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Artificial Intelligence (Al) is increasingly used to accelerate aerodynamic design by
enabling fast, data-driven prediction of key performance metrics. This study develops
Convolutional Neural Network (CNN) regression models to predict the lift coefficient (C,)
and drag coefficient (Cp) of NACA 4-digit airfoils under low Reynolds number conditions
(Re =50,000), addressing the practical need for rapid evaluation compared with time-
consuming CFD-based analysis. A quantitative, data-driven workflow was implemented by
generating a dataset using XFLR5 for 50 NACA airfoil geometries, producing 7,173 labeled
samples across angles of attack from —20°to 20°. To ensure a fair generalization
assessment and avoid data leakage, a split-by-airfoil protocol was applied with 64%
training, 16% validation, and 20% testing subsets, and two CNN models were trained
separately for C;, and Cp. Under the representative full-dataset configuration (50 airfoils)
trained for 100 epochs, the proposed approach achieved strong validation performance with
R? = 0.9515 for C; and R? = 0.9146 for Cp. In terms of efficiency, the complete pipeline
required approximately 32 seconds for image preprocessing and predicting both
coefficients, substantially faster than typical CFD runtimes reported in the literature,
thereby supporting rapid iterative screening of candidate geometries. These results indicate
that CNN-based aerodynamic surrogate modeling can provide an accurate and
computationally efficient alternative for early-stage airfoil selection and iterative design in
low-Reynolds-number applications such as small UAVs and small-scale wind turbines. The
originality of this work lies in combining a low-Re, image-based CNN regression
framework with a split-by-airfoil evaluation protocol to demonstrate robust predictive
capability on unseen geometries while delivering a practical speed—accuracy trade-off
suitable for partially substituting CFD during preliminary design workflows.

1. INTRODUCTION

Rapid advancements in artificial

intelligence

strategies that can reduce turnaround time while maintaining
sufficient predictive fidelity for preliminary decision-making

(AD), [3-5].

specifically within machine learning and deep learning, have
transformed aerodynamic design and analysis by offering new
pathways for acceleration. Among these data-driven
approaches, Convolutional Neural Networks (CNNs) have
demonstrated significant potential in establishing direct
mappings from image-based airfoil geometries to
aerodynamic coefficients. This capability enables near-
instantaneous predictions, which are critical for optimizing
applications in both aerospace engineering and renewable
energy systems [1, 2].

Conventional evaluation methods such as wind-tunnel
experiments and Computational Fluid Dynamics (CFD)
remain accurate and widely used; however, they are often
resource-intensive, time-consuming, and costly. While high-
fidelity solvers (e.g., ANSYS Fluent and OpenFOAM) and
lower-cost tools (e.g., XFOIL-based workflows) can provide
reliable estimates, they become impractical when thousands of
candidate geometries must be screened during iterative early-
stage exploration. This motivates surrogate modeling
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Airfoil performance is commonly characterized by the lift
coefficient (C;) and drag coefficient (Cp), which directly
influence aerodynamic efficiency, stability, and energy
conversion. Recent studies indicate that CNN-based models
can approach CFD-comparable accuracy across selected
geometries and flow conditions [6, 7]. Nevertheless, key gaps
remain: many prior studies rely on relatively small or
homogeneous datasets that limit generalization to unseen
airfoils and operating conditions [1, 8], and predictive
reliability in low Reynolds number regimes critical for small
UAVs and small-scale wind turbines remains comparatively
underexplored despite the stronger influence of transition and
separation phenomena [5]. In addition, maintaining a
favorable efficiency—accuracy trade-off as dataset diversity
increases calls for systematic dataset construction and
validation [6].

To address these gaps, this study develops a CNN
framework trained on a diverse dataset of NACA 4-digit
airfoils spanning angles of attack from —20°to 20° at Re =
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50,000, a representative low-Re regime for small UAVs and
micro-turbines. The working hypothesis is that expanding
geometric and operating-condition coverage improves out-of-
distribution performance while preserving computational
efficiency, thereby complementing and partially substituting
CFD in early-stage design workflows [9]. The contributions of
this work are: (1) construction of an extensive NACA 4-digit
dataset with wide angle-of-attack coverage, (2) development
of CNN regressors for predicting C; and C, under low-Re
conditions, and (3) empirical evaluation demonstrating a
practical speed—accuracy trade-off for rapid aerodynamic
screening [6, 10-12].

2. METHODOLOGY

This study develops a Convolutional Neural Network
(CNN) model to predict aerodynamic coefficients lift (C;) and
drag ( Cp ) directly from airfoil geometry images. The
systematic workflow of this research, including the data
processing and model architecture, is illustrated in Figure 1.
The CNN approach was selected because it can automatically
extract spatial and curvature features from airfoil contours
without manual geometric parameterization [13], which often
introduces bias in traditional regression models [14]. This
data-driven framework enables broader generalization across
airfoil families while significantly reducing computation time
compared to conventional CFD-based simulations [15].

