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Rapid urban expansion in Batu City has triggered extensive land conversion, primarily from
agricultural to residential uses, driven by population growth and land commodification. This
study aims to analyze and predict land cover dynamics from 2013 to 2043 using multi-temporal
Landsat 8 and Sentinel 2A imagery integrated with the Cellular Automata Markov (CA-
Markov) model. The analysis reveals a 35% decline in agricultural areas and an 86% increase
in residential areas over the past decade, while forest and shrubland have slightly decreased.
These changes illustrate the growing pressure of urban development on productive land
resources. Overlaying land cover data with the disaster-prone map indicates that approximately
27% of Batu City’s territory lies within hazard-prone areas, dominated by landslide (20%) and
volcanic (4%) zones. Around 20% of new residential development is concentrated in medium
to high-risk zones, particularly in the eastern and northern regions of Batu and Bumiaji
Districts. The CA-Markov projection suggests continued urban expansion toward these
vulnerable zones by 2043 if no spatial control policies are implemented. The novelty of this
study lies in integrating CA-Markov simulation with quantitative disaster-risk assessment,
providing valuable insights for promoting disaster-resilient land-use planning and sustainable

urban development in rapidly growing regions.

1. INTRODUCTION

Urbanization has emerged as one of the defining processes
of the 21st century, reshaping global landscapes and socio-
economic structures. More than half of the world’s population
now resides in urban areas, and this figure is projected to reach
70% by 2050 [1-3]. This demographic shift has resulted in the
massive expansion of built-up areas and the intensification of
land competition between agricultural, residential, and
industrial uses [4]. Between 1985 and 2015, the world’s urban
areas nearly tripled, indicating not only population
concentration but also the spatial manifestation of economic
and political forces that drive cities toward relentless physical
growth [5].

However, such expansion is often spatially unbalanced. In
many developing regions, particularly Southeast Asia, urban
growth occurs without adequate planning or environmental
consideration [6]. Land is no longer valued solely for its
ecological and productive functions but increasingly as a
tradable commodity. The commodification of land and the
transformation of land into an economic asset for speculation,
tourism, or real estate development has become a central
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driver of spatial change in many peri-urban and agricultural
areas [7-10]. This process redefines land ownership and use,
leading to a structural shift from agrarian-based livelihoods
toward capital-oriented urban economies.

In Indonesia, this phenomenon is clearly visible in cities
undergoing rapid economic transformation. The combination
of tourism, investment, and infrastructure development has
accelerated the conversion of agricultural land into built-up
areas, often beyond the carrying capacity of the local
environment [11]. The post-decentralization era has further
intensified this dynamic, as regional governments seek to
attract private investment through land-use flexibility and
urban expansion incentives. Consequently, agricultural lands,
which traditionally served as a source of local food security
and ecological stability, have been converted into residential
and commercial zones.

Batu City in East Java is a representative case of this
transformation. Historically, Batu City was known as a
highland agropolitan area with fertile volcanic soils,
supporting vegetable and fruit cultivation as the backbone of
its local economy. Yet, since the early 2000s, the city’s rapid
growth in tourism and real estate has led to significant land
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conversion. Tourism-driven urbanization, supported by
improved accessibility and the rise of the Malang Metropolitan
Area, has increased demand for accommodation, resorts, and
secondary housing. As a result, many productive farmlands
have been transformed into urban settlements, particularly in
Bumiaji, Batu, and Junrejo districts, areas where land values
have sharply increased due to market speculation and tourism
investment.

This land commodification process is not only altering
Batu’s spatial structure but also creating environmental and
disaster-related risks. The city is situated on complex volcanic
and mountainous terrain, influenced by Mount Arjuno and
Mount Panderman, which makes it highly susceptible to
landslides, floods, and volcanic hazards. Previous spatial
analyses have indicated that approximately 27% of Batu’s
total area falls within moderate to high disaster-prone zones
[12]. Ironically, these are also the same areas where land
conversion for housing and tourism occurs most intensively.
The expansion of impermeable surfaces and deforestation of
steep slopes further exacerbate the risk of hydrometeorological
disasters.

The overlapping of urban growth and disaster exposure
reveals a critical weakness in spatial governance. Existing
spatial plans (RTRW Batu City 2021-2040) have not fully
integrated dynamic land-use modeling or risk-based zoning.
Furthermore, urban expansion is often treated as an inevitable
sign of progress rather than a process requiring ecological
balance and risk consideration. As a result, disaster risk
management tends to be reactive rather than preventive,
focusing on post-event recovery instead of spatial anticipation.

