
Cuffless Blood Pressure Estimation Using AI Models: A Comparative Study of SVR, LSTM, 

and LightGBM 

Saadi Mohammed Saadi , Rasha Qasim Humadi , Batool Ali Majeed* , Batool Yasir Hardan , 

Zainab Ali Musa , Ammar Yasir Hardan  

Ministry of Education, Iraqi Gifted School, Baghdad 10011, Iraq 

Corresponding Author Email: ba5074963@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.301124 ABSTRACT 

Received: 30 September 2025 

Revised: 15 November 2025 

Accepted: 21 November 2025 

Available online: 30 November 2025 

One of the most significant biomarkers for stroke and cardiovascular disease, which are the 

world's leading causes of mortality, is blood pressure (BP). Researchers and healthcare 

professionals have focused on recognizing the early indicators of hypertension (high blood 

pressure) by routinely monitoring blood pressure and predicting future changes. Early 

detection enables prompt intervention and treatment, which lowers the risk of life-

threatening health issues like heart disease, stroke, and kidney issues. In this paper, a smart 

BP forecasting system is proposed that utilizes machine learning (ML) and deep learning 

(DL) algorithms, aided by IoT technology represented by the MQTT protocol and an AWS

server. Three ML models are tested and compared to select the best forecasting system,

including Support Vector Regression (SVR), Long Short-Term Memory (LSTM), and Light

Gradient-Boosting Machine (LightGBM). The performance evaluation reveals that the

LSTM shows high performance compared to other approaches, with an RMSE of 12.36

using the Photoplethysmograph (PPG), Electrocardiogram (ECG), and arterial blood

pressure (ABP) features.
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1. INTRODUCTION

Blood pressure (BP)  represents one of the key life-

threatening illnesses, which necessitates an accurate and 

efficient diagnostic tool. A significant risk factor for 

cardiovascular disease, elevated blood pressure, or 

hypertension, is the cause of more than 9 million annual 

fatalities [1]. In fact, unusual changes in blood pressure can 

also put the kidney, liver, brain, heart, and other organs at 

significant risk for harm. Hypertension is characterized by 

systolic and diastolic blood pressures that are greater than 140 

and 90 mmHg, respectively. If addressed, these unfavorable 

blood pressure levels might harm internal body organs. Hence, 

due to the large number of people affected by blood pressure 

issues, many researchers are attempting to make BP 

monitoring technologies more accurate and less inconvenient 

[2]. BP is often monitored using cuff-based devices, which are 

cumbersome and do not permit continuous measurement. 

Continuous blood pressure monitoring is extremely useful for 

learning about people's health issues [3]. On the other hand, 

for wearable technology and continuous monitoring, cuffless 

techniques are more practical. They are better suited for 

ambulatory and continuous monitoring because they do not 

need a cuff to be inflated and deflated. However, in specific 

medical situations or for clinical accuracy, cuffless approaches 

may face hurdles in terms of accuracy and may not be as 

dependable as cuff-based measures. It's crucial to remember 

that cuffless blood pressure monitoring is a field that is 

actively being researched and developed, and that these 

techniques' precision and dependability are continually being 

improved [4]. 

In this paper, ML and DL algorithms are used to improve 

the accuracy of the cuffless BP system. The following are the 

primary contributions of this paper: 

 Comparing the effectiveness of the three ML

algorithms, SVR, LSTM, and LightGBM, in terms of

the accuracy of BP estimation.

 Application of the proposed system with the aid of

IoT technology using an Amazon Web Server (AWS)

to work anywhere, anytime.

The structure of the paper is as follows. Section 2 discusses 

prior research studies. Section 3 presents the key elements of 

the research. The suggested ML and DL methods are presented 

in Section 4. Section 5 presents the findings and the 

performance evaluation. In Section 6, the conclusion of the 

paper is illustrated. 

2. RELATED WORK

A wide research contribution has been conducted to 

highlight this topic. A concise description is illustrated in this 

section. 

