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Artificial Intelligence (AI) is increasingly used to accelerate aerodynamic design by 

enabling fast, data-driven prediction of key performance metrics. This study develops 

Convolutional Neural Network (CNN) regression models to predict the lift coefficient (𝐶𝐿)
and drag coefficient (𝐶𝐷) of NACA 4-digit airfoils under low Reynolds number conditions 
( 𝑅𝑒 = 50,000 ), addressing the practical need for rapid evaluation compared with time-

consuming CFD-based analysis. A quantitative, data-driven workflow was implemented by 

generating a dataset using XFLR5 for 50 NACA airfoil geometries, producing 7,173 labeled 

samples across angles of attack from −20∘ to 20∘ . To ensure a fair generalization

assessment and avoid data leakage, a split-by-airfoil protocol was applied with 64% 

training, 16% validation, and 20% testing subsets, and two CNN models were trained 

separately for 𝐶𝐿 and 𝐶𝐷. Under the representative full-dataset configuration (50 airfoils)

trained for 100 epochs, the proposed approach achieved strong validation performance with 

𝑅2 = 0.9515 for 𝐶𝐿 and 𝑅2 = 0.9146 for 𝐶𝐷. In terms of efficiency, the complete pipeline

required approximately 32 seconds for image preprocessing and predicting both 

coefficients, substantially faster than typical CFD runtimes reported in the literature, 

thereby supporting rapid iterative screening of candidate geometries. These results indicate 

that CNN-based aerodynamic surrogate modeling can provide an accurate and 

computationally efficient alternative for early-stage airfoil selection and iterative design in 

low-Reynolds-number applications such as small UAVs and small-scale wind turbines. The 

originality of this work lies in combining a low-Re, image-based CNN regression 

framework with a split-by-airfoil evaluation protocol to demonstrate robust predictive 

capability on unseen geometries while delivering a practical speed–accuracy trade-off 

suitable for partially substituting CFD during preliminary design workflows.  
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1. INTRODUCTION

Rapid advancements in artificial intelligence (AI), 

specifically within machine learning and deep learning, have 

transformed aerodynamic design and analysis by offering new 

pathways for acceleration. Among these data-driven 

approaches, Convolutional Neural Networks (CNNs) have 

demonstrated significant potential in establishing direct 

mappings from image-based airfoil geometries to 

aerodynamic coefficients. This capability enables near-

instantaneous predictions, which are critical for optimizing 

applications in both aerospace engineering and renewable 

energy systems [1, 2]. 

Conventional evaluation methods such as wind-tunnel 

experiments and Computational Fluid Dynamics (CFD) 

remain accurate and widely used; however, they are often 

resource-intensive, time-consuming, and costly. While high-

fidelity solvers (e.g., ANSYS Fluent and OpenFOAM) and 

lower-cost tools (e.g., XFOIL-based workflows) can provide 

reliable estimates, they become impractical when thousands of 

candidate geometries must be screened during iterative early-

stage exploration. This motivates surrogate modeling 

strategies that can reduce turnaround time while maintaining 

sufficient predictive fidelity for preliminary decision-making 

[3-5]. 

Airfoil performance is commonly characterized by the lift 

coefficient (𝐶𝐿)  and drag coefficient (𝐶𝐷) , which directly

influence aerodynamic efficiency, stability, and energy 

conversion. Recent studies indicate that CNN-based models 

can approach CFD-comparable accuracy across selected 

geometries and flow conditions [6, 7]. Nevertheless, key gaps 

remain: many prior studies rely on relatively small or 

homogeneous datasets that limit generalization to unseen 

airfoils and operating conditions [1, 8], and predictive 

reliability in low Reynolds number regimes critical for small 

UAVs and small-scale wind turbines remains comparatively 

underexplored despite the stronger influence of transition and 

separation phenomena [5]. In addition, maintaining a 

favorable efficiency–accuracy trade-off as dataset diversity 

increases calls for systematic dataset construction and 

validation [6]. 

To address these gaps, this study develops a CNN 

framework trained on a diverse dataset of NACA 4-digit 

airfoils spanning angles of attack from −20∘ to 20∘  at 𝑅𝑒 =
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50,000, a representative low-Re regime for small UAVs and 

micro-turbines. The working hypothesis is that expanding 

geometric and operating-condition coverage improves out-of-

distribution performance while preserving computational 

efficiency, thereby complementing and partially substituting 

CFD in early-stage design workflows [9]. The contributions of 

this work are: (1) construction of an extensive NACA 4-digit 

dataset with wide angle-of-attack coverage, (2) development 

of CNN regressors for predicting 𝐶𝐿  and 𝐶𝐷  under low-Re

conditions, and (3) empirical evaluation demonstrating a 

practical speed–accuracy trade-off for rapid aerodynamic 

screening [6, 10-12]. 

2. METHODOLOGY

This study develops a Convolutional Neural Network 

(CNN) model to predict aerodynamic coefficients lift (𝐶𝐿) and

drag ( 𝐶𝐷 ) directly from airfoil geometry images. The

systematic workflow of this research, including the data 

processing and model architecture, is illustrated in Figure 1. 

