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Modulation recognition is a cornerstone in modern wireless communications, enabling
accurate signal recognition and efficient spectra usage. Hitherto applied techniques, such as
Likelihood-Based Method (LBM), Decision Tree Classification (DTC), and Support VVector
Machine (SVM), have been broadly applied to identify modulation. Nevertheless, existing
techniques are susceptible to lower precision during adverse signal-to-noise ratio (SNR)
conditions, poor adaptability to accommodate dynamic environments, and increased
computation complexities. To alleviate them, an intelligent Hybrid Machine Learning/Deep
Learning (HMLDL) architecture for robust modulation recognition has been introduced.
The algorithm integrates Convolutional Neural Networks (CNNs) with Random Forest (RF)
classifiers, taking advantage of feature extraction capability by deep learning and ensemble
ML-based classification capability. The integrated structure has been trained and evaluated
against standard benchmark wireless datasets with varying levels of interfering noise.
Experimental analysis demonstrates that the HMLDL structure exhibits superior
performance, achieving a 12.6% increase in recognition precision, a 15.2% reduction in
false modulation rate, and an 18.9% improvement in signal reliability detection compared
to conventional baseline models—namely the LBM, DTC, and SVM—evaluated under
varying SNR levels ranging from 0 dB to 30 dB. The proposed two-level structure delivers
a next-generation wireless system with a scalable, flexible, and computationally efficient

solution.

1. INTRODUCTION

Correct modulation recognition is among the key enablers
of wireless communications, cognitive radio, and spectrum
analysis. It includes modulation type recognition from
received signals automatically and serves a significant role in
demodulation, suppression of interfering signals, and dynamic
configuration. Statistical analysis and manual feature
extraction, which are classical modulation recognition
methods, have been proved to be insufficient to handle real-
world noisier and more complex environments [1]. In recent
years, machine learning (ML) and deep learning (DL) methods
have gained central position within signal processing since
they are capable of learning data-point features and
generalizing well across changing conditions within a signal.
Supervised classification tasks are utilized with ML-based
algorithms including Support Vector Machines (SVM), k-
Nearest Neighbors (k-NN), and Random Forests (RF), while
DL models including Convolutional Neural Networks (CNN5s)
and Recurrent Neural Networks (RNNs) have proved
extremely accurate within pattern recognition and time-series
processing. The emerging trend includes hybrid ML/DL
models, where advantages from both paradigms are harvested,
i.e., capitalizing on DL's feature extraction with ML's
interpretable and low-latency classification. They are typically
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used during applications including those with autonomous
spectrum sensing, military monitoring, Internet of Things
(IoT) networks, and next-generation wireless
communications, including 5G and 6G. This work focuses on
developing such a hybrid architecture suitable to be applied to
intelligent  modulation  recognition, going  beyond
shortcomings from conventional methods and obtaining better
performance during challenging conditions [2].

1.1 Research gaps

Though modulation recognition has seen progress with
machine and deep models, several crucial gaps remain. Firstly,
a vast number of methods yield poor accuracy with low SNR
levels and are therefore inconsistent with real-world wireless
scenarios with heavy interference. Secondly, traditional
machine models are founded upon hand-crafted features,
which may fail to recognize underlying patterns from
computationally laborious modulated signals [3]. Even single
deep methods, though robust with feature extraction, are, at
times, imprecise with overfitting or inadequate diversity
during training. Thirdly, a critical dearth remains of combined
hybrid frameworks with a combination of feature extraction
with deep learning's benefits and efficient classification with a
tradeoff between accuracy and computational intensity [4].
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Additionally, a vast number of current models are restricted to
specific modulation categories and are incapable of
generalizability across a broader set of signal formatters used
by dynamic wireless communications. In conclusion, real-time
implementation and extensibility remain an issue with none of
these approaches being particularly suitable to resource-
constrained environments such as edge or embedded
hardware. All these shortcomings act to underscore a robust
and flexible hybrid model, something with which this work
hopes to fill a void with new Hybrid Machine Learning and
Deep Learning (HMLDL) proposed framework [5].