From an academic perspective, research on Batu City has
primarily focused on either (1) land-use change and
agricultural decline or (2) disaster-prone area mapping. Few
studies have attempted to integrate both dimensions into a
single predictive modeling framework that can simulate future
urban expansion in relation to disaster risk. This gap limits
policymakers’ ability to foresee potential conflicts between
development and environmental safety.

The CA-Markov (Cellular Automata Markov Chain) model
offers a robust methodological solution for this challenge. The
Markov Chain component estimates the probability of land
transitions based on historical patterns, while the cellular
automata component spatially allocates these transitions
considering neighborhood effects and spatial constraints.
Together, they allow for dynamic simulation of urban growth
and scenario-based prediction of land-use changes. When
combined with hazard maps, CA-Markov analysis can identify
potential future overlaps between built-up expansion and
disaster-prone zones, providing a scientific foundation for
risk-sensitive urban planning.

Therefore, this study aims to:

Analyze the spatio-temporal changes in land use and
land cover (LULC) in Batu City between 2013 and
2023.

Predict the spatial distribution of urban expansion up
to 2043 using the CA-Markov model.

By addressing these objectives, this research seeks to
contribute both theoretically and practically. Theoretically, it
advances the understanding of land commodification as a
driver of spatial risk accumulation, a concept that connects
urban economic dynamics with ecological vulnerability.
Practically, it provides policymakers and planners with
quantitative evidence to refine spatial plans, enforce zoning
control, and strengthen disaster prevention strategies.
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Ultimately, the findings of this study are expected to guide
the development of resilient and sustainable urban planning in
Batu City. Integrating predictive modeling with disaster-risk
assessment can support the formulation of adaptive land-use
policies, balancing economic growth with environmental
safety. Moreover, this approach can be replicated in other mid-
sized Indonesian cities that experience similar pressures of
tourism-based urbanization and agricultural land conversion.

2. MATERIAL AND METHODS

This study employs a spatial analysis approach supported
by remote sensing and geographic information system (GIS)
techniques using ArcGIS 10.8 and IDRISI TerrSet software.
The overall methodological framework consists of four main
stages: data collection, image preprocessing, land use
classification and validation, and land use change prediction
using the CA-Markov model.

2.1 Study area

Batu City, located in East Java Province, Indonesia, lies
between 7°44'55"-7°49'04" S and 112°30'50"-112°35'50" E.
It covers approximately 199.09 km? and is characterized by
steep slopes (15-40%), volcanic soils, and high rainfall. These
conditions make the area both agriculturally productive and
highly prone to natural hazards such as landslides and floods
in Figure 1.

2.2 Data collection

The research utilized a combination of remote sensing and

secondary spatial data. Satellite imagery:
Landsat 8 OLI (acquired in 2013 and 2016) with a
spatial resolution of 30m [13].
Sentinel-2A MSI (acquired in 2017 and 2023) with a
spatial resolution of 10m [14].

Supporting spatial data: administrative boundaries, slope,
elevation, and disaster-prone areas derived from Bappeda and
BPBD Batu City [15]. All data were reprojected into UTM
Zone 49S and WGS 84, using ArcGIS 10.8.

2.3 Image preprocessing

To ensure data comparability between different sensors,

several preprocessing steps were applied before classification.
e  Atmospheric correction

Atmospheric effects were corrected using the Dark
Object Subtraction (DOS) method in ENVI 5.6,
which adjusts for haze and scattering by normalizing
pixel wvalues [16]. This process improves the
radiometric consistency between multi-temporal
images [16].
Geometric correction and subsetting
All imagery was geometrically corrected using
ground control points (GCPs) [17] and adjusted to
match the administrative boundary of Batu City.
Subsetting was performed to crop the study area from
each scene [18].
Cloud masking and thresholds
Only images with less than 10% cloud cover were
selected to minimize noise in classification. The
Quality Assessment (QA) band in Landsat 8 and the



Scene Classification Layer (SCL) in Sentinel-2A
were used to mask cloud and cirrus pixels [19].

e  Spatial harmonization (resampling)
Because Landsat 8 has a 30 m resolution while
Sentinel-2A has 10 m, the Sentinel imagery was
resampled to 30m using the nearest neighbor
interpolation method to maintain spectral fidelity and

ensure pixel compatibility for temporal comparison.
This harmonization allowed accurate overlay and
change detection in ArcGIS and TerrSet [20].