The CNN approach was selected because it can automatically 

extract spatial and curvature features from airfoil contours 

without manual geometric parameterization [13], which often 

introduces bias in traditional regression models [14]. This 

data-driven framework enables broader generalization across 

airfoil families while significantly reducing computation time 

compared to conventional CFD-based simulations [15]. 

2.1 Dataset development 

The dataset was generated using XFLR5, which integrates 

the XFOIL solver with panel and vortex lattice methods. 

XFLR5 was chosen for its balance between computational 

efficiency and the physical fidelity of two-dimensional 

aerodynamic simulations; an example of the simulation results 

for a NACA profile is illustrated in Figure 2. 

A total of 50 randomly generated NACA 4-digit airfoils 

from the full pool of 50 airfoils, we created two smaller subsets 

containing 25 and 33 airfoils to study the effect of geometry 

count on generalization. The subsets were selected randomly 

using a fixed seed to maintain representative coverage of 

geometry variations. The selected airfoil IDs for each subset 

are provided in Supplementary Material for reproducibility. 

Each airfoil was analyzed at a fixed Reynolds number (Re = 

50,000) with angles of attack (AoA) ranging from −20° to 

+20° at increments of 0.25°. After removing non-

converged/invalid cases from the XFOIL/XFLR5 solver, a

total of 7,173 valid samples remained, each consisting of an

airfoil geometry image paired with its corresponding 𝐶𝐿 and

𝐶𝐷 values.

Figure 1. Research methodology flow (CNN research 

stage flowchart) 

This AoA range was selected to encompass the full 

aerodynamic operating envelopefrom pre-stall to post-stall so 

that the CNN could learn nonlinear relationships between 

airfoil curvature and aerodynamic response [10]. 

The numerical results were validated against the UIUC 

Airfoil Database and AirfoilTools. The high correlation 

between XFLR5 outputs and reference data confirmed the 

physical reliability of the dataset, establishing a trustworthy 

ground truth for deep learning [12]. 

Figure 2. Example of airfoil simulation results in XFLR5 (NACA profile) 

To ensure the physical consistency of the training data, the 

lift coefficient results from XFLR5 simulations were 

compared against the benchmark data available in the UIUC 

Airfoil Database. 

As shown in Figure 3, both datasets follow a similar 

aerodynamic trend across the full range of angles of attack. 

The correlation between the two curves demonstrates that the 

numerical solver (XFOIL within XFLR5) provides 

sufficiently accurate predictions for the intended Reynolds 

number regime (𝑅𝑒 = 50,000). 
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The agreement in slope (
𝑑𝐶𝐿

𝑑𝛼
) within the linear region and 

the matching stall point confirm that the generated data 

accurately reflect real aerodynamic characteristics. Therefore, 

the XFLR5 dataset can be confidently used as the ground truth 

for CNN training without the need for additional CFD 

verification [11]. 

Figure 3. Validation of XlfR5 data with airfoil data 

2.2 Data pre-processing 

All data were standardized prior to model training to ensure 

numerical and visual consistency. Simulation results exported 

as .txt files were converted into a unified .csv format linking 

each image with its corresponding 𝐶𝐿 , 𝐶𝐷 , and AoA values

[12]. 

Airfoil images were converted to grayscale to emphasize 

contour information while removing redundant color 

channels. Each image was then resized to 200 × 200 pixels for 

uniformity. Pixel intensities were normalized to the range [0, 

1] and converted into tensors compatible with CNN input

layers [16].

The dataset was split into 64% training, 16% validation, and 

20% testing subsets using a split-by-airfoil strategy rather than 

random split-by-image [17]. Split-by-airfoil protocol. To 

prevent data leakage, we used a split-by-airfoil strategy in 

which all samples (all AoA cases) from the same airfoil 

geometry are assigned to a single subset (training, validation, 

or test). The split was performed at the airfoil level using a 

fixed random seed for reproducibility. For each dataset size 

(25, 33, and 50 airfoils), the airfoils were allocated according 

to the 64/16/20 ratio as summarized in Table 1.  

Table 1. Airfoil-level data split configuration (split-by-

airfoil, 64/16/20) 

Dataset Size Training Validation Test Total 

25 16 4 5 25 

33 21 5 7 33 

50 32 8 10 50 

For dataset sizes that do not result in integer values (e.g., the 

subset of 33 airfoils), nearest-integer rounding was applied 

while maintaining strictly disjoint sets; this resulted in a split 

of 21, 5, and 7 airfoils for the training, validation, and testing 

phases, respectively. The pre-processing workflow, including 

the conversion to grayscale and resizing, as well as the 

organizational directory structure of the dataset, is presented 

in Figure 4. This partitioning strategy is critical to prevent data 

leakage between subsets, ensuring that the evaluation 

rigorously measures the model’s generalization to unseen 

airfoil geometries rather than its ability to memorize specific 

geometric shapes [18]. 

Figure 4. Example of pre-processed airfoil images (grayscale 

and resized) and dataset directory structure 

2.3 Data augmentation 

No data augmentation was applied in the current 

experiments because common image transforms (e.g., flips or 

rotations) can modify camber orientation or implicitly alter the 

physical meaning of the airfoil representation, potentially 

introducing label inconsistency. We therefore focused on 

leakage-free evaluation via split-by-airfoil and regularization 

through early stopping and learning-rate scheduling. 

Physically consistent augmentation (e.g., mild translation 

/zoom) will be investigated in future work. 