Hsiao et al. [5] focused on the early heart disease prevention 

is hampered by the inconvenience and complexity of 

continuous monitoring associated with traditional blood 

pressure measurement techniques. To solve this issue, a 

wearable gadget was created that properly predicts blood 

Ingénierie des Systèmes d’Information 
Vol. 30, No. 11, November, 2025, pp. 3067-3075 

Journal homepage: http://iieta.org/journals/isi 

3067

https://orcid.org/0000-0001-6988-966X
https://orcid.org/0000-0002-1693-9464
https://orcid.org/0009-0001-1494-8615
https://orcid.org/0009-0002-5885-2049
https://orcid.org/0009-0004-7257-2099
https://orcid.org/0009-0002-4265-9682
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.301124&domain=pdf


pressure without the need for a cuff by utilizing PPG and BioZ 

sensors in conjunction with the Random Forest Regression 

algorithm. With a mean inaccuracy of less than 3.3 mmHg, the 

results showed great accuracy, indicating the model's efficacy; 

however, more varied human samples are required for testing. 

Song et al. [6] suggested a cuffless method for estimating 

blood pressure that uses smartwatch-derived PPG and ECG 

signals. Using a DNN, a two-stage deep model was created 

and tested against more conventional techniques like SVM and 

ANN, showing better accuracy and reduced error rates. 

Additionally, a customized adaptation method was suggested 

to maximize performance for every user. 

The prevention of heart disease is limited by the inability of 

traditional blood pressure measurement techniques to offer 

convenient and ongoing monitoring. Qin et al. [7] proposed 

extracting many characteristics and increasing the accuracy of 

blood pressure prediction by using solely PPG signals with a 

deep network based on ResNet34. The model's efficacy and 

simplicity of integration into wearable technology, such as 

watches and smartphones, are demonstrated by the results on 

MIMIC data, which show that they satisfy international 

standards (AAMI and BHS). 

Ganti et al. [8] developed a wearable gadget (smartwatch) 

for accurate, at-home blood pressure measurement. The device 

estimates blood pressure by calculating pulse transition time 

(PTT) from ECG, SCG, and PPG inputs. After calibration, the 

findings showed good accuracy (RMSE = 2.72 mmHg), and a 

semi-generalized adaptive model may be able to lessen the 

need for calibration. For the early detection and treatment of 

hypertension, our study is a significant step toward convenient 

and efficient remote blood pressure monitoring. 

Continuous monitoring is limited by the interference or 

inconvenience of traditional blood pressure measurement 

techniques. El-Hajj and Kyriacou [9] designed a bidirectional 

recurrent neural network with an attention mechanism based 

only on PPG signals as models for estimating systolic and 

diastolic blood pressure. To enhance performance, 

dimensionality was decreased, and twenty-two features were 

taken from the signal. The outcomes were in line with the 

AAMI global requirements for cuffless blood pressure 

measurement, showed excellent accuracy, and beat 

conventional ML techniques. 

In order to provide more accurate and continuous 

monitoring, Yan et al. [10] introduced a new Deep-BP 

convolutional neural network-based model for cuffless blood 

pressure measurement. The model is distinguished by its 

capacity to extract deep features from data in a way that is not 

possible with conventional techniques, improving its 

estimation accuracy and noise resistance. The outcomes show 

that, both with and without calibration during training, the 

model performs better than current techniques.  

By combining various datasets, such as PPG and ECG 

signals, with individual characteristics like age, height, 

weight, and gender, Yin et al. [11] suggested a method for 

continuous, instantaneous, and discrete blood pressure 

measurement. In comparison to conventional models based 

solely on PTT and PWPs, the results demonstrated that 

integrating this data greatly increased estimation accuracy, 

with lower RMSEs and higher correlations. This method 

emphasizes how crucial it is to consider every constraining 

factor in order to produce a more accurate and trustworthy 

model. In order to overcome the challenge of feature 

extraction in the presence of noise or signal distortion, Yang 

et al. [12] used a hybrid blood pressure prediction model that 

is based on directly inputting raw signals with an individual's 

physical characteristics (age, height, weight, and gender). This 

method exhibited promise as a continuous, non-invasive way 

to measure blood pressure. A concise summary of the most 

related works and their possible research limitations is shown 

in Table 1.  