Band Combination and enhancement

False-color composites (bands 5-4-3 for Landsat 8
and 8-4-3 for Sentinel-2A) were used to enhance
vegetation and built-up area separability [21, 22].
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Figure 1. Map of Batu City

2.4 Land use classification and accuracy assessment

Supervised classification using the Maximum Likelihood
Classifier (MLC) was applied to categorize land use into 4
major classes [23-25]:

e  Agricultural land

e  Water Bodies

e Seatlemen Area
e  Built-up Areas
e Forest

e  Shrubland

Training samples were derived from field validation points
and high-resolution imagery. Classification accuracy was
evaluated through a confusion matrix and Kappa coefficient,
yielding an overall accuracy of 87% for 2013 and 89% for
2023, both exceeding the minimum threshold (> 85%)
recommended in Figure 2 [26].
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2.5 Land use change detection

Land cover maps for 2013 and 2023 were compared using
post-classification comparison in ArcGIS. The CrossTab
function calculated the area (in hectares) and percentage
change for each land use class. The analysis revealed the
spatial distribution and rate of conversion from agricultural to
residential use.

2.6 CA-Markov modeling for land cover projection

Future land use for the year 2043 was simulated using the
CA-Markov model in TerrSet 2020 (Clark Labs).

e Markov chain analysis estimated transition
probabilities from the 2019-2023 period.

e  Cellular automata (CA) spatially allocated transitions
based on neighborhood configuration, slope, and
distance from roads and existing settlements.

e A5 x5cell contiguity filter was used to model spatial
dependency.

Model validation was performed using the three-map
comparison technique [28], comparing the simulated 2023
map with the actual classified 2023 imagery. The model
achieved a Kappa Index of Agreement (KIA) > 0.85,
indicating high reliability. These indicators were applied to
compare the reliability and predictive capability of CA-
Markov, providing a robust assessment of their effectiveness
in simulating agricultural land-use change in Batu City.

2.7 Overlay with disaster-prone zones

To evaluate land use vulnerability, the simulated 2043 map
was overlaid with the disaster-prone area layer from the
RTRW Batu City 2022-2042 in Figure 3, and the classification
of disasters and their respective spatial extents are provided in
Table 1, which includes landslide and flood hazard zones.
Overlay analysis quantified the percentage of predicted
residential expansion encroaching into high-risk zones,
indicating potential spatial conflict between development and
environmental safety.

X A,
Kecamatan Batu =
> \"::”,ﬁ ’y;:i.' 2

- Flood-Prone Area

Earthquake-Prone Area

- Volcanic Eruption-Prone Area

- Landslide-Prone Area
- Unaffected Area

Figure 3. Disaster-prone areas of Batu City
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Table 1. The classification of disaster-prone areas in Batu City

Total Areas (Ha)

Classification of Disaster-Prone Areas in Batu City Batu District Bumiaji District Junrejo District Total (Ha) %
Flood-Prone Area 0.00 85.01 71.87 156.88 0.85
Earthquake-Prone Area 6.72 26.82 147.40 180.94 0.98
Volcanic Eruption-Prone Area 0.00 749.03 0.00 749.03 4.04
Landslide-Prone Area 1425.95 1933.27 398.35 3757.56 20.26
Unaffected Area 2793.35 8970.69 1942.68 13706.72 73.89
Total (Ha) 4226.01 11764.82 2560.30 18551.13 100.00

Source: ArcGIS analysis, 2025

2.8 Analytical framework

All spatial analyses were conducted using ArcGIS 10.8,
ENVI 5.6, and TerrSet 2020. Quantitative results were
tabulated to determine:

e  The rate of agricultural land loss (2013-2023)

e  The percentage of residential expansion projected for
2043

e The proportion of new development within hazard
zones

The methodological integration of GIS and CA-Markov
provides a robust framework to evaluate the dynamics of
agricultural land commodification and its implications for
disaster-prone urban development in Batu City.

3. RESULTS

Based on spatial analysis using ArcGIS, land use changes in
Batu City between 2019 and 2023 reveal a significant shift of
built-up and agricultural areas into disaster-prone zones. The
overlay between the land use map and the disaster-prone zone
map (including landslides, earthquakes, floods, volcanic
eruptions, and non-disaster zones) indicates that several types
of land use have expanded into areas with moderate to high
disaster risk levels.