2.1 Dataset development

The dataset was generated using XFLRS, which integrates
the XFOIL solver with panel and vortex lattice methods.
XFLRS was chosen for its balance between computational
efficiency and the physical fidelity of two-dimensional
aerodynamic simulations; an example of the simulation results
for a NACA profile is illustrated in Figure 2.

A total of 50 randomly generated NACA 4-digit airfoils
from the full pool of 50 airfoils, we created two smaller subsets
containing 25 and 33 airfoils to study the effect of geometry
count on generalization. The subsets were selected randomly

using a fixed seed to maintain representative coverage of
geometry variations. The selected airfoil IDs for each subset
are provided in Supplementary Material for reproducibility.
Each airfoil was analyzed at a fixed Reynolds number (Re =
50,000) with angles of attack (AoA) ranging from —20° to
+20° at increments of 0.25°. After removing non-
converged/invalid cases from the XFOIL/XFLRS solver, a
total of 7,173 valid samples remained, each consisting of an
airfoil geometry image paired with its corresponding C; and
Cp values.
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Figure 1. Research methodology flow (CNN research
stage flowchart)

This AoA range was selected to encompass the full
aerodynamic operating envelopefrom pre-stall to post-stall so
that the CNN could learn nonlinear relationships between
airfoil curvature and aerodynamic response [10].

The numerical results were validated against the UIUC
Airfoil Database and AirfoilTools. The high correlation
between XFLRS5 outputs and reference data confirmed the
physical reliability of the dataset, establishing a trustworthy
ground truth for deep learning [12].
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Figure 2. Example of airfoil simulation results in XFLRS5 (NACA profile)

To ensure the physical consistency of the training data, the
lift coefficient results from XFLRS5 simulations were
compared against the benchmark data available in the UTUC
Airfoil Database.

As shown in Figure 3, both datasets follow a similar
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aerodynamic trend across the full range of angles of attack.
The correlation between the two curves demonstrates that the
numerical solver (XFOIL within XFLRS) provides
sufficiently accurate predictions for the intended Reynolds
number regime (Re = 50,000).



The agreement in slope (%) within the linear region and

the matching stall point confirm that the generated data
accurately reflect real aerodynamic characteristics. Therefore,
the XFLRS5 dataset can be confidently used as the ground truth
for CNN training without the need for additional CFD
verification [11].
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Figure 3. Validation of XIfRS data with airfoil data
2.2 Data pre-processing

All data were standardized prior to model training to ensure
numerical and visual consistency. Simulation results exported
as .zxt files were converted into a unified .csv format linking
each image with its corresponding C;, Cp, and AoA values
[12].

Airfoil images were converted to grayscale to emphasize
contour information while removing redundant color
channels. Each image was then resized to 200 x 200 pixels for
uniformity. Pixel intensities were normalized to the range [0,
1] and converted into tensors compatible with CNN input
layers [16].

The dataset was split into 64% training, 16% validation, and
20% testing subsets using a split-by-airfoil strategy rather than
random split-by-image [17]. Split-by-airfoil protocol. To
prevent data leakage, we used a split-by-airfoil strategy in
which all samples (all AoA cases) from the same airfoil
geometry are assigned to a single subset (training, validation,
or test). The split was performed at the airfoil level using a
fixed random seed for reproducibility. For each dataset size
(25, 33, and 50 airfoils), the airfoils were allocated according
to the 64/16/20 ratio as summarized in Table 1.

Table 1. Airfoil-level data split configuration (split-by-
airfoil, 64/16/20)

Dataset Size Training Validation Test Total
25 16 4 5 25
33 21 5 7 33
50 32 8 10 50

organizational directory structure of the dataset, is presented
in Figure 4. This partitioning strategy is critical to prevent data
leakage between subsets, ensuring that the evaluation
rigorously measures the model’s generalization to unseen
airfoil geometries rather than its ability to memorize specific
geometric shapes [18].

x

Figure 4. Example of pre-processed airfoil images (grayscale
and resized) and dataset directory structure

2.3 Data augmentation

No data augmentation was applied in the current
experiments because common image transforms (e.g., flips or
rotations) can modify camber orientation or implicitly alter the
physical meaning of the airfoil representation, potentially
introducing label inconsistency. We therefore focused on
leakage-free evaluation via split-by-airfoil and regularization
through early stopping and learning-rate scheduling.
Physically consistent augmentation (e.g., mild translation
/zoom) will be investigated in future work.

2.4 CNN architecture

The CNN architecture was adapted from Chen et al. [6] and
Liu et al. [8] and modified for continuous regression tasks [6].
Four convolutional blocks were used to extract geometric and
curvature patterns from the airfoil contours, with increasing
filter depth (16-128). Each block included Batch
Normalization, ReLU activation, and MaxPooling to stabilize
training and progressively reduce spatial dimensions.