1.2 Related work

Liu et al. [6] proposed a novel approach for modulation
recognition by utilizing Graph Convolutional Networks
(GCNs). Their innovation lies in converting modulation signal
datasets into graph representations using a feature extraction
CNN and graph mapping CNN, enabling GCNs to classify
modulation types effectively. This method outperformed
traditional CNN and KNN algorithms, particularly under low
SNR conditions. However, a notable drawback is the
computational overhead introduced by the dual-CNN pipeline
and graph construction process, which may hinder real-time
performance. Zou et al. [7] introduced GCPS, a performance
evaluation criterion for CNN-based radar signal intrapulse
modulation recognition. The key innovation is the use of Grad-
CAM Position Scores with Internal and External Benchmarks
(GCPS-IB and GCPS-EB), which enhance CNN
interpretability and address issues like SNR saturation and
dataset dependency. Despite its novelty, the approach is
limited by its reliance on specific CNN architectures
(GoogLeNet and ResNet-18), which may reduce
generalizability across diverse network types. Chu et al. [8]
addressed the challenge of automatic modulation recognition
(AMR) in secondary modulated signals, where both analog
and digital modulations coexist. Their innovative approach
focuses on extracting features from both the original and
second-order spectrum of the pre-demodulated signal and
classifying them using a Support Vector Machine (SVM).
While effective for mixed-modulation types, the approach is
constrained by its dependence on handcrafted statistical
features, which may not generalize well in dynamic signal
environments. Shivappa et al. [9] developed a deep learning-
based AMR method that combines CNNs with optimized
Gated Recurrent Unit (GRU) networks. They extracted high-
order cumulants, SNR, instantaneous features, and cyclic

spectrum for improved modulation classification, especially in
low SNR conditions. The innovation lies in the parallel use of
CNN and GRU to process rich signal features. However, the
method’s complexity and processing overhead may limit its
deployment in embedded or real-time systems. Lin et al. [10]
proposed a CNN-based AMR framework enhanced by a time-
frequency attention mechanism. This mechanism enables the
model to dynamically focus on more informative frequency
and time segments during learning, significantly improving
recognition accuracy. The approach's strength is its integration
of attention mechanisms tailored for modulated signal
characteristics. A potential drawback is the increased training
time and computational demand introduced by the attention
layer, which could impact real-time use. Sathiyamoorthy and
Subramanian [11] introduced a speech processing strategy for
cochlear implants that encodes both amplitude and frequency
modulation, unlike conventional strategies that focus only on
amplitude. Their method demonstrated significant
improvement (up to 71%) in speech recognition in noisy
environments through acoustic simulations. The core
innovation is the transformation of temporal fine structures
into frequency modulation signals. However, the drawback
lies in the lack of hardware validation and the complexity of
implementing the strategy in real cochlear implant devices.

2. DEEP LEARNING-BASED FRAMEWORK FOR
MODULATION RECOGNITION

Figure 1 shows a typical deep learning-based modulation
recognition framework consisting of multiple stages. The
process begins with signal reception, followed by a
preprocessing module that extracts relevant signal
characteristics [12]. The inputs to the system include raw in-
phase and quadrature (IQ) data, constellation diagrams, vector
diagrams, eye diagrams, polar features, and higher-order
cumulants. These diverse representations are fed into a deep
neural network composed of CNNs for spatial feature
extraction and Recurrent Neural Networks (RNNs) with Long
Short-Term Memory (LSTM) units for temporal sequence
learning. The output layer classifies the signal into various
modulation types such as BPSK, QPSK, 8PSK, QAM, GFSK,
PAM, ASK, and FSK. The final classification is passed to a
demodulator for further processing. This hybrid CNN-LSTM
architecture enables accurate and robust modulation
recognition under varying signal conditions [13].
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Figure 1. Block diagram representing a typical deep neural network-based modulation recognition system
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2.1 Feature extraction using higher-order cumulants

In modulation recognition, higher-order cumulants (HOC)
are effective statistical features used to differentiate signal
types. These cumulants are extracted during the preprocessing
stage as shown in the image [14]. The fourth-order cumulant
is one such feature, defined as given in Eq. (1).

Ca=E[x*] - 3(E[x’])* (M

where, E[x*] is the fourth-order moment and E[x?] is the
second-order moment. This equation helps capture non-
Gaussian characteristics in modulated signals. Here, Ca
denotes the fourth-order cumulant and E represents the
expectation operator [15].

2.2 Convolutional feature map calculation in CNN

CNN s process constellation diagrams and IQ data to extract
spatial features. A standard convolution operation in the CNN
block is given by Eq. (2).

F(, j) = XX X(m, n) - K(i-m, j—n) 2

where, F(i, j) is the output feature map, X(m, n) is the input
matrix (signal feature), and K is the convolutional kernel. This
equation allows spatial pattern extraction that is crucial for
modulation type identification. F stands for feature map, X is
the input signal matrix, and K is the kernel matrix [16].

