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Obstructive Sleep Apnea (OSA) is a common yet underdiagnosed sleep disorder associated 

with serious cardiovascular and metabolic risks. Early and accurate detection is critical for 

timely intervention and improved patient outcomes. To the best of our knowledge, this study 

presents the first hybrid Multiscale Convolutional Neural Network (MSC-CNN) and Extra 

Trees (ET) model for OSA detection using single-lead ECG signals, integrating deep 

learning for feature extraction with ensemble learning for classification. The MSC-CNN 

component uses three parallel convolutional branches with distinct kernel sizes (30, 15, and 

3) to capture temporal features at multiple scales, which are then classified by the Extra

Trees classifier, an ensemble-based method known for its robustness and resistance to

overfitting. On the PhysioNet Apnea-ECG dataset, the proposed model achieved an

accuracy of 93.83%. It also demonstrated balanced classification performance, with a

precision of 91.72%, a recall of 92.28%, and an F1-score of 92.00%. In addition, the model

achieved a specificity of 94.79%, and its discriminative ability was reflected in an AUC of

97.82%.  Compared with recent state-of-the-art methods, MSC-ET offers competitive

performance compared to existing methods, while remaining architecturally simple and

interpretable. These results demonstrate the potential of AI-driven ECG analysis to provide

cost-effective, non-invasive, and scalable screening for OSA in clinical and home

monitoring settings.
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1. INTRODUCTION

Sleep occupies approximately one-third of the human 

lifespan and is a fundamental biological process essential for 

both physical and mental restoration [1]. High-quality sleep 

strengthens the immune system, consolidates memory, 

regulates metabolism, and supports cardiovascular health [2]. 

Conversely, poor sleep is associated with numerous disorders, 

including Obstructive Sleep Apnea (OSA), insomnia, diabetes, 

hypertension, and depression [3]. 

Among these disorders, OSA is one of the most common 

and widely underdiagnosed conditions, posing serious health 

risks, as it is estimated that approximately 1 billion individuals 

worldwide suffer from OSA [4]. 

In the United States alone, OSA affects about 22 million 

individuals [5], while prevalence rates in Europe range from 

17 to 23% of the general population [6]. This high prevalence 

is particularly concerning given that OSA often remains 

undiagnosed, especially in low-resource settings or among 

patients lacking access to specialized sleep laboratories.  

These observations underscore the substantial global burden 

of OSA and highlight the urgent need for effective and 

accessible detection methods. 

Sleep apnea is characterized by repeated cessations of 

breathing during sleep, each lasting at least 10 seconds. It 

manifests in two main forms: (i) Obstructive Sleep Apnea, 

caused by a blockage of the upper airway, and (ii) central sleep 

apnea, which results from the brain's failure to send signals to 

the respiratory muscles [7]. 

Accurate diagnosis of these apnea events typically requires 

the use of overnight monitoring systems. Polysomnography 

(PSG) remains the gold standard for diagnosing OSA and its 

subtypes. PSG is a comprehensive sleep study and diagnostic 

tool commonly used in sleep medicine to monitor various 

physiological signals, including the electrocardiogram (ECG), 

electroencephalogram (EEG), electromyogram (EMG), blood 

oxygen saturation, thoracic and abdominal movements, and 

airflow [8]. While PSG offers high diagnostic accuracy, it has 

several limitations: the need for overnight laboratory 

monitoring, significant patient discomfort, high costs, and 
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long waiting times [9]. These limitations have motivated 

growing interest in alternative, noninvasive approaches for 

sleep apnea detection. 

To address these limitations, researchers have turned to 

automated detection methods using simpler physiological 

signals, particularly the electrocardiogram (ECG). The ECG 

signal is noninvasive, widely available, and contains rich 

information related to autonomic nervous system activity, 

making it well suited for apnea detection [10, 11]. Early 

studies applied traditional machine learning techniques using 

handcrafted features derived from ECG or ECG-based signals 

such as heart rate variability (HRV) and ECG-derived 

respiration (EDR). Thachayani and Loganayagi [12] applied 

Support Vector Machines (SVM) and achieved 84.38% 

accuracy, Qatmh et al. [13] used an artificial neural network 

(ANN) and reached 92.34% accuracy, and Ramachandran et 

al. [14] employed a K-Nearest Neighbors (KNN) model with 

84.7% accuracy. 

Although these models are simple and interpretable, their 

reliance on handcrafted, context-dependent features and 

domain-specific knowledge limits their performance and 

generalizability across different patients and recording 

conditions. 

In recent years, deep learning models have emerged as 

powerful alternatives due to their ability to automatically learn 

discriminative features from raw or minimally processed ECG 

signals, thereby eliminating the need for handcrafted feature 

engineering. Wicaksono and Yunanda [15] proposed a one-

dimensional CNN (1D-CNN) model with 88.36% accuracy, 

Biswas and Yousuf [16] introduced a Transformer-based deep 

learning model, reaching 91.85% accuracy, while Choudhury 

et al. [17] applied a modified GoogLeNet to ECG scalograms, 

achieving 93.85% accuracy. Overall, deep learning 

approaches demonstrate strong performance but require high 

computational resources and often lack interpretability, which 

may limit their clinical adoption. 

Hybrid approaches that combine CNN-based feature 

extraction with conventional machine learning classifiers such 

as random forest (RF), Support Vector Machine (SVM), or 

Extra Trees remain underexplored in this domain. These 

models offer the potential to combine the feature learning 

capabilities of deep networks with the robustness and 

interpretability of ensemble methods. In this study, we 

leverage this hybrid design by introducing a multiscale CNN 

feature extractor combined with an Extra Trees classifier. 

Motivated by this observation, the present study introduces a 

multiscale CNN feature extractor coupled with an Extra Trees 

classifier, referred to as the MSC-ET model for ECG-based 

sleep apnea detection, providing a robust solution without 

relying on additional signal modalities.  