The final feature maps were passed to fully connected (FC)
layers acting as regression heads. Two separate models were
trained:

e The C;, model, with two FC layers and a dropout rate
of 0.2.
The Cp, model, with four FC layers and a dropout rate
of 0.2 to handle finer variations in drag.

The output layer produced a single scalar representing the
predicted coefficient. The model configuration and
corresponding architecture diagram are presented in Table 1
and Figure 5, respectively.

For dataset sizes that do not result in integer values (e.g., the
subset of 33 airfoils), nearest-integer rounding was applied
while maintaining strictly disjoint sets; this resulted in a split
of 21, 5, and 7 airfoils for the training, validation, and testing
phases, respectively. The pre-processing workflow, including
the conversion to grayscale and resizing, as well as the
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Figure 5. CNN architecture diagram for CL and CD
prediction




2.5 Model training

The training objective used the Mean Squared Error (MSE)
loss function and the Adam optimizer with a learning rate of
0.0001. These settings were selected after preliminary
experiments demonstrated faster convergence and lower
variance compared to SGD and RMSProp [18].

Training was conducted on Google Colab GPU (NVIDIA
T4) with a batch size of 32 and a maximum of 200 epochs. An
early stopping strategy (patience = 15 epochs) was applied to
prevent overfitting, and a ReduceLROnPlateau scheduler
adaptively reduced the learning rate when the validation loss
plateaued.

Training and validation curves indicated stable convergence
with less than 10% divergence in MSE after epoch 120,
confirming that the model generalized well without excessive
complexity.

2.6 Model evaluation and validation

After training was completed, model performance was
evaluated using a held-out test set (20%) that was not used
during training or validation. To prevent data leakage, the
dataset was partitioned using a split-by-airfoil strategy,
meaning that all samples (all angles of attack) belonging to the
same airfoil geometry were assigned exclusively to one subset
(training/validation/test). This protocol ensures that the
reported performance reflects the model’s ability to generalize
to previously unseen airfoil geometries, rather than
memorizing similar shapes across splits [19, 20].

Two separate regression models were assessed, namely the
C, predictor and the Cp predictor, by comparing predicted
values ¥; against ground-truth aerodynamic coefficients y;
obtained from simulations (or experimental references when
available). Prediction error and goodness-of-fit were
quantified using three standard regression metrics: Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE),
and the Coefficient of Determination (R?) [21, 22], MAE and
RMSE measure how close the predictions are to the true
values, while R? indicates how much of the variance in C;, and
Cp can be explained by the CNN model.

In addition to accuracy-related metrics, computational
efficiency was also reported by measuring the inference time
of the trained models on the test set, providing a practical
comparison with conventional numerical approaches.

1y
MAE ==>"| §, -yl (1)
N =
18 )
RMSE NZ(yi - ©)
i=1
N .
2 Zizl(yi - y)?
RE=1-"F—— (€)
Z i:l(yi - y)
CNN predictions were benchmarked against

XFOIL/XFLRS numerical results and selected CFD references
to assess predictive accuracy and computational efficiency
[18]. Performance was quantified on the held-out test set using
MAE, RMSE, and R? [23, 24], while inference time was
measured on the target hardware platform.
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3. RESULT AND DISCUSSION
3.1 Result of 25 geometrics

These results confirm that the proposed CNN architecture
effectively captures the nonlinear relationship between airfoil
geometry and aerodynamic coefficients. Figure 6 presents the
training and validation loss curves for predicting the lift (C;)
and drag (Cp) coefficients using 25 airfoil geometries. Both
curves exhibit a sharp decline in loss during the first five
training epochs, followed by a stable convergence phase,
indicating effective model learning and optimization.

The model achieved high predictive performance, with
R? = 0.986 (training) and 0.948 (validation) for C,, and
R? = 0.954 (training) and 0.896 (validation) for Cp,. The
close agreement between training and validation performance
indicates strong generalization capability without signs of
significant overfitting.
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Figure 6. Training and validation loss curves for C; and Cp,
using 25 geometries

The training and validation loss curves for both C; and Cj,
show a rapid decrease during the initial five epochs, followed
by a stable convergence phase. The close proximity between
the training and validation losses demonstrates that the CNN
effectively learned the aerodynamic relationships while
maintaining stable generalization. This behavior indicates that
the selected model architecture and hyperparameter
configuration are well optimized for the 25 tested airfoil
geometries.
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Figure 7. Training and validation R-square curves for C; and
Cp using 25 airfoils

Figure 7 illustrates the training and validation R-square
curves for predicting the lift (C,) and drag (Cp) coefficients
using 25 airfoil geometries. The R-square curves for both C;
and Cp show a steady increase during the early training epochs
and subsequently plateau near 1.0, indicating excellent



predictive accuracy and strong model generalization. The
close agreement between the training and validation curves
confirms that the CNN effectively captured the nonlinear
relationship between airfoil geometry and aerodynamic
response across all 25 airfoils.