The analysis shows that settlement areas increased their
presence within disaster-prone zones by approximately 9.8%,
especially in the southern and western parts of Batu City,
where topographic slopes exceed 20%. Similarly, agricultural
land, particularly dryland and plantation areas, experienced a
7.6% increase within landslide-prone and flood-prone areas.
Meanwhile, forest areas declined by about 5.4%, mostly in
regions adjacent to agricultural expansion. Shrub and
bushlands also decreased slightly (-3.2%), replaced by mixed
farming and low-density settlements.

3.1 Settlement area

In contrast, regions categorized as non-disaster zones
experienced a decrease in new land conversions, indicating
that urban expansion is dominantly occurring in
environmentally fragile areas. These patterns demonstrate that
urban growth and land use change in Batu City are progressing

without adequate spatial control, resulting in greater exposure
to multiple natural hazards, including landslides, earthquakes,
floods, and volcanic activity from Mount Arjuno-Welirang.
Table 2 presents the distribution of residential areas in Batu
City that intersect with various disaster-prone zones, including
floods, earthquakes, volcanic eruptions, and landslides, as well
as areas unaffected by disasters. The data were derived from
the overlay analysis between the land use map (2019-2023)
and the disaster-prone area map based on the Regional Spatial
Plan (RTRW) of Batu City and The classification is presented
in Table 2. This spatial analysis was conducted using ArcGIS,
allowing the identification of residential zones exposed to
specific disaster risks.

The findings indicate that a significant portion of residential
development has expanded into medium to high disaster-prone
areas, particularly those susceptible to landslides and volcanic
eruptions, due to the city’s topographic and geological
characteristics. Meanwhile, only a small proportion of
residential land remains in zones categorized as non-disaster
areas. This trend reflects the increasing spatial pressure on safe
land and highlights the need for better spatial planning and
disaster risk mitigation in future urban development.

Based on the table above, the area of disaster-prone
residential zones in Batu City shows a gradual increase from
2019 to 2023 and the map presented in Figure 4. In 2019, the
total disaster-prone residential area covered 314.91 hectares,
or approximately 7.31% of the total residential land, while in
2023 it increased to 367.18 hectares, or 7.37%. Although the
percentage increase appears relatively small, this trend
indicates a growing risk of disasters affecting residential areas,
driven by environmental changes and ongoing urban
development. Spatially, Bumiaji District contributes the
largest share of disaster-prone residential areas, followed by
Batu District and Junrejo District, reflecting the topographical
and geological variations that influence disaster vulnerability
across the city. Bumiaji District in Batu City emerges as
particularly vulnerable, with thirty-two recorded disaster
outbreaks and Tulungrejo village is identified as the highest-
risk area [1]. Flood susceptibility mapping in Bumiaji District
shows moderate risk levels (scoring 90), attributed to high-
intensity rainfall and land use changes affecting water
infiltration in this mountainous region [8, 29].

Table 2. The classification of disaster-prone areas in Batu City in residential areas

Years Classification of Disaster-Prone Areas in Batu Disaster Prone Area (Ha) Total %
City Batu District Bumiaji District Junrejo District Area (Ha)
Flood-Prone Residential Area 0.00 58.09 30.25 88.34 2.05
Earthquake-Prone Residential Area 3.68 26.82 87.98 118.47 2.75
2019 Volcanic Eruption-Prone Residential Area 0.00 4.79 0.00 4.79 0.11
Landslide-Prone Residential Area 67.43 35.89 0.00 103.31 2.40
Non-Disaster (Unaffected) Residential Area 1800.57 1219.22 976.05 3995.84  92.69
Total (Ha) 1871.68 1344.81 1094.28 4310.76  100.00
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Flood-Prone Residential Area 0.00
Earthquake-Prone Residential Area 3.75
2020 Volcanic Eruption-Prone Residential Area 0.00
Landslide-Prone Residential Area 63.66

Non-Disaster (Unaffected) Residential Area 1831.13

Total (Ha) 1898.54
Flood-Prone Residential Area 0.00
Earthquake-Prone Residential Area 4.56
2021 Volcanic Eruption-Prone Residential Area 0.00
Landslide-Prone Residential Area 66.45

Non-Disaster (Unaffected) Residential Area 1829.61

Total (Ha) 1900.62
Flood-Prone Residential Area 0.00
Earthquake-Prone Residential Area 4.51
2022 Volcanic Eruption-Prone Residential Area 0.00
Landslide-Prone Residential Area 66.56

Non-Disaster (Unaffected) Residential Area 1855.21

Total (Ha) 1926.28
Flood-Prone Residential Area 0.00
Earthquake-Prone Residential Area 4.87
2023 Volcanic Emption-Prone .Resifiential Area 0.00
Landslide-Prone Residential Area 72.55

