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This study aims to investigate the impact of automated deep learning-based detection and 

segmentation approaches on pneumothorax diagnosis in chest radiographs, addressing a 

critical gap in computer-aided diagnosis systems. The article seeks new insights into 

combining segmentation and classification methodologies, contributing to a deeper 

understanding of automated medical image analysis for emergency radiological conditions. 

The study employs a quantitative approach, utilizing a dual-stage deep learning framework 

that combines U-Net architectures for segmentation with XGBoost classification. Data were 

collected from chest X-ray images with annotated pneumothorax regions and analyzed 

using PyTorch and scikit- learn frameworks, implementing various backbone architectures 

including ResNet34, VGG16, InceptionResNetV2, and Xception. The study present that the 

Xception-based U-Net achieves superior segmentation performance with an IoU of 0.6085 

and accuracy of 0.9920. This research presents an innovative approach to pneumothorax 

diagnosis by integrating semantic segmentation with classification, yielding significant 

discoveries that enhance the existing knowledge of automated medical image analysis. 

emphasizing future research opportunities in multi-task medical image processing and 

prospective clinical applications.  
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1. INTRODUCTION

Effective treatment of pneumothorax, a potentially deadly 

condition caused by air accumulation in the pleural cavity 

between the lung and chest wall, necessitates fast and accurate 

diagnosis. Chest radiographs continue to be the principal 

diagnostic technique for identifying pneumothorax, but being 

widely available, they can be difficult to interpret, even for 

skilled radiologists [1, 2]. In the study by Pedrosa et al. [3], the 

importance of prompt diagnosis and the mounting strain on 

healthcare systems around the world have prompted research 

into automated diagnostic solutions, especially those that 

make use of deep learning and artificial intelligence. 

In the last few years, automatic pneumothorax detection has 

progressed dramatically, ranging from basic computer vision 

techniques to complex deep learning architectures. Urooj et al. 

[4] presented the potential of Deep Convolutional Neural

Networks (DCNN) enhanced with Network in Network (NIN)

preprocessing, achieving AUC of 0.9844. This foundation was

more upon by incorporating transfer learning approaches, as

evidenced by developments in segmentation techniques.

Bondarenko and Syryh [5] represented an improved UNet++

architecture that achieved a Dice similarity coefficient of

88.31% and IOU of 83.1%, marking a significant

improvement in the precision of pneumothorax localization.

In order to get better local and global information in chest 

radiographs, Sanati et al. [1] supposed a combination for 

convolutional and transformer network. By integrating U-Net 

segmentation with DenseNet structures, Manikandan et al. [2] 

proposed this hybrid technique with increasing the accuracy to 

98.5 percent. frameworks called Lesion-aware categorization 

were recently introduced by Pedrosa et al. [3] highlighting the 

significance of interpretability in clinical situations. 

While Urooj et al. [4] demonstrated the effectiveness of 

computer-assisted systems by acquiring 97.77 percent 

accuracy by DenseNet-169. Bondarenko and Syryh [5] 

enhance the field by providing approaches for predicting 

illness development. Kancherla et al. [6] improved 

segmentation accuracy with residual connections; Deng et al. 

[7] provided a way to accurately identify pneumothorax

illnesses by testing different models and hyperparameter

configurations.

Although these significant improvements, the current 

pneumothorax detection method still has substantial 

shortcomings. While individual models have demonstrated 

impressive performance in either segmentation or 

classification tasks, frameworks that effectively integrate both 

abilities are clearly lacking. Current methods often fail to 

utilize the supplementary data offered by both raw images and 

segmentation masks in their final diagnostic decisions. 

Our suggested dual-stage strategy to solve the shortcomings 

of current methods, is motivated by these gaps in the present 

research environment. 
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2. LITERATURE REVIEW

Initial applications of deep learning emerged in 2020 when 

Groza and Kuzin [8] demonstrated the potential of basic U-

Net architectures, achieving a promising Dice score of 0.8821. 

This foundational work was quickly advanced by Wang et al. 

[9], who enhanced the approach by introducing a Deep 

Convolutional Neural Network (DCNN) coupled with 

Network. In Network (NIN) preprocessing, pushing the 

performance boundaries to an AUC of 0.9844. 

