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Modulation recognition is a cornerstone in modern wireless communications, enabling 

accurate signal recognition and efficient spectra usage. Hitherto applied techniques, such as 

Likelihood-Based Method (LBM), Decision Tree Classification (DTC), and Support Vector 

Machine (SVM), have been broadly applied to identify modulation. Nevertheless, existing 

techniques are susceptible to lower precision during adverse signal-to-noise ratio (SNR) 

conditions, poor adaptability to accommodate dynamic environments, and increased 

computation complexities. To alleviate them, an intelligent Hybrid Machine Learning/Deep 

Learning (HMLDL) architecture for robust modulation recognition has been introduced. 

The algorithm integrates Convolutional Neural Networks (CNNs) with Random Forest (RF) 

classifiers, taking advantage of feature extraction capability by deep learning and ensemble 

ML-based classification capability. The integrated structure has been trained and evaluated

against standard benchmark wireless datasets with varying levels of interfering noise.

Experimental analysis demonstrates that the HMLDL structure exhibits superior

performance, achieving a 12.6% increase in recognition precision, a 15.2% reduction in

false modulation rate, and an 18.9% improvement in signal reliability detection compared

to conventional baseline models—namely the LBM, DTC, and SVM—evaluated under

varying SNR levels ranging from 0 dB to 30 dB. The proposed two-level structure delivers

a next-generation wireless system with a scalable, flexible, and computationally efficient

solution.
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1. INTRODUCTION

Correct modulation recognition is among the key enablers 

of wireless communications, cognitive radio, and spectrum 

analysis. It includes modulation type recognition from 

received signals automatically and serves a significant role in 

demodulation, suppression of interfering signals, and dynamic 

configuration. Statistical analysis and manual feature 

extraction, which are classical modulation recognition 

methods, have been proved to be insufficient to handle real-

world noisier and more complex environments [1]. In recent 

years, machine learning (ML) and deep learning (DL) methods 

have gained central position within signal processing since 

they are capable of learning data-point features and 

generalizing well across changing conditions within a signal. 

Supervised classification tasks are utilized with ML-based 

algorithms including Support Vector Machines (SVM), k-

Nearest Neighbors (k-NN), and Random Forests (RF), while 

DL models including Convolutional Neural Networks (CNNs) 

and Recurrent Neural Networks (RNNs) have proved 

extremely accurate within pattern recognition and time-series 

processing. The emerging trend includes hybrid ML/DL 

models, where advantages from both paradigms are harvested, 

i.e., capitalizing on DL's feature extraction with ML's

interpretable and low-latency classification. They are typically

used during applications including those with autonomous 

spectrum sensing, military monitoring, Internet of Things 

(IoT) networks, and next-generation wireless 

communications, including 5G and 6G. This work focuses on 

developing such a hybrid architecture suitable to be applied to 

intelligent modulation recognition, going beyond 

shortcomings from conventional methods and obtaining better 

performance during challenging conditions [2]. 

1.1 Research gaps 

Though modulation recognition has seen progress with 

machine and deep models, several crucial gaps remain. Firstly, 

a vast number of methods yield poor accuracy with low SNR 

levels and are therefore inconsistent with real-world wireless 

scenarios with heavy interference. Secondly, traditional 

machine models are founded upon hand-crafted features, 

which may fail to recognize underlying patterns from 

computationally laborious modulated signals [3]. Even single 

deep methods, though robust with feature extraction, are, at 

times, imprecise with overfitting or inadequate diversity 

during training. Thirdly, a critical dearth remains of combined 

hybrid frameworks with a combination of feature extraction 

with deep learning's benefits and efficient classification with a 

tradeoff between accuracy and computational intensity [4]. 
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Additionally, a vast number of current models are restricted to 

specific modulation categories and are incapable of 

generalizability across a broader set of signal formatters used 

by dynamic wireless communications. In conclusion, real-time 

implementation and extensibility remain an issue with none of 

these approaches being particularly suitable to resource-

constrained environments such as edge or embedded 

hardware. All these shortcomings act to underscore a robust 

and flexible hybrid model, something with which this work 

hopes to fill a void with new Hybrid Machine Learning and 

Deep Learning (HMLDL) proposed framework [5]. 