Table 1. Key types of approaches and limitations of prior literature 

Ref. Approach Limitation 

[13] 
CNN-BiLSTM Hybrid Model with PPG only for non-

interventional and continuous grade of blood pressure 

The traditional gap in extracting features and dealing with noise 

exceeded the integration of spatial and temporal treatment, while 

eliminating the need for the cuff. 

[14] Bi-tree-net mild nerve tree 
The need for low computer consumption models for portable devices, 

while maintaining accuracy. 

[15] 
A system based on an analog nerve network with low 

capacity 

Treating the problem of energy consumption and efficiency of 

implementation in compact devices to estimate blood pressure. 

[16] AI and ML 

A lack of validation across a range of populations, also it is 

constrained by practical implementation challenges, such as patient 

trust issues. 

[17] 
Enterable style (assembling AI models) to estimate 

continuous blood pressure in health applications 

Dealing with individual data fluctuations and the need to integrate 

multiple results to improve stability and accuracy. 

[18] Hybrid deep learning-based PPG signals Computationally heavy. 

[19] 

Watching blood pressure without an independent of the

topic using a multi-variable analysis of PPG data from the

finger/foot and ECG 

Addressing the defiance of generalization across different people, the 

variation of indicative forms, and physiological characteristics. 

[20] 
Attention CNN-BiLSTM model depends on symmetrical 

PPG signals (bipolar) taken from a wearable wrist. 

No external or extensive clinical validation was conducted, which 

restricts the results' applicability to all demographic groups. 

In this work, to choose the optimal forecasting system, three 

ML models—SVR, LSTM, and LightGBM are evaluated and 

contrasted. 

3. RESEARCH BACKGROUND

The fundamentals of the study, such as SVR, Long Short-

Term Memory LSTM, and LightGBM, are briefly described 

in this section, as well as the used dataset. 

3.1 Support Vector Regression algorithm 

SVR is related to SVM in that it is an extension of SVMs, 

except that the latter deal with regression problems. An SVR 

attempts to find a regression function that is as flat as possible, 
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if the deviations of the estimated values from the actual ones 

do not exceed some tolerance, ρ, a departure from SVMs, 

where the main goal is to find a hyperplane separating data 

points for classification, as shown in Figure 1. This uses an ϵ-

insensitive loss function in which errors smaller than ϵ are 

ignored, but bigger ones are penalized through a cost 

parameter C.  

 

 
 

Figure 1. SVR-based regression approach 

 

When the data show some nonlinear relationships, the SVR 

method uses appropriate kernel functions (linear, polynomial, 

RBF) to treat them accordingly. 

The essential mathematical expression of the SVR is 

demonstrated as follows. 

To keep the model as flat as possible, SVR attempts to fit a 

function f(x) with a maximum deviation ρ  from the actual 

targets [21]. 
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where, the weight vector, w, determines the regression 

hyperplane's orientation and slope. The bias term (intercept) 

that causes the hyperplane to move up or down is denoted by 

b. 𝐶 𝑖𝑠 𝑎 parameter for regularization, 𝛿𝑖,  𝛿𝑖
∗ represents the 

slack variables that manage errors by allowing specific points 

to fall outside the ϵ-insensitive tube. The SVR optimization 

problem is subject to:  
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where, K(𝑥𝑖 , x) is the kernel function (such as RBF or linear), 

𝛽𝑖 ,  𝛽𝑖
∗ are used to quantify the degree to which the associated 

constraint is active. 

The overall algorithm steps can be illustrated as follows: 

 Select the kernel function K, such as linear or RBF. 

 Set ρ and 𝐶 as hyperparameters. 

 Determine 𝛽𝑖 , 𝛽𝑖
∗ by solving the convex optimization 

problem. 

 Determine bias b. 

 Predict with f(x). 