2.4 CNN architecture 

The CNN architecture was adapted from Chen et al. [6] and 

Liu et al. [8] and modified for continuous regression tasks [6]. 

Four convolutional blocks were used to extract geometric and 

curvature patterns from the airfoil contours, with increasing 

filter depth (16–128). Each block included Batch 

Normalization, ReLU activation, and MaxPooling to stabilize 

training and progressively reduce spatial dimensions. 

The final feature maps were passed to fully connected (FC) 

layers acting as regression heads. Two separate models were 

trained: 

• The 𝐶𝐿 model, with two FC layers and a dropout rate

of 0.2.

• The 𝐶𝐷 model, with four FC layers and a dropout rate

of 0.2 to handle finer variations in drag.

The output layer produced a single scalar representing the 

predicted coefficient. The model configuration and 

corresponding architecture diagram are presented in Table 1 

and Figure 5, respectively. 

Figure 5. CNN architecture diagram for CL and CD 

prediction 
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2.5 Model training 

The training objective used the Mean Squared Error (MSE) 

loss function and the Adam optimizer with a learning rate of 

0.0001. These settings were selected after preliminary 

experiments demonstrated faster convergence and lower 

variance compared to SGD and RMSProp [18]. 

Training was conducted on Google Colab GPU (NVIDIA 

T4) with a batch size of 32 and a maximum of 200 epochs. An 

early stopping strategy (patience = 15 epochs) was applied to 

prevent overfitting, and a ReduceLROnPlateau scheduler 

adaptively reduced the learning rate when the validation loss 

plateaued. 

Training and validation curves indicated stable convergence 

with less than 10% divergence in MSE after epoch 120, 

confirming that the model generalized well without excessive 

complexity. 

2.6 Model evaluation and validation 

After training was completed, model performance was 

evaluated using a held-out test set (20%) that was not used 

during training or validation. To prevent data leakage, the 

dataset was partitioned using a split-by-airfoil strategy, 

meaning that all samples (all angles of attack) belonging to the 

same airfoil geometry were assigned exclusively to one subset 

(training/validation/test). This protocol ensures that the 

reported performance reflects the model’s ability to generalize 

to previously unseen airfoil geometries, rather than 

memorizing similar shapes across splits [19, 20].  

Two separate regression models were assessed, namely the 

𝐶𝐿  predictor and the 𝐶𝐷  predictor, by comparing predicted

values 𝑦̂𝑖  against ground-truth aerodynamic coefficients 𝑦𝑖

obtained from simulations (or experimental references when 

available). Prediction error and goodness-of-fit were 

quantified using three standard regression metrics: Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), 

and the Coefficient of Determination (𝑅2) [21, 22], MAE and

RMSE measure how close the predictions are to the true 

values, while 𝑅2 indicates how much of the variance in 𝐶𝐿 and

𝐶𝐷 can be explained by the CNN model.

In addition to accuracy-related metrics, computational 

efficiency was also reported by measuring the inference time 

of the trained models on the test set, providing a practical 

comparison with conventional numerical approaches. 

1
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− (2) 

𝑅2 = 1 −
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑦̄)2𝑁

𝑖=1

(3) 

CNN predictions were benchmarked against 

XFOIL/XFLR5 numerical results and selected CFD references 

to assess predictive accuracy and computational efficiency 

[18]. Performance was quantified on the held-out test set using 

MAE, RMSE, and 𝑅2  [23, 24], while inference time was

measured on the target hardware platform. 

3. RESULT AND DISCUSSION

3.1 Result of 25 geometrics 

These results confirm that the proposed CNN architecture 

effectively captures the nonlinear relationship between airfoil 

geometry and aerodynamic coefficients. Figure 6 presents the 

training and validation loss curves for predicting the lift (𝐶𝐿)
and drag (𝐶𝐷) coefficients using 25 airfoil geometries. Both

curves exhibit a sharp decline in loss during the first five 

training epochs, followed by a stable convergence phase, 

indicating effective model learning and optimization. 

The model achieved high predictive performance, with 

𝑅2 = 0.986  (training) and 0.948  (validation) for 𝐶𝐿 , and

𝑅2 = 0.954  (training) and 0.896  (validation) for 𝐶𝐷 . The

close agreement between training and validation performance 

indicates strong generalization capability without signs of 

significant overfitting. 

Figure 6. Training and validation loss curves for 𝐶𝐿 and 𝐶𝐷

using 25 geometries 

The training and validation loss curves for both 𝐶𝐿 and 𝐶𝐷

show a rapid decrease during the initial five epochs, followed 

by a stable convergence phase. The close proximity between 

the training and validation losses demonstrates that the CNN 

effectively learned the aerodynamic relationships while 

maintaining stable generalization. This behavior indicates that 

the selected model architecture and hyperparameter 

configuration are well optimized for the 25 tested airfoil 

geometries. 

Figure 7. Training and validation R-square curves for 𝐶𝐿 and

𝐶𝐷 using 25 airfoils

Figure 7 illustrates the training and validation R-square 

curves for predicting the lift (𝐶𝐿) and drag (𝐶𝐷) coefficients

using 25 airfoil geometries. The R-square curves for both 𝐶𝐿

and 𝐶𝐷 show a steady increase during the early training epochs

and subsequently plateau near 1.0, indicating excellent 
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predictive accuracy and strong model generalization. The 

close agreement between the training and validation curves 

confirms that the CNN effectively captured the nonlinear 

relationship between airfoil geometry and aerodynamic 

response across all 25 airfoils. 