As the field matured into 2021, researchers began exploring 

transfer-learning approaches to leverage pre-trained models' 

knowledge. Pedrosa et al. [3] made significant strides by 

combining U-Net with various sophisticated backbones, 

including ResNet34, SE-ResNext50, SE-ResNext101, and 

DenseNet121, achieving a notable Dice coefficient of 0.8574. 

This progress was thoroughly documented in a comprehensive 

review by Iqbal et al. [10], which highlighted the growing 

success of transfer learning models in achieving classification 

AUC scores of 88.87%. 

A deep learning model has been built for pneumothorax 

identification by integrating two extensive open-source chest 

radiograph datasets: ChestX-ray14 and CheXpert [11] to 

determine the generalizability of a deep learning model for 

pneumothorax diagnosis between datasets from various 

external institutions and examine patient outcomes. Nine 

boxes have been generated for pneumothorax localization by 

Cho et al. [12] in order to assess the diagnostic performance 

attained through using fully connected tiny artificial neural 

networks (ANNs). The sensitivity and specificity were 80.6% 

and 83.0%, respectively. 

Xu et al. [13] build efficient nomograms to predict delayed 

pneumothorax following microwave ablation in patients with 

lung cancer. The primary finding is that the nomograms can 

accurately forecast the probability of both delayed and acute 

pneumothorax following MWA. 

Abedalla et al. [14] employ a variety of training and 

prediction strategies, including test-time augmentation, data 

augmentation, and stochastic weight averaging. With a mean 

Dice similarity coefficient of 0.8608 on the test set, the 

suggested segmentation network ranks in the upper 1% of 

systems in the Kaggle competition. Jones et al. [15] found a 

major concern is the generalizability of machine learning 

algorithms that have been trained. Differences in imaging 

infrastructure, patient population characteristics, disease 

distributions, and excessive fitting could lead models to 

perform well in one environment and poorly in another. 

The year 2022 marked a shift toward hybrid architectures as 

researchers sought to overcome the limitations of single-model 

approaches. Zhang et al. [16] introduced the innovative 

𝑅𝑒𝑠𝑁𝑒𝑆𝑡 − 𝑈𝑁𝑒𝑡 + + architecture, incorporating spatial and 

channel squeeze excitation modules to achieve an impressive 

88.31% Dice similarity. This advancement was followed by 

Sanati et al. [1], who proposed a novel convolutional-

transformer architecture designed to capture both local and 

global features effectively. Kaur et al. [17] performed 

EfficientNet B0 with transfer learning, achieving 83% 

accuracy while maintaining computational efficiency. 

To address vanishing gradients in the pneumothorax 

recognition model, Luo et al. [18] incorporated residual 

blocks. Hillis et al. [19] evaluated the precision of an AI model 

against Consensus thoracic radiology interpretations to 

recognize pneumothorax and tension pneumothorax. The parts 

under the receiver were the main points. 

A novel system was proposed by Iqbal et al. [20] and called 

(VDV), which is a model-level ensemble (MLE) of several 

data-level ensembles (DLE). Sensitivities and specificities for 

the identification of tension and pneumothorax were the 

secondary outcomes. 

Recent developments in 2023 and early 2024 have focused 

increasingly on clinical applicability and real-world 

implementation. Manikandan et al. [2] achieved a remarkable 

98.5% accuracy through the integration of DenseNet201 with 

U-Net segmentation. This was complemented by Pedrosa et al.

[3], who introduced a lesion-aware classification approach

incorporating object detection frameworks. Further advancing

the field, Bondarenko and Syryh [5] proposed methods for

predicting disease progression, emphasizing the importance of

longitudinal analysis in clinical settings. Kumar et al. [21]

presented PneumoNet, which is an ensemble deep learning

network that addresses the problem of class disparity by using

data augmentation to generate synthetic images and a

segmentation algorithm to find dark regions.

Upasana et al. [22] constructed a model that includes an 

attention module and an xception network to identify 

pneumothorax in chest X-ray pictures. Using 2,597 chest X-

ray images, the recommended model showed training 

accuracy of 99.18% and validation accuracy of 87.53%. Lin et 

al. [23] assumed that the framework enhanced subfigure 

segmentation is sophisticated. The CXR dataset from the NIH 

method for large chest x-rays. Images of human lungs are 

individually upgraded by Chutia et al. [24], using Contrast-

Limited Adaptive Histogram Equalization (CLAHE) and 

Discrete Wavelet Transform (DWT) to eliminate noise and 

boost image quality. The proposed design performs better than 

the existing model.  

