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One of the most significant biomarkers for stroke and cardiovascular disease, which are the
world's leading causes of mortality, is blood pressure (BP). Researchers and healthcare
professionals have focused on recognizing the early indicators of hypertension (high blood
pressure) by routinely monitoring blood pressure and predicting future changes. Early
detection enables prompt intervention and treatment, which lowers the risk of life-
threatening health issues like heart disease, stroke, and kidney issues. In this paper, a smart
BP forecasting system is proposed that utilizes machine learning (ML) and deep learning
(DL) algorithms, aided by IoT technology represented by the MQTT protocol and an AWS
server. Three ML models are tested and compared to select the best forecasting system,
including Support Vector Regression (SVR), Long Short-Term Memory (LSTM), and Light
Gradient-Boosting Machine (LightGBM). The performance evaluation reveals that the
LSTM shows high performance compared to other approaches, with an RMSE of 12.36
using the Photoplethysmograph (PPG), Electrocardiogram (ECG), and arterial blood

pressure (ABP) features.

1. INTRODUCTION

Blood pressure (BP) represents one of the key life-
threatening illnesses, which necessitates an accurate and
efficient diagnostic tool. A significant risk factor for
cardiovascular disease, elevated blood pressure, or
hypertension, is the cause of more than 9 million annual
fatalities [1]. In fact, unusual changes in blood pressure can
also put the kidney, liver, brain, heart, and other organs at
significant risk for harm. Hypertension is characterized by
systolic and diastolic blood pressures that are greater than 140
and 90 mmHg, respectively. If addressed, these unfavorable
blood pressure levels might harm internal body organs. Hence,
due to the large number of people affected by blood pressure
issues, many researchers are attempting to make BP
monitoring technologies more accurate and less inconvenient
[2]. BP is often monitored using cuff-based devices, which are
cumbersome and do not permit continuous measurement.
Continuous blood pressure monitoring is extremely useful for
learning about people's health issues [3]. On the other hand,
for wearable technology and continuous monitoring, cuffless
techniques are more practical. They are better suited for
ambulatory and continuous monitoring because they do not
need a cuff to be inflated and deflated. However, in specific
medical situations or for clinical accuracy, cuffless approaches
may face hurdles in terms of accuracy and may not be as
dependable as cuff-based measures. It's crucial to remember
that cuffless blood pressure monitoring is a field that is
actively being researched and developed, and that these
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techniques' precision and dependability are continually being
improved [4].

In this paper, ML and DL algorithms are used to improve
the accuracy of the cuffless BP system. The following are the
primary contributions of this paper:

* Comparing the effectiveness of the three ML
algorithms, SVR, LSTM, and LightGBM, in terms of
the accuracy of BP estimation.

* Application of the proposed system with the aid of
IoT technology using an Amazon Web Server (AWS)
to work anywhere, anytime.

The structure of the paper is as follows. Section 2 discusses
prior research studies. Section 3 presents the key elements of
the research. The suggested ML and DL methods are presented
in Section 4. Section 5 presents the findings and the
performance evaluation. In Section 6, the conclusion of the
paper is illustrated.

2. RELATED WORK

A wide research contribution has been conducted to
highlight this topic. A concise description is illustrated in this
section.

Hsiao et al. [5] focused on the early heart disease prevention
is hampered by the inconvenience and complexity of
continuous monitoring associated with traditional blood
pressure measurement techniques. To solve this issue, a
wearable gadget was created that properly predicts blood
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pressure without the need for a cuff by utilizing PPG and BioZ
sensors in conjunction with the Random Forest Regression
algorithm. With a mean inaccuracy of less than 3.3 mmHg, the
results showed great accuracy, indicating the model's efficacy;
however, more varied human samples are required for testing.
Song et al. [6] suggested a cuffless method for estimating
blood pressure that uses smartwatch-derived PPG and ECG
signals. Using a DNN, a two-stage deep model was created
and tested against more conventional techniques like SVM and
ANN, showing better accuracy and reduced error rates.
Additionally, a customized adaptation method was suggested
to maximize performance for every user.

The prevention of heart disease is limited by the inability of
traditional blood pressure measurement techniques to offer
convenient and ongoing monitoring. Qin et al. [7] proposed
extracting many characteristics and increasing the accuracy of
blood pressure prediction by using solely PPG signals with a
deep network based on ResNet34. The model's efficacy and
simplicity of integration into wearable technology, such as
watches and smartphones, are demonstrated by the results on
MIMIC data, which show that they satisfy international
standards (AAMI and BHS).