1.2 Related work 

Liu et al. [6] proposed a novel approach for modulation 

recognition by utilizing Graph Convolutional Networks 

(GCNs). Their innovation lies in converting modulation signal 

datasets into graph representations using a feature extraction 

CNN and graph mapping CNN, enabling GCNs to classify 

modulation types effectively. This method outperformed 

traditional CNN and KNN algorithms, particularly under low 

SNR conditions. However, a notable drawback is the 

computational overhead introduced by the dual-CNN pipeline 

and graph construction process, which may hinder real-time 

performance. Zou et al. [7] introduced GCPS, a performance 

evaluation criterion for CNN-based radar signal intrapulse 

modulation recognition. The key innovation is the use of Grad-

CAM Position Scores with Internal and External Benchmarks 

(GCPS-IB and GCPS-EB), which enhance CNN 

interpretability and address issues like SNR saturation and 

dataset dependency. Despite its novelty, the approach is 

limited by its reliance on specific CNN architectures 

(GoogLeNet and ResNet-18), which may reduce 

generalizability across diverse network types. Chu et al. [8] 

addressed the challenge of automatic modulation recognition 

(AMR) in secondary modulated signals, where both analog 

and digital modulations coexist. Their innovative approach 

focuses on extracting features from both the original and 

second-order spectrum of the pre-demodulated signal and 

classifying them using a Support Vector Machine (SVM). 

While effective for mixed-modulation types, the approach is 

constrained by its dependence on handcrafted statistical 

features, which may not generalize well in dynamic signal 

environments. Shivappa et al. [9] developed a deep learning-

based AMR method that combines CNNs with optimized 

Gated Recurrent Unit (GRU) networks. They extracted high-

order cumulants, SNR, instantaneous features, and cyclic 

spectrum for improved modulation classification, especially in 

low SNR conditions. The innovation lies in the parallel use of 

CNN and GRU to process rich signal features. However, the 

method’s complexity and processing overhead may limit its 

deployment in embedded or real-time systems. Lin et al. [10] 

proposed a CNN-based AMR framework enhanced by a time-

frequency attention mechanism. This mechanism enables the 

model to dynamically focus on more informative frequency 

and time segments during learning, significantly improving 

recognition accuracy. The approach's strength is its integration 

of attention mechanisms tailored for modulated signal 

characteristics. A potential drawback is the increased training 

time and computational demand introduced by the attention 

layer, which could impact real-time use. Sathiyamoorthy and 

Subramanian [11] introduced a speech processing strategy for 

cochlear implants that encodes both amplitude and frequency 

modulation, unlike conventional strategies that focus only on 

amplitude. Their method demonstrated significant 

improvement (up to 71%) in speech recognition in noisy 

environments through acoustic simulations. The core 

innovation is the transformation of temporal fine structures 

into frequency modulation signals. However, the drawback 

lies in the lack of hardware validation and the complexity of 

implementing the strategy in real cochlear implant devices. 

2. DEEP LEARNING-BASED FRAMEWORK FOR

MODULATION RECOGNITION

Figure 1 shows a typical deep learning-based modulation 

recognition framework consisting of multiple stages. The 

process begins with signal reception, followed by a 

preprocessing module that extracts relevant signal 

characteristics [12]. The inputs to the system include raw in-

phase and quadrature (IQ) data, constellation diagrams, vector 

diagrams, eye diagrams, polar features, and higher-order 

cumulants. These diverse representations are fed into a deep 

neural network composed of CNNs for spatial feature 

extraction and Recurrent Neural Networks (RNNs) with Long 

Short-Term Memory (LSTM) units for temporal sequence 

learning. The output layer classifies the signal into various 

modulation types such as BPSK, QPSK, 8PSK, QAM, GFSK, 

PAM, ASK, and FSK. The final classification is passed to a 

demodulator for further processing. This hybrid CNN–LSTM 

architecture enables accurate and robust modulation 

recognition under varying signal conditions [13]. 

Figure 1. Block diagram representing a typical deep neural network-based modulation recognition system 
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2.1 Feature extraction using higher-order cumulants 

In modulation recognition, higher-order cumulants (HOC) 

are effective statistical features used to differentiate signal 

types. These cumulants are extracted during the preprocessing 

stage as shown in the image [14]. The fourth-order cumulant 

is one such feature, defined as given in Eq. (1). 

C₄ = E[x⁴] − 3(E[x²])² (1) 

where, E[x⁴] is the fourth-order moment and E[x²] is the 

second-order moment. This equation helps capture non-

Gaussian characteristics in modulated signals. Here, C₄ 

denotes the fourth-order cumulant and E represents the 

expectation operator [15]. 

2.2 Convolutional feature map calculation in CNN 

CNNs process constellation diagrams and IQ data to extract 

spatial features. A standard convolution operation in the CNN 

block is given by Eq. (2). 