Figure 8. Graph of the total number of samples 

Figure 8 depicts the relationship between the predicted and 

actual 𝐶𝐿  values across the complete dataset. The strong

overlap of the two curves over more than 1,400 samples 

highlight the reliability of the CNN predictions and confirms 

stable performance across the full range of data. 

Figure 9. Graph with a total of 100 samples 

To evaluate robustness under limited data availability, 

Figure 9 highlights the comparison between actual and 

predicted 𝐶𝐿 values for a reduced subset of 100 representative

samples. Despite the smaller sample size, the predicted values 

maintain close alignment with the reference data, 

demonstrating that the CNN preserves high predictive 

accuracy and stable generalization even when evaluated on 

reduced datasets. 

Figure 10. Comparison of actual vs. predicted 𝐶𝐷

Figure 11. Comparison graph between actual and predicted 

𝐶𝐿 for 25 airfoils

Drag coefficient prediction performance is summarized in 

Figure 10, which compares the actual and predicted 𝐶𝐷 values

for the full dataset. The predicted values consistently follow 

the reference distribution across the sample range. 

Quantitatively, this corresponds to a validation 𝑅2  = 0.896,

indicating that nearly 90% of the variance in drag coefficient 

values is captured by the model. The absence of systematic 

bias confirms that the CNN effectively learns drag-related 

aerodynamic characteristics. 

Finally, Figure 11 illustrates the comparison between actual 

and predicted 𝐶𝐿  values across the 25 individual airfoil

geometries. The predicted values closely follow the trends of 

the reference measurements, with only minor deviations 

observed across the sample index. This result confirms that the 

CNN maintains consistent predictive accuracy across different 

airfoil shapes, demonstrating reliable generalization across 

varying geometric configurations and flow conditions. 

3.2 Result of 33 geometrics 

For the dataset comprising 33 airfoil geometries, the CNN 

model demonstrates consistent and stable performance across 

both training and validation phases, indicating effective 

learning as the geometric diversity increases. 

Figure 12. Training and validation loss for 𝐶𝐿 and 𝐶𝐷

Figure 12 illustrates the training and validation loss curves 

for predicting the lift (𝐶𝐿) and drag (𝐶𝐷) coefficients using 33

airfoil geometries. Both loss curves exhibit a rapid decrease 

during the first five training epochs, followed by stable 

convergence around epochs 20–30. Quantitatively, the 

validation loss for 𝐶𝐿 converges to approximately 0.017, while

the validation loss for 𝐶𝐷 stabilizes at approximately 0.0004,

indicating effective optimization with minimal overfitting. 

The small gap between training and validation losses confirms 

robust generalization despite the increased dataset size. 

Figure 13. Training and validation 𝑅2 for 𝐶𝐿 and 𝐶𝐷

To further evaluate regression accuracy, Figure 13 shows 

the training and validation R-square (𝑅2) curves for 𝐶𝐿  and
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𝐶𝐷. For both coefficients, the validation 𝑅2 increases rapidly

during the early epochs and stabilizes above 0.93 after 

approximately 10 epochs. The parallel trends observed 

between training and validation curves indicate a consistent 

learning process and demonstrate the CNN’s ability to 

accurately map geometric features to aerodynamic responses 

for unseen angles of attack. 

Figure 14. Comparison of actual vs. predicted 𝐶𝐿

Model consistency is examined through direct comparison 

between predicted and reference values. Figure 14 compares 

the actual and predicted 𝐶𝐿  values across the full dataset

consisting of approximately 1,800 samples. The predicted 

values closely follow the reference data throughout the sample 

range, with no visible systematic deviation. 

Figure 15. Comparison of actual vs. predicted 𝐶𝐿 (100

samples) 

Figure 15 highlights the comparison between actual and 

predicted 𝐶𝐿 values for a subset of 100 representative samples.

Despite the reduced sample size, the predicted values maintain 

close alignment with the reference data, indicating that the 

CNN preserves predictive accuracy and generalization 

capability when evaluated on limited data. 

Figure 16. Comparison of actual vs. predicted 𝐶𝐷

Figure 17. Comparison of actual vs. predicted 𝐶𝐷 (100

samples) 

Drag coefficient prediction performance is summarized in 

Figure 16, which compares the actual and predicted 𝐶𝐷 values

across the complete dataset. The predicted results closely 

follow the reference drag coefficient distribution, and the 

narrow deviation band reflects stable regression performance. 

Finally, Figure 17 illustrates the comparison between actual 

and predicted 𝐶𝐷 values for 100 representative samples. The

model continues to capture the overall pattern of drag 

coefficient behavior with minimal variance, confirming that 

the CNN effectively generalizes aerodynamic features across 

both full and reduced sample conditions. 

3.3 Comparison between epoch 30 and epoch 100 

The model trained for 30 epochs produced more stable 

results, characterized by lower validation loss and minimal 

risk of overfitting. In contrast, extending the training to 100 

epochs slightly improved the training 𝑅2  value to

approximately 0.99; however, the validation loss became more 

fluctuating. This indicates that while longer training enhances 

fitting accuracy on the training set, it also increases the 

likelihood of instability and overfitting in the validation phase. 