Ikechukwu and Murali  [25] proposed approach exhibits 

robust generalization abilities on the dataset for semantic lung 

segmentation via semi-supervised localization. The author 

suggests a comprehensible ensemble learning method for lung 

segmentation and the diagnosis of lung diseases utilizing CXR 

images [26]. Olayiwola et al. [27] sought to develop a 

convolutional neural network (CNN)-based model for the 

classification of lung diseases such as MobileNetV2, ResNet-

50, ResNet-101, and AlexNet. 

Despite these significant advancements, several critical 

gaps remain in the current research landscape. Most notably, 

while individual models have shown promising results in 

either segmentation or classification tasks, there is a 

conspicuous lack of research effectively combining both 

approaches. Because these activities in clinical diagnosis are 

related, this integration gap is very significant. Additionally, 

in their final classification conclusions, current methods 

frequently fall short of making the most of the rich information 

available from both raw images and segmentation masks.  

A further difficulty is optimizing model architectures. 

Numerous architectures have been tested and proposed, but 

nothing is known about the best way to combine various loss 

functions and how they should be weighted. Given the 

complexity of medical image processing, where various 

mistake kinds may have diverse clinical ramifications. By 

integrating U-Net segmentation with a ResNet 34 backbone in 

a dual-stage architecture with DenseNet-based classification 

enhanced by XGBoost, the technique eliminates the critical 

integration gap. 
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3. METHODOLOGY

The proposed approach offers a two-phase strategy for 

classifying and detecting pneumothorax in chest X-ray 

images. There are two main parts to the framework: 

(1) U-Net based segmentation network that uses various

backbone architectures to figure out the pneumothorax's 

spatial extent. 

(2) Hybrid Classification System  combines deep learning

feature extraction with gradient enhancement classification. 

Clinicians can obtain both localization and diagnostic 

information with this integrated technique and that enables 

both pixel-wise detection of pneumothorax zones and overall 

diagnostic categorization. Through preprocessing processes, 

unique loss functions, and comprehensive data augmentation 

strategies to handle the fundamental complications of chest X-

ray interpretation, the methodology solves challenges of 

medical image analysis. 

3.1 Problem formulation 

It is essential to formulate the complicated computer vision 

problem of automatically detecting and classifying 

pneumothorax in chest radiographs as an integrated 

optimization problem, which includes binary classification 

and semantic segmentation. This dual-objective challenge 

necessitates both pixel-by-pixel detection of pneumothorax 

and a global assessment of its occurrence. 

Let 𝒟 =  {(Ii, Mi, yi)}i=1
N  represent dataset of N  image 

samples, where: 

• 𝐼𝑖  ∈ ℝ𝐻× 𝑊 denotes the input chest X-ray image

• 𝑀𝑖 ∈  {0, 1}𝐻× 𝑊 represents the binary segmentation

mask

• 𝑦𝑖 ∈  {0, 1} indicates the presence of pneumothorax

Our objective is to learn two mapping functions:

• Segmentation Function: 𝑓𝜃: ℝ𝐻×𝑊 → [0, 1]𝐻×𝑊  where

𝜃  represents the learnable parameters of the 

segmentation network. 
• Classification Function: 𝑔𝜙: ℝ𝐻×𝑊 × [0,1]𝐻×𝑊 →

[0,1] where 𝜙 represents the learnable parameters of

the classification network.

The optimization problem can be formulated as: 

min
𝜃,𝜙

 ℒ𝑠𝑒𝑔(𝑓𝜃(𝐼), 𝑀) + 𝜆 ℒ𝑐𝑙𝑠(𝑔𝜙(𝐼, 𝑓0(𝐼)), 𝑦) (1) 

where, 𝜆  is a weighting parameter balancing the two 

objectives. 

This formulation encapsulates the interdependence between 

segmentation and classification tasks, where the segmentation 

output 𝑓𝜃(𝐼) serves as an additional input to the classification

function 𝑔𝜙,  allowing the classifier to leverage both global

image features and localized pneumothorax information. The 

joint optimization ensures that the segmentation network 

learns to identify relevant regions that contribute to accurate 

classification while maintaining pixel-wise accuracy in 

delineating pneumothorax boundaries. 