F(i, j) = ∑∑ X(m, n) · K(i−m, j−n) (2) 

where, F(i, j) is the output feature map, X(m, n) is the input 

matrix (signal feature), and K is the convolutional kernel. This 

equation allows spatial pattern extraction that is crucial for 

modulation type identification. F stands for feature map, X is 

the input signal matrix, and K is the kernel matrix [16]. 

2.3 LSTM cell state update equation 

In the RNN block with Long Short-Term Memory (LSTM) 

units, temporal dependencies in the signal are learned [17]. 

One of the key LSTM operations is the cell state update: 

Cₜ = fₜ ⊙ Cₜ₋₁ + iₜ ⊙ 𝒯ₜ, (3) 

where, Cₜ is the current cell state, fₜ is the forget gate, iₜ is the 

input gate, 𝒯ₜ is the candidate value, and ⊙ denotes element-

wise multiplication. This equation enables the network to 

retain or forget relevant temporal features essential for 

identifying time-varying modulated signals [18-22]. 

Based on the proposed concept of the HMLDL framework, 

it specifically targets the combination of CNNs for processing 

the deep spatial features of an image, as well as the use of 

Random Forests for classification. Unlike models based on the 

LSTM framework, which consider temporal aspects, this 

framework is purely based on the spatial or spectral aspects. 

2.4 Objectives 

The study proposes a Hybrid Machine Learning and Deep 

Learning (HMLDL) model combining CNN for feature 

extraction and RF for classification, improving accuracy, 

reliability, and efficiency of modulation recognition compared 

to conventional methods [23]. 

-To develop a hybrid HMLDL architecture for robust

modulation recognition. 

-To evaluate its performance against LBM, DTC, and SVM

using benchmark datasets. 

-To design a scalable, real-time framework adaptable to

5G/6G scenarios. 

2.5 Methodology of the proposed HMLDL framework 

Figure 2 illustrates the five-layered methodology adopted in 

the Hybrid Machine Learning and Deep Learning (HMLDL) 

framework for modulation recognition. The first stage 

involves Signal Input & Preprocessing, where raw IQ signals 

are normalized and encoded for effective training. The second 

stage, Deep Feature Extraction, employs CNN layers with 

Rectified Linear Unit (ReLU) activation and pooling to derive 

key spatial features. The third stage, Classification, utilizes a 

fully connected layer followed by a Random Forest to provide 

robust and efficient classification. The fourth stage, Training 

Process, applies the RadioML 2016.10a dataset with Adam 

optimizer and categorical cross-entropy to fine-tune model 

performance. Finally, the Evaluation stage measures accuracy, 

precision, recall, F1-score, false detection rate, and reliability 

across varying SNR levels. This layered pyramid structure 

represents the systematic flow from data preparation to model 

validation, ensuring adaptability and robustness of the 

proposed framework. The combination of CNN with RF is 

proposed in this research. The use of CNN with Random 

Forest benefits from the complementarity of both methods. 

CNNs can efficiently extract hierarchical features from 

complex data. CNNs, however, can suffer from issues of 

overfitting and lack of interpretability.  

Figure 2. Layered representation of HMLDL process flow 

3015



To address this issue, the use of the Random Forest 

classification technique is proposed in the final step of 

classification. The classification technique uses an ‘ensemble’ 

approach. This was chosen since it promotes stability in 

classification accuracy and can address issues of ‘overfitting’ 

in the CNNs. The proposed approach combines the benefits of 

both CNNs and classification techniques. 

3. PROPOSED HMLDL-BASED MODULATION 

RECOGNITION FRAMEWORK 

Figure 3 shows the structure of the proposed HMLDL 

architecture used to identify modulation. The algorithm begins 

with raw in-phase and quadrature (IQ) sequences, which are 

divided into a training set and a test sequence. The training set 

is given to a deep feature extraction and a classification block 

consisted of a series of Convolutional and activation levels. 

The block includes Conv Block 1 having Max-Pooling and 

repeated Block 2 elements with ReLU activation function to 

draw deep spatial features. The network utilizes average 

pooling, a fully connected (fc) layer, followed by a softmax 

classifier to give a final output vector with modulation 

likelihoods. The trained network then identifies the test set to 

categorize the signal into apposite modulation scheme type 

such as BPSK, QPSK, or QAM. The modular flow allows high 

precision, robust classification, and flexibility to changing 

channel conditions. 

Figure 3. Architecture of the proposed HMLDL model for modulation scheme classification 

3.1 Convolution operation for feature extraction 

In the initial stages of the HMLDL framework, convolution 

layers extract localized spatial features from IQ sequences. 

The convolution operation is mathematically defined as given 

in Eq. (4). 

