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Rapid urban expansion in Batu City has triggered extensive land conversion, primarily from 

agricultural to residential uses, driven by population growth and land commodification. This 

study aims to analyze and predict land cover dynamics from 2013 to 2043 using multi-temporal 

Landsat 8 and Sentinel 2A imagery integrated with the Cellular Automata Markov (CA-

Markov) model. The analysis reveals a 35% decline in agricultural areas and an 86% increase 

in residential areas over the past decade, while forest and shrubland have slightly decreased. 

These changes illustrate the growing pressure of urban development on productive land 

resources. Overlaying land cover data with the disaster-prone map indicates that approximately 

27% of Batu City’s territory lies within hazard-prone areas, dominated by landslide (20%) and 

volcanic (4%) zones. Around 20% of new residential development is concentrated in medium 

to high-risk zones, particularly in the eastern and northern regions of Batu and Bumiaji 

Districts. The CA-Markov projection suggests continued urban expansion toward these 

vulnerable zones by 2043 if no spatial control policies are implemented. The novelty of this 

study lies in integrating CA-Markov simulation with quantitative disaster-risk assessment, 

providing valuable insights for promoting disaster-resilient land-use planning and sustainable 

urban development in rapidly growing regions. 

Keywords: 

cellular automata, disaster prone areas, 

land commodification 

1. INTRODUCTION

Urbanization has emerged as one of the defining processes 

of the 21st century, reshaping global landscapes and socio-

economic structures. More than half of the world’s population 

now resides in urban areas, and this figure is projected to reach 

70% by 2050 [1-3]. This demographic shift has resulted in the 

massive expansion of built-up areas and the intensification of 

land competition between agricultural, residential, and 

industrial uses [4]. Between 1985 and 2015, the world’s urban 

areas nearly tripled, indicating not only population 

concentration but also the spatial manifestation of economic 

and political forces that drive cities toward relentless physical 

growth [5]. 

However, such expansion is often spatially unbalanced. In 

many developing regions, particularly Southeast Asia, urban 

growth occurs without adequate planning or environmental 

consideration [6]. Land is no longer valued solely for its 

ecological and productive functions but increasingly as a 

tradable commodity. The commodification of land and the 

transformation of land into an economic asset for speculation, 

tourism, or real estate development has become a central 

driver of spatial change in many peri-urban and agricultural 

areas [7-10]. This process redefines land ownership and use, 

leading to a structural shift from agrarian-based livelihoods 

toward capital-oriented urban economies. 

In Indonesia, this phenomenon is clearly visible in cities 

undergoing rapid economic transformation. The combination 

of tourism, investment, and infrastructure development has 

accelerated the conversion of agricultural land into built-up 

areas, often beyond the carrying capacity of the local 

environment [11]. The post-decentralization era has further 

intensified this dynamic, as regional governments seek to 

attract private investment through land-use flexibility and 

urban expansion incentives. Consequently, agricultural lands, 

which traditionally served as a source of local food security 

and ecological stability, have been converted into residential 

and commercial zones. 

Batu City in East Java is a representative case of this 

transformation. Historically, Batu City was known as a 

highland agropolitan area with fertile volcanic soils, 

supporting vegetable and fruit cultivation as the backbone of 

its local economy. Yet, since the early 2000s, the city’s rapid 

growth in tourism and real estate has led to significant land 
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conversion. Tourism-driven urbanization, supported by 

improved accessibility and the rise of the Malang Metropolitan 

Area, has increased demand for accommodation, resorts, and 

secondary housing. As a result, many productive farmlands 

have been transformed into urban settlements, particularly in 

Bumiaji, Batu, and Junrejo districts, areas where land values 

have sharply increased due to market speculation and tourism 

investment. 

This land commodification process is not only altering 

Batu’s spatial structure but also creating environmental and 

disaster-related risks. The city is situated on complex volcanic 

and mountainous terrain, influenced by Mount Arjuno and 

Mount Panderman, which makes it highly susceptible to 

landslides, floods, and volcanic hazards. Previous spatial 

analyses have indicated that approximately 27% of Batu’s 

total area falls within moderate to high disaster-prone zones 

[12]. Ironically, these are also the same areas where land 

conversion for housing and tourism occurs most intensively. 

The expansion of impermeable surfaces and deforestation of 

steep slopes further exacerbate the risk of hydrometeorological 

disasters. 

The overlapping of urban growth and disaster exposure 

reveals a critical weakness in spatial governance. Existing 

spatial plans (RTRW Batu City 2021-2040) have not fully 

integrated dynamic land-use modeling or risk-based zoning. 