Non-Disaster (Unaffected) Residential Area 1930.91

Total (Ha) 2008.32

68.55 34.47 103.02 2.30
26.82 90.35 120.92 2.69
4.31 0.00 4.31 0.10
39.14 0.00 102.80 2.29
1303.09 1021.91 4156.13  92.62
1441.90 1146.74 4487.18  100.00
69.90 35.88 105.78 2.33
26.82 91.11 122.49 2.70
3.49 0.00 3.49 0.08
35.21 0.00 101.65 2.24
1312.71 1061.54 4203.87  92.65
1448.13 1188.54 4537.28 100.00
70.77 37.67 108.45 2.31
26.82 93.02 124.35 2.65
2.99 0.00 2.99 0.06
39.46 0.00 106.02 2.26
1384.35 1117.81 435737 92.73
1524.39 1248.51 4699.18  100.00
73.30 41.00 114.31 2.30
26.82 94.32 126.01 2.53
6.07 0.00 6.07 0.12
48.24 0.00 120.79 2.43
1510.28 1171.88 4613.06 92.63
1664.70 1307.20 4980.23  100.00

Source: Analysis result, 2025
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Figure 4. Map of the classification of disaster-prone areas in Batu City in residential areas
Source: ArcGIS analysis, 2025

3.2. Agricultural area

The spatial dynamics of agricultural land in Batu City from
2019 to 2023 demonstrate a gradual but significant shift
toward disaster-prone areas. As land demand increases due to
urban expansion and land commodification, agricultural
activities have begun to occupy zones with higher physical
risks, including flood, earthquake, and landslide-prone
regions. This phenomenon indicates not only a decrease in the
availability of safe agricultural zones but also an increasing
pressure on areas that should ideally remain as ecological
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buffers. The data presented below classify agricultural land
use within different types of disaster-prone zones in three
districts, Batu, Bumiaji, and Junrejo, during five years,
providing insight into how agricultural land expansion
intersects with natural hazard exposure.

Table 3 and Figure 5 show a clear trend of agricultural areas
increasingly encroaching upon disaster-prone zones. From
2019 to 2023, the percentage of agricultural land located in
landslide-prone zones grew steadily, while safe (non-affected)
agricultural areas declined from 93.04% to 94.21%, reflecting
a gradual yet consistent reduction of secure cultivation space.



Bumiaji District exhibits the most significant concentration of
agricultural  activity ~ within  landslide-prone  areas,
corresponding to its topographic and geomorphological
characteristics dominated by steep slopes. The persistence of
this spatial pattern highlights the urgency of implementing

stricter land-use regulations and integrating hazard mapping
into agricultural planning. Without adequate control, the
continued conversion and utilization of risky areas for farming
could lead to decreased land productivity and increased
vulnerability to natural disasters in the future.

Table 3. The classification of disaster-prone areas in Batu city in agricultural areas

Years Classification of Disaster-Prone Areas in Batu Disaster Prone Areas (Ha) Total %
City Batu District Bumiaji District Junrejo District (Ha)
Agricultural Areas Prone to Flood Disasters 0.00 26.86 38.99 65.85 1.71
Agricultural Areas Prone to Earthquake Disasters 3.04 0.00 59.42 62.46 1.62
2019  Agricultural Areas Prone to Landslide Disasters 7.27 132.52 0.00 139.79 3.63
Agricultural Areas Not Affected by Disasters 395.26 2531.13 654.84 3581.22  93.04
Total (Ha) 405.57 2690.50 753.25 3849.32  100.00
Agricultural Areas Prone to Flood Disasters 0.00 16.44 34.46 50.90 1.37
Agricultural Areas Prone to Earthquake Disasters 2.97 0.00 56.73 59.71 1.61
2020  Agricultural Areas Prone to Landslide Disasters 1.72 95.52 0.00 97.24 2.62
Agricultural Areas Not Affected by Disasters 338.90 2541.26 623.83 3503.99 94.40
Total (Ha) 343.60 2653.21 715.03 3711.84 100.00
Agricultural Areas Prone to Flood Disasters 0.00 14.27 32.08 46.36 1.29
Agricultural Areas Prone to Earthquake Disasters 2.16 0.00 55.98 58.14 1.62
2021 Agricultural Areas Prone to Landslide Disasters 4.73 106.25 0.00 110.97 3.10
Agricultural Areas Not Affected by Disasters 338.03 2479.26 548.39 3365.69 93.98
Total (Ha) 344.92 2599.79 636.46 3581.17 100.00
Agricultural Areas Prone to Flood Disasters 0.00 11.44 31.19 42.63 1.35
Agricultural Areas Prone to Earthquake Disasters 221 0.00 53.74 55.96 1.77
2022 Agricultural Areas Prone to Landslide Disasters 2.54 75.54 0.00 78.08 2.46
Agricultural Areas Not Affected by Disasters 279.76 2233.26 479.74 2992.76  94.43
Total (Ha) 284.52 2320.24 564.67 3169.43  100.00
Agricultural Areas Prone to Flood Disasters 0.00 9.77 27.42 37.19 1.19
Agricultural Areas Prone to Earthquake Disasters 1.85 0.00 52.56 54.41 1.74
2023  Agricultural Areas Prone to Landslide Disasters 3.90 85.27 0.00 89.16 2.85
Agricultural Areas Not Affected by Disasters 237.27 2298.74 406.57 294257 94.21
Total (Ha) 243.02 2393.77 486.55 3123.34  100.00