Ganti et al. [8] developed a wearable gadget (smartwatch)
for accurate, at-home blood pressure measurement. The device
estimates blood pressure by calculating pulse transition time
(PTT) from ECG, SCG, and PPG inputs. After calibration, the
findings showed good accuracy (RMSE =2.72 mmHg), and a
semi-generalized adaptive model may be able to lessen the
need for calibration. For the early detection and treatment of
hypertension, our study is a significant step toward convenient
and efficient remote blood pressure monitoring.

Continuous monitoring is limited by the interference or
inconvenience of traditional blood pressure measurement
techniques. El-Hajj and Kyriacou [9] designed a bidirectional
recurrent neural network with an attention mechanism based

only on PPG signals as models for estimating systolic and
diastolic blood pressure. To enhance performance,
dimensionality was decreased, and twenty-two features were
taken from the signal. The outcomes were in line with the
AAMI global requirements for cuffless blood pressure
measurement, showed excellent accuracy, and beat
conventional ML techniques.

In order to provide more accurate and continuous
monitoring, Yan et al. [10] introduced a new Deep-BP
convolutional neural network-based model for cuffless blood
pressure measurement. The model is distinguished by its
capacity to extract deep features from data in a way that is not
possible with conventional techniques, improving its
estimation accuracy and noise resistance. The outcomes show
that, both with and without calibration during training, the
model performs better than current techniques.

By combining various datasets, such as PPG and ECG
signals, with individual characteristics like age, height,
weight, and gender, Yin et al. [11] suggested a method for
continuous, instantaneous, and discrete blood pressure
measurement. In comparison to conventional models based
solely on PTT and PWPs, the results demonstrated that
integrating this data greatly increased estimation accuracy,
with lower RMSEs and higher correlations. This method
emphasizes how crucial it is to consider every constraining
factor in order to produce a more accurate and trustworthy
model. In order to overcome the challenge of feature
extraction in the presence of noise or signal distortion, Yang
et al. [12] used a hybrid blood pressure prediction model that
is based on directly inputting raw signals with an individual's
physical characteristics (age, height, weight, and gender). This
method exhibited promise as a continuous, non-invasive way
to measure blood pressure. A concise summary of the most
related works and their possible research limitations is shown
in Table 1.

Table 1. Key types of approaches and limitations of prior literature

Ref. Approach Limitation
CNN-BILSTM Hybrid Model with PPG only for non- The tradltlonz_il gap in extractlng features and dealing with noise
[13] . - . exceeded the integration of spatial and temporal treatment, while
interventional and continuous grade of blood pressure AP
eliminating the need for the cuff.
[14] Bi-tree-net mild nerve tree The need for low compqter co_nsumptlon models for portable devices,
while maintaining accuracy.
[15] A system based on an analog nerve network with low Treating the problem of energy consumption and efficiency of
capacity implementation in compact devices to estimate blood pressure.
A lack of validation across a range of populations, also it is
[16] Al and ML constrained by practical implementation challenges, such as patient
trust issues.
[17] Enterable style (assembling Al models) to estimate Dealing with individual data fluctuations and the need to integrate
continuous blood pressure in health applications multiple results to improve stability and accuracy.
[18] Hybrid deep learning-based PPG signals Computationally heavy.
V\/_atchl_ng blood pressure W|thout_an independent of the Addressing the defiance of generalization across different people, the
[19]  topic using a multi-variable analysis of PPG data from the - S . ] e
. variation of indicative forms, and physiological characteristics.
finger/foot and ECG
[20] Attention CNN-BiLSTM model depends on symmetrical No external or extensive clinical validation was conducted, which

PPG signals (bipolar) taken from a wearable wrist.

restricts the results' applicability to all demographic groups.

In this work, to choose the optimal forecasting system, three
ML models—SVR, LSTM, and LightGBM are evaluated and
contrasted.

3. RESEARCH BACKGROUND

The fundamentals of the study, such as SVR, Long Short-
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Term Memory LSTM, and LightGBM, are briefly described
in this section, as well as the used dataset.