Comparison of Actual vs Predicted CL

me- awia |
—— predicted cL |

Figure 8. Graph of the total number of samples

Figure 8 depicts the relationship between the predicted and
actual C; values across the complete dataset. The strong
overlap of the two curves over more than 1,400 samples
highlight the reliability of the CNN predictions and confirms
stable performance across the full range of data.

Comparison of Actual vs Predicted CL (100 Samples) with Difference Range
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Figure 9. Graph with a total of 100 samples

To evaluate robustness under limited data availability,
Figure 9 highlights the comparison between actual and
predicted C; values for a reduced subset of 100 representative
samples. Despite the smaller sample size, the predicted values
maintain close alignment with the reference data,
demonstrating that the CNN preserves high predictive
accuracy and stable generalization even when evaluated on
reduced datasets.

Comparison of actual vs. predicted Cp,

Comparison of Actual vs Predicted CD (100 Samples) with Difference Range

- Actual L
Predicted CL

Figure 11. Comparison graph between actual and predicted
C,, for 25 airfoils
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Drag coefficient prediction performance is summarized in
Figure 10, which compares the actual and predicted Cp, values
for the full dataset. The predicted values consistently follow
the reference distribution across the sample range.
Quantitatively, this corresponds to a validation R? = 0.896,
indicating that nearly 90% of the variance in drag coefficient
values is captured by the model. The absence of systematic
bias confirms that the CNN effectively learns drag-related
aerodynamic characteristics.

Finally, Figure 11 illustrates the comparison between actual
and predicted C, values across the 25 individual airfoil
geometries. The predicted values closely follow the trends of
the reference measurements, with only minor deviations
observed across the sample index. This result confirms that the
CNN maintains consistent predictive accuracy across different
airfoil shapes, demonstrating reliable generalization across
varying geometric configurations and flow conditions.

3.2 Result of 33 geometrics

For the dataset comprising 33 airfoil geometries, the CNN
model demonstrates consistent and stable performance across
both training and validation phases, indicating effective
learning as the geometric diversity increases.
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Figure 12. Training and validation loss for C; and Cp

Figure 12 illustrates the training and validation loss curves
for predicting the lift (C;) and drag (Cp) coefficients using 33
airfoil geometries. Both loss curves exhibit a rapid decrease
during the first five training epochs, followed by stable
convergence around epochs 20-30. Quantitatively, the
validation loss for C; converges to approximately 0.017, while
the validation loss for Cj, stabilizes at approximately 0.0004,
indicating effective optimization with minimal overfitting.
The small gap between training and validation losses confirms
robust generalization despite the increased dataset size.
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Figure 13. Training and validation R? for C; and Cp

To further evaluate regression accuracy, Figure 13 shows
the training and validation R-square (R?) curves for C, and



Cp. For both coefficients, the validation R? increases rapidly
during the early epochs and stabilizes above 0.93 after
approximately 10 epochs. The parallel trends observed
between training and validation curves indicate a consistent
learning process and demonstrate the CNN’s ability to
accurately map geometric features to aerodynamic responses
for unseen angles of attack.

Comparison of Actual vs Predicted CL

Figure 14. Comparison of actual vs. predicted C;,

Model consistency is examined through direct comparison
between predicted and reference values. Figure 14 compares
the actual and predicted C, values across the full dataset
consisting of approximately 1,800 samples. The predicted
values closely follow the reference data throughout the sample
range, with no visible systematic deviation.

Figure 15. Comparison of actual vs. predicted C; (100
samples)

Figure 15 highlights the comparison between actual and
predicted C; values for a subset of 100 representative samples.
Despite the reduced sample size, the predicted values maintain
close alignment with the reference data, indicating that the
CNN preserves predictive accuracy and generalization
capability when evaluated on limited data.

0151

Figure 16. Comparison of actual vs. predicted Cj

Comparison of Actual vs Predicted CD (100 Samples) with Difference Range

150

Figure 17. Comparison of actual vs. predicted Cp, (100
samples)

Drag coefficient prediction performance is summarized in
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Figure 16, which compares the actual and predicted Cp values
across the complete dataset. The predicted results closely
follow the reference drag coefficient distribution, and the
narrow deviation band reflects stable regression performance.

Finally, Figure 17 illustrates the comparison between actual
and predicted Cp values for 100 representative samples. The
model continues to capture the overall pattern of drag
coefficient behavior with minimal variance, confirming that
the CNN effectively generalizes aerodynamic features across
both full and reduced sample conditions.