Furthermore, urban expansion is often treated as an inevitable 

sign of progress rather than a process requiring ecological 

balance and risk consideration. As a result, disaster risk 

management tends to be reactive rather than preventive, 

focusing on post-event recovery instead of spatial anticipation. 

From an academic perspective, research on Batu City has 

primarily focused on either (1) land-use change and 

agricultural decline or (2) disaster-prone area mapping. Few 

studies have attempted to integrate both dimensions into a 

single predictive modeling framework that can simulate future 

urban expansion in relation to disaster risk. This gap limits 

policymakers’ ability to foresee potential conflicts between 

development and environmental safety. 

The CA-Markov (Cellular Automata Markov Chain) model 

offers a robust methodological solution for this challenge. The 

Markov Chain component estimates the probability of land 

transitions based on historical patterns, while the cellular 

automata component spatially allocates these transitions 

considering neighborhood effects and spatial constraints. 

Together, they allow for dynamic simulation of urban growth 

and scenario-based prediction of land-use changes. When 

combined with hazard maps, CA-Markov analysis can identify 

potential future overlaps between built-up expansion and 

disaster-prone zones, providing a scientific foundation for 

risk-sensitive urban planning. 

Therefore, this study aims to: 

• Analyze the spatio-temporal changes in land use and 

land cover (LULC) in Batu City between 2013 and 

2023. 

• Predict the spatial distribution of urban expansion up 

to 2043 using the CA-Markov model. 

By addressing these objectives, this research seeks to 

contribute both theoretically and practically. Theoretically, it 

advances the understanding of land commodification as a 

driver of spatial risk accumulation, a concept that connects 

urban economic dynamics with ecological vulnerability. 

Practically, it provides policymakers and planners with 

quantitative evidence to refine spatial plans, enforce zoning 

control, and strengthen disaster prevention strategies. 

Ultimately, the findings of this study are expected to guide 

the development of resilient and sustainable urban planning in 

Batu City. Integrating predictive modeling with disaster-risk 

assessment can support the formulation of adaptive land-use 

policies, balancing economic growth with environmental 

safety. Moreover, this approach can be replicated in other mid-

sized Indonesian cities that experience similar pressures of 

tourism-based urbanization and agricultural land conversion. 

 

 

2. MATERIAL AND METHODS 

 

This study employs a spatial analysis approach supported 

by remote sensing and geographic information system (GIS) 

techniques using ArcGIS 10.8 and IDRISI TerrSet software. 

The overall methodological framework consists of four main 

stages: data collection, image preprocessing, land use 

classification and validation, and land use change prediction 

using the CA-Markov model. 

 

2.1 Study area 

 

Batu City, located in East Java Province, Indonesia, lies 

between 7°44′55″–7°49′04″ S and 112°30′50″–112°35′50″ E. 

It covers approximately 199.09 km² and is characterized by 

steep slopes (15–40%), volcanic soils, and high rainfall. These 

conditions make the area both agriculturally productive and 

highly prone to natural hazards such as landslides and floods 

in Figure 1. 

 

2.2 Data collection 

 

The research utilized a combination of remote sensing and 

secondary spatial data. Satellite imagery: 

• Landsat 8 OLI (acquired in 2013 and 2016) with a 

spatial resolution of 30m [13]. 

• Sentinel-2A MSI (acquired in 2017 and 2023) with a 

spatial resolution of 10m [14]. 

Supporting spatial data: administrative boundaries, slope, 

elevation, and disaster-prone areas derived from Bappeda and 

BPBD Batu City [15]. All data were reprojected into UTM 

Zone 49S and WGS 84, using ArcGIS 10.8. 

 

2.3 Image preprocessing 

 

To ensure data comparability between different sensors, 

several preprocessing steps were applied before classification. 

• Atmospheric correction 

Atmospheric effects were corrected using the Dark 

Object Subtraction (DOS) method in ENVI 5.6, 

which adjusts for haze and scattering by normalizing 

pixel values [16]. This process improves the 

radiometric consistency between multi-temporal 

images [16]. 

• Geometric correction and subsetting 

All imagery was geometrically corrected using 

ground control points (GCPs) [17] and adjusted to 

match the administrative boundary of Batu City. 

Subsetting was performed to crop the study area from 

each scene [18]. 

• Cloud masking and thresholds 

Only images with less than 10% cloud cover were 

selected to minimize noise in classification. The 

Quality Assessment (QA) band in Landsat 8 and the 
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Scene Classification Layer (SCL) in Sentinel-2A 

were used to mask cloud and cirrus pixels [19]. 

• Spatial harmonization (resampling) 

Because Landsat 8 has a 30 m resolution while 

Sentinel-2A has 10 m, the Sentinel imagery was 

resampled to 30m using the nearest neighbor 

interpolation method to maintain spectral fidelity and 

ensure pixel compatibility for temporal comparison. 