3.1 Support Vector Regression algorithm
SVR is related to SVM in that it is an extension of SVMs,

except that the latter deal with regression problems. An SVR
attempts to find a regression function that is as flat as possible,



if the deviations of the estimated values from the actual ones
do not exceed some tolerance, p, a departure from SVMs,
where the main goal is to find a hyperplane separating data
points for classification, as shown in Figure 1. This uses an e-
insensitive loss function in which errors smaller than € are
ignored, but bigger ones are penalized through a cost
parameter C.
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Figure 1. SVR-based regression approach

When the data show some nonlinear relationships, the SVR
method uses appropriate kernel functions (linear, polynomial,
RBF) to treat them accordingly.

The essential mathematical expression of the SVR is
demonstrated as follows.

To keep the model as flat as possible, SVR attempts to fit a
function f(x) with a maximum deviation p from the actual
targets [21].

Mt p5,61 3 ||w||2+cZ<6 +8) (M

where, the weight vector, w, determines the regression
hyperplane's orientation and slope. The bias term (intercept)
that causes the hyperplane to move up or down is denoted by
b. C is a parameter for regularization, §;, §; represents the
slack variables that manage errors by allowing specific points
to fall outside the e-insensitive tube. The SVR optimization
problem is subject to:

Y, —(W.x +b)< p+

(W.x +b)—y, < p+6; ()

5.5 20

Function of regression:
F()=2(A-F JK(x.x)+b G)

i=1

where, K(x;, x) is the kernel function (such as RBF or linear),
B;, Bi are used to quantify the degree to which the associated
constraint is active.
The overall algorithm steps can be illustrated as follows:
¢ Select the kernel function K, such as linear or RBF.
Set p and C as hyperparameters.
Determine f3;, 5 by solving the convex optimization
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problem.
Determine bias b.
Predict with f(x).

3.2 Long Short-Term Memory

LSTM is a type of RNN that is designed to handle long-
range dependencies while preventing the vanishing gradient
problem. A memory cell is utilized here, with gates to control
flows of information: forget, input, and output. The difference
between LSTM and a regular RNN is that LSTM can choose
to keep or forget certain information over obviously large time
sequences, so they are effectively used for time-series
prediction, speech recognition, and natural language
processing. The mathematical expression of LSTM is shown
in the following expressions [22, 23].

l, =9(S; [H R]+2,) “4)
k =8 (Si[Hoy R]+2) (5)
p=tanh (S, [H._, F]+2) (6)
@ =l*pq k= (7)

0 =8(S,[Hu R]+72,) (8)
H, =0 *tanh(g) )
Out,,, =% (H,*S,,) (10)

where, [; is the forgetting layer's output; k, is a function that
the input gate uses; ¢ is the new candidate's values' vector; ¢,
is the cell's most recent state; S¢, S;, S¢, Sy, Sour are the
weights; z¢, z;, Z., Z, are the biases; H, is the output at time t;
F, is the input features; Out 4 is the output of classification.

Layer (type) Output Shape Param #
InputLayer (None, 108, 18) ©

LSTM (None, 64) 19,200
Dense (None, 32) 2,080
Dense (None, 16) 528
Dense (None, 2) 34
Total params: 21,842
Trainable params: 21,842
Non-trainable params: 2]

Figure 2. The architecture of the proposed LSTM model

Steps of the LSTM Algorithm are as follows:

Step 1: Set cell state ¢, and hidden state H to zero.
Step 2: Every time step t.

a. Compute forget gate [, from H;_; and F;.

b. Compute input gate k, and candidate cell state ¢.
c. Update cell state ¢, = l;. i1 + ke .

d. Compute output gate O;.



e. Update hidden state H, = O, .tanh(¢,).

Step 3: For the last output layer, use the most recent hidden
state (or series of hidden states).

The structure of the proposed LSTM model for blood
pressure prediction is shown in Figure 2, and the
hyperparameter values are listed in Table 2.

