For installation, an
enclosure with an appropriate IP rating is recommended to
protect against dust, humidity, and heat.

5. CONCLUSIONS

This study designed and validated a dual-stage, [oT-enabled



fire detection system built on a Raspberry Pi. An infrared
flame sensor provides rapid triggering, then an image-
processing module confirms the event before the alarm is
escalated. In the reported experiments, detection accuracy
exceeded 95%, end-to-end response stayed under 10 s, and
false alarms dropped by about 90% compared with single-
sensor alarms. The web dashboard added practical value by
supporting real-time monitoring, automatic event logging, and
immediate notifications, which improve situational awareness
and response coordination. These results indicate that low-cost
hardware can produce dependable fire alerts when verification
is part of the workflow. The current design still has limits,
mainly line-of-sight dependence and a focus on open-flame
detection, but the modular architecture makes upgrades
straightforward, such as adding smoke or temperature sensing
or introducing Al-based classification for more complex
scenes. The takeaway is that the proposed controller delivers a
workable balance of speed, accuracy, and affordability for
smart building safety.

Future extensions will follow what we observed during
testing. On the vision side, we will target the rare false triggers
caused by strong reflections and sudden lighting changes by
adopting adaptive HSV thresholds and simple temporal
stability checks, where a flame region must persist across
consecutive frames before confirmation. We will also harden
communication under weak or congested networks. Based on
the measured response and upload delays, the next version will
prioritize local-first alarms, then use buffered loT transmission
so alerts and logs are still delivered reliably when connectivity
recovers. Finally, adding smoke or temperature sensing will
expand coverage to smoldering fires that may not produce a
clear open flame.
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