This harmonization allowed accurate overlay and 

change detection in ArcGIS and TerrSet [20]. 

• Band Combination and enhancement 

False-color composites (bands 5-4-3 for Landsat 8 

and 8-4-3 for Sentinel-2A) were used to enhance 

vegetation and built-up area separability [21, 22]. 

 

 
 

Figure 1. Map of Batu City 

 

2.4 Land use classification and accuracy assessment 

 

Supervised classification using the Maximum Likelihood 

Classifier (MLC) was applied to categorize land use into 4 

major classes [23-25]: 

• Agricultural land 

• Water Bodies 

• Seatlemen Area 

• Built-up Areas 

• Forest 

• Shrubland 

Training samples were derived from field validation points 

and high-resolution imagery. Classification accuracy was 

evaluated through a confusion matrix and Kappa coefficient, 

yielding an overall accuracy of 87% for 2013 and 89% for 

2023, both exceeding the minimum threshold (≥ 85%) 

recommended in Figure 2 [26]. 

 
 

Figure 2. Central cells representing 2D cellular automata 

[27] 
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2.5 Land use change detection 

 

Land cover maps for 2013 and 2023 were compared using 

post-classification comparison in ArcGIS. The CrossTab 

function calculated the area (in hectares) and percentage 

change for each land use class. The analysis revealed the 

spatial distribution and rate of conversion from agricultural to 

residential use. 

 

2.6 CA-Markov modeling for land cover projection 

 

Future land use for the year 2043 was simulated using the 

CA-Markov model in TerrSet 2020 (Clark Labs). 

• Markov chain analysis estimated transition 

probabilities from the 2019-2023 period. 

• Cellular automata (CA) spatially allocated transitions 

based on neighborhood configuration, slope, and 

distance from roads and existing settlements. 

• A 5 × 5 cell contiguity filter was used to model spatial 

dependency. 

Model validation was performed using the three-map 

comparison technique [28], comparing the simulated 2023 

map with the actual classified 2023 imagery. The model 

achieved a Kappa Index of Agreement (KIA) > 0.85, 

indicating high reliability. These indicators were applied to 

compare the reliability and predictive capability of CA-

Markov, providing a robust assessment of their effectiveness 

in simulating agricultural land-use change in Batu City. 

 

2.7 Overlay with disaster-prone zones 

 

To evaluate land use vulnerability, the simulated 2043 map 

was overlaid with the disaster-prone area layer from the 

RTRW Batu City 2022-2042 in Figure 3, and the classification 

of disasters and their respective spatial extents are provided in 

Table 1, which includes landslide and flood hazard zones. 

Overlay analysis quantified the percentage of predicted 

residential expansion encroaching into high-risk zones, 

indicating potential spatial conflict between development and 

environmental safety. 

 

 
 

Figure 3. Disaster-prone areas of Batu City 

4682



 

Table 1. The classification of disaster-prone areas in Batu City 

 

Classification of Disaster-Prone Areas in Batu City 
Total Areas (Ha) 

Total (Ha) % 
Batu District Bumiaji District Junrejo District 

Flood-Prone Area 0.00 85.01 71.87 156.88 0.85 

Earthquake-Prone Area 6.72 26.82 147.40 180.94 0.98 

Volcanic Eruption-Prone Area 0.00 749.03 0.00 749.03 4.04 

Landslide-Prone Area 1425.95 1933.27 398.35 3757.56 20.26 

Unaffected Area 2793.35 8970.69 1942.68 13706.72 73.89 

Total (Ha) 4226.01 11764.82 2560.30 18551.13 100.00 
Source: ArcGIS analysis, 2025 

 

2.8 Analytical framework 

 

All spatial analyses were conducted using ArcGIS 10.8, 

ENVI 5.6, and TerrSet 2020. Quantitative results were 

tabulated to determine: 

• The rate of agricultural land loss (2013-2023) 

• The percentage of residential expansion projected for 

2043 

• The proportion of new development within hazard 

zones 

The methodological integration of GIS and CA-Markov 

provides a robust framework to evaluate the dynamics of 

agricultural land commodification and its implications for 

disaster-prone urban development in Batu City. 

