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This study aims to investigate the impact of automated deep learning-based detection and
segmentation approaches on pneumothorax diagnosis in chest radiographs, addressing a
critical gap in computer-aided diagnosis systems. The article seeks new insights into
combining segmentation and classification methodologies, contributing to a deeper
understanding of automated medical image analysis for emergency radiological conditions.
The study employs a quantitative approach, utilizing a dual-stage deep learning framework
that combines U-Net architectures for segmentation with XGBoost classification. Data were
collected from chest X-ray images with annotated pneumothorax regions and analyzed
using PyTorch and scikit- learn frameworks, implementing various backbone architectures
including ResNet34, VGGL16, InceptionResNetV2, and Xception. The study present that the
Xception-based U-Net achieves superior segmentation performance with an loU of 0.6085
and accuracy of 0.9920. This research presents an innovative approach to pneumothorax
diagnosis by integrating semantic segmentation with classification, yielding significant
discoveries that enhance the existing knowledge of automated medical image analysis.
emphasizing future research opportunities in multi-task medical image processing and

prospective clinical applications.

1. INTRODUCTION

Effective treatment of pneumothorax, a potentially deadly
condition caused by air accumulation in the pleural cavity
between the lung and chest wall, necessitates fast and accurate
diagnosis. Chest radiographs continue to be the principal
diagnostic technique for identifying pneumothorax, but being
widely available, they can be difficult to interpret, even for
skilled radiologists [ 1, 2]. In the study by Pedrosa et al. [3], the
importance of prompt diagnosis and the mounting strain on
healthcare systems around the world have prompted research
into automated diagnostic solutions, especially those that
make use of deep learning and artificial intelligence.

In the last few years, automatic pneumothorax detection has
progressed dramatically, ranging from basic computer vision
techniques to complex deep learning architectures. Urooj et al.
[4] presented the potential of Deep Convolutional Neural
Networks (DCNN) enhanced with Network in Network (NIN)
preprocessing, achieving AUC of 0.9844. This foundation was
more upon by incorporating transfer learning approaches, as
evidenced by developments in segmentation techniques.
Bondarenko and Syryh [5] represented an improved UNet++
architecture that achieved a Dice similarity coefficient of
88.31% and IOU of 83.1%, marking a significant
improvement in the precision of pneumothorax localization.

In order to get better local and global information in chest
radiographs, Sanati et al. [1] supposed a combination for
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convolutional and transformer network. By integrating U-Net
segmentation with DenseNet structures, Manikandan et al. [2]
proposed this hybrid technique with increasing the accuracy to
98.5 percent. frameworks called Lesion-aware categorization
were recently introduced by Pedrosa et al. [3] highlighting the
significance of interpretability in clinical situations.

While Urooj et al. [4] demonstrated the effectiveness of
computer-assisted systems by acquiring 97.77 percent
accuracy by DenseNet-169. Bondarenko and Syryh [5]
enhance the field by providing approaches for predicting
illness development. Kancherla et al. [6] improved
segmentation accuracy with residual connections; Deng et al.
[7] provided a way to accurately identify pneumothorax
illnesses by testing different models and hyperparameter
configurations.

Although these significant improvements, the current
pneumothorax detection method still has substantial
shortcomings. While individual models have demonstrated
impressive performance in either segmentation or
classification tasks, frameworks that effectively integrate both
abilities are clearly lacking. Current methods often fail to
utilize the supplementary data offered by both raw images and
segmentation masks in their final diagnostic decisions.

Our suggested dual-stage strategy to solve the shortcomings
of current methods, is motivated by these gaps in the present
research environment.


https://orcid.org/0000-0002-4191-0460
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.301119&domain=pdf

2. LITERATURE REVIEW

Initial applications of deep learning emerged in 2020 when
Groza and Kuzin [8] demonstrated the potential of basic U-
Net architectures, achieving a promising Dice score of 0.8821.
This foundational work was quickly advanced by Wang et al.
[9], who enhanced the approach by introducing a Deep
Convolutional Neural Network (DCNN) coupled with
Network. In Network (NIN) preprocessing, pushing the
performance boundaries to an AUC of 0.9844.