3.2 Theoretical framework 

The proposed solution is grounded in a comprehensive 

theoretical framework that integrates concepts from deep 

learning, computer vision, and statistical learning theory. Our 

approach builds upon the Universal Approximation Theorem 

for neural networks, which guarantees that sufficiently wide 

neural networks can approximate any continuous function on 

compact subsets of ℝn.  This theoretical foundation is

particularly relevant for medical image analysis, where 

complex patterns must be learned from high-dimensional data 

while maintaining robustness and generalizability. 

Let 𝒳 =  ℝH× W  be our input space and  𝒴 =
 {0, 1}H× W  ×  {0,1}  be our output space. The learning

problem can be viewed as finding functions in the hypothesis 

space ℋ that minimize the expected risk: 

ℛ(ℎ)  = 𝔼(𝑥,𝑦)∼𝒟[ℒ(ℎ(𝑥), 𝑦)] (2) 

where, h ∈ ℋ and ℒ is our composite loss function. Given the 

finite nature of our training set, we minimize the empirical risk 

while maintaining generalization through appropriate 

regularization techniques. 

3.2.1 Data image preprocessing 

The preprocessing stage is crucial for ensuring optimal 

model performance and convergence. The experiments were 

conducted using the SIIM-ACR Pneumothorax Segmentation 

Dataset, containing 12,047 annotated chest X-ray images [26]. 

We establish a formal preprocessing framework that addresses 

the specific challenges of medical image analysis, including 

intensity normalization, spatial standardization, and data 

augmentation for improved generalization. 

Define the preprocessing pipeline 𝒫  as a composition of 

transformations: 

The preprocessing methodology is designed to satisfy 

several key theoretical properties: 

Invariance Properties: 

- Translation invariance: 𝒫(𝑇Δ(𝐼)) ≈  𝒫(𝐼) for small

translations Δ
- Scale invariance: 𝒫(𝑆𝛼(𝐼)) ≈  𝒫(𝐼) for scale factors

𝛼 near 1

- Rotation invariance: 𝒫(𝑅𝜃(𝐼)) ≈  𝒫(𝐼)  for small

angles 𝜃
Statistical Properties: 

- Normalized intensity distribution: 𝔼[𝒫(𝐼)] = 0,
Var[𝒫(𝐼)] = 1

- Preserved spatial correlations for anatomical

structures

- Controlled noise characteristics

Information Preservation: 

- Minimal loss of diagnostically relevant information

- Preservation of edge and texture information critical

for pneumothorax detection

- Maintenance of spatial relationships between

anatomical structures

𝒫 =  𝑇𝑛 ∘  𝑇𝑎𝑢𝑔 ∘  𝑇𝑟 (3) 

where: 

• 𝑇𝑟 is the resizing transformation.

• 𝑇𝑎𝑢𝑔 represents the augmentation function defined as.

• 𝑇𝑛 is the normalization function.

3.3 Segmentation architecture 

The segmentation component of our framework is built 

upon deep convolutional neural networks, specifically 

leveraging the U-Net architecture with various backbone 
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networks. The architectural design is motivated by the need to 

capture both fine-grained local features crucial for boundary 

detection and global contextual information necessary for 

understanding anatomical relationships in chest X-rays. Our 

framework extends the traditional U-Net architecture by 

incorporating modern deep learning advances and domain-

specific optimizations for medical image analysis. 

Let ℱ = {fθ: 𝒳 →  𝒴|θ ∈  Θ}  represent the class of

learnable segmentation functions, where Θ  denotes the 

parameter space. The segmentation network implements a 

mapping: 

𝑓𝜃: ℝ𝐻×𝑊 → [0, 1]𝐻×𝑊 (4) 

Through a sequence of nested function compositions that 

form the encoder-decoder architecture with skip connections: 

𝑓𝜃 = 𝑔𝑑 ∘  ℎ𝑠𝑘𝑖𝑝 ∘  𝑔𝑒 (5) 

where, 𝑔𝑒 is the encoder pathway, 𝑔𝑑 is the decoder pathway,

and ℎ𝑠𝑘𝑖𝑝 represents the skip connection mechanism.