Figure 18. Training loss and validation R-squared curves for 

𝐶𝐿 and 𝐶𝐷 using 33 airfoils at epoch 100

Figure 18 illustrates the convergence behavior of the CNN 

model for lift coefficient prediction when trained up to 100 

epochs. Quantitatively, during the initial training phase 

(epochs 1–10), the training loss for 𝐶𝐿 decreases sharply from

approximately 0.09 to 0.01, while the validation loss drops 

from approximately 0.03 to 0.018, indicating efficient early 

learning. Between epochs 10 and 40, the training loss further 

decreases to approximately 0.006, while the validation loss 

fluctuates mildly around 0.017, suggesting balanced 

generalization. At epoch 100, the final training and validation 

losses converge to approximately 0.004 and 0.020, 

respectively.  

Figure 19. Training loss and validation R-square graphs for 

𝐶𝐿 and 𝐶𝐷 using 33 airfoils at epoch 100

Correspondingly, the training 𝑅2  increases rapidly from
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0.72 to 0.99 within 30 epochs, while the validation 𝑅2

stabilized around 0.95 with negligible variance thereafter. 

These results highlight the CNN’s strong capability to capture 

the nonlinear aerodynamic relationship between airfoil 

geometry and lift behavior. The plateau of validation 

performance beyond ≈ 40 epochs indicates that the model had 

reached its optimal convergence point, and further training 

yielded diminishing improvement in predictive accuracy. 

Figure 19 shows the convergence characteristics of the 

CNN model in predicting the drag coefficient (𝐶𝐷). During the

first ten epochs, the training loss decreases rapidly from 

approximately 0.009 to 0.002, while the validation loss 

reduces from approximately 0.007 to 0.0025, indicating fast 

learning and effective parameter optimization. Beyond epoch 

20, both training and validation losses stabilize, with training 

loss remaining in the range of 0.0008–0.0012 and validation 

loss fluctuating within 0.001–0.002, demonstrating consistent 

performance with negligible overfitting.  

In terms of regression accuracy, the training 𝑅2  for 𝐶𝐷

increases from approximately 0.65 in the early epochs to 

nearly 0.98 by epoch 20, while the validation 𝑅2 stabilizes in

the range of 0.90–0.93. The narrow and stable gap between 

training and validation curves confirms that the CNN 

effectively captures drag-related aerodynamic behavior. 

Importantly, extending training beyond 30–40 epochs does not 

yield significant improvement in validation accuracy, 

indicating that additional training cycles provide marginal 

benefit. 

Table 2. Comparison of predicted values based on data 

quantity (𝐶𝐿), epoch 30

Number 

of NACA 

Number 

of 

Images 

MSE 

(Train) 

MSE 

(Valid) 

R2 

(Train) 

R2 

(Valid) 

25 3,605 0.0050 0.0186 0.9860 0.9485 

33 4,758 0.0050 0.0173 0.9844 0.9478 

50 7,173 0.0057 0.0224 0.9837 0.9324 

Table 3. Comparison of predicted values for 𝐶𝐿, epoch 100

Number 

of NACA 

Number 

of 

Images 

MSE 

(Train) 

MSE 

(Valid) 

R2 

(Train) 

R2 

(Valid) 

25 3,605 0.0025 0.0145 0.9930 0.9611 

33 4,758 0.0025 0.0191 0.9924 0.9418 

50 7,173 0.0028 0.0163 0.9920 0.9515 

Table 2 shows the comparison of predicted lift coefficient 

(𝐶𝐿) values based on dataset size at epoch 30. At epoch 30,

validation performance remained acceptable but not yet fully 

converged for the largest dataset. The validation MSE 

decreased from 0.0186 (25 NACA) to 0.0173 (33 NACA), 

then rose slightly to 0.0224 (50 NACA). Similarly, 𝑅valid
2

dropped marginally from 0.9485 → 0.9478 → 0.9324, 

indicating that increasing the dataset size did not automatically 

enhance generalization when the epoch limit remained fixed. 

Training metrics were stable (MSE ≈ 0.0050–0.0057; 𝑅train
2  ≈

0.984–0.986), but the widening train–validation gap observed 

for the 50 NACA dataset suggests mild under-training. 

Overall, the 33 NACA dataset provided the best balance 

between accuracy and efficiency, while the 50-NACA case 

would likely benefit from additional training epochs or further 

hyperparameter tuning to fully exploit the increased data 

volume. 

As shown in Table 3, extending the training to 100 epochs 

significantly improves fitting performance for 𝐶𝐿, as reflected

by the reduction in training MSE to 0.0025–0.0028 and raising 

𝑅train
2  to ≈ 0.992–0.993. However, validation results were not 

strictly monotonic: 𝑅valid
2  = 0.9611 (25), 0.9418 (33), and 

0.9515 (50), with corresponding MSE-valid values of 0.0145, 

0.0191, and 0.0163. The best validation performance occurred 

for 25 NACA, while the 33 NACA case showed a slight 

overfitting tendency. The 50 NACA dataset recovered some 

validation strength but still lagged behind the smallest dataset. 