Table 2. Models hyperparameters

Hyperparameters Value
ActlvaFlon RELU
Function
No. Epochs 5
Loss RMSE
Batch_Size 128
Optimizer Adam
Learning Rate 0.001
SVR RBF kernel, C =100,y =0.1
LightGBM 100 trees, learning 1;at6e =0.05, max depth
0, i1 0, 1 1 0,
Data Splitting 70% training, 15% Yahdatlon, and 15%
testing

3.3 Light Gradient Boosting Machine

LightGBM is a speedy implementation of Gradient
Boosting Decision Trees (GBDT). A series of decision trees is
constructed sequentially, where each tree fits negative
gradients of the loss function and thereby corrects the errors
committed by the preceding tree. LightGBM differs from
traditional GBDT in that it grows trees leaf-wise instead of
level-wise based on whichever split gives the maximum
information gain. It employs Histogram-based binning to
provide faster computation and can handle large datasets with
a smaller memory footprint. The mathematical description of
LightGBM is illustrated as follows. The model is updated as
follows at iteration j. In other words, Eq. (11) outlines the
gradual improvement of the ensemble [24].

f (%)= f14 (%) + uh; (%) (11)
where, f;j(x) represents the improved model following j
iterations, fj_;(x) is the model afterwards j — 1 iterations,
hj(x) At iteration j, a new decision tree (weak learner) is
added, u is the rate of learning (0 < n < 1), x is the input
vector for features. Now, with regard to the split gain
expression, which determines the optimal split, LightGBM
employs a leaf-wise growth strategy based on histograms.
When a node is divided into left and right child nodes, the gain
(loss reduction). This means that Eq. (12) explains how
LightGBM balances regularization and gradient information
when choosing which feature and threshold to split at each

node.
J—¢ (12)

gain:(

where, gain is the objective function's improvement (better
split equal to larger gain), Q;, Qr are the sum of the left and
right child nodes' first-order gradients, or residuals, of the loss,
D;, Dy denote the sum of the loss's second-order gradients
(Hessian) for the left and right child nodes, Q; + Q refer to
the parent node's total gradient prior to splitting, D; + Dy are

Q’ QG (Q+Q)

D+4 Dy+4 D +D;+4
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the parent node's total hessian prior to splitting, A is the
regularization on leaf weights, ¢ is the cost of complexity, or
the penalty for taking a different leaf. Now, the steps that
describe the LightGBM algorithm can be demonstrated as
follows:

Step 1: Set the average target value (for regression) as the
initial value for predictions.

Step 2: For every iteration of boosting:

a. Using the current predictions, calculate the gradients Q;
and hessians Dj.

b. Use Q; and hessians Dj to determine the split with the
highest gain for each leaf.

c. Expand the tree leaf by leaf until the maximum depth or
minimum leaf data is attained.

d. Use Eq. (11) to update predictions.

Step 3: Provide the final model, which is the ensemble of
trees.
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Figure 3. A sample from the applied dataset
3.4 Cuffless dataset description

The dataset illustrated in Table 3 is used in this study,
namely the UCI ML Repository Cuffless Blood Pressure
Estimation Dataset [25]. The applied dataset consists of a
sample, which is depicted in Figure 3. It has 12000 samples in
total. The signals ECG, PPG, and ABP are the only ones
present in each sample, with a sampling rate of 125 Hz. First,
the Electrocardiogram (ECG) represents a recording of the
electrical activity of the heart muscle over time. The heart's
electrical impulses are responsible for coordinating its
contractions and making it possible for blood to flow through
the body. Secondly, Photoplethysmography (PPG) is a non-
invasive technique that uses light to measure blood flow in the
capillaries of the skin. PPG provides important insights into
the cardiovascular system; moreover, it is a non-invasive,
portable, and cost-effective method. The third signal, arterial



blood pressure (ABP), refers to the pressure that the blood
exerts on the walls of the arteries. Blood pressure is interlinked
to the heart cycle, which has two alternating phases: systole,
when the heart contracts and propels the blood through the
arteries, and diastole, when the heart relaxes after the
contraction.

Table 3. UCI Cuffless Blood Pressure Dataset description

Properties Descrpition
Number of . . .
subjects 12 people (multiple registrations)
Number of More than 2,000,000 signal samples
records
. Electrocardiogram (ECG) signal +
As\;alriz})sle Photoplethysmography (PPG) signal +
& Reference Blood Pressure (ABP) signal
Data type Physiological time series
Sampling 125 Hz
rate
Target Systolic blood pressure (SBP) + Diastolic blood
variables pressure (DBP)
Developing artificial intelligence methods for
Purpose non-invasive blood pressure estimation (Cuft-

less)