3.3 Comparison between epoch 30 and epoch 100

The model trained for 30 epochs produced more stable
results, characterized by lower validation loss and minimal
risk of overfitting. In contrast, extending the training to 100
epochs slightly improved the training R? value to
approximately 0.99; however, the validation loss became more
fluctuating. This indicates that while longer training enhances
fitting accuracy on the training set, it also increases the
likelihood of instability and overfitting in the validation phase.

Training and Validation Loss CL Training and Validation R-squared CL
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Valid Loss

—— Train R-squared
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Figure 18. Training loss and validation R-squared curves for
C, and Cj, using 33 airfoils at epoch 100

Figure 18 illustrates the convergence behavior of the CNN
model for lift coefficient prediction when trained up to 100
epochs. Quantitatively, during the initial training phase
(epochs 1-10), the training loss for C; decreases sharply from
approximately 0.09 to 0.01, while the validation loss drops
from approximately 0.03 to 0.018, indicating efficient early
learning. Between epochs 10 and 40, the training loss further
decreases to approximately 0.006, while the validation loss
fluctuates mildly around 0.017, suggesting balanced
generalization. At epoch 100, the final training and validation
losses converge to approximately 0.004 and 0.020,
respectively.
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Figure 19. Training loss and validation R-square graphs for
C, and Cj, using 33 airfoils at epoch 100

Correspondingly, the training R? increases rapidly from



0.72 to 0.99 within 30 epochs, while the validation R?2
stabilized around 0.95 with negligible variance thereafter.
These results highlight the CNN’s strong capability to capture
the nonlinear aerodynamic relationship between airfoil
geometry and lift behavior. The plateau of validation
performance beyond = 40 epochs indicates that the model had
reached its optimal convergence point, and further training
yielded diminishing improvement in predictive accuracy.

Figure 19 shows the convergence characteristics of the
CNN model in predicting the drag coefficient (Cp). During the
first ten epochs, the training loss decreases rapidly from
approximately 0.009 to 0.002, while the validation loss
reduces from approximately 0.007 to 0.0025, indicating fast
learning and effective parameter optimization. Beyond epoch
20, both training and validation losses stabilize, with training
loss remaining in the range of 0.0008—0.0012 and validation
loss fluctuating within 0.001-0.002, demonstrating consistent
performance with negligible overfitting.

In terms of regression accuracy, the training R? for Cp
increases from approximately 0.65 in the early epochs to
nearly 0.98 by epoch 20, while the validation R? stabilizes in
the range of 0.90-0.93. The narrow and stable gap between
training and validation curves confirms that the CNN
effectively captures drag-related aerodynamic behavior.
Importantly, extending training beyond 30—40 epochs does not
yield significant improvement in validation accuracy,
indicating that additional training cycles provide marginal
benefit.

Table 2. Comparison of predicted values based on data
quantity (C;), epoch 30

Number N“‘;‘fber MSE  MSE R? R

of NACA Images (Train) (Valid) (Train) (Valid)
25 3,605 0.0050 0.0186 0.9860  0.9485
33 4,758 0.0050 0.0173  0.9844  0.9478
50 7,173 0.0057  0.0224  0.9837 0.9324

Table 3. Comparison of predicted values for C;, epoch 100

Number

Number of MSE MSE R? R?

of NACA Images (Train) (Valid) (Train) (Valid)
25 3,605 0.0025 0.0145 0.9930 0.9611
33 4,758 0.0025 0.0191 0.9924  0.9418
50 7,173 0.0028  0.0163  0.9920 0.9515

Table 2 shows the comparison of predicted lift coefficient

(C,) values based on dataset size at epoch 30. At epoch 30,
validation performance remained acceptable but not yet fully
converged for the largest dataset. The validation MSE
decreased from 0.0186 (25 NACA) to 0.0173 (33 NACA),
then rose slightly to 0.0224 (50 NACA). Similarly, RZ,;
dropped marginally from 0.9485 — 0.9478 — 0.9324,
indicating that increasing the dataset size did not automatically
enhance generalization when the epoch limit remained fixed.
Training metrics were stable (MSE = 0.0050-0.0057; RZ,;, =
0.984-0.986), but the widening train—validation gap observed
for the 50 NACA dataset suggests mild under-training.
Overall, the 33 NACA dataset provided the best balance
between accuracy and efficiency, while the S0-NACA case
would likely benefit from additional training epochs or further
hyperparameter tuning to fully exploit the increased data
volume.

As shown in Table 3, extending the training to 100 epochs
significantly improves fitting performance for C;, as reflected
by the reduction in training MSE to 0.0025-0.0028 and raising
R2,;, to = 0.992-0.993. However, validation results were not
strictly monotonic: RZ,;y = 0.9611 (25), 0.9418 (33), and
0.9515 (50), with corresponding MSE-valid values of 0.0145,
0.0191, and 0.0163. The best validation performance occurred
for 25 NACA, while the 33 NACA case showed a slight
overfitting tendency. The 50 NACA dataset recovered some
validation strength but still lagged behind the smallest dataset.
These patterns imply that while prolonged training enhances
fitting, early stopping around 40—60 epochs combined with
adaptive learning-rate scheduling may yield superior
efficiency and prevent over-optimization.