 

3.2 Long Short-Term Memory 

 

LSTM is a type of RNN that is designed to handle long-

range dependencies while preventing the vanishing gradient 

problem. A memory cell is utilized here, with gates to control 

flows of information: forget, input, and output. The difference 

between LSTM and a regular RNN is that LSTM can choose 

to keep or forget certain information over obviously large time 

sequences, so they are effectively used for time-series 

prediction, speech recognition, and natural language 

processing. The mathematical expression of LSTM is shown 

in the following expressions [22, 23]. 

 

 1( , )t f t t fl S H F z −= +  (4) 

 

 1( , )t i t t ik S H F z −= +  (5) 
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where, 𝑙𝑡 is the forgetting layer's output; 𝑘𝑡 is a function that 

the input gate uses; 𝜑 is the new candidate's values' vector; 𝜑𝑡 

is the cell's most recent state; 𝑆𝑓 , 𝑆𝑖 , 𝑆𝑐 , 𝑆𝑜 , 𝑆𝑜𝑢𝑡  are the 

weights; 𝑧𝑓, 𝑧𝑖, 𝑧𝑐, 𝑧𝑜 are the biases; 𝐻𝑡  is the output at time t; 

𝐹𝑡 is the input features; 𝑂𝑢𝑡𝑐𝑙𝑎𝑠𝑠 is the output of classification. 

 

 
 

Figure 2. The architecture of the proposed LSTM model 

 

Steps of the LSTM Algorithm are as follows: 

Step 1: Set cell state 𝜑0 and hidden state 𝐻0 to zero.  

Step 2: Every time step t. 

a. Compute forget gate 𝑙𝑡 from 𝐻𝑡−1 and 𝐹𝑡. 

b. Compute input gate 𝑘𝑡  and candidate cell state 𝜑. 

c. Update cell state 𝜑𝑡 = 𝑙𝑡 . 𝜑𝑡−1 + 𝑘𝑡 . 𝜑 . 

d. Compute output gate 𝑂𝑡 . 
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e. Update hidden state 𝐻𝑡 = 𝑂𝑡  . tanh(𝜑𝑡). 
Step 3: For the last output layer, use the most recent hidden 

state (or series of hidden states). 

The structure of the proposed LSTM model for blood 

pressure prediction is shown in Figure 2, and the 

hyperparameter values are listed in Table 2. 

 

Table 2. Models hyperparameters 

 
Hyperparameters Value 

Activation 

Function 
RELU 

No. Epochs 5 

Loss RMSE 

Batch_Size 128 

Optimizer Adam 

Learning Rate 0.001 

SVR RBF kernel, C = 100, γ = 0.1 

LightGBM 
100 trees, learning rate = 0.05, max depth 

= 6 

Data Splitting 
70% training, 15% validation, and 15% 

testing 

 

3.3 Light Gradient Boosting Machine 

 

LightGBM is a speedy implementation of Gradient 

Boosting Decision Trees (GBDT). A series of decision trees is 

constructed sequentially, where each tree fits negative 

gradients of the loss function and thereby corrects the errors 

committed by the preceding tree. LightGBM differs from 

traditional GBDT in that it grows trees leaf-wise instead of 

level-wise based on whichever split gives the maximum 

information gain. It employs Histogram-based binning to 

provide faster computation and can handle large datasets with 

a smaller memory footprint. The mathematical description of 

LightGBM is illustrated as follows. The model is updated as 

follows at iteration 𝑗. In other words, Eq. (11) outlines the 

gradual improvement of the ensemble [24]. 

 

( ) ( )1 ( )j j jf x f x h x−= +  (11) 

 

where, 𝑓𝑗(𝑥)  represents the improved model following 𝑗 

iterations, 𝑓𝑗−1(𝑥)  is the model afterwards 𝑗 − 1  iterations, 

ℎ𝑗(𝑥)  At iteration 𝑗 , a new decision tree (weak learner) is 

added, 𝜇 is the rate of learning (0 < 𝜂 ≤ 1), 𝑥 is the input 

vector for features. Now, with regard to the split gain 

expression, which determines the optimal split, LightGBM 

employs a leaf-wise growth strategy based on histograms. 