3.5 Wearable cuffless for blood pressure hypertension

Cuffless, wearable blood pressure measurement devices
offer a very convenient way to monitor hypertension and
hypotension while increasing the opportunity for long-term
management of blood pressure [26]. It makes use of
biophysiological signals such as photoplethysmograms (PPG)
and electrocardiograms (ECGs). However, some of its
limitations are: first, calibration is necessary for accuracy
when using cuff-based devices. Second, reliability may be
lowered by signal noise, which includes skin tone, motion
artifacts, and ambient light. Additionally, clinical-grade
accuracy is still being validated. Several medical,
technological, and practical requirements drive the decision to
employ Al for Blood Pressure (BP) prediction or forecasting
rather than more conventional techniques [27, 28], including

(1) motivation in healthcare

- Early and ongoing monitoring is necessary to identify
abnormal blood pressure trends before complications like
stroke, heart attack, or kidney failure arise because
hypertension is a silent killer.

- Traditional cuff-based devices are unable to record the
dynamic fluctuations in blood pressure caused by stress,
activity, or sleep. These temporal variations can be modeled
by AL

- Personalized healthcare: Unlike one-size-fits-all cuff
methods, Al models can adjust to the physiology of each

patient.
(2) Technical inspiration
- Nonlinear physiological relationships: Heart rate

variability, PPG, ECG, and other signals are intricate and
interconnected. Traditional statistical techniques are unable to
reveal hidden nonlinear patterns; Al can.

- Automation of feature extraction: AI (such as deep
learning) eliminates the need for manually created features by
automatically extracting significant features from unprocessed
signals.

- Predicting future blood pressure trends: Al can predict
future risks (such as the onset of hypertension) in addition to
current blood pressure, something that traditional methods are
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unable to do.

(3) Realistic motivation

- Constant monitoring and comfort: Although wearable
cuffless devices are comfortable, their unprocessed signals are
noisy. By removing noise and identifying reliable patterns, Al
increases accuracy.

- Use of big data: Al can enhance population-level
generalization by utilizing sizable medical datasets (from
wearables, EHRs, and IoT systems).

- Integration with telemedicine: Al-powered cuffless blood
pressure monitors can give physicians real-time decision
support, early warnings, and remote monitoring.

Therefore, the goal of Al in blood pressure prediction is to
overcome the drawbacks of conventional cuff-based systems
and allow for continuous, personalized, and predictive
hypertension management.

4.DESIGN OF THE Al
PREDICTION SYSTEM

BLOOD PRESSURE

The goal of the proposed approach is to use vital signs like
ECG and PPG, which are available in the UCI Cuffless BP
Dataset, to predict systolic and diastolic blood pressure
(SBP/DBP) non-invasively (cuffless). In contrast to
conventional approaches, the primary idea is to use ML and
artificial intelligence techniques to increase accuracy and
decrease error. The proposed cuffless blood pressure
estimation pipeline can be described as follows: ECG and PPG
signals are used as the input signals to the models. Arterial
blood pressure (ABP) is not used as a predictive input. Instead,
ABP serves as an invasive reference standard from which
reference SBP and DBP values are extracted. Figure 4
illustrates the overall proposed system structure.

loT device AWS Cloud
PPG \
sensor Blood
Data Pressure
collection " Estimation
Model
ECG
sensor
Mobile App
Estimated blood
pressure N

- L/

Figure 4. The proposed cloud-based cuffless blood pressure
monitoring system

The system design has followed the following phases:

Phase 1: Data Acquisition

* Using data from the UCI Cuffless Blood Pressure Dataset.

* The data contains ECG, PPG, and ABP signals.

Phase 2: Preprocessing

* Noise Filtering.

. ECG Signal Processing:

A bandpass Butterworth filter (0.5-40 Hz, 4th order) is
applied to remove baseline wander and high-frequency noise.
R-peaks are detected using a modified Pan—Tompkins
algorithm.

. PPG Signal Processing:



A bandpass Butterworth filter (0.5-8 Hz, 4th order) is
applied to suppress motion artifacts and noise. PPG systolic
peaks and foot points are identified using first-derivative and
zero-crossing techniques.

* Feature Extraction: Extracting features such as PTT, PAT,
and waveforms from the PPG/ECG.

- PTT and PAT Computation:

- Pulse Arrival Time (PAT): Computed as the time interval
between the ECG R-peak and the corresponding PPG systolic
peak.

- Pulse Transit Time (PTT): Computed as the time interval
between the ECG R-peak and the PPG foot point.