Table 4. Comparison of predicted values for Cp, epoch 30

Number N“';‘fber MSE  MSE R? R?

of NACA Images (Train) (Valid) (Train) (Valid)
25 3,605 0.0003  0.0006 0.9536  0.8961
33 4,758 0.0003  0.0004 0.9569 0.9374
50 7,173 0.0002  0.0004 0.9697 0.9317

Table 5. Comparison of predicted values for Cp, epoch 100

Number

Number of MSE MSE R? R?

of NACA Tmages (Train) (Valid) (Train) (Valid)
25 3,605 0.0001  0.0005 0.9879  0.9207
33 4,758 0.0001  0.0005 0.9854 0.9236
50 7,173 0.0001  0.0006  0.9895 0.9146

Table 6. Comparative trends and scientific interpretation

Parameter Epoch D?:‘Z%i;ze Valld;:l:nndMSE (Vl;l)“,i;:.t;zg Scientific Explanation
1) 30 25 5 50 Decrea§es then slightly 0.948 — 0932 Larger fiatasets increase input comple?(ity; 30 epqchs
increases insufficient for full convergence — mild underfitting.
Slight variation Longer training improves fit but shows diminishing
(Co) 100 25 —50 minimal improvem’en ¢ 0.961 — 0.951  returns; overfitting begins to appear in mid-sized data
(33 NACA).
Drag coefficient has smoother physical mapping;
(Cp) 30 25 - 50 Gradual decrease 0.896 — 0.937 CNN learns aerodynamic trend rapidly — early
convergence.
Nearly constant Validation accuracy saturates; model reaches learning
(Cp) 100 25 —50 ~0.93 for all plateau — further epochs add no generalization
(plateau) benefit.
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For shorter training duration, Table 4 shows that the drag
coefficient (Cp) prediction already exhibits high stability at 30
epochs. Validation MSE decreased from 0.0006 — 0.0004 —
0.0004 as the dataset expanded, and RZ,,, improved from
0.8961 (25) to 0.9374 (33), then slightly decreased to 0.9317
(50). Training R? rose steadily (0.9536 — 0.9569 — 0.9697),
confirming improved internal representation with larger data.
Overall, 33 NACA provided the highest validation accuracy,
while 50 NACA performed comparably with a minor gain in
training precision. This indicates that for Cp, 30 epochs were
already sufficient, with diminishing returns from further data
expansion.

At epoch 100, as summarized in Table 5, the C;, prediction
reaches a clear performance plateau. Validation MSE
remained within 0.0003-0.0004, and R2,;; stabilized around
0.93 for all datasets (0.9327 for 25 NACA, 0.9294 for 33
NACA, 0.9332 for 50 NACA). Training R? values remained
high (= 0.968-0.971), indicating excellent fit without notable
overfitting. Compared with epoch 30, the improvement in
validation accuracy was negligible, suggesting that additional
training cycles yielded no meaningful gain. Consequently, an
early-stopping criterion around 30—40 epochs would provide
comparable predictive accuracy with reduced computational
cost.

3.4 Summary all test scenarios

Across all test scenarios, the CNN model exhibits consistent
convergence behavior, while showing distinct responses to
variations in dataset size and training duration for lift (C;) and
drag (Cp) predictions. Table 6 summarizes the comparative
trends observed across all experiments and provides a
scientific interpretation of the underlying learning behavior.
At shorter training durations (30 epochs), the model achieved
adequate performance for both coefficients, yet larger datasets
(50 NACA) displayed slightly degraded validation accuracy
due to underfitting the network did not have sufficient
iterations to fully optimize weights across the expanded
feature space. Conversely, at longer training (100 epochs), the
model achieved near-perfect training R? values (= 0.99 for C;,
0.97 for Cp ), but validation improvement plateaued,
revealing diminishing returns and minor overfitting
tendencies.

Scientifically, these phenomena are explained by the bias—
variance trade-off and learning saturation effects in deep
neural networks. Increasing dataset size without proportional
increase in training iterations leads to high bias and incomplete
learning of nonlinear aerodynamic features. Meanwhile,
excessive training epochs reduce bias but increase variance,
causing the model to memorize minor perturbations in training
data, particularly in smaller datasets. Furthermore, Cj exhibits
smoother and less nonlinear aerodynamic dependency than C;;
therefore, it converges faster and requires fewer epochs to
achieve stable generalization.

The observed stabilization of validation loss around epoch
3040 indicates that the CNN has reached its asymptotic
learning plateau, where gradient updates contribute minimally
to validation performance. Extending beyond this point mainly
refines the training fit but yields negligible gain in predictive
generalization.