 

 

3. RESULTS 

 

Based on spatial analysis using ArcGIS, land use changes in 

Batu City between 2019 and 2023 reveal a significant shift of 

built-up and agricultural areas into disaster-prone zones. The 

overlay between the land use map and the disaster-prone zone 

map (including landslides, earthquakes, floods, volcanic 

eruptions, and non-disaster zones) indicates that several types 

of land use have expanded into areas with moderate to high 

disaster risk levels. 
The analysis shows that settlement areas increased their 

presence within disaster-prone zones by approximately 9.8%, 
especially in the southern and western parts of Batu City, 
where topographic slopes exceed 20%. Similarly, agricultural 
land, particularly dryland and plantation areas, experienced a 
7.6% increase within landslide-prone and flood-prone areas. 
Meanwhile, forest areas declined by about 5.4%, mostly in 
regions adjacent to agricultural expansion. Shrub and 
bushlands also decreased slightly (-3.2%), replaced by mixed 
farming and low-density settlements. 

 

3.1 Settlement area 

 

In contrast, regions categorized as non-disaster zones 

experienced a decrease in new land conversions, indicating 

that urban expansion is dominantly occurring in 

environmentally fragile areas. These patterns demonstrate that 

urban growth and land use change in Batu City are progressing 

without adequate spatial control, resulting in greater exposure 

to multiple natural hazards, including landslides, earthquakes, 

floods, and volcanic activity from Mount Arjuno-Welirang. 

Table 2 presents the distribution of residential areas in Batu 

City that intersect with various disaster-prone zones, including 

floods, earthquakes, volcanic eruptions, and landslides, as well 

as areas unaffected by disasters. The data were derived from 

the overlay analysis between the land use map (2019-2023) 

and the disaster-prone area map based on the Regional Spatial 

Plan (RTRW) of Batu City and The classification is presented 

in Table 2. This spatial analysis was conducted using ArcGIS, 

allowing the identification of residential zones exposed to 

specific disaster risks. 

The findings indicate that a significant portion of residential 

development has expanded into medium to high disaster-prone 

areas, particularly those susceptible to landslides and volcanic 

eruptions, due to the city’s topographic and geological 

characteristics. Meanwhile, only a small proportion of 

residential land remains in zones categorized as non-disaster 

areas. This trend reflects the increasing spatial pressure on safe 

land and highlights the need for better spatial planning and 

disaster risk mitigation in future urban development. 

Based on the table above, the area of disaster-prone 

residential zones in Batu City shows a gradual increase from 

2019 to 2023 and the map presented in Figure 4. In 2019, the 

total disaster-prone residential area covered 314.91 hectares, 

or approximately 7.31% of the total residential land, while in 

2023 it increased to 367.18 hectares, or 7.37%. Although the 

percentage increase appears relatively small, this trend 

indicates a growing risk of disasters affecting residential areas, 

driven by environmental changes and ongoing urban 

development. Spatially, Bumiaji District contributes the 

largest share of disaster-prone residential areas, followed by 

Batu District and Junrejo District, reflecting the topographical 

and geological variations that influence disaster vulnerability 

across the city. Bumiaji District in Batu City emerges as 

particularly vulnerable, with thirty-two recorded disaster 

outbreaks and Tulungrejo village is identified as the highest-

risk area [1]. Flood susceptibility mapping in Bumiaji District 

shows moderate risk levels (scoring 90), attributed to high-

intensity rainfall and land use changes affecting water 

infiltration in this mountainous region [8, 29].

 

Table 2. The classification of disaster-prone areas in Batu City in residential areas 
 

Years 
Classification of Disaster-Prone Areas in Batu 

City 

Disaster Prone Area (Ha) Total 

Area (Ha) 
% 

Batu District Bumiaji District Junrejo District 

2019 

Flood-Prone Residential Area 0.00 58.09 30.25 88.34 2.05 

Earthquake-Prone Residential Area 3.68 26.82 87.98 118.47 2.75 

Volcanic Eruption-Prone Residential Area 0.00 4.79 0.00 4.79 0.11 

Landslide-Prone Residential Area 67.43 35.89 0.00 103.31 2.40 

Non-Disaster (Unaffected) Residential Area 1800.57 1219.22 976.05 3995.84 92.69 

Total (Ha) 1871.68 1344.81 1094.28 4310.76 100.00 
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2020 