When a node is divided into left and right child nodes, the gain 

(loss reduction). This means that Eq. (12) explains how 

LightGBM balances regularization and gradient information 

when choosing which feature and threshold to split at each 

node.  
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where, 𝑔𝑎𝑖𝑛 is the objective function's improvement (better 

split equal to larger gain), 𝑄𝐿 , 𝑄𝑅 are the sum of the left and 

right child nodes' first-order gradients, or residuals, of the loss, 

𝐷𝐿 , 𝐷𝑅  denote the sum of the loss's second-order gradients 

(Hessian) for the left and right child nodes, 𝑄𝐿 + 𝑄𝑅 refer to 

the parent node's total gradient prior to splitting, 𝐷𝐿 + 𝐷𝑅 are 

the parent node's total hessian prior to splitting, 𝜆  is the 

regularization on leaf weights, 𝜙 is the cost of complexity, or 

the penalty for taking a different leaf. Now, the steps that 

describe the LightGBM algorithm can be demonstrated as 

follows:  

Step 1: Set the average target value (for regression) as the 

initial value for predictions. 

Step 2: For every iteration of boosting: 

a. Using the current predictions, calculate the gradients 𝑄𝑗  

and hessians Dj. 

b. Use 𝑄𝑗  and hessians Dj to determine the split with the 

highest gain for each leaf.  

c. Expand the tree leaf by leaf until the maximum depth or 

minimum leaf data is attained. 

d. Use Eq. (11) to update predictions.  

Step 3: Provide the final model, which is the ensemble of 

trees. 

 

 
 

Figure 3. A sample from the applied dataset 

 

3.4 Cuffless dataset description 

 

The dataset illustrated in Table 3 is used in this study, 

namely the UCI ML Repository Cuffless Blood Pressure 

Estimation Dataset [25]. The applied dataset consists of a 

sample, which is depicted in Figure 3. It has 12000 samples in 

total. The signals ECG, PPG, and ABP are the only ones 

present in each sample, with a sampling rate of 125 Hz. First, 

the Electrocardiogram (ECG) represents a recording of the 

electrical activity of the heart muscle over time. The heart's 

electrical impulses are responsible for coordinating its 

contractions and making it possible for blood to flow through 

the body. Secondly, Photoplethysmography (PPG) is a non-

invasive technique that uses light to measure blood flow in the 

capillaries of the skin. PPG provides important insights into 

the cardiovascular system; moreover, it is a non-invasive, 

portable, and cost-effective method. The third signal, arterial 
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blood pressure (ABP), refers to the pressure that the blood 

exerts on the walls of the arteries. Blood pressure is interlinked 

to the heart cycle, which has two alternating phases: systole, 

when the heart contracts and propels the blood through the 

arteries, and diastole, when the heart relaxes after the 

contraction.  

Table 3. UCI Cuffless Blood Pressure Dataset description 

Properties Descrpition 

Number of 

subjects 
12 people (multiple registrations) 

Number of 

records 
More than 2,000,000 signal samples 

Available 

signals 

Electrocardiogram (ECG) signal + 

Photoplethysmography (PPG) signal + 

Reference Blood Pressure (ABP) signal 

Data type Physiological time series 

Sampling 

rate 
125 Hz 

Target 

variables 

Systolic blood pressure (SBP) + Diastolic blood 

pressure (DBP) 

Purpose 

Developing artificial intelligence methods for 

non-invasive blood pressure estimation (Cuff-

less) 

3.5 Wearable cuffless for blood pressure hypertension 

Cuffless, wearable blood pressure measurement devices 

offer a very convenient way to monitor hypertension and 

hypotension while increasing the opportunity for long-term 

management of blood pressure [26]. It makes use of 

biophysiological signals such as photoplethysmograms (PPG) 

and electrocardiograms (ECGs). However, some of its 

limitations are: first, calibration is necessary for accuracy 

when using cuff-based devices. Second, reliability may be 

lowered by signal noise, which includes skin tone, motion 

artifacts, and ambient light. Additionally, clinical-grade 

accuracy is still being validated. Several medical, 

technological, and practical requirements drive the decision to 

employ AI for Blood Pressure (BP) prediction or forecasting 

rather than more conventional techniques [27, 28], including  

(1) motivation in healthcare

- Early and ongoing monitoring is necessary to identify

abnormal blood pressure trends before complications like 

stroke, heart attack, or kidney failure arise because 

hypertension is a silent killer. 