3.3.1 U-Net framework 

The U-Net architecture implements a multi-scale feature 

extraction and synthesis framework that can be formalized as 

follows: 

• Encoder Pathway: Let 𝐸𝑘  represent the encoding

operation at level 𝑘:

𝐸𝑘: ℝ𝐶𝑘×𝐻𝑘×𝑊𝑘 →  ℝ𝐶𝑘+1× 𝐻𝑘+1× 𝑊𝑘+1 (6) 

where the feature transformation at each level is defined as: 

𝐸𝑘(𝑋)

= 𝑃𝑜𝑜𝑙 ( 𝐵𝑁 (𝜎 (𝐶𝑜𝑛𝑣𝑘,2 (𝐵𝑁 (𝜎 (𝐶𝑜𝑛𝑣𝑘,1(𝑋))))))) 
(7) 

with: 

• 𝐶𝑜𝑛𝑣𝑘,𝑖  representing the 𝑖-th convolution at level 𝑘

• 𝐵𝑁 denotes batch normalization

• 𝜎 being the ReLU activation function

• 𝑃𝑜𝑜𝑙 implements max pooling with stride 2

• Skip Connections: The skip connection mechanism 𝑆𝑘

at level 𝑘 is defined as:

𝑆𝑘: (𝑋𝑑,𝑘 , 𝑋𝑒,𝑘) ↦  𝐶𝑜𝑛𝑐𝑎𝑡 (𝑋𝑑,𝑘 , 𝐶𝑟𝑜𝑝(𝑋𝑒,𝑘)) (8) 

where, 𝑋𝑑,𝑘  and 𝑋𝑒,𝑘  are decoder and encoder features

respectively. 

• Decoder Pathway: The decoder operation 𝐷𝑘 at level

𝑘 can be expressed as:

𝐷𝑘: ℝ𝐶𝑘+1× 𝐻𝑘+1× 𝑊𝑘+1 × ℝ𝐶𝑘× 𝐻𝑘× 𝑊𝑘 →
 ℝ𝐶𝑘× 𝐻𝑘× 𝑊𝑘

(9) 

• Multi-Scale Feature Integration: The final prediction

integrates features across all scales:

𝑌̂ = 𝜎 (𝐶𝑜𝑛𝑣1×1 (∑  

𝐾

𝑘=1

𝑤𝑘  𝐹𝑘)) (10) 

where: 

• 𝐹𝑘 represents features at scale 𝑘
• 𝑤𝑘 are learnable scale weights

• 𝐶𝑜𝑛𝑣1×1 is the final projection to output space

The U-Net architecture implements an encoder-decoder

framework with skip connections. For an input tensor X ∈
 ℝC× H× W, the encoder pathway E consists of k blocks:

𝐸𝑘(𝑋)  =  𝑃𝑜𝑜𝑙 (𝜎 (𝐶𝑜𝑛𝑣𝑘 (𝜎(𝐶𝑜𝑛𝑣𝑘(𝑋))))) (11) 

where, 𝐶𝑜𝑛𝑣𝑘 represents convolutional layers at level 𝑘.

3.3.2 Loss function formulation 

The optimization of our segmentation network is guided by 

a carefully designed composite loss function that addresses 

multiple aspects of the segmentation task. Given the inherent 

challenges in medical image segmentation, including class 

imbalance, varying region sizes, and the critical importance of 

boundary accuracy, we propose a weighted combination of 

complementary loss terms. Each component of our loss 

function is designed to address specific challenges in 

pneumothorax segmentation while maintaining stable training 

dynamics. 

The combined loss function ℒ𝑡𝑜𝑡𝑎𝑙 is defined as:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐿𝐵𝐶𝐸  + 𝛽ℒ𝐷𝑖𝑐𝑒  + 𝛾ℒ𝐹𝑜𝑐𝑎𝑙 (12) 

where: 

ℒ𝐵𝐶𝐸  =  −
1

𝑁
∑  

𝑁

𝑖=1

[𝑦𝑖𝑙𝑜𝑔(𝑦̂𝑖)  +  (1 − 𝑦𝑖)𝑙𝑜𝑔(1

− 𝑦̂𝑖)]

(13) 

This term provides pixel-wise supervision and encourages 

probabilistic prediction calibration. 