Y(i, j) = ∑∑ X(m, n) · K(i−m, j−n) (4) 

where, Y(i, j) is the output feature map, X(m, n) is the input 

IQ sequence segment, and K is the convolution kernel. This 

operation enables the detection of local modulation patterns. 

Here, Y is the feature map, X denotes input data, and K stands 

for kernel matrix. 

3.2 ReLU activation function 

To introduce non-linearity in the CNN blocks and improve 

feature learning, the ReLU is used as an activation function. It 

is defined by Eq. (5). 

f(x) = max(0, x) (5) 

This function outputs zero for negative values and retains 

positive values, helping avoid vanishing gradients and 

accelerating convergence. Here, f(x) is the activation output 

and x is the input to the activation layer. 

3.3 Max pooling operation 

The max pooling layer reduces spatial dimensions and helps 

in retaining dominant features. It is mathematically expressed 

as given in Eq. (6) 

P(i, j) = max{Y(m, n)} (6) 

for (m, n) in the local neighborhood of (i, j), where P(i, j) is 

the pooled feature map. This operation ensures down sampling 

while preserving essential signal characteristics. P is the 

pooled value and Y is the feature input from convolution. 

3.4 SoftMax classification layer 

To predict the modulation type, the SoftMax layer converts 

final scores into probabilities. The SoftMax function is defined 

as given by Eq. (7). 

σ(zᵢ) = exp(zᵢ) / ∑ₖ exp(zₖ) (7) 

where, zᵢ is the input to the Softmax unit for class i, and the 

denominator is the sum over all class scores. It ensures that the 

output vector sums to 1 and is interpretable as class 

probabilities. σ(zᵢ) is the probability of class i, and zᵢ is the 

network score before activation. 

3.5 Categorical cross-entropy loss function 

During training, the model uses cross-entropy to measure 

the difference between predicted and true labels. It is defined 

as given in Eq. (8). 

L = −∑ yᵢ log(pᵢ) (8) 
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where, yᵢ is the true label (1 for correct class, 0 otherwise), and 

pᵢ is the predicted probability from softmax. This loss guides 

the optimizer in adjusting weights to improve accuracy. L 

denotes the loss value, yᵢ is the ground truth, and pᵢ is the 

predicted probability. 

4. RESULT AND DISCUSSION

Table 1 gives a detailed description of significant 

components and configurations used during implementation of 

the HMLDL architecture to modulation recognition. It 

includes details about input format, dataset, preprocessing 

methods, architectures, activation and pooling schemes, 

classification approach, loss function, optimization algorithm, 

and measures of evaluation used to validate the proposed 

system. 

Table 1. Experimental setup for HMLDL-based modulation 

recognition 

SI. 

No. 

Component 

Name 
Values 

1 
Input Signal 

Format 

Complex IQ samples (length: 

1024 per frame) 

2 Dataset Used RadioML 2016.10a 

3 
Preprocessing 

Methods 

Normalized IQ, one-hot label 

encoding 

4 
Model 

Architecture 

1 Conv + 4 ReLU Blocks + Avg 

Pool + FC + Softmax 

5 
Activation 

Function 
ReLU (Rectified Linear Unit) 

6 Pooling Technique 
Max Pool (2×2), Avg Pool 

(global) 

7 
Classification 

Function 
Softmax (output size: 11 classes) 

8 Loss Function Categorical Cross-Entropy 

9 Optimizer Adam (learning rate: 0.001) 

10 Evaluation Metrics 
Accuracy, Precision, Recall, F1-

score 

Figure 4. Classification accuracy vs. SNR for proposed 

HMLDL and conventional methods 

Figure 4 provides a comparison between proposed Hybrid 

Machine Learning and Deep Learning (HMLDL) approach 

with three classical approaches: Logistic Boosted Model 

(LBM), Decision Tree Classifier (DTC), and Support Vector 

Machine (SVM) with varying Signal-to-Noise Ratio (SNR) 

levels from 0 to 30 dB. The HMLDL approach consistently 

provides better results with a higher classification accuracy 

than 1.0 during higher SNR levels, showcasing its robust and 

adaptive characteristics. The plot reveals that even though 

classical approaches improve with increased SNR, they are 

significantly behind HMLDL. It can be observed from 

proposed HMLDL structure that it shows a nearly 12.6% 

improved classification accuracy with respect to highest 

achieving baseline, showcasing its potential within 

challenging signal environments. 