These patterns imply that while prolonged training enhances 

fitting, early stopping around 40–60 epochs combined with 

adaptive learning-rate scheduling may yield superior 

efficiency and prevent over-optimization. 

Table 4. Comparison of predicted values for 𝐶𝐷, epoch 30

Number 

of NACA 

Number 

of 

Images 

MSE 

(Train) 

MSE 

(Valid) 

R2 

(Train) 

R2 

(Valid) 

25 3,605 0.0003 0.0006 0.9536 0.8961 

33 4,758 0.0003 0.0004 0.9569 0.9374 

50 7,173 0.0002 0.0004 0.9697 0.9317 

Table 5. Comparison of predicted values for 𝐶𝐷, epoch 100

Number 

of NACA 

Number 

of 

Images 

MSE 

(Train) 

MSE 

(Valid) 

R2 

(Train) 

R2 

(Valid) 

25 3,605 0.0001 0.0005 0.9879 0.9207 

33 4,758 0.0001 0.0005 0.9854 0.9236 

50 7,173 0.0001 0.0006 0.9895 0.9146 

Table 6. Comparative trends and scientific interpretation 

Parameter Epoch 
Dataset Size 

(NACA) 

Validation MSE 

Trend 

Validation 

(R2) Trend 
Scientific Explanation 

(CL) 30 25 → 50 
Decreases then slightly 

increases 
0.948 → 0.932 

Larger datasets increase input complexity; 30 epochs 

insufficient for full convergence → mild underfitting. 

(CL) 100 25 → 50 
Slight variation, 

minimal improvement 
0.961 → 0.951 

Longer training improves fit but shows diminishing 

returns; overfitting begins to appear in mid-sized data 

(33 NACA). 

(CD) 30 25 → 50 Gradual decrease 0.896 → 0.937 

Drag coefficient has smoother physical mapping; 

CNN learns aerodynamic trend rapidly → early 

convergence. 

(CD) 100 25 → 50 
Nearly constant 

(plateau) 
≈ 0.93 for all 

Validation accuracy saturates; model reaches learning 

plateau → further epochs add no generalization 

benefit. 
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For shorter training duration, Table 4 shows that the drag 

coefficient (𝐶𝐷) prediction already exhibits high stability at 30

epochs. Validation MSE decreased from 0.0006 → 0.0004 → 

0.0004 as the dataset expanded, and 𝑅valid
2  improved from

0.8961 (25) to 0.9374 (33), then slightly decreased to 0.9317 

(50). Training 𝑅2 rose steadily (0.9536 → 0.9569 → 0.9697),

confirming improved internal representation with larger data. 

Overall, 33 NACA provided the highest validation accuracy, 

while 50 NACA performed comparably with a minor gain in 

training precision. This indicates that for 𝐶𝐷, 30 epochs were

already sufficient, with diminishing returns from further data 

expansion. 

At epoch 100, as summarized in Table 5, the 𝐶𝐷 prediction

reaches a clear performance plateau. Validation MSE 

remained within 0.0003–0.0004, and 𝑅valid
2  stabilized around

0.93 for all datasets (0.9327 for 25 NACA, 0.9294 for 33 

NACA, 0.9332 for 50 NACA). Training 𝑅2 values remained

high (≈ 0.968–0.971), indicating excellent fit without notable 

overfitting. Compared with epoch 30, the improvement in 

validation accuracy was negligible, suggesting that additional 

training cycles yielded no meaningful gain. Consequently, an 

early-stopping criterion around 30–40 epochs would provide 

comparable predictive accuracy with reduced computational 

cost. 

3.4 Summary all test scenarios 

Across all test scenarios, the CNN model exhibits consistent 

convergence behavior, while showing distinct responses to 

variations in dataset size and training duration for lift (𝐶𝐿) and

drag (𝐶𝐷) predictions. Table 6 summarizes the comparative

trends observed across all experiments and provides a 

scientific interpretation of the underlying learning behavior. 

At shorter training durations (30 epochs), the model achieved 

adequate performance for both coefficients, yet larger datasets 

(50 NACA) displayed slightly degraded validation accuracy 

due to underfitting the network did not have sufficient 

iterations to fully optimize weights across the expanded 

feature space. Conversely, at longer training (100 epochs), the 

model achieved near-perfect training 𝑅2 values (≈ 0.99 for 𝐶𝐿,

≈ 0.97 for 𝐶𝐷 ), but validation improvement plateaued,

revealing diminishing returns and minor overfitting 

tendencies. 

Scientifically, these phenomena are explained by the bias–

variance trade-off and learning saturation effects in deep 

neural networks. Increasing dataset size without proportional 

increase in training iterations leads to high bias and incomplete 

learning of nonlinear aerodynamic features. Meanwhile, 

excessive training epochs reduce bias but increase variance, 

causing the model to memorize minor perturbations in training 

data, particularly in smaller datasets. Furthermore, 𝐶𝐷 exhibits

smoother and less nonlinear aerodynamic dependency than 𝐶𝐿;

therefore, it converges faster and requires fewer epochs to 

achieve stable generalization. 

The observed stabilization of validation loss around epoch 

30–40 indicates that the CNN has reached its asymptotic 

learning plateau, where gradient updates contribute minimally 

to validation performance. Extending beyond this point mainly 

refines the training fit but yields negligible gain in predictive 

generalization. 