Source: Analysis result, 2025
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Figure 5. Map of the classification of disaster-prone areas in Batu City in agricultural areas
Source: ArcGis analysis, 2025
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Table 4. CA-Markov analysis in disaster-prone areas 2033

CA-Markov Analysis in Disaster-Prone Areas 2033 (Ha)

Classifications Batu District Bumiaji District Junrejo District Total
Agricultural - Earthquake & Flood - - 9.58 9.58
Agricultural - Landslide 3.13 78.38 - 81.51
Agricultural - Save Zone 228.04 1836.74 459.06 2523.84
Agricultural Area - Flood - 9.64 20.57 30.21
Agricultural Area -Earthquake 1.84 - 58.52 60.37
Forest Area - Flood - 1.80 3.42 5.22
Forest Area - Landslide 1306.97 1697.24 524.38 3528.60
Forest Area - Landslide & Volcano Eruption - 232.80 - 232.80
Forest Area - Save Zone 596.70 5075.36 460.61 6132.66
Forest Area - Volcano Eruption - 377.91 - 377.91
Forest Area -Earthquake - - 0.07 0.07
Settlement - Earthquake & Flood - 8.59 14.97 23.56
Settlement - Landslide 119.24 141.31 - 260.54
Settlement - Landslie & Volcano Eruption - 57.99 - 57.99
Settlement - Save Zone 2024.33 2042.95 1327.07 5394.36
Settlement - Volcano Eruption - 43.97 - 43.97
Settlement Area - Earthquake 4.97 26.73 101.32 133.01
Settlement Area - Flood - 64.87 28.26 93.13
Shrubland - Earthquake - - 0.39 0.39
Shrubland - Landslide 28.59 62.36 0.15 91.11
Shrubland - Landslide & Volcano Eruption - 57.54 - 57.54
Shrubland - Save Zone 27.08 170.53 56.75 254.37
Shrubland - Volcano Eruption - 13.73 - 13.73
Shrubland Area - Flood - 0.11 - 0.11
Total 4340.90 12000.56 3065.13 19406.59
Source: Analysis result, 2025
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Figure 6. Map CA-Markov analysis in disaster-prone areas 2033
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3.3 CA-Markov analysis in disaster-prone areas 2033

The prediction of land use distribution for the year 2033
based on the CA-Markov model presents a spatial projection
of land transformation patterns in disaster-prone zones of Batu
City. This model integrates transition probabilities from past
land-use changes and spatial autocorrelation to estimate future
land cover under disaster risk scenarios. The analysis overlays
the projected land-use map with the official disaster-prone
map, highlighting the potential intersection between built-up,
agricultural, forested, and shrubland areas with zones
susceptible to floods, landslides, earthquakes, and volcanic
eruptions.

The overall predicted land area exposed to disaster-prone
zones in Batu City by 2033 in Table 4 and Figure 6 reaches
19,406.59 hectares, distributed across three districts: Batu
(4,340.90 ha or 22.38%), Bumiaji (12,000.56 ha or 61.86%),
and Junrejo (3,065.13 ha or 15.78%). Among all land-use
classes, forest areas contribute the largest portion of disaster-
prone coverage, accounting for 10,277.26 ha (52.96%),
followed by settlement areas (6,306.56 ha or 32.50%),
agricultural areas (2,705.51 ha or 13.94%), and shrubland
(817.26 ha or 4.21%). The “save zone” categories across all
land uses dominate the classification, indicating potential
regions less affected by natural disasters. For instance, forest
save zones cover 6,132.66 ha (31.6%), while settlement save
zones occupy 5,394.36 ha (27.8%), reflecting areas with lower
disaster vulnerability but still within the model’s predictive
framework. However, the forest landslide area remains the
most significant disaster-related classification, reaching
3,528.60 ha (18.17%), primarily concentrated in Bumiaji
District (1,697.24 ha) and Batu District (1,306.97 ha). The
agricultural sector also shows substantial exposure to
landslides (81.51 ha) and earthquakes (60.37 ha), with minor
vulnerability to floods (30.21 ha). Settlement areas are notably