Despite the progress of deep learning approaches in sleep 

apnea detection, several challenges persist. Many models 

suffer from high computational complexity, which restricts 

their deployment in real-time or resource-constrained 

environments. The widespread use of softmax classifiers also 

limits flexibility in decision boundaries. Most existing models 

also fail to incorporate multiscale temporal representations, 

which are essential for capturing both short- and long-term 

dependencies in ECG signals. 

In this paper, we aim to develop a hybrid model for sleep 

apnea detection using single-lead ECG signals. The proposed 

method, Multiscale CNN–Extra Trees (MSC-ET), integrates 

multiscale temporal feature extraction through a CNN 

architecture with an ensemble Extra Trees classifier to 

enhance both detection accuracy and interpretability. 

Specifically, the multiscale CNN extracts feature at multiple 

temporal resolutions from raw ECG signals, capturing both 

short- and long-term patterns associated with apnea events, 

while these features are then classified using an Extra Trees 

ensemble, offering robust performance and enhanced 

interpretability. 

The main contributions of this study are as follows: 

• We propose MSC-ET, a hybrid model that combines

multiscale convolutional feature extraction with the Extra

Trees ensemble classifier for effective ECG-based OSA

detection. This approach leverages both temporal feature

diversity and ensemble learning for enhanced detection

performance.

• We perform a systematic evaluation of various kernel

configurations within the multiscale feature extraction

module to identify the most discriminative combinations

for apnea-related pattern recognition.

• We benchmark multiple classifiers (SVM, RF, Extra

Trees) to demonstrate the superiority of the ensemble

method in terms of accuracy and robustness. Results

demonstrate that the Extra Trees model consistently

achieves the highest detection accuracy across

experimental settings.

The remainder of this paper is organized as follows: Section 

2 reviews related work. Section 3 outlines the materials and 

methods. Section 4 presents the experimental results and 

discussion. Section 5 discusses limitations and directions for 

future work. Section 6 concludes the paper. 

2. RELATED WORK

Recent advancements in deep learning have led to the 

development of diverse approaches for the automatic detection 

of Obstructive Sleep Apnea (OSA) using single-lead ECG 

signals. Existing methods can be broadly categorized 

according to the type of input representation employed: raw 

ECG signals, derived ECG features, and ECG-transformed 

image representations. 

Raw ECG-based methods operate directly on unprocessed 

or minimally processed waveforms, enabling end-to-end 

learning from time-domain data. Li et al. [18] proposed 

EDSFnet, combining a deep residual branch for extracting 

high-level features with a shallow CNN for extracting lower-

level features with higher resolution. By employing Effective 

Channel Attention for adaptive fusion, the model achieved an 

accuracy of 92.6% on the Apnea-ECG dataset. Paul et al. [19] 

developed a real-time CNN framework for raw ECG and SpO₂ 

signals without any preprocessing. They addressed class 

imbalance using SMOTE and tested different window sizes 

(30 s, 20 s, and 10 s), finding that a 10-second window 

delivered the best performance. 

Their convolutional neural network achieved an accuracy of 

96%, precision of 95%, recall of 97%, and F1-score of 96% 

for SpO₂ signals. For ECG, the model reached an accuracy of 

95%, precision of 94%, recall of 96%, and F1-score of 95%. 

Wicaksono and Yunanda [15], on the other hand, 

demonstrated that a 1D-CNN trained on raw ECG 

outperformed traditional machine learning models like 

Random Forest (RF), Decision Tree (DT), and K-Nearest 

Neighbors (KNN), reaching an accuracy of 88.36%, precision 

of 89.63%, recall of 91.36%, and F1-score of 90.49%. 

Furthermore, Hossan et al. [20] introduced DeepApneaNet, 
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a cascaded CNN–BiLSTM architecture operating on raw 1-

minute ECG segments, reaching 88.61% accuracy, 84.23% 

sensitivity, and 91.04% specificity. Additionally, Widad et al. 

[21] proposed a lightweight end-to-end One-Dimensional

Convolutional Neural Network (1D-CNN) model for the

automatic detection of OSA using single-lead ECG signals.

The model processes 1-minute ECG segments and consists of

four convolutional layers, pooling layers (evaluated with both

max and average pooling), dropout, and fully connected layers.

The best performance was achieved using average pooling

with a filter length of 9 and 20 filters, reaching an accuracy of

92.6%.

More recently, Liu et al. [22] employed a CNN–

Transformer-based model. The architecture combines a 

Convolutional Neural Network (CNN) to extract local features 

from 3-minute ECG segments and a Transformer module that 

leverages self-attention to model global temporal 

dependencies and perform final classification. The model was 

evaluated on the Apnea-ECG dataset, resulting an accuracy of 

88.2%. Biswas and Yousuf [16] proposed a Transformer-

based framework. The architecture combines a multiscale 1D-

CNN for local feature extraction with a Transformer block to 

capture long-term dependencies using self-attention. 

Evaluated on 1-minute ECG segments from the PhysioNet 

Apnea-ECG dataset, the model achieved 91.85% accuracy, 

90.45% sensitivity, 92.92% specificity, 88.82% precision, and 

an F1-score of 89.6%. 

Yeh et al. [23] proposed a sleep apnea detection model using 

filter bank decomposition and a 1D CNN. One-minute ECG 

signals were decomposed into 15 subbands using Butterworth 

filters, and each subband was processed by an independent 

CNN for classification. The model, tested on both subject-

dependent and subject-independent datasets from the 

PhysioNet Apnea-ECG database, achieved up to 88.6% per-

minute accuracy on the subject-dependent set and 85.8% per-

minute on the subject-independent set for the 31.25–37.5 Hz 

subband. 

ECG-derived feature methods, which use signals such as 

RR intervals, heart rate variability (HRV), and ECG-derived 

respiration (EDR), are widely utilized because of their strong 

relationship with apnea events. Vu et al. [24] extracted RR 

intervals and R amplitudes using the Teager Energy Operator 

and trained an SE-ResNeXt50 model, which achieved 89.21% 

accuracy, 90.29% sensitivity, 87.36% specificity, 92.43% 

precision, and an F1-score of 90.85%. Similarly, Jiao et al. 