2.3 LSTM cell state update equation

In the RNN block with Long Short-Term Memory (LSTM)
units, temporal dependencies in the signal are learned [17].
One of the key LSTM operations is the cell state update:

C=fOCa+iiOT, 3)

where, C; is the current cell state, f; is the forget gate, i is the
input gate, 7 is the candidate value, and © denotes element-
wise multiplication. This equation enables the network to
retain or forget relevant temporal features essential for
identifying time-varying modulated signals [18-22].

Based on the proposed concept of the HMLDL framework,
it specifically targets the combination of CNNs for processing

the deep spatial features of an image, as well as the use of
Random Forests for classification. Unlike models based on the
LSTM framework, which consider temporal aspects, this
framework is purely based on the spatial or spectral aspects.

2.4 Objectives

The study proposes a Hybrid Machine Learning and Deep
Learning (HMLDL) model combining CNN for feature
extraction and RF for classification, improving accuracy,
reliability, and efficiency of modulation recognition compared
to conventional methods [23].

-To develop a hybrid HMLDL architecture for robust
modulation recognition.

-To evaluate its performance against LBM, DTC, and SVM
using benchmark datasets.

-To design a scalable, real-time framework adaptable to
5G/6G scenarios.

2.5 Methodology of the proposed HMLDL framework

Figure 2 illustrates the five-layered methodology adopted in
the Hybrid Machine Learning and Deep Learning (HMLDL)
framework for modulation recognition. The first stage
involves Signal Input & Preprocessing, where raw 1Q signals
are normalized and encoded for effective training. The second
stage, Deep Feature Extraction, employs CNN layers with
Rectified Linear Unit (ReLU) activation and pooling to derive
key spatial features. The third stage, Classification, utilizes a
fully connected layer followed by a Random Forest to provide
robust and efficient classification. The fourth stage, Training
Process, applies the RadioML 2016.10a dataset with Adam
optimizer and categorical cross-entropy to fine-tune model
performance. Finally, the Evaluation stage measures accuracy,
precision, recall, F1-score, false detection rate, and reliability
across varying SNR levels. This layered pyramid structure
represents the systematic flow from data preparation to model
validation, ensuring adaptability and robustness of the
proposed framework. The combination of CNN with RF is
proposed in this research. The use of CNN with Random
Forest benefits from the complementarity of both methods.
CNNs can efficiently extract hierarchical features from
complex data. CNNs, however, can suffer from issues of
overfitting and lack of interpretability.

Signal Input & Preprocessing
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Figure 2. Layered representation of HMLDL process flow



To address this issue, the use of the Random Forest
classification technique is proposed in the final step of
classification. The classification technique uses an ‘ensemble’
approach. This was chosen since it promotes stability in
classification accuracy and can address issues of ‘overfitting’
in the CNNs. The proposed approach combines the benefits of
both CNNs and classification techniques.

3. PROPOSED HMLDL-BASED MODULATION
RECOGNITION FRAMEWORK

Figure 3 shows the structure of the proposed HMLDL
architecture used to identify modulation. The algorithm begins

with raw in-phase and quadrature (IQ) sequences, which are
divided into a training set and a test sequence. The training set
is given to a deep feature extraction and a classification block
consisted of a series of Convolutional and activation levels.
The block includes Conv Block 1 having Max-Pooling and
repeated Block 2 elements with ReLU activation function to
draw deep spatial features. The network utilizes average
pooling, a fully connected (fc) layer, followed by a softmax
classifier to give a final output vector with modulation
likelihoods. The trained network then identifies the test set to
categorize the signal into apposite modulation scheme type
such as BPSK, QPSK, or QAM. The modular flow allows high
precision, robust classification, and flexibility to changing
channel conditions.

HMLDL Features extraction and classification
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Figure 3. Architecture of the proposed HMLDL model for modulation scheme classification

3.1 Convolution operation for feature extraction

In the initial stages of the HMLDL framework, convolution
layers extract localized spatial features from IQ sequences.
The convolution operation is mathematically defined as given
in Eq. (4).

Y(i, j) = ¥ X(m, n) - K(i-m, j-n) @)
where, Y(i, j) is the output feature map, X(m, n) is the input
IQ sequence segment, and K is the convolution kernel. This
operation enables the detection of local modulation patterns.

Here, Y is the feature map, X denotes input data, and K stands
for kernel matrix.