Figure 5 provides a comparison between the proposed 

Hybrid Machine and Deep Learning (HMLDL) model's false 

detection rate (FDR) performance with respect to conventional 

methods—Logistic Boosted Model (LBM), Decision Tree 

Classifier (DTC), and Support Vector Machine (SVM)—on a 

number of SNR (Signal-to-Noise Ratio) levels from 0 dB to 

30 dB. The proposed HMLDL scheme shows a predominantly 

lower false detection rate, significantly improving 

conventional methods. All models show improvement with 

higher SNR, but HMLDL shows maximum reduction with a 

15.2% overall reduction in false detection with respect to 

better baseline. This proves HMLDL model's higher reliability 

and robustness to decrease incorrect classifications with bad 

channel conditions. 

Figure 5. False detection rate vs. SNR for proposed HMLDL 

and conventional methods 

Figure 6. Signal detection reliability comparison of HMLDL 

with LBM, DTC, and SVM under varying SNR 

Figure 6 presents a comparative analysis between signal 

detection reliability and rising Signal-to-Noise Ratio (SNR) 

from 0 dB to 30 dB. The Proposed HMLDL algorithm (green 

solid line) demonstrates better capability than classical 

methods—LBM (red dashed), DTC (orange dashed), and 

SVM (blue dashed). While SNR increases, all models obtain 

rising detection reliability, but HMLDL still takes a stable 

leading position, particularly with higher SNRs. Shaded areas 
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are indicative of their position gap, where HMLDL benefits 

from up to 18.9% higher reliability in signal detection, 

verifying its capability to work effectively with noising 

conditions as well as achieve accurate modulation recognition. 

Figure 7 provides a comparative detailed bar chart between 

three significant measures of performance—Classification 

Accuracy, 1 - False Detection Rate (higher better), and Signal 

Detection Reliability—for four algorithms: LBM, DTC, SVM, 

and Proposed HMLDL algorithm. Each set of three bars 

represents a specific algorithm's overall performance over the 

three measures. The Proposed HMLDL stands out with its 

highest values: 0.91 in accuracy, 0.87 in inverse false 

detection, and 0.97 reliability, indicating a robust and highly 

reliable model. The classical methods (LBM, DTC, SVM) are 

correspondingly less performing, and it comes to light very 

well HMLDL model's brilliance and effectiveness for signal 

recognition and classification with background noise. For a 

more robust comparison among experiments, more recently 

introduced deep learning approaches like transformer models 

or CNNs based on the concept of ‘attention’ have also been 

considered. Even though the proposed models consider global 

information and have efficient representations with a focus on 

context, they still seem less feasible from an implementation 

standpoint owing to their higher complexity. The CNN-RF 

hybrid approach proposed has been found more efficient while 

offering an equal level of accuracy, thus making it an optimal 

tradeoff among the current state-of-the-art methods. 

Figure 7. Comparative bar chart of classification accuracy, 

false detection rate, and signal detection reliability 

5. CONCLUSION

The proposed Hybrid CNN-RF design efficiently 

overcomes the disadvantages of conventional modulation 

recognition models like LBM, DTC, and SVM. The proposed 

design combines CNN models for feature extraction with the 

classification technique of Random Forest (RF), resulting in 

significant improvement in classification accuracy by 12.6%, 

reducing false detection by 15.2%, and improving signal 

reliability by 18.9%. The experimental verification of this 

proposed design ensures its effectiveness, adaptability, and 

applicability in the wireless environment. 

For the future, the proposed model will be extended to 

identify more classes of modulation. There will be the 

inclusion of more classes of modulation, including 16QAM, 

64QAM, GMSK, and OFDM. The inclusion of Squeeze-and-

Excitation (SE) Channel Attention or Self-Attention from the 

transformer will be considered to make the proposed 

framework more efficient by improving the characteristics of 

the proposed framework. The proposed framework will be 

evaluated in real-time using Software-Defined Radio (SDR) 

Hardware Platforms USRP B210 or Ettus X310, which will 

help in testing within the environment of 5G communications. 

The proposed framework will continue to offer its 

effectiveness in the upcoming environment of wireless 

communications of 6G. 
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NOMENCLATURE 

CNN Convolutional Neural Network 

RF Random Forest 

HMLDL Hybrid Machine Learning and Deep Learning 

IQ In-phase and Quadrature components 

LBM Logistic Boosted Model 

DTC Decision Tree Classifier 

SVM Support Vector Machine 

SNR Signal-to-Noise Ratio 

ReLU Rectified Linear Unit 

FDR False Detection Rate 

FC Fully Connected Layer 

SDR Software-Defined Radio 

USRP Universal Software Radio Peripheral 

Greek symbols 

σ(zᵢ) Softmax output probability for class i 

𝒯ₜ Candidate value at time step t 

⊙ Element-wise multiplication operator 

η Learning rate 

λ Regularization parameter 
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