Flood-Prone Residential Area 0.00 68.55 34.47 103.02 2.30 

Earthquake-Prone Residential Area 3.75 26.82 90.35 120.92 2.69 

Volcanic Eruption-Prone Residential Area 0.00 4.31 0.00 4.31 0.10 

Landslide-Prone Residential Area 63.66 39.14 0.00 102.80 2.29 

Non-Disaster (Unaffected) Residential Area 1831.13 1303.09 1021.91 4156.13 92.62 

Total (Ha) 1898.54 1441.90 1146.74 4487.18 100.00 

2021 

Flood-Prone Residential Area 0.00 69.90 35.88 105.78 2.33 

Earthquake-Prone Residential Area 4.56 26.82 91.11 122.49 2.70 

Volcanic Eruption-Prone Residential Area 0.00 3.49 0.00 3.49 0.08 

Landslide-Prone Residential Area 66.45 35.21 0.00 101.65 2.24 

Non-Disaster (Unaffected) Residential Area 1829.61 1312.71 1061.54 4203.87 92.65 

Total (Ha) 1900.62 1448.13 1188.54 4537.28 100.00 

2022 

Flood-Prone Residential Area 0.00 70.77 37.67 108.45 2.31 

Earthquake-Prone Residential Area 4.51 26.82 93.02 124.35 2.65 

Volcanic Eruption-Prone Residential Area 0.00 2.99 0.00 2.99 0.06 

Landslide-Prone Residential Area 66.56 39.46 0.00 106.02 2.26 

Non-Disaster (Unaffected) Residential Area 1855.21 1384.35 1117.81 4357.37 92.73 

Total (Ha) 1926.28 1524.39 1248.51 4699.18 100.00 

2023 

Flood-Prone Residential Area 0.00 73.30 41.00 114.31 2.30 

Earthquake-Prone Residential Area 4.87 26.82 94.32 126.01 2.53 

Volcanic Eruption-Prone Residential Area 0.00 6.07 0.00 6.07 0.12 

Landslide-Prone Residential Area 72.55 48.24 0.00 120.79 2.43 

Non-Disaster (Unaffected) Residential Area 1930.91 1510.28 1171.88 4613.06 92.63 

Total (Ha) 2008.32 1664.70 1307.20 4980.23 100.00 
Source: Analysis result, 2025 

 

 
 

Figure 4. Map of the classification of disaster-prone areas in Batu City in residential areas 
Source: ArcGIS analysis, 2025 

 

3.2. Agricultural area 

 

The spatial dynamics of agricultural land in Batu City from 

2019 to 2023 demonstrate a gradual but significant shift 

toward disaster-prone areas. As land demand increases due to 

urban expansion and land commodification, agricultural 

activities have begun to occupy zones with higher physical 

risks, including flood, earthquake, and landslide-prone 

regions. This phenomenon indicates not only a decrease in the 

availability of safe agricultural zones but also an increasing 

pressure on areas that should ideally remain as ecological 

buffers. The data presented below classify agricultural land 

use within different types of disaster-prone zones in three 

districts, Batu, Bumiaji, and Junrejo, during five years, 

providing insight into how agricultural land expansion 

intersects with natural hazard exposure. 

Table 3 and Figure 5 show a clear trend of agricultural areas 

increasingly encroaching upon disaster-prone zones. From 

2019 to 2023, the percentage of agricultural land located in 

landslide-prone zones grew steadily, while safe (non-affected) 

agricultural areas declined from 93.04% to 94.21%, reflecting 

a gradual yet consistent reduction of secure cultivation space. 
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Bumiaji District exhibits the most significant concentration of 

agricultural activity within landslide-prone areas, 

corresponding to its topographic and geomorphological 

characteristics dominated by steep slopes. The persistence of 

this spatial pattern highlights the urgency of implementing 

stricter land-use regulations and integrating hazard mapping 

into agricultural planning. Without adequate control, the 

continued conversion and utilization of risky areas for farming 

could lead to decreased land productivity and increased 

vulnerability to natural disasters in the future. 

 

Table 3. The classification of disaster-prone areas in Batu city in agricultural areas 

 