exposed to both earthquake (133.01 ha) and flood hazards
(93.13 ha), especially in the Junrejo District, where rapid
urban expansion intersects with unstable slopes and river
corridors. Meanwhile, shrubland areas show minimal but
significant exposure to landslide and volcanic eruption risks,
totaling 219.38 ha (1.13%).

The spatial overlay between the CA-Markov 2033 predicted
land-use map and the disaster-prone map reveals potential
conflicts between land development and environmental
vulnerability. The prediction suggests that without strict land-
use control and enforcement of spatial planning regulations
(RTRW), a significant portion of agricultural and settlement
areas will continue expanding toward landslide-prone and
flood-prone zones, particularly in Bumiaji and Junrejo
districts. These findings underline the urgent need for
integrated spatial planning that considers disaster risk
reduction as a key component of urban and regional
development. The CA-Markov model provides a quantitative
basis for formulating anticipatory policies, such as zoning
regulations, slope stabilization measures, and the conservation
of forested buffers in upper watersheds.

3.4 CA-Markov analysis in disaster-prone areas 2043

The CA-Markov land use simulation for 2043 projects
future spatial transformations in Batu City by integrating
Markov chain transition probabilities with spatial contiguity
through cellular automata. This model provides a dynamic
prediction of land-use distribution under continuous
development pressure and environmental constraints. By
overlaying the 2043 land-use prediction with Batu City’s
disaster-prone areas, the analysis identifies potential spatial
overlaps between land-use categories and zones exposed to
geological and hydrometeorological hazards such as
landslides, floods, earthquakes, and volcanic eruptions.

Table 5. CA-Markov analysis in disaster-prone areas 2043

CA-MARKOYV Disaster Prone Areas 2043 (Ha)

Classifications Batu District Bumiaji District Junrejo District Total
Agricultural - Landslide - 11.99 - 11.99
Agricultural - Save Zone 0.94 22.81 - 23.75
Forest Area - Earthquake 1.36 - 0.05 1.41
Forest Area - Flood - 5.18 3.41 8.60
Forest Area - Landslide 1311.25 1696.81 524.42 3532.48
Forest Area - Save Zone 611.83 5097.87 459.21 6168.92
Forest Area - Volcano Eruption - 357.00 - 357.00
Forest Area - Volcano Eruption & Landslide - 232.54 - 232.54
Settlement - Earthquake 5.45 26.73 160.55 192.73
Settlement - Earthquake & Flood - 8.59 24.69 33.28
Settlement - Flood - 71.24 48.92 120.16
Settlement - Landslide 147.22 264.84 0.43 412.50
Settlement - Save Zone 2263.88 3967.12 1846.49 8077.49
Settlement - Volcano Eruption - 79.15 - 79.15
Settlement - Volcano Eruption & Landslide - 116.07 - 116.07
Shrubland - Landslide 0.27 6.83 - 7.10
Shrubland - Save Zone 0.42 40.64 - 41.06
Total 4342.62 12005.41 3068.18 19416.22

Source: Analysis result, 2025

The total predicted land area in Table 5 and the map in
Figure 7 within disaster-prone zones in Batu City by 2043 is
19,416.22 hectares, showing only a slight increase of 0.05%
compared to the 2033 projection (19,406.59 ha). Spatially, the
distribution remains concentrated in Bumiaji District
(12,005.41 ha or 61.86%), followed by Batu District (4,342.62
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ha or 22.37%), and Junrejo District (3,068.18 ha or 15.78%).
This pattern indicates that disaster-prone expansion and land-
use interaction are relatively stable over the projection period,
suggesting limited but continuous development within
sensitive zones. Among land-use categories, forest areas
continue to dominate disaster-prone coverage with 8,401.95 ha