[25] proposed DAN-MTIF, which utilized standardized RR

intervals and R-peak amplitudes from variable-length

segments (1, 3, and 5 minutes) and applied a multi-head

attention mechanism to extract temporally relevant features,

resulting in 91.06% accuracy, 93.96% precision, 84.70%

sensitivity (recall), 95.88% specificity, and an F1-score of

89.09%.

Additionally, Tyagi and Agrawal [26] explored biologically 

inspired processing by designing a spiking neural network 

trained on spike-encoded HRV and EDR features using a leaky 

integrate-and-fire (LIF) model and temporal encoding. The 

model demonstrated exceptional performance, achieving 

94.63% accuracy in per-segment classification, along with 

strong specificity (96.21%), sensitivity (92.04%), and an AUC 

of 0.9851. Validation on the UCD dataset yielded 84.57% 

accuracy. Moreover, Shen et al. [27] proposed a multiscale 

dilated CNN using RR interval sequences in combination with 

a weighted-loss time-dependent hidden Markov model 

(WLTD-HMM), achieving 89.4% accuracy, 89.8% 

sensitivity, 89.1% specificity, 83.6% precision, 86.6% F1-

score, an AUC of 0.964 per segment, and 100% accuracy with 

a mean absolute error of 0.42 at the subject level. 

Image-based ECG representations convert 1D signals into 

2D time–frequency formats such as spectrograms, scalograms, 

or Gramian angular fields to leverage the spatial pattern 

recognition strengths of convolutional architectures. For 

instance, Lin et al. [28] employed wavelet-based time–

frequency images as input to a Coordinate Attention–enhanced 

EfficientNet (CA-EfficientNet). Their study showed that 

longer ECG segments (3 minutes) and Fbsp wavelets 

improved OSA detection. Additionally, coordinate attention 

(CA) and Dice loss helped address feature localization and 

data imbalance. The model achieved an accuracy of 92.51%, 

precision of 94.8%, sensitivity of 84.5%, specificity of 97.3%, 

F1-score of 89.4%, and an AUC of 90.9%. 

In a related approach, Bhongade and Gandhi [29] proposed 

WIVIDOSA-Net, which uses Wigner–Ville Distribution 

spectrograms smoothed with a Savitzky–Golay filter and 

classified using a six-layer CNN, achieving an accuracy of 

90.09%, sensitivity of 87.41%, specificity of 91.12%, 

precision of 86.68%, and F1-score of 87.03%. Choudhury et 

al. [17] introduced a transfer learning framework in which 

ECG signals were converted into scalograms using continuous 

wavelet transform (CWT) and classified using a modified 

GoogLeNet. Enhanced with LIME-based visual explanations, 

the model achieved 93.85% accuracy, 93.42% sensitivity, 

94.30% specificity, and an F1-score of 93.83% on the Apnea-

ECG dataset, while also performing well on UCDDB 

(87.20%) and MIT-BIH (88.58%). 

Furthermore, Zhou and Kang [30] proposed MFAE-OSA, a 

multi-feature ensemble framework using both scalogram and 

Gramian Angular Field (GAF) representations, which were 

fed into a hybrid residual–inception CNN ensemble with a soft 

voting mechanism. Their method achieved 96.37% accuracy, 

94.67% sensitivity, 97.44% specificity, and an AUC of 0.96. 

Table 1 provides a synthesized comparison of the reviewed 

studies, emphasizing their key findings and contributions. 

Previous studies on sleep apnea detection have predominantly 

relied on end-to-end deep learning architectures, such as 

convolutional neural networks, bidirectional long short-term 

memory networks (BiLSTMs), and Transformer-based 

models. 

These approaches often incorporate complex time–

frequency transformations (e.g., scalograms, spectrograms) or 

derived ECG features such as RR intervals and heart rate 

variability (HRV). While they demonstrate strong 

classification performance, they typically introduce significant 

computational overhead and lack the flexibility required for 

real-time deployment. 

Moreover, limited research has explored multiscale kernel 

optimization or the integration of ensemble learning 

techniques, which have the potential to enhance model 

robustness and interpretability. Most existing models rely on 

softmax-based classifiers without benchmarking alternative 

methods. 

To address these limitations, this study proposes a novel 

hybrid framework that combines multiscale CNN-based 

feature extraction with the Extra Trees ensemble classifier. 

The proposed approach is modular, interpretable, and 

computationally efficient, eliminating the need for extensive 

signal transformations and supporting real-time applicability. 
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3. MATERIALS AND METHODS 

 

3.1 Overview of the proposed model 

 

The proposed framework employs a hybrid architecture to 

automatically identify sleep apnea episodes from raw single-

lead ECG data. As illustrated in Figure 1, the framework 

consists of three stages: preprocessing, multiscale feature 

extraction, and classification. 

During the preprocessing stage, ECG signals were filtered 

and segmented to reduce noise and standardize the input. 

In the feature extraction stage, a multiscale convolutional 

neural network (CNN) was employed to capture both short-

term and long-term temporal dependencies present in the ECG 

signals. These learned feature representations are then fed into 

an Extra Trees ensemble classifier, selected for its robustness, 

interpretability, and resistance to overfitting. 