Years 
Classification of Disaster-Prone Areas in Batu 

City 

Disaster Prone Areas (Ha) Total 

(Ha) 
% 

Batu District Bumiaji District Junrejo District 

2019 

Agricultural Areas Prone to Flood Disasters 0.00 26.86 38.99 65.85 1.71 

Agricultural Areas Prone to Earthquake Disasters 3.04 0.00 59.42 62.46 1.62 

Agricultural Areas Prone to Landslide Disasters 7.27 132.52 0.00 139.79 3.63 

Agricultural Areas Not Affected by Disasters 395.26 2531.13 654.84 3581.22 93.04 

Total (Ha) 405.57 2690.50 753.25 3849.32 100.00 

2020 

Agricultural Areas Prone to Flood Disasters 0.00 16.44 34.46 50.90 1.37 

Agricultural Areas Prone to Earthquake Disasters 2.97 0.00 56.73 59.71 1.61 

Agricultural Areas Prone to Landslide Disasters 1.72 95.52 0.00 97.24 2.62 

Agricultural Areas Not Affected by Disasters 338.90 2541.26 623.83 3503.99 94.40 

Total (Ha) 343.60 2653.21 715.03 3711.84 100.00 

2021 

Agricultural Areas Prone to Flood Disasters 0.00 14.27 32.08 46.36 1.29 

Agricultural Areas Prone to Earthquake Disasters 2.16 0.00 55.98 58.14 1.62 

Agricultural Areas Prone to Landslide Disasters 4.73 106.25 0.00 110.97 3.10 

Agricultural Areas Not Affected by Disasters 338.03 2479.26 548.39 3365.69 93.98 

Total (Ha) 344.92 2599.79 636.46 3581.17 100.00 

2022 

Agricultural Areas Prone to Flood Disasters 0.00 11.44 31.19 42.63 1.35 

Agricultural Areas Prone to Earthquake Disasters 2.21 0.00 53.74 55.96 1.77 

Agricultural Areas Prone to Landslide Disasters 2.54 75.54 0.00 78.08 2.46 

Agricultural Areas Not Affected by Disasters 279.76 2233.26 479.74 2992.76 94.43 

Total (Ha) 284.52 2320.24 564.67 3169.43 100.00 

2023 

Agricultural Areas Prone to Flood Disasters 0.00 9.77 27.42 37.19 1.19 

Agricultural Areas Prone to Earthquake Disasters 1.85 0.00 52.56 54.41 1.74 

Agricultural Areas Prone to Landslide Disasters 3.90 85.27 0.00 89.16 2.85 

Agricultural Areas Not Affected by Disasters 237.27 2298.74 406.57 2942.57 94.21 

Total (Ha) 243.02 2393.77 486.55 3123.34 100.00 
Source: Analysis result, 2025 

 

 

Figure 5. Map of the classification of disaster-prone areas in Batu City in agricultural areas 
Source: ArcGis analysis, 2025 
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Table 4. CA-Markov analysis in disaster-prone areas 2033 

 
CA-Markov Analysis in Disaster-Prone Areas 2033 (Ha) 

Classifications Batu District Bumiaji District Junrejo District Total 

Agricultural - Earthquake & Flood - - 9.58 9.58 

Agricultural - Landslide 3.13 78.38 - 81.51 

Agricultural - Save Zone 228.04 1836.74 459.06 2523.84 

Agricultural Area - Flood - 9.64 20.57 30.21 

Agricultural Area -Earthquake 1.84 - 58.52 60.37 

Forest Area - Flood - 1.80 3.42 5.22 

Forest Area - Landslide 1306.97 1697.24 524.38 3528.60 

Forest Area - Landslide & Volcano Eruption - 232.80 - 232.80 

Forest Area - Save Zone 596.70 5075.36 460.61 6132.66 

Forest Area - Volcano Eruption - 377.91 - 377.91 

Forest Area -Earthquake - - 0.07 0.07 

Settlement - Earthquake & Flood - 8.59 14.97 23.56 

Settlement - Landslide 119.24 141.31 - 260.54 

Settlement - Landslie & Volcano Eruption - 57.99 - 57.99 

Settlement - Save Zone 2024.33 2042.95 1327.07 5394.36 

Settlement - Volcano Eruption - 43.97 - 43.97 

Settlement Area - Earthquake 4.97 26.73 101.32 133.01 

Settlement Area - Flood - 64.87 28.26 93.13 

Shrubland - Earthquake - - 0.39 0.39 

Shrubland - Landslide 28.59 62.36 0.15 91.11 

Shrubland - Landslide & Volcano Eruption - 57.54 - 57.54 

Shrubland - Save Zone 27.08 170.53 56.75 254.37 

Shrubland - Volcano Eruption - 13.73 - 13.73 

Shrubland Area - Flood - 0.11 - 0.11 

Total 4340.90 12000.56 3065.13 19406.59 
Source: Analysis result, 2025 

 

 
 

Figure 6. Map CA-Markov analysis in disaster-prone areas 2033 
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3.3 CA-Markov analysis in disaster-prone areas 2033 

 

The prediction of land use distribution for the year 2033 

based on the CA-Markov model presents a spatial projection 

of land transformation patterns in disaster-prone zones of Batu 

City. This model integrates transition probabilities from past 

land-use changes and spatial autocorrelation to estimate future 

land cover under disaster risk scenarios. The analysis overlays 

the projected land-use map with the official disaster-prone 

map, highlighting the potential intersection between built-up, 

agricultural, forested, and shrubland areas with zones 

susceptible to floods, landslides, earthquakes, and volcanic 

eruptions. 