Given the dataset sampling frequency of 125 Hz, the
temporal resolution is approximately 8 ms.

Phase 3: Modeling

* SVR (Support Vector Regression): For predicting
SBP/DBP as a linear and nonlinear method.

* LSTM (Long Short-Term Memory): For processing time
sequences of vital signals, this model is the most robust for
handling the long-term relationship between ECG/PPG and
blood pressure.

» LightGBM: Used as a regression model for predicting of
SBP/DBP.

It is worth stating that the input features to the proposed
models consist of the following features (PTT, PAT, Heart
rate, PPG features)

Phase 4: Evaluation

* RMSE and MAE metrics are used to measure model
accuracy.

» Comparison between the three models.

Phase 5: Deployment & Visualization Stage

* The trained model (SVR or LSTM, or LightGBM) is
deployed to the application.

* The application receives signals or processing results from
the server/device.

* The readings are displayed directly to the user (real-time
BP prediction).

* Graphs can be added to display the change in blood
pressure over time.

The current study introduces a conceptual design in the form
of an Amazon Web Services (AWS) based Internet of Things
(IoT) architecture, illustrating the future installation of
suggested models in a smart health monitoring setting. The
present study revolves around the online assessment of blood
pressure estimation models using standard databases, while
hands-on implementation and real integration with AWS and
mobile apps are considered.

The following reasons are the basis for the consideration of
AWS as the cloud environment for the IoT-enabled smart
blood pressure monitoring system in this work:

1. AWS IoT Core

* Functions as a communication mediator (MQTT Broker).

* Accepts the delivery of ECG and PPG data from the
wearable devices.

* Guarantees safety in communication by the use of digital
certificates (TLS).

2. AWS Lambda

* The platform for running algorithms for preprocessing and
feature extraction (PTT, PAT).

* Provides the facility for the blood pressure prediction
model to be implemented without needing a dedicated server.

3. AWS DynamoDB/S3

* Main storage for vital signs and their predictions.

 Facilitates access to the data for subsequent medical
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evaluation.

4. Mobile Application

* Primarily functions as a receiver of data.

» Shows estimated values (SBP/DBP) and also provides
graphs for ECG and PPG signals.

It is worth stating that the last phase allows the user or
doctor to interpret the results and monitor their health, as
shown in Figure 5.

Beat Metrics
PTT SBP (est.)
184 ms 120 mmHg

PPG graph
3.00

2.75

ECG graph

Blood Pressure (ABP) graph

Figure 5. Mobile app for blood pressure monitoring

5. RESULTS AND DISCUSSION

The performance evaluation in this work is divided into
three scenarios based on different combinations of selected
datasets, which are the ABP, PPG, and ECG. Where the ABP
is used as a ground truth for prediction. Regarding the
evaluation metrics, the Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE), as illustrated in Egs. (13) and
(14), are used to testify the accuracy of the proposed three
models (SVR, LSTM, and LightGBM). The RMSE can be
determined as follows:

RMSE = [ (v, 9,

where, n is the number of samples, y; is the i-th sample's
actual (true) value, y; The expected amount of the i-th sample.

Then the value of the Mean Absolute Error (MAE) can be
calculated as follows:

13 .
MAE =«/— Sy, 9
n =

The reason behind using both the RMSE and the MAE is
that the MAE directly measures the average amount of error
(absolute error), while the RMSE gives greater weight to large
errors (due to the squared).

Additionally, for statistical analysis measurement for the
proposed models, the confidence interval (CI) metric is

(13)

(14)



considered as follows.

p(1—p)
€

Cl=6+9 (15)

where, § is the model's accuracy, 9 is the z-score level, and p
is the percentage of successes within the samples.

Now, in the first scenario, the PPG and ABP data are used
to predict the blood pressure as depicted in Figure 6. It can be
noted in Table 4 that the LSTM outperforms both the SVR and
LightGBM in terms of prediction error.

Dataset Testing ’ /ﬁ
1 samples 4 SVR
PPG !
—»|  Split ,| Training 1y Lstm
Samples
4Bk [ TightcB
S M
Evaluation ; &S/
results

Figure 6. Evaluation process of the models for scenario A

Table 4. Results of scenario A (PPG+ABP)

Model RMSE (95% CI) MAE (95% CI)
SVR 23.78 (22.90 — 24.66)  17.54 (16.82 — 18.26)
LSTM 2236 (21.55-23.17)  15.65 (14.98 - 16.32)
LightGBM _ 25.35(24.40 -26.30)  19.82 (18.95 —20.69)

In the second scenario, the combination of the ECG and
ABP is selected as input for predicting the BP, as shown in
Figure 7. The evaluation results are shown in Table 5.