 

Table 1. Overview and comparison of related sleep apnea studies 

 

Ref Input Type Model Key Features Accuracy (%) 
Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

F1-Score 

(%) 
AUC 

[18] Raw ECG 

EDSFnet 

(Deep–Shallow 

Fusion) 

 Deep residual branch extracts 

high-level+Shallow CNN 

captures high resolution+ 

Effective, Channel Attention for 

adaptive feature fusion 

92 – – – – – 

[19] 
Raw ECG & 

SpO2 

Real-Time 

CNN 

End-to-end architecture + Class 

imbalance addressed using 

SMOTE+ Evaluation across 

window sizes (10s, 20s, 30s) 

ECG: 95  

SpO2: 96 

ECG: 94  

SpO2: 95 

ECG: 

96 

SpO2: 

97 

– 
ECG: 95  

SpO2: 96 
– 

[15] Raw ECG 1D-CNN 

End-to-end model+ CNN model 

outperforms traditional machine 

learning classifiers 

88.36 89.63 91.36 – 90.49 – 

[20] Raw ECG 

Deep 

ApneaNet 

(CNN-

BiLSTM) 

Cascaded architecture combining 

CNN and BiLSTM 
88.61 – 84.23 91.04 – – 

[21] Raw ECG 1D-CNN End-to-end model 92.6 – – – – – 

[22] Raw ECG 
CNN + 

transformer 

CNN extracts local features + 

self-attention to capture global 

temporal dependencies 

88.2 – – – – – 

[23] Raw ECG 1D-CNN 

Utilized Filter Bank+ End-to- 

end CNN model+ +Subject- 

Independent Evaluation 

88.6(SD)  

85.8 (SI) 
– – – – – 

[16] Raw ECG 
CNN + 

transformer 

Multi-scale 1D-CNN+ Applied 

Transformer blocks to capture 

long-term temporal dependencies 

91.85 88.82 90.45 92.92 89.6 – 

[24] 
RR intervals, R 

amplitudes 
SE-ResNeXt50 

Employed a Squeeze and 

Excitation ResNeXt-50 model + 

Applied Teager Energy Operator 

(TEO) 

89.21 92.43 90.29 87.36 90.85 – 

[25] 

RR intervals, 

R-peak am- 

plitudes 

DAN-MTIF 

Used variable-length segments + 

applied CNN + Multihead 

attention 

91.06 93.96 84.70 95.88 89.09 – 

[26] HRV, EDR 
Spiking Neural 

Network (LIF) 

Used a biologically inspired 

neural 

+ Applied temporal encoding to 

convert ECG signals into spike 

94.63 

84.57 
– 92.04 96.21 – 0.9851 

[27] RR intervals 

MS-Dilated 

CNN 

+ WLTD-

HMM 

Applied Multiscale dilation 

attention 1D CNN + Utlised 

Attention Mechanism 

89.4 83.6 89.8 89.1 86.6 0.964 

[28] Scalogram 
CA-

EfficientNet 

used Wavelet transform to turn 

ECG signals into time–frequency 

images + Utilized EfficientNet 

model with coordinated attention 

92.51 94.8 84.5 97.3 89.4 0.909 

[29] Spectrogram 
WIVIDOSA-

Net 

Used smoothed Wigner–Ville 

spectrograms (SWVSs) + 

Applied Savitzky Golay filtering 

90.09 86.68 87.41 91.12 87.03 – 

[17] 
Scalogram 

(CWT) 

GoogLeNet 

(Transfer 

Learning) 

Used CWT to turn ECG signals 

into scalograms+ Used LIME 

93.85 

87.20 

88.58 

– 93.42 94.30 93.83 – 

[30] 
Scalogram + 

GAF 

MFAE-OSA 

(Hybrid 

Ensemble) 

Utilized CWT + GAF for image 

conversion+ Combines residual 

and inception blocks 

96.37 – 94.67 97.44 – 0.96 
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The model produces a binary output for each input segment, 

where 0 indicates a normal event and 1 denotes the presence 

of a sleep apnea episode. By combining automatic learning of 

complex patterns from raw ECG signals with the stability of 

ensemble-based classification, the hybrid model effectively 

addresses variability in ECG data and improves detection 

accuracy while reducing the risk of overfitting. 

 

 
 

Figure 1. The structure of the proposed framework 

 

3.2 Apnea-ECG data description 

 

This study employed the Apnea-ECG dataset [31, 32] which 

was provided by Philipps University. The dataset contains 70 

single-lead ECG recordings obtained from 32 subjects, 

sampled at 100 Hz with a 16-bit resolution.  

The dataset is divided into: 

• A released set of 35 records (a01-a20, b01-b05, c01-

c10)  

• A withheld set of 35 records (x01-35). 

Recording durations range from approximately 7 to 10 

hours. Only the released dataset includes apnea annotations—

A (Apnea) or N (Normal)—provided by a human expert, 

indicating the presence or absence of apnea events at each 

minute. 

 

 
 

Figure 2. Ten seconds of normal and apnea ECG signals 

from record a01 

 

All annotated apnea events are either obstructive or mixed, 

while events of pure central apnea and Cheyne–Stokes 

respiration are not included. In addition, the dataset includes 

machine-generated QRS annotations.  

Recordings are categorized into three classes: 

• Class A: at least 100 minutes of detected apnea 

• Class B: 5–99 minutes of apnea  

• Class C: 0–4 minutes of apnea. 

Although these record-level categories are defined, the 

present study adopted a minute-level classification strategy 

using binary labels (A/N). Minute-wise ECG segments with 

valid labels from recordings in all three classes are pooled to 

construct the training and test sets. Therefore, the A/B/C 

classification of each record does not directly influence the 

sample distribution used for model training. 

Figure 2 illustrates ten seconds of normal and apnea ECG 

signals from record a01. 

 

3.3 Preprocessing 

 

Electrocardiogram (ECG) signals are frequently used for 

detecting Obstructive Sleep Apnea due to their non-invasive 

nature and their ability to effectively reflect changes in both 

the autonomic nervous system and respiratory activity during 

sleep [33]. However, raw ECG recordings are commonly 

affected by noise, typically introduced by electromyographic 

activity, respiratory motion artifacts, and unstable electrode-

skin contact [34]. 

 

 
 

Figure 3. Example of a 5-second ECG segment before and 

after filtering 

 

To address these challenges and improve signal clarity, 

several preprocessing steps were applied: 

• High-pass filtering: A fourth-order Butterworth high-

pass filter with a cutoff frequency of 0.5 Hz was employed 

to remove low-frequency baseline drift caused by 

respiration and body movements. The Butterworth design 

ensures a flat passband response without distortion, and 

the selected order provides a sharp transition without 

excessive computational cost. These parameters were 

chosen because they effectively remove baseline drift and 

power-line interference while preserving the essential 

ECG waveform features that are critical for apnea 

detection. This configuration has been widely 

recommended in ECG preprocessing literature [35, 36]. 