As the field matured into 2021, researchers began exploring
transfer-learning approaches to leverage pre-trained models'
knowledge. Pedrosa et al. [3] made significant strides by
combining U-Net with various sophisticated backbones,
including ResNet34, SE-ResNext50, SE-ResNext101, and
DenseNet121, achieving a notable Dice coefficient of 0.8574.
This progress was thoroughly documented in a comprehensive
review by Igbal et al. [10], which highlighted the growing
success of transfer learning models in achieving classification
AUC scores of 88.87%.

A deep learning model has been built for pneumothorax
identification by integrating two extensive open-source chest
radiograph datasets: ChestX-rayl4 and CheXpert [11] to
determine the generalizability of a deep learning model for
pneumothorax diagnosis between datasets from various
external institutions and examine patient outcomes. Nine
boxes have been generated for pneumothorax localization by
Cho et al. [12] in order to assess the diagnostic performance
attained through using fully connected tiny artificial neural
networks (ANNs). The sensitivity and specificity were 80.6%
and 83.0%, respectively.

Xu et al. [13] build efficient nomograms to predict delayed
pneumothorax following microwave ablation in patients with
lung cancer. The primary finding is that the nomograms can
accurately forecast the probability of both delayed and acute
pneumothorax following MWA.

Abedalla et al. [14] employ a variety of training and
prediction strategies, including test-time augmentation, data
augmentation, and stochastic weight averaging. With a mean
Dice similarity coefficient of 0.8608 on the test set, the
suggested segmentation network ranks in the upper 1% of
systems in the Kaggle competition. Jones et al. [15] found a
major concern is the generalizability of machine learning
algorithms that have been trained. Differences in imaging
infrastructure, patient population characteristics, disease
distributions, and excessive fitting could lead models to
perform well in one environment and poorly in another.

The year 2022 marked a shift toward hybrid architectures as
researchers sought to overcome the limitations of single-model
approaches. Zhang et al. [16] introduced the innovative
ResNeSt — UNet + + architecture, incorporating spatial and
channel squeeze excitation modules to achieve an impressive
88.31% Dice similarity. This advancement was followed by
Sanati et al. [1], who proposed a novel convolutional-
transformer architecture designed to capture both local and
global features effectively. Kaur et al. [17] performed
EfficientNet B0 with transfer learning, achieving 83%
accuracy while maintaining computational efficiency.

To address vanishing gradients in the pneumothorax
recognition model, Luo et al. [18] incorporated residual
blocks. Hillis et al. [19] evaluated the precision of an Al model
against Consensus thoracic radiology interpretations to
recognize pneumothorax and tension pneumothorax. The parts
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under the receiver were the main points.

A novel system was proposed by Igbal et al. [20] and called
(VDV), which is a model-level ensemble (MLE) of several
data-level ensembles (DLE). Sensitivities and specificities for
the identification of tension and pneumothorax were the
secondary outcomes.

Recent developments in 2023 and early 2024 have focused
increasingly on clinical applicability and real-world
implementation. Manikandan et al. [2] achieved a remarkable
98.5% accuracy through the integration of DenseNet201 with
U-Net segmentation. This was complemented by Pedrosa et al.
[3], who introduced a lesion-aware classification approach
incorporating object detection frameworks. Further advancing
the field, Bondarenko and Syryh [5] proposed methods for
predicting disease progression, emphasizing the importance of
longitudinal analysis in clinical settings. Kumar et al. [21]
presented PneumoNet, which is an ensemble deep learning
network that addresses the problem of class disparity by using
data augmentation to generate synthetic images and a
segmentation algorithm to find dark regions.