ℒ𝐷𝑖𝑐𝑒 =  1 −
2|𝑋 ∩  𝑌| + 𝜖

|𝑋| +  |𝑌| + 𝜖
(14) 

where,  ϵ = 1 × 10−5 is a smoothing factor. The Dice loss

contributes: 

- Region-based optimization: Focus on spatial overlap

- Scale invariance: Performance independent of region

size

- Gradient characteristics: 
𝜕 ℒ𝐷𝑖𝑐𝑒

𝜕 𝑋
∝

𝑌

(|𝑋|+ |𝑌|)2

• Focal Loss:

ℒ𝐹𝑜𝑐𝑎𝑙  =  −𝛼𝑡(1 − 𝑝𝑡)𝛾𝑙𝑜𝑔(𝑝𝑡) (15) 

where, 𝑝𝑡  is the predicted probability and γ =  2  is the

focusing parameter. This component provides: 

- Dynamic weighting: w(pt)  =  (1 − pt)γ

- Class balancing: Through αt parameter

- Gradient modulation:
∂ ℒFocal

∂ pt
∝  (1 − pt)γ−1

The weights 𝛼, 𝛽, and 𝛾 are determined through empirical 

validation to optimize the trade-off between different loss 

components. 
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3.4 Classification framework 

3.4.1 Feature extraction 

The feature extraction stage implements a dual-stream 

architecture that processes both the original chest X-ray 

images and their corresponding segmentation masks. This 

approach enables the model to leverage both global image 

characteristics and localized pneumothorax indicators. 

The feature extraction process can be formalized as: 

𝛷(𝐼, 𝑀)  =  [𝜙_𝐶𝑁𝑁 (𝐼); 𝜙_𝐶𝑁𝑁 (𝑀)] (16) 

where, 𝜙𝐶𝑁𝑁 represents the DenseNet feature extractor and [; ]
denotes concatenation. 

The DenseNet feature extractor implements dense 

connectivity patterns defined by: 

𝑥𝑙  =  𝐻𝑙([𝑥0, 𝑥1, . . . , 𝑥𝑙−1]) (17) 

where, 𝐻𝑙  represents the composite function of operations:

3.4.2 XGBoost classification 

The XGBoost classifier extends traditional gradient 

boosting by incorporating second-order gradients and 

regularization. The model employs additive training to 

combine weak learners. 

𝑦̂𝑖  = ∑  𝐾
𝑘=1 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈  ℱ (18) 

where, ℱ is the space of regression trees. 

3.5 Training dynamics 

Adaptive optimization strategy implements by the training 

process a with dynamic learning rate adjustment and early 

holding techniques to avoid overfitting and guarantee strong 

convergence. 

3.5.1 Learning rate schedule 

Implements a plateau-based reduction strategy with 

momentum correction. The learning rate 𝜂𝑡  at epoch 𝑡
follows: 

𝜂𝑡  = 𝜂0 ⋅ ∏  

𝑘

𝑖=1

𝛼𝑖 (19) 

𝛼𝑖  =  0.5 if plateau is detected, 𝑘 is the number of learning

rate reductions. 

3.5.2 Early stopping criterion 

Mechanism implements a patience-based approach with 

validation loss monitoring. Training terminates when: 

ℒ𝑣𝑎𝑙
𝑡 > 𝑚𝑖𝑛

𝑖∈ [𝑡−𝑝,𝑡−1]
ℒ𝑣𝑎𝑙

𝑖
(20) 

where, ℒ𝑣𝑎𝑙
𝑡  is the validation loss at epoch 𝑡. 

3.6 Performance metrics 

To evaluate the dual-stage pneumothorax detection 

approach, a comprehensive metric system that evaluates the 

pixel-wise segmentation accuracy and classification reliability 

is needed. We employ a comprehensive evaluation strategy 

that considers both spatial and category correctness, as well as 

the therapeutic significance of different sorts of errors. 

3.6.1 Segmentation metrics 

For evaluating segmentation performance, we employ a 

suite of complementary metrics that capture different aspects 

of spatial accuracy. Let 𝑀𝑝𝑟𝑒𝑑  and 𝑀𝑡𝑟𝑢𝑒  represent the

predicted and ground truth segmentation masks respectively. 