• Notch filtering: A notch filter was applied to the 

physiological signals to suppress 50 Hz power-line 

interference [37], due to its simple design effectiveness 

and low computational complexity [38, 39]. Visual 

inspection of the filtered signals confirmed that power-

line noise was substantially reduced without distorting the 

underlying ECG morphology (Figure 3). 

• Normalization: After filtering, the ECG signals were 

normalized using Z-score normalization. This step 

standardizes the data by centering it around the mean and 

scaling it based on the standard deviation [40], helping to 

improve consistency and model performance. The 

normalization is defined as: 
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𝑍 =
X − μ

σ
 (1) 

 

where, X is the original signal, µ is the mean, and σ is the 

standard deviation of the segment 

• Segmentation: ECG signals were divided into 30-second 

segments. Any segments shorter than this were excluded 

to ensure consistent input lengths for classification. 

Figure 3 presents an example of a 5-second ECG segment 

before and after applying the high-pass and notch filters. 

 

3.4 The model architecture 

 

In this section, we introduce a novel framework, named 

MSC-ET (Multiscale CNN with Extra Trees), for automatic 

sleep apnea (SA) detection using single-lead ECG signals. The 

proposed model consists of two main modules: 

1. A multiscale CNN-based feature extraction 

module, which captures relevant temporal and 

morphological features from ECG signals. 

2. A classification module, which employs the Extra 

Trees algorithm to detect apnea events. 

The step-by-step procedure of the proposed model is 

illustrated in Algorithm 1. 
 

Algorithm 1. Proposed MSC-ET model 

1: Input: ECG segment ← 30-second preprocessed single-

lead ECG signal 

2:  Output: label ∈ {1, 0}, where 1 = Apneic and 0 = 

Normal 

3:   xnormalized ← BatchNormalization(ECG segment) 

4:   kernel sizes ← {3, 15, 30} 

5:   branches ← empty list 
6:   for each kernel size in kernel sizes do 
7:    Block 1: 
8:  x ← Conv1D(xnormalized,filters=45, kernel size, 
padding=’same’) 

9:        x ← BatchNormalization(x) 
10:      x ← ReLU(x) 
11:      x ← MaxPooling1D(x, pool size=2, stride=2) 
12:    Block 2: 
13:   x ← Conv1D(xnormalized,filters=90, kernel size, 
padding=’same’) 

14:          x ← BatchNormalization(x) 
 15:      x ← ReLU(x) 
16:       x ← MaxPooling1D(x, pool size=2, stride=2) 
17:    Block 3: 
18:     x ← Conv1D(xnormalized,filters=135, kernel size, 
padding=’same’) 

19:           x ← BatchNormalization(x) 
20:        x ← ReLU(x) 
21:        x ← MaxPooling1D(x, pool size=2, stride=2) 
22:        x ← Dropout(x, rate=0.5) 
23:     Append x to branches 
24:     end for 
25:      merged features ← Concatenate(branches along 
channel axis) 

26:     feature vector ←GlobalAveragePooling1D(merged

features) 

27:     Train Extra Trees Classifier using feature vector and 

corresponding labels 

28:       for each new ECG segment do 

29:           extract feature vector 

30:           Predict label using trained classifier 

31:        end for 

32:       return predicted label 

 

Multiscale Convolutional Neural Network: The proposed 

multiscale feature extraction module is designed to extract 

time-series features from single-lead ECG signals at various 

scales via convolutional layers with multiple kernel sizes. This 

enables sensitive characterization of apnea-related signal 

changes. 

Initially, the input signal was normalized using a batch 

normalization layer to stabilize training. The signal was then 

processed through three parallel convolutional branches, each 

designed with a unique kernel size (30, 15, and 3), which were 

selected empirically to enable multiscale feature extraction. 

This approach allows the model to capture both fine-grained 

details and long-range dependencies, which are crucial for 

accurately detecting apnea events. 

Each branch has three convolutional blocks: 

• Block 1: One-dimensional convolutional layer with 

45 filters, followed by batch normalization, ReLU 

activation, and max pooling (pool size and stride = 2). 

• Block 2: Number of filters doubled to 90, 

maintaining the same kernel size and layer sequence. 

• Block 3: Filters increased to 135, with the same 

structure, plus a dropout layer (rate = 0.5) to reduce 

overfitting and improve generalization 

The convolution computation in each layer is 

mathematically defined as: 

 

𝑌𝑖
(𝑙)

= ∑ 𝑥𝑖+𝑗−1
𝑙−1 . 𝑤𝑗

𝑙 + 𝑏𝑙

𝑘

𝑗

 (2) 

 

where, xl−1 is the input, wl is the kernel weights, bl is the bias 

term, and k is the kernel size. 

Once feature extraction has been completed, the outputs 

from the three branches are concatenated along the channel 

dimension to form a multiscale feature map with c channels 

and t time steps.  

To eliminate the time dimension and retain the salient 

information from each multiscale output, we apply a global 

average pooling (GAP) layer. The GAP layer computes the 

mean of each feature map (channel) across the t time steps, 

producing a compact feature vector for classification. 

Mathematically,the global average pooling (GAP) operation 

produces a feature vector z ∈ RC, where each element is 

computed as: 

 

𝑍𝐶 =
1

𝑇
+ ∑ 𝑓𝑐(𝑡)   𝑓𝑜𝑟 𝑐 = 1,2, … . 𝐶

𝑇

𝑡=1

 (3) 

 

where, fc(t) denotes the activation of the c-th channel at time 

step t, T is the number of time steps, and C is the total number 

of channels. The resulting vector z = [z1, z2, . . . , zC] captures 

the average activation of each channel, with each component 

representing the temporal summary of a specific feature map. 

The full structure of this module is illustrated in Figure 4. 