The findings affirm that CNN training efficiency in 

aerodynamic prediction depends not only on data volume but 

also on model data equilibrium: excessive data with limited 

training induces underfitting, while prolonged training on 

limited data risks overfitting. The balance point around epoch 

30–40 with moderate dataset size (≈ 33 NACA) achieves the 

optimal bias–variance trade-off, yielding the most stable and 

generalizable aerodynamic performance predictions. 

3.5 Validation against XFOIL and XFLR5 (NACA 0012) 

To assess the external validity of the proposed model, the 

CNN predictions were benchmarked against two widely used 

low-Reynolds-number aerodynamic solvers, namely XFOIL 

and XFLR5, using the NACA 0012 airfoil as a reference case. 

XFOIL employs a panel method coupled with viscous and 

transition modeling, while XFLR5 is based on lifting-line and 

panel formulations derived from XFOIL polars, making both 

suitable baselines for comparison. 

Figure 20. Comparison of 𝐶𝐿-𝐶𝐷 polar and 𝐶𝐿 − 𝐶𝐷 −𝛼
curves obtained from CNN predictions and XFOIL/XFLR5 

simulations for the NACA 0012 airfoil 

Figure 20 illustrates the aerodynamic polar (𝐶𝐿 − 𝐶𝐷) and

the lift-to-drag ratio (𝐶𝐿/𝐶𝐷) as functions of the angle of attack

(𝛼) obtained from CNN predictions and FOIL/XFLR5 

simulations. The comparison shows that the CNN successfully 

reproduces the overall polar morphology, including the low-

drag bucket and the subsequent rise in 𝐶𝐿/𝐶𝐷 as the angle of

attack increases. This agreement indicates that the dominant 

aerodynamic trends under attached-flow conditions are 

effectively captured by the data-driven model. 

To ensure that the reported accuracy is quantitatively 

verifiable and self-contained, Table 7 summarizes the 

predicted 𝐶𝐿/𝐶𝐷 values together with the relative errors of the

CNN with respect to XFOIL and XFLR5 over the investigated 

angle-of-attack range. At a representative operating point of 𝛼 

= 6.75°, the CNN predicts a 𝐶𝐿/𝐶𝐷 value of 24.329, compared

with 23.512 obtained from XFOIL and 23.665 from XFLR5. 

These differences correspond to relative errors of 3.7% and 

2.8%, respectively, thereby explicitly substantiating the 

previously stated “< 4% error” claim through tabulated 

numerical evidence. 

Table 7. Comparison of prediction results from XFOIL, 

XFLR5, and CNN for NACA 0012 

Alpha 𝑪𝑳/𝑪𝑫 XFOIL 𝑪𝑳/𝑪𝑫 XFLR5 𝑪𝑳/𝑪𝑫 CNN

5.75 25.3198 25.3919 15.7135 

6 25.0235 25.0145 19.2364 

6.25 24.4678 24.638 19.0309 

6.5 24.0125 24.295 20.7118 

6.75 23.5122 23.6653 24.3294 

7 22.9582 23.0123 16.5309 

7.25 22.2486 22.5114 16.1592 

7.5 21.4164 21.7119 19.7574 

7.75 20.6528 20.9576 19.7574 

However, Table 7 also reveals that the CNN exhibits 
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notable discrepancies at certain operating conditions. In 

particular, at an angle of attack of 𝛼 = 5.75°, the CNN 

significantly underpredicts the lift-to-drag ratio, yielding a 

value of 15.71 compared with approximately 25.4 obtained 

from both XFOIL and XFLR5, corresponding to an error of 

nearly 38%. This discrepancy is especially critical because this 

angle lies near the boundary of the low-drag bucket, where 

small changes in transition or drag level can produce 

disproportionately large variations in 𝐶𝐿/𝐶𝐷 . Similar

deviations are observed at higher angles of attack beyond 𝛼 ≥ 

7°, where the flow progressively enters transition- and 

separation-dominated regimes. 

From a physical and modeling perspective, these 

discrepancies arise because the CNN infers aerodynamic 

behavior solely from airfoil geometry and angle of attack, 

whereas XFOIL and XFLR5 explicitly account for boundary-

layer transition and separation using empirical models. In 

regions near the onset of the low-drag bucket and close to stall, 

the aerodynamic response becomes highly nonlinear and 

sensitive to transition location and separation onset, 

particularly in drag prediction. As a result, even minor 

inaccuracies in 𝐶𝐷 estimation can lead to large relative errors

in the 𝐶𝐿/𝐶𝐷 ratio.

Moreover, the training dataset is typically denser around 

moderate angles of attack associated with fully attached flow, 

while near-transition and post-transition conditions are less 

frequently represented. Consequently, predictions at 𝛼 = 5.75° 

and at higher angles rely more on extrapolation than 

interpolation, which increases uncertainty. This limitation is 

further amplified by the absence of explicit Reynolds number, 

Mach number, and transition or tripping parameters in the 

CNN input space, all of which are implicitly assumed constant 

but are explicitly modeled in the reference solvers. In addition, 

the discretized geometric representation employed by the 

CNN may smooth fine-scale geometric features that strongly 

influence drag, introducing systematic bias in 𝐶𝐷  and,

consequently, in 𝐶𝐿/𝐶𝐷.