- Traditional cuff-based devices are unable to record the

dynamic fluctuations in blood pressure caused by stress, 

activity, or sleep. These temporal variations can be modeled 

by AI. 

- Personalized healthcare: Unlike one-size-fits-all cuff

methods, AI models can adjust to the physiology of each 

patient. 

(2) Technical inspiration

- Nonlinear physiological relationships: Heart rate

variability, PPG, ECG, and other signals are intricate and 

interconnected. Traditional statistical techniques are unable to 

reveal hidden nonlinear patterns; AI can. 

- Automation of feature extraction: AI (such as deep

learning) eliminates the need for manually created features by 

automatically extracting significant features from unprocessed 

signals. 

- Predicting future blood pressure trends: AI can predict

future risks (such as the onset of hypertension) in addition to 

current blood pressure, something that traditional methods are 

unable to do. 

(3) Realistic motivation

- Constant monitoring and comfort: Although wearable

cuffless devices are comfortable, their unprocessed signals are 

noisy. By removing noise and identifying reliable patterns, AI 

increases accuracy. 

- Use of big data: AI can enhance population-level

generalization by utilizing sizable medical datasets (from 

wearables, EHRs, and IoT systems). 

- Integration with telemedicine: AI-powered cuffless blood

pressure monitors can give physicians real-time decision 

support, early warnings, and remote monitoring. 

Therefore, the goal of AI in blood pressure prediction is to 

overcome the drawbacks of conventional cuff-based systems 

and allow for continuous, personalized, and predictive 

hypertension management. 

4. DESIGN OF THE AI BLOOD PRESSURE 

PREDICTION SYSTEM 

The goal of the proposed approach is to use vital signs like 

ECG and PPG, which are available in the UCI Cuffless BP 

Dataset, to predict systolic and diastolic blood pressure 

(SBP/DBP) non-invasively (cuffless). In contrast to 

conventional approaches, the primary idea is to use ML and 

artificial intelligence techniques to increase accuracy and 

decrease error. The proposed cuffless blood pressure 

estimation pipeline can be described as follows: ECG and PPG 

signals are used as the input signals to the models. Arterial 

blood pressure (ABP) is not used as a predictive input. Instead, 

ABP serves as an invasive reference standard from which 

reference SBP and DBP values are extracted. Figure 4 

illustrates the overall proposed system structure. 

Figure 4. The proposed cloud-based cuffless blood pressure 

monitoring system 

The system design has followed the following phases: 

Phase 1: Data Acquisition  

• Using data from the UCI Cuffless Blood Pressure Dataset.

• The data contains ECG, PPG, and ABP signals.

Phase 2: Preprocessing

• Noise Filtering.

 ECG Signal Processing:

A bandpass Butterworth filter (0.5–40 Hz, 4th order) is 

applied to remove baseline wander and high-frequency noise. 

R-peaks are detected using a modified Pan–Tompkins

algorithm.

 PPG Signal Processing:
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A bandpass Butterworth filter (0.5–8 Hz, 4th order) is 

applied to suppress motion artifacts and noise. PPG systolic 

peaks and foot points are identified using first-derivative and 

zero-crossing techniques. 

• Feature Extraction: Extracting features such as PTT, PAT, 

and waveforms from the PPG/ECG. 

- PTT and PAT Computation: 

- Pulse Arrival Time (PAT): Computed as the time interval 

between the ECG R-peak and the corresponding PPG systolic 

peak. 

- Pulse Transit Time (PTT): Computed as the time interval 

between the ECG R-peak and the PPG foot point. 

Given the dataset sampling frequency of 125 Hz, the 

temporal resolution is approximately 8 ms. 

Phase 3: Modeling  

• SVR (Support Vector Regression): For predicting 

SBP/DBP as a linear and nonlinear method. 

• LSTM (Long Short-Term Memory): For processing time 

sequences of vital signals, this model is the most robust for 

handling the long-term relationship between ECG/PPG and 

blood pressure. 