3.2 ReLLU activation function

To introduce non-linearity in the CNN blocks and improve
feature learning, the ReL U is used as an activation function. It
is defined by Eq. (5).

f(x) = max(0, x) 5

This function outputs zero for negative values and retains
positive values, helping avoid vanishing gradients and
accelerating convergence. Here, f(x) is the activation output
and x is the input to the activation layer.

3.3 Max pooling operation

The max pooling layer reduces spatial dimensions and helps
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in retaining dominant features. It is mathematically expressed
as given in Eq. (6)

P(i, j) = max {Y(m, n)} (6)

for (m, n) in the local neighborhood of (i, j), where P(j, j) is

the pooled feature map. This operation ensures down sampling

while preserving essential signal characteristics. P is the
pooled value and Y is the feature input from convolution.

3.4 SoftMax classification layer

To predict the modulation type, the SoftMax layer converts
final scores into probabilities. The SoftMax function is defined
as given by Eq. (7).

o(zi) = exp(z) / 2 exp(z) (7
where, z; is the input to the Softmax unit for class 7, and the
denominator is the sum over all class scores. It ensures that the
output vector sums to 1 and is interpretable as class

probabilities. o(z;) is the probability of class i, and z; is the
network score before activation.

3.5 Categorical cross-entropy loss function

During training, the model uses cross-entropy to measure
the difference between predicted and true labels. It is defined
as given in Eq. (8).

L

> yilog(p:) (3



where, y; is the true label (1 for correct class, 0 otherwise), and
pi is the predicted probability from softmax. This loss guides
the optimizer in adjusting weights to improve accuracy. L
denotes the loss value, y; is the ground truth, and p; is the
predicted probability.

4. RESULT AND DISCUSSION

Table 1 gives a detailed description of significant
components and configurations used during implementation of
the HMLDL architecture to modulation recognition. It
includes details about input format, dataset, preprocessing
methods, architectures, activation and pooling schemes,
classification approach, loss function, optimization algorithm,
and measures of evaluation used to validate the proposed
system.

Table 1. Experimental setup for HMLDL-based modulation

recognition
SI. Component
No. Name Values
1 Input Signal Complex 1Q samples (length:
Format 1024 per frame)
2 Dataset Used RadioML 2016.10a
3 Preprocessing Normalized IQ, one-hot label
Methods encoding
4 Model 1 Conv + 4 ReLU Blocks + Avg
Architecture Pool + FC + Softmax
5 ActlvaF1on ReLU (Rectified Linear Unit)
Function
. . Max Pool (2x2), Avg Pool
6 Pooling Technique (global)
7 Clasmﬁc_atlon Softmax (output size: 11 classes)
Function
8 Loss Function Categorical Cross-Entropy
9 Optimizer Adam (learning rate: 0.001)
10 Evaluation Metrics Accuracy, Precision, Recall, F1-
score
—— Proposed HMLDL
10/ ___ LgMm
DTC
5‘ ---- SVM
©
5009 e
3 t""‘/
< - =
< o
o P aid
'S 0.8 ST
g
i
ﬁ e s
o7 x’_,"’ hd_m,-' =
osl

15 20 25 30

SNR (dB)

10

Figure 4. Classification accuracy vs. SNR for proposed
HMLDL and conventional methods

Figure 4 provides a comparison between proposed Hybrid
Machine Learning and Deep Learning (HMLDL) approach
with three classical approaches: Logistic Boosted Model
(LBM), Decision Tree Classifier (DTC), and Support Vector
Machine (SVM) with varying Signal-to-Noise Ratio (SNR)
levels from 0 to 30 dB. The HMLDL approach consistently
provides better results with a higher classification accuracy
than 1.0 during higher SNR levels, showcasing its robust and
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adaptive characteristics. The plot reveals that even though
classical approaches improve with increased SNR, they are
significantly behind HMLDL. It can be observed from
proposed HMLDL structure that it shows a nearly 12.6%
improved classification accuracy with respect to highest
achieving baseline, showcasing its potential within
challenging signal environments.

Figure 5 provides a comparison between the proposed
Hybrid Machine and Deep Learning (HMLDL) model's false
detection rate (FDR) performance with respect to conventional
methods—Logistic Boosted Model (LBM), Decision Tree
Classifier (DTC), and Support Vector Machine (SVM)—on a
number of SNR (Signal-to-Noise Ratio) levels from 0 dB to
30 dB. The proposed HMLDL scheme shows a predominantly
lower false detection rate, significantly improving
conventional methods. All models show improvement with
higher SNR, but HMLDL shows maximum reduction with a
15.2% overall reduction in false detection with respect to
better baseline. This proves HMLDL model's higher reliability
and robustness to decrease incorrect classifications with bad
channel conditions.