The Intersection over Union (IoU), also known as the 

Jaccard Index, is calculated as: 

𝐼𝑜𝑈 =
|𝑀𝑝𝑟𝑒𝑑 ∩  𝑀𝑡𝑟𝑢𝑒|

|𝑀𝑝𝑟𝑒𝑑 ∪  𝑀𝑡𝑟𝑢𝑒|
(21) 

3.6.2 Classification metrics 

The classification performance is evaluated through a 

comprehensive set of metrics derived from the confusion 

matrix. Let TP, TN, FP, and FN denote true positives, true 

negatives, false positives, and false negatives respectively. 

For binary classification metrics: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1 =  2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(22) 

additional classification metrics include: 

Accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
(23) 

where, TPR is the true positive rate and FPR is the false 

positive rate. 

4. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we presented the experimental results and 

analysis of our proposed dual-stage framework for 

pneumothorax detection and segmentation in chest X-rays. 

The evaluation encompasses two main phases: (1) the 

segmentation performance using various backbone 

architectures in the U-Net framework, and (2) the 

classification performance using XGBoost with feature 

extraction. We first describe our experimental design and 

setup, followed by detailed analysis of the results from both 

phases. 

Our experiments systematically evaluate the effectiveness 

of different architectural choices and their impact on overall 

system performance. The results demonstrate the superiority 

of the 𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛 -based architecture for segmentation tasks, 

while also highlighting the benefits of hyperparameter 

optimization in the classification phase. Through 

comprehensive analysis of multiple performance metrics, we 

provide the strengths and limitations of each approach, as well 

as potential areas for future improvement. 

4.1 Experimental design 

The experimental framework implemented using 𝑃𝑦𝑇𝑜𝑟𝑐ℎ 

framework and executed on 𝐶𝑈𝐷𝐴 − 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝐺𝑃𝑈𝑠 . To 

ensure reproducibility, we maintained float 32 precision and 
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enabled deterministic operations throughout all experiments. 

The training configuration utilized input dimensions of 

512 ×  512 pixels with a batch size of 32. The initial learning 

rate was set to 1 × 10−3, and training proceeded for 25 epochs

with an early stopping mechanism implemented with a 

patience of 5 epochs. A learning rate scheduler was employed 

with a reduction factor of 0.5 and a patience of 3 epochs. 

Our experimental results revealed several significant 

findings. The 𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛 -based 𝑈 − 𝑁𝑒𝑡  demonstrated 

optimal performance for segmentation, effectively balancing 

both accuracy and boundary precision. The hyperparameter 

tuning of the 𝑋𝐺𝐵𝑜𝑜𝑠𝑡  classifier successfully improved the 

detection of pneumothorax cases while maintaining high 

performance for normal cases. 

4.2 Analysis of results 

Our work presented a comprehensive analysis of our dual-

stage framework's performance in both segmentation and 

classification tasks. We evaluate multiple backbone 

architectures for the segmentation phase followed by an 

analysis of the classification performance with 𝑋𝐺𝐵𝑜𝑜𝑠𝑡. 

We evaluated four different backbone architectures for the 

U-Net segmentation model: ResNet34, VGG16, 

InceptionResNetV2, and Xception. Table 1 presents the 

comparative performance metrics for these architectures. 

Table 1. Comparison of segmentation performance across different architectures 

Architecture Loss IoU Accuracy 
ResNet34 0.2761 0.4733 0.9885 
VGG16 0.2811 0.5504 0.9928 

InceptionResNetV2 0.2718 0.2238 0.9943 
Xception 0.2674 0.6085 0.9920 

Table 2. Classification performance before and after hyperparameter tuning 

Stage Class Precision Recall F1 Score 

Before Tuning 
Normal (0) 0.90 0.97 0.93 

Pneumothorax (1) 0.85 0.64 0.73 

After Tuning 
Normal (0) 0.93 0.95 0.94 

Pneumothorax (1) 0.81 0.76 0.78 

The Xception-based model demonstrated superior 

performance with the lowest loss value (0.2674) and highest 

IoU score (0.6085), while maintaining high accuracy (0.9920). 