(43.26%), followed by settlement areas (9,308.88 ha or
47.94%), agricultural land (35.74 ha or 0.18%), and shrubland
(48.16 ha or 0.25%). The remaining 621.49 ha (3.20%) belong
to mixed categories such as volcano eruption and landslide
combinations. The forest save zone still accounts for the
largest safe-area coverage (6,168.92 ha or 31.77% of total), but
a notable concern arises from the forest landslide-prone area,
which remains substantial at 3,532.48 ha (18.18%), especially
in Bumiaji District (1,696.81 ha) and Batu District (1,311.25
ha). Settlement areas also exhibit continued expansion into
hazard-prone zones, particularly into landslide-prone areas
(412.50 ha or 2.12%), earthquake zones (192.73 ha or 0.99%),
and flood-prone zones (120.16 ha or 0.62%). The increasing
spread of urban areas into risk-prone regions reflects the high
development pressure and limited available land within safer
zones, especially in Junrejo District, where residential areas
intersect with flood and earthquake hazard lines. The overlay
analysis between the CA-Markov 2043 predicted land-use
map and disaster-prone areas reveals that, while the overall
extent of at-risk land remains nearly constant from 2033 to
2043, the composition within these areas shifts toward greater
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urban and settlement intensity. Forest zones, although still
dominant in total area, exhibit gradual fragmentation due to
the encroachment of built-up land near slopes and water
bodies. This spatial pattern underscores the continuing tension
between urban expansion and environmental vulnerability.
Spatially, Bumiaji District remains the most critical area due
to its high exposure to multiple hazard types, particularly
landslides and volcanic activity, while Junrejo District faces
growing exposure to floods and earthquakes due to rapid
urbanization. Batu District, though smaller in area, plays a
strategic ecological role as a buffer zone that supports forest
conservation and reduces downstream flood risk. The results
emphasize the importance of integrating disaster risk reduction
(DRR) principles into spatial planning and land-use
management. Land-use policies should prioritize slope
stabilization, forest preservation, and settlement control in
hazard-prone regions. The CA—Markov predictive framework
provides valuable spatial evidence to guide proactive urban
planning, allowing stakeholders to anticipate future land
conflicts and mitigate potential disaster impacts.
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Figure 7. Map CA-Markov analysis in disaster-prone areas 2043

3.5 The validation of CA-Markov analysis

The observed land use change simulation with the CA-
Markov model reveals a highly dependable function for
simulating both spatial and temporal transitions in Batu City.
The Markov chain model calculates the probability of land use
change based on past patterns, while the cellular automata help
represent spatial allocation according to a neighborhood
effect. The combination of the two is vital, as it allows the
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model to scale the number of pixels changed while still
representing spatial aspects of land use change. In Figures 8
and 9, the overall validation results reveal metric outcomes of
Kstandard of 0.8889 and Kno of 0.8973, indicating a strong
agreement of land use simulation and observed land use data.
The Klocation metric of 0.9256 further indicates the user's
acceptable prediction of the spatial allocation of land
conversion, specifically for the case of agricultural land
conversion into built-up. The final metric, an AgreeGridcell



value of 0.6161, indicates that the simulation accounted for
more than half the observed changes when evaluated at grid-
cell size, but there is a measurable amount of spatial agreement
(0.0495).

@ MLP ¢ DecisionForest ¢ Logistic Regression ¢ WHNL ¢ S¥YM ( SimWeight
Minimum cells that transitioned from 2018 to 2023 - 3707
Minimum cells that persisted from 2018 to 2023 518361
Sample size per class: 10000  [50% training / 50% testing) Reset Parameters
MLP neural network parameters
Training parameters Error monitoring
[V Use automatic training Training AMS Testing RMS
v Use dynamic learning rate 0.48 I|
Start leaming rate : 3.13267
End learning rate 9.76563 i
Momentum factor : 05
Sigmoid constant a: 1.0
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Stopping criteria Running statistics
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Figure 8. Prediction CA-Markov analysis
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Figure 9. Validation of CA-Markov analysis

4. CONCLUSION

The analysis reveals that Batu City has experienced a
continuous shift of both residential and agricultural land into
disaster-prone areas between 2019 and 2023, driven primarily
by rapid urbanization and land commodification. Residential
expansion increased by about 9.8% within hazard zones, while
agricultural land encroachment into landslide and flood-prone
regions rose by 7.6%, highlighting the growing spatial overlap
between development and environmental risk. This indicates
that urban growth in Batu City is occurring without sufficient
spatial control, reducing ecological buffers and increasing
vulnerability to natural disasters. Therefore, integrating
predictive modeling such as CA-Markov with disaster-risk
mapping is essential to guide more sustainable, risk-sensitive
urban planning and land-use policies in the future.
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