Classification module: To classify each 30-second ECG 

segment as apneic or normal, we adopted the Extremely 

Randomized Trees (Extra Trees) algorithm, a robust ensemble 

method. 

The classifier uses feature vectors generated from the global 

average pooling (GAP) layer in the multiscale CNN-based 
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feature extraction module. Extra Trees constructs multiple 

decision trees using randomized subsets of features and split 

points, even during the tree construction phase. 

This increased randomness results in a more diverse set of 

trees, enhancing generalization, reducing overfitting, and 

often leading to faster training times. It enables the model to 

form more flexible and robust decision boundaries [41]. 

 

3.5 Training 

 

In the first stage of the proposed framework, a multiscale 

CNN-based feature extraction module was trained to 

automatically learn high-level representations from the input 

signals. The network was initialized using the He normal 

initializer [42] and optimized with the Adam optimizer 

(learning rate = 0.001) [43]. The model was trained for up to 

200 epochs with a batch size of 32, using binary cross-entropy 

as the loss function. Early stopping with a patience of 25 

epochs and a ReduceLROnPlateau scheduler (factor = 0.5, 

patience = 10) were applied to prevent overfitting and enhance 

training efficiency. The model achieved its highest validation 

accuracy at epoch 62, as illustrated in Figure 5. A summary of 

the training hyperparameters is provided in Table 2. 

In the second stage, the feature vectors extracted by the 

CNN were used as inputs to an Extra Trees classifier, 

implemented using the ExtraTreesClassifier from scikit-learn, 

with 100 estimators and a fixed random state of 42. All other 

hyperparameters were kept at their default values. Model 

training and evaluation were carried out using 5-fold cross-

validation, where the entire dataset was partitioned into five 

equal folds. In each iteration, four folds were used for training 

and the remaining fold for testing, ensuring that every sample 

was evaluated exactly once.  

 

 
 

Figure 4. Architecture of the multiscale CNN feature extraction module 

 

 
 

Figure 5. Training and validation loss and accuracy 

 

Table 2. Hyperparameter configurations used in the proposed 

model 

 
Hyperparameter Value Hyperparameter Value 

Initializer 
He 

normal 

Optimization 

Algorithm 
Adam 

Learning Rate 0.001 
Number of Training 

Epochs 
200 

Batch Size 32 Loss Function 
Binary Cross-

Entropy 

Early Stopping 

Patience 
25 LR Scheduler Factor 0.5 

LR Scheduler 

Patience 
10 

Minimum Learning 

Rate 
1e-6 

 

This approach provided a reliable estimate of model 

performance without requiring a separate hold-out test set. All 

experiments were conducted on the Kaggle platform using an 

NVIDIA T4 GPU. The dataset contained 17,010 samples 

(10,496 normal and 6,514 apnea). 

 

3.6 Performance metrics 

 

The evaluation metrics for SA detection include Accuracy 

(Acc), Sensitivity (Sens), Specificity (Spec) and F1-score, 

which are defined to be:  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =
TP + TN

TP + TN + FP + FN
 (4) 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑒𝑛𝑠) =
TP

TP + FN
 (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟𝑒𝑐) =
TP

TP + FP
 (6) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝𝑒𝑐) =
TN

TN + FP
 (7) 

 

Due to the class imbalance in the dataset—where normal 

segments significantly outnumber apneic ones—accuracy 

alone may be misleading. To provide a more reliable 

evaluation, we additionally report the F1-score, which 

balances precision and sensitivity, and the Area Under the 

ROC Curve (AUC), which provides a threshold-independent 

measure of the classifier’s discriminative ability. These 

metrics are defined as follow: 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
Perc × 𝑆𝑒𝑛𝑠

Perc + 𝑆𝑒𝑛𝑠
 (8) 

 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)
1

0

 (9) 

 

where, TP indicates the number of SA segments correctly 

identified as SA, TN is the number of normal segments 

correctly identified as normal, FN represents the SA segments 

incorrectly identified as normal, FP is the number of normal 

segments incorrectly identified as SA. 

 

 

4. RESULTS AND DISCUSSION 

 

This section presents the experimental results of the 

proposed framework, followed by ablation studies designed to 

evaluate the contribution of individual model components. 

Model performance was assessed using standard evaluation 

metrics, including accuracy, precision, recall, specificity, and 

F1-score. 

 

4.1 Classification results 

 

The proposed model, which combines a multiscale 

convolutional neural network with three parallel convolutional 

branches and an Extra Trees classifier, demonstrated strong 

performance on the test dataset. High accuracy, precision, 

recall, and F1-score values indicate the model’s ability to 

reliably differentiate between apneic and non-apneic ECG 

segments. These findings emphasize the ability of the 

multiscale feature extraction module to capture both short- and 

long-term temporal patterns in ECG signals, as well as the 

generalizability of the Extra Trees ensemble classifier.  

The classification performance of each iteration in the 5-

fold cross-validation is presented in Table 3, while Figure 6 

illustrates the average performance across the five folds. The 

results demonstrate consistent performance, with an overall 

accuracy of 93.82% ± 0.29, indicating robust model behavior. 

Precision (91.67% ± 0.59) and recall (92.25% ± 0.47) were 

well balanced, reflecting the model’s ability to detect apnea 

events while minimizing false positives. Reflecting the 

model’s ability to detect apnea events while minimizing false 

positives. Similarly, the high specificity (94.80% ± 0.40) 

confirms that the model correctly identifies normal cases with 

strong reliability. The F1-score (91.96% ± 0.37) further 

supports the balance between precision and recall, while the 

ROC AUC (98.27% ± 0.09) highlights the excellent 

discriminative power of the model in distinguishing between 

apneic and normal segments Finally, the low standard 

deviations across folds demonstrate the stability of the model 

during cross-validation.  