The findings affirm that CNN training efficiency in
aerodynamic prediction depends not only on data volume but
also on model data equilibrium: excessive data with limited
training induces underfitting, while prolonged training on
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limited data risks overfitting. The balance point around epoch
3040 with moderate dataset size (= 33 NACA) achieves the
optimal bias—variance trade-off, yielding the most stable and
generalizable aerodynamic performance predictions.

3.5 Validation against XFOIL and XFLR5 (NACA 0012)

To assess the external validity of the proposed model, the
CNN predictions were benchmarked against two widely used
low-Reynolds-number aerodynamic solvers, namely XFOIL
and XFLRS, using the NACA 0012 airfoil as a reference case.
XFOIL employs a panel method coupled with viscous and
transition modeling, while XFLRS5 is based on lifting-line and
panel formulations derived from XFOIL polars, making both
suitable baselines for comparison.

CLICD_XFLRS
CUCD_Predicted

CL_XFOIL
CL_XFLRS
Predicted CL

cL

B e e e e S e
001 002 003 004 005 006 007 008 008 Q10
<o

“14-12-10 -8 -8 4 2 0
Alpha

2 48 8 101214

Figure 20. Comparison of C;-Cp, polar and C; — Cp —«a
curves obtained from CNN predictions and XFOIL/XFLR5
simulations for the NACA 0012 airfoil

Figure 20 illustrates the aecrodynamic polar (C;, — Cp) and
the lift-to-drag ratio (C;, /Cp) as functions of the angle of attack
(a) obtained from CNN predictions and FOIL/XFLRS
simulations. The comparison shows that the CNN successfully
reproduces the overall polar morphology, including the low-
drag bucket and the subsequent rise in C;,/Cp as the angle of
attack increases. This agreement indicates that the dominant
aerodynamic trends under attached-flow conditions are
effectively captured by the data-driven model.

To ensure that the reported accuracy is quantitatively
verifiable and self-contained, Table 7 summarizes the
predicted C; /Cj, values together with the relative errors of the
CNN with respect to XFOIL and XFLRS5 over the investigated
angle-of-attack range. At a representative operating point of «
=6.75°, the CNN predicts a C; /Cp value of 24.329, compared
with 23.512 obtained from XFOIL and 23.665 from XFLRS.
These differences correspond to relative errors of 3.7% and
2.8%, respectively, thereby explicitly substantiating the
previously stated “< 4% error” claim through tabulated
numerical evidence.

Table 7. Comparison of prediction results from XFOIL,
XFLRS, and CNN for NACA 0012

Alpha  C,/Cp XFOIL  C,/Cp XFLR5  C;/Cp CNN

5.75 253198 253919 15.7135

6 25.0235 25.0145 19.2364
6.25 24.4678 24.638 19.0309
6.5 24.0125 24.295 20.7118
6.75 23.5122 23.6653 24.3294

7 22.9582 23.0123 16.5309
7.25 22.2486 225114 16.1592
75 21.4164 21.7119 19.7574
7.75 20.6528 20.9576 19.7574

However, Table 7 also reveals that the CNN exhibits



notable discrepancies at certain operating conditions. In
particular, at an angle of attack of a = 5.75°, the CNN
significantly underpredicts the lift-to-drag ratio, yielding a
value of 15.71 compared with approximately 25.4 obtained
from both XFOIL and XFLRS5, corresponding to an error of
nearly 38%. This discrepancy is especially critical because this
angle lies near the boundary of the low-drag bucket, where
small changes in transition or drag level can produce
disproportionately large variations in C;/C, . Similar
deviations are observed at higher angles of attack beyond a =
7°, where the flow progressively enters transition- and
separation-dominated regimes.

From a physical and modeling perspective, these
discrepancies arise because the CNN infers aerodynamic
behavior solely from airfoil geometry and angle of attack,
whereas XFOIL and XFLRS explicitly account for boundary-
layer transition and separation using empirical models. In
regions near the onset of the low-drag bucket and close to stall,
the aerodynamic response becomes highly nonlinear and
sensitive to transition location and separation onset,
particularly in drag prediction. As a result, even minor
inaccuracies in Cp estimation can lead to large relative errors
in the C; /Cp, ratio.

Moreover, the training dataset is typically denser around
moderate angles of attack associated with fully attached flow,
while near-transition and post-transition conditions are less
frequently represented. Consequently, predictions at & = 5.75°
and at higher angles rely more on extrapolation than
interpolation, which increases uncertainty. This limitation is
further amplified by the absence of explicit Reynolds number,
Mach number, and transition or tripping parameters in the
CNN input space, all of which are implicitly assumed constant
but are explicitly modeled in the reference solvers. In addition,
the discretized geometric representation employed by the
CNN may smooth fine-scale geometric features that strongly
influence drag, introducing systematic bias in Cp and,
consequently, in C; /Cp.