• LightGBM: Used as a regression model for predicting of 

SBP/DBP. 

It is worth stating that the input features to the proposed 

models consist of the following features (PTT, PAT, Heart 

rate, PPG features) 

Phase 4: Evaluation 

• RMSE and MAE metrics are used to measure model 

accuracy. 

• Comparison between the three models. 

Phase 5: Deployment & Visualization Stage 

• The trained model (SVR or LSTM, or LightGBM) is 

deployed to the application. 

• The application receives signals or processing results from 

the server/device. 

• The readings are displayed directly to the user (real-time 

BP prediction). 

• Graphs can be added to display the change in blood 

pressure over time. 

The current study introduces a conceptual design in the form 

of an Amazon Web Services (AWS) based Internet of Things 

(IoT) architecture, illustrating the future installation of 

suggested models in a smart health monitoring setting. The 

present study revolves around the online assessment of blood 

pressure estimation models using standard databases, while 

hands-on implementation and real integration with AWS and 

mobile apps are considered. 

The following reasons are the basis for the consideration of 

AWS as the cloud environment for the IoT-enabled smart 

blood pressure monitoring system in this work: 

1. AWS IoT Core 

• Functions as a communication mediator (MQTT Broker). 

• Accepts the delivery of ECG and PPG data from the 

wearable devices. 

• Guarantees safety in communication by the use of digital 

certificates (TLS). 

2. AWS Lambda 

• The platform for running algorithms for preprocessing and 

feature extraction (PTT, PAT). 

• Provides the facility for the blood pressure prediction 

model to be implemented without needing a dedicated server. 

3. AWS DynamoDB/S3 

• Main storage for vital signs and their predictions. 

• Facilitates access to the data for subsequent medical 

evaluation. 

4. Mobile Application 

• Primarily functions as a receiver of data. 

• Shows estimated values (SBP/DBP) and also provides 

graphs for ECG and PPG signals. 

It is worth stating that the last phase allows the user or 

doctor to interpret the results and monitor their health, as 

shown in Figure 5. 

 

 
 

Figure 5. Mobile app for blood pressure monitoring 

 

 

5. RESULTS AND DISCUSSION  

 

The performance evaluation in this work is divided into 

three scenarios based on different combinations of selected 

datasets, which are the ABP, PPG, and ECG. Where the ABP 

is used as a ground truth for prediction. Regarding the 

evaluation metrics, the Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE), as illustrated in Eqs. (13) and 

(14), are used to testify the accuracy of the proposed three 

models (SVR, LSTM, and LightGBM). The RMSE can be 

determined as follows:  
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where, 𝑛  is the number of samples, 𝑦𝑖  is the i-th sample's 

actual (true) value, 𝑦̂𝑖 The expected amount of the i-th sample. 

Then the value of the Mean Absolute Error (MAE) can be 

calculated as follows: 
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The reason behind using both the RMSE and the MAE is 

that the MAE directly measures the average amount of error 

(absolute error), while the RMSE gives greater weight to large 

errors (due to the squared). 

Additionally, for statistical analysis measurement for the 

proposed models, the confidence interval (CI) metric is 
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considered as follows. 

CI = 𝛿 ± 𝜗 √
ρ(1 − ρ)

𝜖
(15) 

where, 𝛿 is the model's accuracy, 𝜗 is the z-score level, and ρ 

is the percentage of successes within the samples. 

Now, in the first scenario, the PPG and ABP data are used 

to predict the blood pressure as depicted in Figure 6. It can be 

noted in Table 4 that the LSTM outperforms both the SVR and 

LightGBM in terms of prediction error.  

Figure 6. Evaluation process of the models for scenario A 

Table 4. Results of scenario A (PPG+ABP) 

Model RMSE (95% CI) MAE (95% CI) 

SVR 23.78 (22.90 – 24.66) 17.54 (16.82 – 18.26) 

LSTM 22.36 (21.55 – 23.17) 15.65 (14.98 – 16.32) 

LightGBM 25.35 (24.40 – 26.30) 19.82 (18.95 – 20.69) 

In the second scenario, the combination of the ECG and 

ABP is selected as input for predicting the BP, as shown in 

Figure 7. The evaluation results are shown in Table 5. 