0.40
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\ DTC
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Figure 5. False detection rate vs. SNR for proposed HMLDL
and conventional methods
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Figure 6. Signal detection reliability comparison of HMLDL
with LBM, DTC, and SVM under varying SNR

Figure 6 presents a comparative analysis between signal
detection reliability and rising Signal-to-Noise Ratio (SNR)
from 0 dB to 30 dB. The Proposed HMLDL algorithm (green
solid line) demonstrates better capability than classical
methods—LBM (red dashed), DTC (orange dashed), and
SVM (blue dashed). While SNR increases, all models obtain
rising detection reliability, but HMLDL still takes a stable
leading position, particularly with higher SNRs. Shaded areas



are indicative of their position gap, where HMLDL benefits
from up to 18.9% higher reliability in signal detection,
verifying its capability to work effectively with noising
conditions as well as achieve accurate modulation recognition.

Figure 7 provides a comparative detailed bar chart between
three significant measures of performance—Classification
Accuracy, 1 - False Detection Rate (higher better), and Signal
Detection Reliability—for four algorithms: LBM, DTC, SVM,
and Proposed HMLDL algorithm. Each set of three bars
represents a specific algorithm's overall performance over the
three measures. The Proposed HMLDL stands out with its
highest values: 0.91 in accuracy, 0.87 in inverse false
detection, and 0.97 reliability, indicating a robust and highly
reliable model. The classical methods (LBM, DTC, SVM) are
correspondingly less performing, and it comes to light very
well HMLDL model's brilliance and effectiveness for signal
recognition and classification with background noise. For a
more robust comparison among experiments, more recently
introduced deep learning approaches like transformer models
or CNNs based on the concept of ‘attention’ have also been
considered. Even though the proposed models consider global
information and have efficient representations with a focus on
context, they still seem less feasible from an implementation
standpoint owing to their higher complexity. The CNN-RF
hybrid approach proposed has been found more efficient while
offering an equal level of accuracy, thus making it an optimal
tradeoff among the current state-of-the-art methods.

Lo Classification Accuracy

I 1 - False Detection Rate
mm Signal Detection Rellability

0.81 .52
0.8

Performance Metric

0.2

0.0 Proposed HMLDL

LEM

DTC
Methods

SVM

Figure 7. Comparative bar chart of classification accuracy,
false detection rate, and signal detection reliability

5. CONCLUSION

The proposed Hybrid CNN-RF design efficiently
overcomes the disadvantages of conventional modulation
recognition models like LBM, DTC, and SVM. The proposed
design combines CNN models for feature extraction with the
classification technique of Random Forest (RF), resulting in
significant improvement in classification accuracy by 12.6%,
reducing false detection by 15.2%, and improving signal
reliability by 18.9%. The experimental verification of this
proposed design ensures its effectiveness, adaptability, and
applicability in the wireless environment.

For the future, the proposed model will be extended to
identify more classes of modulation. There will be the
inclusion of more classes of modulation, including 16QAM,
64QAM, GMSK, and OFDM. The inclusion of Squeeze-and-
Excitation (SE) Channel Attention or Self-Attention from the
transformer will be considered to make the proposed
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framework more efficient by improving the characteristics of
the proposed framework. The proposed framework will be
evaluated in real-time using Software-Defined Radio (SDR)
Hardware Platforms USRP B210 or Ettus X310, which will
help in testing within the environment of 5G communications.
The proposed framework will continue to offer its
effectiveness in the upcoming environment of wireless
communications of 6G.
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NOMENCLATURE

CNN

RF

HMLDL

IQ

LBM
DTC
SVM
SNR
ReLU
FDR

FC

SDR
USRP

Convolutional Neural Network
Random Forest

Hybrid Machine Learning and Deep Learning
In-phase and Quadrature components
Logistic Boosted Model

Decision Tree Classifier

Support Vector Machine
Signal-to-Noise Ratio

Rectified Linear Unit

False Detection Rate

Fully Connected Layer
Software-Defined Radio

Universal Software Radio Peripheral

Greek symbols

o(z)

T
O]

n
A

Softmax output probability for class i
Candidate value at time step ¢
Element-wise multiplication operator
Learning rate

Regularization parameter