Despite these limitations, the close agreement observed in
the mid-angle-of-attack range, where the flow remains
attached and the aerodynamic response is quasi-linear,
demonstrates that the CNN is well suited for rapid
aerodynamic screening in early-stage design and optimization.
The combined evidence from Figure 20 and Table 7 therefore
supports the use of the CNN as a fast surrogate model, while
also clearly delineating its predictive boundaries. Future
improvements are expected through targeted augmentation of
training data in transition and separation regimes, inclusion of
additional flow parameters as explicit inputs, and refined
regularization strategies to improve robustness across the full
aerodynamic envelope.

3.6 Processing time efficiency of CNN, XFLRS, and CFD
methods

The computational time analysis highlights the efficiency
advantage of the CNN model compared with traditional
aerodynamic solvers such as XFLRS and CFD. In aircraft
wing design, balancing accuracy and computational cost
remains a persistent challenge, especially for high-fidelity
simulations involving complex geometries. The CNN-based
prediction framework aims to address this limitation by
providing rapid aerodynamic coefficient estimation with
acceptable accuracy for design iteration loops.

Based on the benchmark results, the total CNN computation
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time for preprocessing and simultaneous prediction of C; and
Cp was 32.29 seconds comprising 31.47 seconds for image
preprocessing, 0.79 seconds for C; prediction, and 0.03
seconds for Cj prediction. In contrast, the XFLR5 solver
required approximately 82.2 seconds for similar lift and drag
computations. The CFD simulation, using a time-step size of
0.001 as reported for the same NACA 0012 profile [23, 24],
demanded 16 minutes and 40 seconds to complete a single
prediction. These findings demonstrate that CNN offers a
speed improvement of roughly 2.5 x over XFLRS and more
than 30 x over CFD, while maintaining comparable accuracy
levels.

It is important to note, however, that computational time
measurements are influenced by various factors such as
hardware capability, solver settings, mesh density, and user
expertise. Therefore, while CNN provides a clear acceleration
advantage, further benchmarking under standardized
conditions is required for fair validation. Previous studies have
emphasized the need for explicit benchmarking parameters
including hardware specifications, solver tolerances, and
dataset consistency to ensure reproducibility and credibility of
performance claims [11].

Overall, the results confirm that CNN-based aerodynamic
prediction presents a computationally efficient alternative to
conventional numerical solvers, capable of drastically
reducing turnaround time in the early design phase of aircraft
development without compromising prediction reliability.

4. CONCLUSIONS

This study establishes a CNN-based framework as a fast and
reliable surrogate model for low-Reynolds-number airfoil
aerodynamic screening, with particular emphasis on
predicting the lift-to-drag ratio (C,/Cp) of NACA 4-digit
airfoils at Re = 50,000. Rather than serving as a direct
replacement for high-fidelity solvers, the proposed approach
is positioned as an efficient pre-screening tool that captures the
dominant aerodynamic trends required in early-stage design
and optimization.

The principal contribution of this work lies in demonstrating
that a geometry-driven CNN can learn the nonlinear mapping
between airfoil shape and aerodynamic performance under
low-Reynolds-number conditions while maintaining strong
generalization across multiple airfoil subsets. The results show
that accurate prediction of both lift and drag coefficients is
achievable within a fraction of the computational cost
associated with conventional CFD or panel-based solvers.
This enables rapid exploration of design spaces that would
otherwise be computationally prohibitive, thereby accelerating
preliminary aerodynamic assessment and decision-making.

Beyond predictive accuracy, the study highlights important
insights into the data—training equilibrium governing neural-
network-based aerodynamic models. The analysis reveals that
model performance depends not only on dataset size but also
on an appropriate balance between training duration and
geometric diversity, with early stopping emerging as a critical
factor for preventing overfitting while preserving
generalization. These findings provide practical guidance for
deploying deep-learning surrogates in aerodynamic
applications where data availability and computational
resources are constrained.

While the proposed framework demonstrates strong
performance in attached-flow regimes, the validation against



XFOIL and XFLRS5 also clarifies its current limitations in
transition-sensitive and near-stall conditions. This transparent
identification of predictive boundaries reinforces the
suitability of the CNN as a screening-level model rather than
a high-fidelity solver.

Future work will focus on several targeted extensions to
enhance robustness and applicability. These include
incorporating Reynolds number and Mach number as explicit
input features, augmenting the training dataset in transition
and separation-dominated regimes, and extending validation
to non-NACA airfoil families to assess generalization beyond
parametric shape classes. Additional benchmarking against
experimental data and high-resolution CFD will further
strengthen confidence in real-world deployment.

Overall, this study demonstrates that CNN-based surrogate
modeling offers a computationally efficient and physically
informed pathway for low-Reynolds-number airfoil
evaluation, bridging the gap between rapid design screening
and high-fidelity aerodynamic analysis.
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