Upasana et al. [22] constructed a model that includes an
attention module and an xception network to identify
pneumothorax in chest X-ray pictures. Using 2,597 chest X-
ray images, the recommended model showed training
accuracy of 99.18% and validation accuracy of 87.53%. Lin et
al. [23] assumed that the framework enhanced subfigure
segmentation is sophisticated. The CXR dataset from the NIH
method for large chest x-rays. Images of human lungs are
individually upgraded by Chutia et al. [24], using Contrast-
Limited Adaptive Histogram Equalization (CLAHE) and
Discrete Wavelet Transform (DWT) to eliminate noise and
boost image quality. The proposed design performs better than
the existing model.

Ikechukwu and Murali [25] proposed approach exhibits
robust generalization abilities on the dataset for semantic lung
segmentation via semi-supervised localization. The author
suggests a comprehensible ensemble learning method for lung
segmentation and the diagnosis of lung diseases utilizing CXR
images [26]. Olayiwola et al. [27] sought to develop a
convolutional neural network (CNN)-based model for the
classification of lung diseases such as MobileNetV2, ResNet-
50, ResNet-101, and AlexNet.

Despite these significant advancements, several critical
gaps remain in the current research landscape. Most notably,
while individual models have shown promising results in
either segmentation or classification tasks, there is a
conspicuous lack of research effectively combining both
approaches. Because these activities in clinical diagnosis are
related, this integration gap is very significant. Additionally,
in their final classification conclusions, current methods
frequently fall short of making the most of the rich information
available from both raw images and segmentation masks.

A further difficulty is optimizing model architectures.
Numerous architectures have been tested and proposed, but
nothing is known about the best way to combine various loss
functions and how they should be weighted. Given the
complexity of medical image processing, where various
mistake kinds may have diverse clinical ramifications. By
integrating U-Net segmentation with a ResNet 34 backbone in
a dual-stage architecture with DenseNet-based classification
enhanced by XGBoost, the technique eliminates the critical
integration gap.



3. METHODOLOGY

The proposed approach offers a two-phase strategy for
classifying and detecting pneumothorax in chest X-ray
images. There are two main parts to the framework:

(1) U-Net based segmentation network that uses various
backbone architectures to figure out the pneumothorax's
spatial extent.

(2) Hybrid Classification System combines deep learning
feature extraction with gradient enhancement classification.

Clinicians can obtain both localization and diagnostic
information with this integrated technique and that enables
both pixel-wise detection of pneumothorax zones and overall
diagnostic categorization. Through preprocessing processes,
unique loss functions, and comprehensive data augmentation
strategies to handle the fundamental complications of chest X-
ray interpretation, the methodology solves challenges of
medical image analysis.

3.1 Problem formulation

It is essential to formulate the complicated computer vision
problem of automatically detecting and classifying
pneumothorax in chest radiographs as an integrated
optimization problem, which includes binary classification
and semantic segmentation. This dual-objective challenge
necessitates both pixel-by-pixel detection of pneumothorax
and a global assessment of its occurrence.

Let D = {(I;, M;,y)}}\, represent dataset of N image
samples, where:

I; € RF*W denotes the input chest X-ray image

M; € {0, 1}*W represents the binary segmentation
mask

y; € {0, 1} indicates the presence of pneumothorax
Our objective is to learn two mapping functions:
Segmentation Function: fy: RF*W — [0, 1]%*" where

6 represents the learnable parameters of the
segmentation network.
o Classification ~Function: gg: RF*W x [0,1]"" —

[0,1] where ¢ represents the learnable parameters of
the classification network.
The optimization problem can be formulated as:

rgglﬁseg(fe(l)vM)+A‘Ccls(g¢(lrf0(1)):3/) (1)
where, 1 is a weighting parameter balancing the two
objectives.

This formulation encapsulates the interdependence between
segmentation and classification tasks, where the segmentation
output fy (1) serves as an additional input to the classification
function gy, allowing the classifier to leverage both global
image features and localized pneumothorax information. The
joint optimization ensures that the segmentation network
learns to identify relevant regions that contribute to accurate
classification while maintaining pixel-wise accuracy in
delineating pneumothorax boundaries.