To better understand the model’s classification behavior, an 

average confusion matrix was generated from the predictions 

obtained during the cross-validation process. This matrix 

provides insight into the distribution of correctly and 

incorrectly classified apneic and normal ECG segments, 

thereby illustrating the balance between sensitivity (true 

positive rate) and specificity (true negative rate). As shown in 

Figure 7, the model correctly classified most of the apneic and 

normal segments with accuracies of 92.25% and 94.80%, 

respectively, while maintaining minimal false positives and 

false negatives. This indicates that the model performs well in 

detecting apnea events while preserving a low 

misclassification rate. Furthermore, Figure 8 illustrates the 

average ROC curve, which demonstrates the trade-off between 

sensitivity and specificity across different classification 

thresholds. The high area under the curve (AUC) further 

confirms the model’s effectiveness in distinguishing between 

apnea and normal events. 

 

 
 

Figure 6. Model performance 

 

 
 

Figure 7. Binary confusion matrix 

 

 
 

Figure 8. Model performance ROC 
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Table 2. Performance metrics across 5-fold cross-validation 

Folds Accuracy Precision Recall Specificity F1-Score ROC AUC 

Fold 1 93.83 91.18 92.86 94.43 92.01 98.24 

Fold 2 93.92 91.58 93.63 94.71 92.10 98.37 

Fold 3 94.06 92.51 91.94 95.38 92.22 98.28 

Fold 4 94.03 92.18 92.25 95.14 92.21 98.35 

Fold 5 93.27 90.93 91.56 94.33 91.24 98.12 

Average 93.82 ± 0.29 91.67 ± 0.59 92.25 ± 0.47 94.80 ± 0.40 91.96 ± 0.37 98.27 ± 0.09 

4.2 Performance comparison with state-of-the-art 

The proposed MSC-ET model was compared with recent 

state-of-the-art (SOTA) methods for OSA detection based on 

raw ECG signals. For a fair and consistent comparison, we 

evaluate MSC-ET against models that process raw ECG 

signals directly. Methods that transform ECG into images or 

extract statistical features are excluded due to differences in 

input representation and task complexity. As shown in Table 

4, the proposed MSC-ET model, which combines a Multiscale 

Convolutional Neural Network for feature extraction with an 

Extra Trees ensemble classifier, demonstrates strong 

performance across all evaluation metrics. It employs 

multiscale convolutional kernels (sizes 30, 15, and 3) to extract 

both global and local temporal features (Table 3), performance 

of state-of-the-art sleep apnea detection models using ECG 

signals enhancing temporal resolution, and leverages an 

efficient ensemble classifier to improve robustness in binary 

classification. 

Among the compared methods, Paul et al. [19] reported the 

highest accuracy (95%), precision (94%), recall (96%), AUC 

(99%), and F1-score (95%) using a real-time CNN on raw 

ECG. However, their model’s use of a short 10-second 

window, while improving granularity, may limit performance 

on longer segments, as they noted a drop in AUC when 

extending to 30 seconds, the length used in our model. 

Wicaksono and Yunanda [15] developed a simple 1D-CNN 

trained on raw ECG and achieved 88.36% accuracy and an F1-

score of 90.49%. The performance gap compared to our model 

highlights the benefit of multiscale feature extraction and 

ensemble learning for capturing complex temporal dynamics 

in ECG signals. Widad et al. [21] proposed a lightweight 1D-

CNN architecture with a reported accuracy of 92.6%. 

However, the absence of detailed metrics such as sensitivity or 

F1-score limits a comprehensive comparison. Similarly, Yeh 

et al. [23] applied a filter bank followed by parallel 1D-CNNs 

and achieved 88.6% accuracy, 92.28% sensitivity, and 91.5% 

specificity. However, this approach introduces additional 

preprocessing complexity without yielding proportional 

performance gains. 

Transformer-based models have also shown promise. Li et 

al. [18] proposed EDSFnet, a hybrid deep-shallow CNN 

architecture augmented with Effective Channel Attention, 

achieving 92.6% accuracy. Similarly, Liu et al. [22] combined 

CNN and Transformers using 3-minute ECG segments, 

attaining 88.2% accuracy and an AUC of 0.95. Biswas and 

Yousuf [16] employed a multi-scale 1D-CNN with 

Transformer blocks, reporting 91.85% accuracy, 90.45% 

sensitivity, 92.92% specificity, 88.82% precision, and an F1-

score of 89.6%. Although these models achieve competitive 

results, their reliance on self-attention mechanisms increases 

computational overhead, which may limit their suitability for 

lightweight or real-time deployment. Furthermore, the use of 

extended 3-minute input windows, as in the work of Liu et al. 

[22], may obscure short-term apnea events and introduce 

latency in detection. Finally, Hossan et al. [20] proposed 

DeepApneaNet, a cascaded CNN–BiLSTM architecture that 

achieved 88.61% accuracy, 84.23% sensitivity, and 91.04% 

specificity. While BiLSTM layers improve long-term 

temporal modeling, the increased model complexity can raise 

the risk of overfitting and reduce applicability in lightweight 

or real-time environments. 

The superior performance of MSC-ET can be attributed to 

the synergy between multiscale feature extraction and the 

Extra Trees classifier. The multiscale CNN captures temporal 

patterns at multiple resolutions, while the Extra Trees 

ensemble leverages randomization in feature selection and tree 

splits to enhance robustness and reduce overfitting [40]. This 

combination allows MSC-ET to achieve consistently high 

accuracy, precision, recall, and F1-score, outperforming other 

models that rely solely on CNNs, Transformers, or longer 

input windows [18-23]. 

Table 4. Performance of state-of-the-art sleep apnea 

detection models using ECG signals 

Ref. Accuracy Sensitivity Specificity Precision F1-Score 

[18] 92.6% N/A N/A N/A N/A 

[19] 95.0% 96.0% N/A 94.0% 95.0% 

[15] 88.36% 91.36% N/A 89.63% 90.49% 

[20] 88.61% 84.23% 91.04% N/A N/A 

[21] 92.6% N/A N/A N/A N/A 

[22] 88.2% N/A N/A N/A N/A 

[16] 91.85% 90.45% 92.92% 88.82% 89.60% 

[23] 88.6% 83.8% 91.5% N/A N/A 

Our 93.82% 92.25% 94.80% 91.67% 91.96% 

4.3 Ablation study 

To evaluate the contribution of each component in the 

proposed MSC-ET model and to justify the selected design 

choices, a series of ablation experiments was conducted. These 

experiments aimed to systematically evaluate how variations 

in the feature extraction and classification components affect 

model performance, helping to identify the most effective 

configuration for detecting OSA from ECG signals. 