The overall predicted land area exposed to disaster-prone 

zones in Batu City by 2033 in Table 4 and Figure 6 reaches 

19,406.59 hectares, distributed across three districts: Batu 

(4,340.90 ha or 22.38%), Bumiaji (12,000.56 ha or 61.86%), 

and Junrejo (3,065.13 ha or 15.78%). Among all land-use 

classes, forest areas contribute the largest portion of disaster-

prone coverage, accounting for 10,277.26 ha (52.96%), 

followed by settlement areas (6,306.56 ha or 32.50%), 

agricultural areas (2,705.51 ha or 13.94%), and shrubland 

(817.26 ha or 4.21%). The “save zone” categories across all 

land uses dominate the classification, indicating potential 

regions less affected by natural disasters. For instance, forest 

save zones cover 6,132.66 ha (31.6%), while settlement save 

zones occupy 5,394.36 ha (27.8%), reflecting areas with lower 

disaster vulnerability but still within the model’s predictive 

framework. However, the forest landslide area remains the 

most significant disaster-related classification, reaching 

3,528.60 ha (18.17%), primarily concentrated in Bumiaji 

District (1,697.24 ha) and Batu District (1,306.97 ha). The 

agricultural sector also shows substantial exposure to 

landslides (81.51 ha) and earthquakes (60.37 ha), with minor 

vulnerability to floods (30.21 ha). Settlement areas are notably 

exposed to both earthquake (133.01 ha) and flood hazards 

(93.13 ha), especially in the Junrejo District, where rapid 

urban expansion intersects with unstable slopes and river 

corridors. Meanwhile, shrubland areas show minimal but 

significant exposure to landslide and volcanic eruption risks, 

totaling 219.38 ha (1.13%). 

The spatial overlay between the CA-Markov 2033 predicted 

land-use map and the disaster-prone map reveals potential 

conflicts between land development and environmental 

vulnerability. The prediction suggests that without strict land-

use control and enforcement of spatial planning regulations 

(RTRW), a significant portion of agricultural and settlement 

areas will continue expanding toward landslide-prone and 

flood-prone zones, particularly in Bumiaji and Junrejo 

districts. These findings underline the urgent need for 

integrated spatial planning that considers disaster risk 

reduction as a key component of urban and regional 

development. The CA-Markov model provides a quantitative 

basis for formulating anticipatory policies, such as zoning 

regulations, slope stabilization measures, and the conservation 

of forested buffers in upper watersheds. 

 

3.4 CA-Markov analysis in disaster-prone areas 2043 

 

The CA–Markov land use simulation for 2043 projects 

future spatial transformations in Batu City by integrating 

Markov chain transition probabilities with spatial contiguity 

through cellular automata. This model provides a dynamic 

prediction of land-use distribution under continuous 

development pressure and environmental constraints. By 

overlaying the 2043 land-use prediction with Batu City’s 

disaster-prone areas, the analysis identifies potential spatial 

overlaps between land-use categories and zones exposed to 

geological and hydrometeorological hazards such as 

landslides, floods, earthquakes, and volcanic eruptions. 

 

Table 5. CA-Markov analysis in disaster-prone areas 2043 

 
CA-MARKOV Disaster Prone Areas 2043 (Ha) 

Classifications Batu District Bumiaji District Junrejo District Total 

Agricultural - Landslide - 11.99 - 11.99 

Agricultural - Save Zone 0.94 22.81 - 23.75 

Forest Area - Earthquake 1.36 - 0.05 1.41 

Forest Area - Flood - 5.18 3.41 8.60 

Forest Area - Landslide 1311.25 1696.81 524.42 3532.48 

Forest Area - Save Zone 611.83 5097.87 459.21 6168.92 

Forest Area - Volcano Eruption - 357.00 - 357.00 

Forest Area - Volcano Eruption & Landslide - 232.54 - 232.54 

Settlement - Earthquake 5.45 26.73 160.55 192.73 

Settlement - Earthquake & Flood - 8.59 24.69 33.28 

Settlement - Flood - 71.24 48.92 120.16 

Settlement - Landslide 147.22 264.84 0.43 412.50 

Settlement - Save Zone 2263.88 3967.12 1846.49 8077.49 

Settlement - Volcano Eruption - 79.15 - 79.15 

Settlement - Volcano Eruption & Landslide - 116.07 - 116.07 

Shrubland - Landslide 0.27 6.83 - 7.10 

Shrubland - Save Zone 0.42 40.64 - 41.06 

Total 4342.62 12005.41 3068.18 19416.22 
Source: Analysis result, 2025 

 

The total predicted land area in Table 5 and the map in 

Figure 7 within disaster-prone zones in Batu City by 2043 is 

19,416.22 hectares, showing only a slight increase of 0.05% 

compared to the 2033 projection (19,406.59 ha). Spatially, the 

distribution remains concentrated in Bumiaji District 

(12,005.41 ha or 61.86%), followed by Batu District (4,342.62 

ha or 22.37%), and Junrejo District (3,068.18 ha or 15.78%). 