Dataset Testing ‘ =
| samples SVR
ECG v
Samples \
o —1

“ LightGBM

Models

Evaluation |
results

Figure 7. Evaluation process of the models for scenario B

Table 5. Results of scenario B (ECG+ABP)

Model RMSE (95% CI) MAE (95% CI)

SVR 2258 (21.70 —23.46)  20.03 (19.25 — 20.81)

LSTM 2062 (19.85-21.39)  18.64 (17.92 — 19.36)
LightGBM  26.25 (25.30 —27.20)  21.32 (20.45 — 22.19)

Likewise, the LSTM is the best model compared to other
approaches in terms of the prediction error.

Finally, the third scenario combines PPG, ABP, and ECG,
which are used for BP forecasting as illustrated in Figure 8.

Based on the results of scenario C, that shown in Table 6, it
is worth stating that the LSTM also has the highest
performance in terms of BP prediction.
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Here, combining the (PPG, ECG, and ABP) achieved the
best results compared to the first and the second scenarios due
to BP correlates with Pulse Transit Time (PTT) / Pulse Arrival
Time (PAT), measured between the ECG R-wave and PPG
foot/peak; this timing is a strong surrogate for arterial
stiffness/BP.

Dataset ) Testing T\
Samples A SVR

BEE Join Traini

| dataand |~ ooon8 —»  LSTM
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Figure 8. Evaluation process of the models for scenario C

Table 6. Results of scenario C (PPG+ECG+ABP)

Model RMSE (95% CI) MAE (95% CI)
SVR 16.15 (1545 — 16.85)  14.64 (13.98 — 15.30)
LSTM 12.36 (11.82 - 12.90)  10.36 (9.88 — 10.84)
LightGBM  17.54 (16.80 — 18.28)  16.39 (15.70 — 17.08)

Furthermore, the experiments indicate that attempting to
estimate BP with a PPG alone is an ambiguous and noise-
sensitive task; combining the ECG+PPG signals increases the
robustness and accuracy of the estimation.

Though it is difficult to make direct numerical comparisons
among studies because of the various factors such as datasets,
signal acquisition protocols, and evaluation strategies, the
proposed LSTM model (RMSE = 12.36 mmHg, MAE =10.36
mmHg for SBP) is still able to show performance that is on par
with the latest PPG-based deep learning methods. Our
approach, in contrast to attention-based or CNN-BiLSTM
models such as the studies [9, 18], achieves similar accuracy
with a less complex architecture and a different dataset.
Meanwhile, multimodal systems, as in the study [5], report
fewer errors, but they also require more sensing hardware. The
proposed approach can work with just PPG signals, thus
illustrating a favorable trade-off between accuracy and system
complexity.

6. CONCLUSIONS

One of the most prevalent chronic illnesses in the world,
high blood pressure (hypertension) is a significant risk factor
for heart disease and stroke. The majority of traditional blood
pressure monitors are cuff-based, which makes continuous
monitoring challenging and uncomfortable for the patient.
Consequently, cuffless measurement technologies that use
biomarkers like ECG and PPG have surfaced, offering a more
practical and comfortable way to monitor in real time.
Accurately predicting systolic (SBP) and diastolic (DBP)
blood pressure using physiological signals from the UCI
Cuffless Blood Pressure Estimation Dataset is the primary
issue this study attempts to solve. The objective is to create an
Al-based model that, in contrast to conventional techniques,
minimizes error. ECG and PPG signals were subjected to
separate feature extraction and subsequent combination. SBP



and DBP values were then predicted using ML and deep
learning algorithms (including SVR, LightGBM, and LSTM).
According to experiments, combining the ECG and PPG
signals results in a higher accuracy (lower mean square error
of 12.36 and MAE of 10.36) than using either signal alone.
The results also demonstrated that the LSTM model performed
the best when predicting both SBP and DBP using both signals
together, and it significantly outperformed the other two
models (SVR and LightGBM) in predicting blood pressure
values.
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