3.2 Theoretical framework

The proposed solution is grounded in a comprehensive
theoretical framework that integrates concepts from deep
learning, computer vision, and statistical learning theory. Our
approach builds upon the Universal Approximation Theorem
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for neural networks, which guarantees that sufficiently wide
neural networks can approximate any continuous function on
compact subsets of R". This theoretical foundation is
particularly relevant for medical image analysis, where
complex patterns must be learned from high-dimensional data
while maintaining robustness and generalizability.

Let X = R™*W be our input space and Y =
{0,1}"*W x {0,1} be our output space. The learning
problem can be viewed as finding functions in the hypothesis
space H that minimize the expected risk:

R(h) = E(yy)-plL(h(x),)] @)

where, h € H and £ is our composite loss function. Given the
finite nature of our training set, we minimize the empirical risk
while maintaining generalization through appropriate
regularization techniques.

3.2.1 Data image preprocessing

The preprocessing stage is crucial for ensuring optimal
model performance and convergence. The experiments were
conducted using the SIIM-ACR Pneumothorax Segmentation
Dataset, containing 12,047 annotated chest X-ray images [26].
We establish a formal preprocessing framework that addresses
the specific challenges of medical image analysis, including
intensity normalization, spatial standardization, and data
augmentation for improved generalization.

Define the preprocessing pipeline P as a composition of
transformations:

The preprocessing methodology is designed to satisfy
several key theoretical properties:

Invariance Properties:
Translation invariance: P(T,(I))  P(I) for small
translations A
Scale invariance: P (S, (I)) = P(I) for scale factors

a near |

- Rotation invariance: P(Rg(I)) = P(I) for small
angles 0

Statistical Properties:

- Normalized intensity distribution: E[P(I)] =0,
Var[P(D)] =1

- Preserved spatial correlations for anatomical
structures

Controlled noise characteristics

Information Preservation:

Minimal loss of diagnostically relevant information
Preservation of edge and texture information critical
for pneumothorax detection

- Maintenance of spatial relationships between
anatomical structures
P =T, Taug o T, (3)

where:
e T, is the resizing transformation.
e Tuug represents the augmentation function defined as.

e T, is the normalization function.

3.3 Segmentation architecture
The segmentation component of our framework is built

upon deep convolutional neural networks, specifically
leveraging the U-Net architecture with various backbone



networks. The architectural design is motivated by the need to
capture both fine-grained local features crucial for boundary
detection and global contextual information necessary for
understanding anatomical relationships in chest X-rays. Our
framework extends the traditional U-Net architecture by
incorporating modern deep learning advances and domain-
specific optimizations for medical image analysis.

Let F={fg: X > Y|0 € 0} represent the class of
learnable segmentation functions, where © denotes the
parameter space. The segmentation network implements a

mapping:
for RIW 5 [0, 1] (4)
Through a sequence of nested function compositions that
form the encoder-decoder architecture with skip connections:
f0 =J4a-° hskip ° 9e (5)
where, g, is the encoder pathway, g, is the decoder pathway,
and hgy;;, represents the skip connection mechanism.

3.3.1 U-Net framework
The U-Net architecture implements a multi-scale feature
extraction and synthesis framework that can be formalized as
follows:
e Encoder Pathway: Let Ej represent the encoding
operation at level k:
Ey: RE*HeXWk 5 RCk+1X Hit1X Wit

(6)
where the feature transformation at each level is defined as:

Ex(X)

- Pool ( B <a (amyk_z (5w (o (cOnvk,l(X)))»)) )

with:
e Conwvy; representing the i-th convolution at level k

BN denotes batch normalization

o being the ReLU activation function

Pool implements max pooling with stride 2

Skip Connections: The skip connection mechanism Sj,

at level k is defined as:

Sk: (Xa 0 Xey) » Concat (Xd‘k,Crop(Xe‘k)) ()
where, Xz, and X, are decoder and encoder features
respectively.
e Decoder Pathway: The decoder operation Dy, at level
k can be expressed as:

Dy: RCk+1X Hie41X Wit1 5 RCkX Hikx Wi
RCkX HpX Wi

)

e  Multi-Scale Feature Integration: The final prediction

integrates features across all scales:

)

K

Y =o| Convyy, (Z wy, F

k=1

(10)
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where:
e F, represents features at scale k
wy, are learnable scale weights
Conv, 4 is the final projection to output space
The U-Net architecture implements an encoder-decoder
framework with skip connections. For an input tensor X €

R HXW “the encoder pathway E consists of k blocks:

E.(X) = Pool (0 (Convk (J(Convk(X)))>> (11

where, Conv,, represents convolutional layers at level k.

3.3.2 Loss function formulation

The optimization of our segmentation network is guided by
a carefully designed composite loss function that addresses
multiple aspects of the segmentation task. Given the inherent
challenges in medical image segmentation, including class
imbalance, varying region sizes, and the critical importance of
boundary accuracy, we propose a weighted combination of
complementary loss terms. Each component of our loss
function is designed to address specific challenges in
pneumothorax segmentation while maintaining stable training
dynamics.

The combined loss function L,,.; is defined as:

Leotar = @Lpcg + BLpice + VLrocal (12)

where:

1 N
Logr = =3 ). Dilog®) + (L=ylog(t 1)
i=1
- 9]

This term provides pixel-wise supervision and encourages
probabilistic prediction calibration.

21 XN Y| +e

e 14
IX|+ Y[ +e (14)

Lpice =

where, e = 1 x 1075 is a smoothing factor. The Dice loss
contributes:

Region-based optimization: Focus on spatial overlap
Scale invariance: Performance independent of region
size

H i oting. 9 LDice Y
- Gradient characteristics: —= XE VD2
e Focal Loss:
Lrocar = —at(1—p)log(pe) (15)

where, p, is the predicted probability and y = 2 is the
focusing parameter. This component provides:
Dynamic weighting: w(p,) = (1 —pp)Y
Class balancing: Through o, parameter
- Gradient modulation:a‘:;F—l;’Cal « (1—p)¥?
t

The weights «a, B, and y are determined through empirical
validation to optimize the trade-off between different loss
components.



3.4 Classification framework

3.4.1 Feature extraction

The feature extraction stage implements a dual-stream
architecture that processes both the original chest X-ray
images and their corresponding segmentation masks. This
approach enables the model to leverage both global image
characteristics and localized pneumothorax indicators.

The feature extraction process can be formalized as:

®(I,M) = [¢p_CNN (I); _CNN (M)] (16)

where, ¢.yn represents the DenseNet feature extractor and [; |
denotes concatenation.

The DenseNet feature extractor
connectivity patterns defined by:

implements dense

X = Hl([xO'xll" (17)

bR xl—l])
where, H, represents the composite function of operations:

3.4.2 XGBoost classification

The XGBoost classifier extends traditional gradient
boosting by incorporating second-order gradients and
regularization. The model employs additive training to
combine weak learners.

9 =Xk fulxd), fr€ F (18)

where, F is the space of regression trees.
3.5 Training dynamics

Adaptive optimization strategy implements by the training
process a with dynamic learning rate adjustment and early
holding techniques to avoid overfitting and guarantee strong
convergence.

3.5.1 Learning rate schedule

Implements a plateau-based reduction strategy with
momentum correction. The learning rate 7, at epoch t
follows:

Nt =No- a; (19)

—I=

i=1

a; = 0.5 if plateau is detected, k is the number of learning
rate reductions.

3.5.2 Early stopping criterion
Mechanism implements a patience-based approach with
validation loss monitoring. Training terminates when:

t i i
Lval > ic [Zr—lzla‘,r%—l] Lval (20)

where, LL,; is the validation loss at epoch t.
3.6 Performance metrics

To evaluate the dual-stage pneumothorax detection
approach, a comprehensive metric system that evaluates the
pixel-wise segmentation accuracy and classification reliability
is needed. We employ a comprehensive evaluation strategy
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that considers both spatial and category correctness, as well as
the therapeutic significance of different sorts of errors.