This pattern indicates that disaster-prone expansion and land-

use interaction are relatively stable over the projection period, 

suggesting limited but continuous development within 

sensitive zones. Among land-use categories, forest areas 

continue to dominate disaster-prone coverage with 8,401.95 ha 
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(43.26%), followed by settlement areas (9,308.88 ha or 

47.94%), agricultural land (35.74 ha or 0.18%), and shrubland 

(48.16 ha or 0.25%). The remaining 621.49 ha (3.20%) belong 

to mixed categories such as volcano eruption and landslide 

combinations. The forest save zone still accounts for the 

largest safe-area coverage (6,168.92 ha or 31.77% of total), but 

a notable concern arises from the forest landslide-prone area, 

which remains substantial at 3,532.48 ha (18.18%), especially 

in Bumiaji District (1,696.81 ha) and Batu District (1,311.25 

ha). Settlement areas also exhibit continued expansion into 

hazard-prone zones, particularly into landslide-prone areas 

(412.50 ha or 2.12%), earthquake zones (192.73 ha or 0.99%), 

and flood-prone zones (120.16 ha or 0.62%). The increasing 

spread of urban areas into risk-prone regions reflects the high 

development pressure and limited available land within safer 

zones, especially in Junrejo District, where residential areas 

intersect with flood and earthquake hazard lines. The overlay 

analysis between the CA-Markov 2043 predicted land-use 

map and disaster-prone areas reveals that, while the overall 

extent of at-risk land remains nearly constant from 2033 to 

2043, the composition within these areas shifts toward greater 

urban and settlement intensity. Forest zones, although still 

dominant in total area, exhibit gradual fragmentation due to 

the encroachment of built-up land near slopes and water 

bodies. This spatial pattern underscores the continuing tension 

between urban expansion and environmental vulnerability. 

Spatially, Bumiaji District remains the most critical area due 

to its high exposure to multiple hazard types, particularly 

landslides and volcanic activity, while Junrejo District faces 

growing exposure to floods and earthquakes due to rapid 

urbanization. Batu District, though smaller in area, plays a 

strategic ecological role as a buffer zone that supports forest 

conservation and reduces downstream flood risk. The results 

emphasize the importance of integrating disaster risk reduction 

(DRR) principles into spatial planning and land-use 

management. Land-use policies should prioritize slope 

stabilization, forest preservation, and settlement control in 

hazard-prone regions. The CA–Markov predictive framework 

provides valuable spatial evidence to guide proactive urban 

planning, allowing stakeholders to anticipate future land 

conflicts and mitigate potential disaster impacts. 

 

 
 

Figure 7. Map CA-Markov analysis in disaster-prone areas 2043 

 

3.5 The validation of CA-Markov analysis 

 

The observed land use change simulation with the CA-

Markov model reveals a highly dependable function for 

simulating both spatial and temporal transitions in Batu City. 

The Markov chain model calculates the probability of land use 

change based on past patterns, while the cellular automata help 

represent spatial allocation according to a neighborhood 

effect. The combination of the two is vital, as it allows the 

model to scale the number of pixels changed while still 

representing spatial aspects of land use change. In Figures 8 

and 9, the overall validation results reveal metric outcomes of 

Kstandard of 0.8889 and Kno of 0.8973, indicating a strong 

agreement of land use simulation and observed land use data. 

The Klocation metric of 0.9256 further indicates the user's 

acceptable prediction of the spatial allocation of land 

conversion, specifically for the case of agricultural land 

conversion into built-up. The final metric, an AgreeGridcell 
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value of 0.6161, indicates that the simulation accounted for 

more than half the observed changes when evaluated at grid-

cell size, but there is a measurable amount of spatial agreement 

(0.0495). 

 

 
 

Figure 8. Prediction CA-Markov analysis 

 

 
 

Figure 9. Validation of CA-Markov analysis 

 

 

4. CONCLUSION 

 

The analysis reveals that Batu City has experienced a 

continuous shift of both residential and agricultural land into 

disaster-prone areas between 2019 and 2023, driven primarily 

by rapid urbanization and land commodification. Residential 

expansion increased by about 9.8% within hazard zones, while 

agricultural land encroachment into landslide and flood-prone 

regions rose by 7.6%, highlighting the growing spatial overlap 

between development and environmental risk. This indicates 

that urban growth in Batu City is occurring without sufficient 

spatial control, reducing ecological buffers and increasing 

vulnerability to natural disasters. Therefore, integrating 

predictive modeling such as CA-Markov with disaster-risk 

mapping is essential to guide more sustainable, risk-sensitive 

urban planning and land-use policies in the future. 
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