Figure 7. Evaluation process of the models for scenario B 

Table 5. Results of scenario B (ECG+ABP) 

Model RMSE (95% CI) MAE (95% CI) 

SVR 22.58 (21.70 – 23.46) 20.03 (19.25 – 20.81) 

LSTM 20.62 (19.85 – 21.39) 18.64 (17.92 – 19.36) 

LightGBM 26.25 (25.30 – 27.20) 21.32 (20.45 – 22.19) 

Likewise, the LSTM is the best model compared to other 

approaches in terms of the prediction error.  

Finally, the third scenario combines PPG, ABP, and ECG, 

which are used for BP forecasting as illustrated in Figure 8.  

Based on the results of scenario C, that shown in Table 6, it 

is worth stating that the LSTM also has the highest 

performance in terms of BP prediction.  

Here, combining the (PPG, ECG, and ABP) achieved the 

best results compared to the first and the second scenarios due 

to BP correlates with Pulse Transit Time (PTT) / Pulse Arrival 

Time (PAT), measured between the ECG R-wave and PPG 

foot/peak; this timing is a strong surrogate for arterial 

stiffness/BP.  

Figure 8. Evaluation process of the models for scenario C 

Table 6. Results of scenario C (PPG+ECG+ABP) 

Model RMSE (95% CI) MAE (95% CI) 

SVR 16.15 (15.45 – 16.85) 14.64 (13.98 – 15.30) 

LSTM 12.36 (11.82 – 12.90) 10.36 (9.88 – 10.84) 

LightGBM 17.54 (16.80 – 18.28) 16.39 (15.70 – 17.08) 

Furthermore, the experiments indicate that attempting to 

estimate BP with a PPG alone is an ambiguous and noise-

sensitive task; combining the ECG+PPG signals increases the 

robustness and accuracy of the estimation.  

Though it is difficult to make direct numerical comparisons 

among studies because of the various factors such as datasets, 

signal acquisition protocols, and evaluation strategies, the 

proposed LSTM model (RMSE = 12.36 mmHg, MAE = 10.36 

mmHg for SBP) is still able to show performance that is on par 

with the latest PPG-based deep learning methods. Our 

approach, in contrast to attention-based or CNN-BiLSTM 

models such as the studies [9, 18], achieves similar accuracy 

with a less complex architecture and a different dataset. 

Meanwhile, multimodal systems, as in the study [5], report 

fewer errors, but they also require more sensing hardware. The 

proposed approach can work with just PPG signals, thus 

illustrating a favorable trade-off between accuracy and system 

complexity. 

6. CONCLUSIONS

One of the most prevalent chronic illnesses in the world, 

high blood pressure (hypertension) is a significant risk factor 

for heart disease and stroke. The majority of traditional blood 

pressure monitors are cuff-based, which makes continuous 

monitoring challenging and uncomfortable for the patient. 

Consequently, cuffless measurement technologies that use 

biomarkers like ECG and PPG have surfaced, offering a more 

practical and comfortable way to monitor in real time. 

Accurately predicting systolic (SBP) and diastolic (DBP) 

blood pressure using physiological signals from the UCI 

Cuffless Blood Pressure Estimation Dataset is the primary 

issue this study attempts to solve. The objective is to create an 

AI-based model that, in contrast to conventional techniques, 

minimizes error. ECG and PPG signals were subjected to 

separate feature extraction and subsequent combination. SBP 
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and DBP values were then predicted using ML and deep 

learning algorithms (including SVR, LightGBM, and LSTM). 

According to experiments, combining the ECG and PPG 

signals results in a higher accuracy (lower mean square error 

of 12.36 and MAE of 10.36) than using either signal alone. 

The results also demonstrated that the LSTM model performed 

the best when predicting both SBP and DBP using both signals 

together, and it significantly outperformed the other two 

models (SVR and LightGBM) in predicting blood pressure 

values. 
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