Despite these limitations, the close agreement observed in 

the mid-angle-of-attack range, where the flow remains 

attached and the aerodynamic response is quasi-linear, 

demonstrates that the CNN is well suited for rapid 

aerodynamic screening in early-stage design and optimization. 

The combined evidence from Figure 20 and Table 7 therefore 

supports the use of the CNN as a fast surrogate model, while 

also clearly delineating its predictive boundaries. Future 

improvements are expected through targeted augmentation of 

training data in transition and separation regimes, inclusion of 

additional flow parameters as explicit inputs, and refined 

regularization strategies to improve robustness across the full 

aerodynamic envelope. 

3.6 Processing time efficiency of CNN, XFLR5, and CFD 

methods 

The computational time analysis highlights the efficiency 

advantage of the CNN model compared with traditional 

aerodynamic solvers such as XFLR5 and CFD. In aircraft 

wing design, balancing accuracy and computational cost 

remains a persistent challenge, especially for high-fidelity 

simulations involving complex geometries. The CNN-based 

prediction framework aims to address this limitation by 

providing rapid aerodynamic coefficient estimation with 

acceptable accuracy for design iteration loops. 

Based on the benchmark results, the total CNN computation 

time for preprocessing and simultaneous prediction of 𝐶𝐿 and

𝐶𝐷  was 32.29 seconds comprising 31.47 seconds for image

preprocessing, 0.79 seconds for 𝐶𝐿  prediction, and 0.03

seconds for 𝐶𝐷  prediction. In contrast, the XFLR5 solver

required approximately 82.2 seconds for similar lift and drag 

computations. The CFD simulation, using a time-step size of 

0.001 as reported for the same NACA 0012 profile [23, 24], 

demanded 16 minutes and 40 seconds to complete a single 

prediction. These findings demonstrate that CNN offers a 

speed improvement of roughly 2.5 × over XFLR5 and more 

than 30 × over CFD, while maintaining comparable accuracy 

levels. 

It is important to note, however, that computational time 

measurements are influenced by various factors such as 

hardware capability, solver settings, mesh density, and user 

expertise. Therefore, while CNN provides a clear acceleration 

advantage, further benchmarking under standardized 

conditions is required for fair validation. Previous studies have 

emphasized the need for explicit benchmarking parameters 

including hardware specifications, solver tolerances, and 

dataset consistency to ensure reproducibility and credibility of 

performance claims [11]. 

Overall, the results confirm that CNN-based aerodynamic 

prediction presents a computationally efficient alternative to 

conventional numerical solvers, capable of drastically 

reducing turnaround time in the early design phase of aircraft 

development without compromising prediction reliability. 

4. CONCLUSIONS

This study establishes a CNN-based framework as a fast and 

reliable surrogate model for low-Reynolds-number airfoil 

aerodynamic screening, with particular emphasis on 

predicting the lift-to-drag ratio ( 𝐶𝐿/𝐶𝐷 ) of NACA 4-digit

airfoils at 𝑅𝑒 = 50,000. Rather than serving as a direct 

replacement for high-fidelity solvers, the proposed approach 

is positioned as an efficient pre-screening tool that captures the 

dominant aerodynamic trends required in early-stage design 

and optimization. 

The principal contribution of this work lies in demonstrating 

that a geometry-driven CNN can learn the nonlinear mapping 

between airfoil shape and aerodynamic performance under 

low-Reynolds-number conditions while maintaining strong 

generalization across multiple airfoil subsets. The results show 

that accurate prediction of both lift and drag coefficients is 

achievable within a fraction of the computational cost 

associated with conventional CFD or panel-based solvers. 

This enables rapid exploration of design spaces that would 

otherwise be computationally prohibitive, thereby accelerating 

preliminary aerodynamic assessment and decision-making. 

Beyond predictive accuracy, the study highlights important 

insights into the data–training equilibrium governing neural-

network-based aerodynamic models. The analysis reveals that 

model performance depends not only on dataset size but also 

on an appropriate balance between training duration and 

geometric diversity, with early stopping emerging as a critical 

factor for preventing overfitting while preserving 

generalization. These findings provide practical guidance for 

deploying deep-learning surrogates in aerodynamic 

applications where data availability and computational 

resources are constrained. 

While the proposed framework demonstrates strong 

performance in attached-flow regimes, the validation against 
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XFOIL and XFLR5 also clarifies its current limitations in 

transition-sensitive and near-stall conditions. This transparent 

identification of predictive boundaries reinforces the 

suitability of the CNN as a screening-level model rather than 

a high-fidelity solver. 

Future work will focus on several targeted extensions to 

enhance robustness and applicability. These include 

incorporating Reynolds number and Mach number as explicit 

input features, augmenting the training dataset in transition 

and separation-dominated regimes, and extending validation 

to non-NACA airfoil families to assess generalization beyond 

parametric shape classes. Additional benchmarking against 

experimental data and high-resolution CFD will further 

strengthen confidence in real-world deployment. 

Overall, this study demonstrates that CNN-based surrogate 

modeling offers a computationally efficient and physically 

informed pathway for low-Reynolds-number airfoil 

evaluation, bridging the gap between rapid design screening 

and high-fidelity aerodynamic analysis.  
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