3.6.1 Segmentation metrics
For evaluating segmentation performance, we employ a
suite of complementary metrics that capture different aspects
of spatial accuracy. Let Mp.., and M., represent the
predicted and ground truth segmentation masks respectively.
The Intersection over Union (loU), also known as the
Jaccard Index, is calculated as:

_ |Mpred n Mtrue|

IoU =
|Mpred U Mtrue|

21)

3.6.2 Classification metrics
The classification performance is evaluated through a
comprehensive set of metrics derived from the confusion
matrix. Let TP, TN, FP, and FN denote true positives, true
negatives, false positives, and false negatives respectively.
For binary classification metrics:

Precisi _ TP
recision = TPTP+ 7P
Recall = (22)
TP + FN
Fl = 2. Prec'ls'lon~ Recall
Precision + Recall
additional classification metrics include:
Accuracy:
TP + TN
Accuracy = (23)

TP + TN + FP + FN

where, TPR is the true positive rate and FPR is the false
positive rate.

4. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we presented the experimental results and
analysis of our proposed dual-stage framework for
pneumothorax detection and segmentation in chest X-rays.
The evaluation encompasses two main phases: (1) the
segmentation  performance using various backbone
architectures in the U-Net framework, and (2) the
classification performance using XGBoost with feature
extraction. We first describe our experimental design and
setup, followed by detailed analysis of the results from both
phases.

Our experiments systematically evaluate the effectiveness
of different architectural choices and their impact on overall
system performance. The results demonstrate the superiority
of the Xception-based architecture for segmentation tasks,
while also highlighting the benefits of hyperparameter
optimization in the classification phase. Through
comprehensive analysis of multiple performance metrics, we
provide the strengths and limitations of each approach, as well
as potential areas for future improvement.

4.1 Experimental design
The experimental framework implemented using PyTorch

framework and executed on CUDA — enabled GPUs . To
ensure reproducibility, we maintained float 32 precision and



enabled deterministic operations throughout all experiments.

The training configuration utilized input dimensions of
512 x 512 pixels with a batch size of 32. The initial learning
rate was set to 1 X 1073, and training proceeded for 25 epochs
with an early stopping mechanism implemented with a
patience of 5 epochs. A learning rate scheduler was employed
with a reduction factor of 0.5 and a patience of 3 epochs.

Our experimental results revealed several significant
findings. The Xception -based U — Net demonstrated
optimal performance for segmentation, effectively balancing
both accuracy and boundary precision. The hyperparameter
tuning of the XGBoost classifier successfully improved the
detection of pneumothorax cases while maintaining high

performance for normal cases.
4.2 Analysis of results

Our work presented a comprehensive analysis of our dual-
stage framework's performance in both segmentation and
classification tasks. We evaluate multiple backbone
architectures for the segmentation phase followed by an
analysis of the classification performance with XGBoost.

We evaluated four different backbone architectures for the
U-Net  segmentation  model:  ResNet34, VGGI16,
InceptionResNetV2, and Xception. Table 1 presents the
comparative performance metrics for these architectures.

Table 1. Comparison of segmentation performance across different architectures

Architecture Loss loU Accuracy
ResNet34 0.2761 0.4733 0.9885
VGG16 0.2811 0.5504 0.9928
InceptionResNetV2 0.2718 0.2238 0.9943
Xception 0.2674 0.6085 0.9920
Table 2. Classification performance before and after hyperparameter tuning
Stage Class Precision Recall F1 Score
. Normal (0) 0.90 0.97 0.93
Before Tuning Pheumothorax (1) 0.85 0.64 0.73
. Normal (0) 0.93 0.95 0.94
After Tuning Pheumothorax (1) 0.81 0.76 0.78

The Xception-based model demonstrated superior
performance with the lowest loss value (0.2674) and highest
loU score (0.6085), while maintaining high accuracy (0.9920).
While the InceptionResNetV2 achieved marginally higher
accuracy (0.9943), its significantly lower loU score (0.2238)
indicates potential issues with precise boundary detection.