While the InceptionResNetV2 achieved marginally higher 

accuracy (0.9943), its significantly lower IoU score (0.2238) 

indicates potential issues with precise boundary detection. 

Following the segmentation phase, we implemented an 

XGBoost classifier with features extracted from both original 

images and predicted masks. The classification performance 

evaluates before and after hyper parameter tuning using 

random search optimization in Table 2. 

The hyperparameter tuning process resulted in improved 

performance, particularly for pneumothorax detection (Class 

1), where recall increased from 0.64 to 0.76. This 

improvement in recall was achieved while maintaining strong 

precision for normal cases (Class 0). 

5. DISCUSSION

This study presents a comprehensive dual-stage framework 

for pneumothorax detection and segmentation in chest 

radiographs, introducing several novel contributions to the 

field of automated medical image analysis. The experimental 

results offer valuable insights into both the technical aspects 

of deep learning approaches for medical image analysis and 

their potential clinical implications. 

An interesting result was discovered from the comparison 

of backbone architectures: InceptionResNetV2 had the lowest 

Intersection over Union score (0.2238) despite having the 

highest overall accuracy (0.9943), indicating the drawbacks of 

using accuracy as the only evaluation metric in extremely 

unbalanced segmentation tasks. The difference emphasizes 

how important it is to employ boundary-sensitive 

measurements, such as Intersection over Union (IoU), for 

medical segmentation tasks, especially when it comes to 

situations like pneumothorax. 

All models, including the top-performing 𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛 based 

architecture, occasionally had difficulty recognizing small or 

small 𝑝𝑛𝑒𝑢𝑟𝑡ℎ𝑜𝑟𝑎𝑐𝑒𝑠, especially those that presented 

atypically or in cases with poor quality images, according to 

the qualitative analysis of segmentation results. This 

restriction highlights the inherent difficulties in interpreting 

chest 𝑋−𝑟𝑎𝑦 and points to possible areas for development by 

incorporating attention mechanisms made especially to 

improve focus on areas with subtle intensity variations. 

A significant difference between sensitivity and specificity 

was identified in the stage of classification by comparing the 

performance metrics of the XGBoost model before and after 

hyperparameter changes. By improving the ability to detect 

positive instances, the optimization procedure raised the recall 

for pneumothorax cases from 0.64 to 0.76. This is especially 

useful in emergency situations where failing to detect a 

pneumothorax could have serious clinical repercussions. 

However, this improvement came with a slight decrease in 

precision (from 0.85 to 0.81),  reflecting the inherent 

challenge in balancing false positives and false negatives in 

clinical diagnostic systems. 

The dual-stage approach combining segmentation with 

classification demonstrates several advantages over single-

stage systems. Using segmentation to first localize 

pneumothorax areas, and then classification using both 

segmentation masks and original image attributes, the 

framework efficiently integrates spatial and contextual 

information. This integrated in our approach reduced false 

negatives if we compared to image-only classification 

methods reported in prior studies such as Kaur et al. [17], who 

stated that their respective recall ratings for pneumothorax 

detection were 0.71 and 0.73. 
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6. SUMMARY AND CONCLUSION

Through comprehensive experimentation and evaluation, 

we determined that the 𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛 -based U-Net achieved 

superior segmentation performance with an 𝐼𝑜𝑈 of 0.6085 and 

accuracy of 0.9920. The subsequent classification phase 

demonstrated strong discriminative capability, with precision 

and recall values of 0.93 and 0.95 respectively for normal 

cases, and 0.81 and 0.76 for pneumothorax cases after 

hyperparameter optimization. 

The superior performance of our dual-stage approach 

compared to previous methods reported in the literature 

validates the hypothesis that combining spatial information 

from segmentation with contextual features for classification 

enhances diagnostic accuracy. This integrated approach 

represents a significant advancement in automated 

pneumothorax detection, offering potential benefits for 

emergency radiological practice through improved accuracy, 

interpretability, and workflow efficiency. 

In conclusion, this article demonstrates that advanced deep 

learning architectures, when effectively combined in a multi-

task framework, can achieve high-performance pneumothorax 

detection and segmentation in chest radiographs. The findings 

contribute to the growing body of evidence supporting the 

clinical applicability of artificial intelligence in medical 

imaging while highlighting important considerations for future 

research and implementation. 
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