Following the segmentation phase, we implemented an
XGBoost classifier with features extracted from both original
images and predicted masks. The classification performance
evaluates before and after hyper parameter tuning using
random search optimization in Table 2.

The hyperparameter tuning process resulted in improved
performance, particularly for pneumothorax detection (Class
1), where recall increased from 0.64 to 0.76. This
improvement in recall was achieved while maintaining strong
precision for normal cases (Class 0).

5. DISCUSSION

This study presents a comprehensive dual-stage framework
for pneumothorax detection and segmentation in chest
radiographs, introducing several novel contributions to the
field of automated medical image analysis. The experimental
results offer valuable insights into both the technical aspects
of deep learning approaches for medical image analysis and
their potential clinical implications.

An interesting result was discovered from the comparison
of backbone architectures: InceptionResNetV2 had the lowest
Intersection over Union score (0.2238) despite having the
highest overall accuracy (0.9943), indicating the drawbacks of
using accuracy as the only evaluation metric in extremely
unbalanced segmentation tasks. The difference emphasizes
how important it is to employ boundary-sensitive
measurements, such as Intersection over Union (loU), for
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medical segmentation tasks, especially when it comes to
situations like pneumothorax.

All models, including the top-performing Xception based
architecture, occasionally had difficulty recognizing small or
small pneurthoraces, especially those that presented
atypically or in cases with poor quality images, according to
the qualitative analysis of segmentation results. This
restriction highlights the inherent difficulties in interpreting
chest X—ray and points to possible areas for development by
incorporating attention mechanisms made especially to
improve focus on areas with subtle intensity variations.

A significant difference between sensitivity and specificity
was identified in the stage of classification by comparing the
performance metrics of the XGBoost model before and after
hyperparameter changes. By improving the ability to detect
positive instances, the optimization procedure raised the recall
for pneumothorax cases from 0.64 to 0.76. This is especially
useful in emergency situations where failing to detect a
pneumothorax could have serious clinical repercussions.
However, this improvement came with a slight decrease in
precision (from 0.85 to 0.81), reflecting the inherent
challenge in balancing false positives and false negatives in
clinical diagnostic systems.

The dual-stage approach combining segmentation with
classification demonstrates several advantages over single-
stage systems. Using segmentation to first localize
pneumothorax areas, and then classification using both
segmentation masks and original image attributes, the
framework efficiently integrates spatial and contextual
information. This integrated in our approach reduced false
negatives if we compared to image-only classification
methods reported in prior studies such as Kaur et al. [17], who
stated that their respective recall ratings for pneumothorax
detection were 0.71 and 0.73.



6. SUMMARY AND CONCLUSION

Through comprehensive experimentation and evaluation,
we determined that the Xception -based U-Net achieved
superior segmentation performance with an IoU of 0.6085 and
accuracy of 0.9920. The subsequent classification phase
demonstrated strong discriminative capability, with precision
and recall values of 0.93 and 0.95 respectively for normal
cases, and 0.81 and 0.76 for pneumothorax cases after
hyperparameter optimization.

The superior performance of our dual-stage approach
compared to previous methods reported in the literature
validates the hypothesis that combining spatial information
from segmentation with contextual features for classification
enhances diagnostic accuracy. This integrated approach
represents a significant advancement in automated
pneumothorax detection, offering potential benefits for
emergency radiological practice through improved accuracy,
interpretability, and workflow efficiency.

In conclusion, this article demonstrates that advanced deep
learning architectures, when effectively combined in a multi-
task framework, can achieve high-performance pneumothorax
detection and segmentation in chest radiographs. The findings
contribute to the growing body of evidence supporting the
clinical applicability of artificial intelligence in medical
imaging while highlighting important considerations for future
research and implementation.
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