Feature extraction module: To assess the impact of the 

multiscale CNN-based feature extraction, we developed 

several model variants with different convolutional kernel 

configurations. Single-kernel models M11, M21, and M31 

used kernel sizes of 3, 15, and 30, respectively. Among these, 

M31, with the largest kernel, achieved the highest 

performance among single-kernel models, with an average 

accuracy of 93.60% and an F1-score of 91.65%. These results 

suggest that larger convolutional kernels are more effective in 

capturing relevant temporal patterns associated with apnea 

events. 

Dual-kernel models were then developed to investigate the 

benefits of multiscale feature extraction. Model M41 used 

kernels of sizes 3 and 15, M51 used 3 and 30, and M61 used 

15 and 30. All dual-kernel models consistently outperformed 
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their single-kernel counterparts, indicating that combining 

multiple resolutions improves the model’s ability to extract 

apnea-relevant features. Among these, M41 (3 & 15) achieved 

the highest dual-kernel performance, with an average accuracy 

of 93.76% and an F1-score of 91.87%, demonstrating that 

integrating fine-grained and medium-scale features captures 

both local details and broader context. 

The full MSC-ET model, containing three convolutional 

branches with kernel sizes 3, 15, and 30, achieved the highest 

overall performance (accuracy 93.82%, F1-score 91.96%). 

This confirms that multiscale convolution effectively captures 

both short- and long-range dependencies in ECG signals, 

allowing the model to extract the most comprehensive 

representation of apnea patterns. Detailed results for the 

feature extraction variants are presented in Table 5. 

Classification module: To evaluate the contribution of the 

classification module, we replaced the Extra Trees ensemble 

with a variety of conventional machine learning classifiers. 

M12, which used a Support Vector Machine (SVM), achieved 

the best performance among non-ensemble classifiers 

(accuracy 93.12%, F1-score 90.98%). Simpler classifiers, 

such as Decision Tree (M32) and Logistic Regression (M22), 

performed worse, and Naive Bayes (M62) showed the weakest 

performance (F1-score 76.15%), highlighting its limitations in 

handling complex, high-dimensional features generated by the 

CNN. 

Table 5. Performance comparison of multiscale CNN variants 

Model Accuracy Precision Recall Specificity F1-Score 

M11 92.73 ± 0.31 90.44 ± 0.45 90.59 ± 0.51 94.05 ± 0.30 90.51 ± 0.40 

M21 93.57 ± 0.25 91.57 ± 0.41 91.66 ± 0.37 94.76 ± 0.27 91.61 ± 0.32 

M31 93.60 ± 0.32 91.59 ± 0.57 91.71 ± 0.65 94.77 ± 0.39 91.65 ± 0.43 

M41 93.76 ± 0.19 91.63 ± 0.42 92.11 ± 0.11 94.78 ± 0.28 91.87 ± 0.24 

M51 93.66 ± 0.14 91.51 ± 0.37 91.99 ± 0.23 94.70 ± 0.26 91.75 ± 0.17 

M61 93.61 ± 0.09 91.68 ± 0.26 91.63 ± 0.35 94.84 ± 0.19 91.65 ± 0.13 

MSC-ET 93.82 ± 0.29 91.67 ± 0.59 92.25 ± 0.47 94.80 ± 0.40 91.96 ± 0.37 

Table 6. Performance comparison of classification algorithms 

Model Accuracy Precision Recall Specificity F1-Score 

M12 93.12 ± 0.39 91.45 ± 0.87 90.51 ± 0.28 94.74 ± 0.58 90.98 ± 0.48 

M22 92.06 ± 0.43 89.51 ± 0.74 89.81 ± 0.70 93.46 ± 0.50 89.66 ± 0.56 

M32 89.66 ± 0.32 86.44 ± 0.38 86.58 ± 0.51 91.57 ± 0.22 86.51 ± 0.44 

M42 93.57 ± 0.19 91.76 ± 0.37 91.42 ± 0.37 94.90 ± 0.26 91.59 ± 0.24 

M52 93.63 ± 0.26 91.38 ± 0.42 92.06 ± 0.49 94.61 ± 0.29 91.72 ± 0.34 

M62 79.07 ± 0.47 67.57 ± 0.62 87.23 ± 0.94 74.01 ± 0.83 76.15 ± 0.50 

M72 92.91 ± 0.40 90.16 ± 0.78 91.48 ± 0.37 93.80 ± 0.54 90.81 ± 0.49 

M82 90.72 ± 0.37 87.11 ± 0.70 88.95 ± 0.51 91.83 ± 0.50 88.02 ± 0.45 

MSC-ET 93.82 ± 0.29 91.67 ± 0.59 92.25 ± 0.47 94.80 ± 0.40 91.96 ± 0.37 

Ensemble classifiers demonstrated superior performance. 

Random Forest (M42) and XGBoost (M52) achieved F1-

scores of 91.59% and 91.72%, respectively, confirming the 

effectiveness of ensemble methods in leveraging multiscale 

CNN features. Gradient Boosting (M72) and AdaBoost (M82) 

provided moderate performance with F1-scores of 90.81% and 

88.02%, respectively. The detailed classification results for 

these variants are summarized in Table 6. 

Overall, these ablation experiments highlight the 

importance of both multiscale feature extraction and ensemble 

classification in achieving high performance. The MSC-ET 

model, combining a three-branch multiscale CNN with the 

Extra Trees classifier, consistently achieved the highest 

accuracy and F1-score across all variants. These results 

confirm that the proposed configuration effectively balances 

feature richness and classifier robustness, making it well-

suited for accurate and reliable detection of OSA from ECG 

signals. 

5. LIMITATIONS AND FUTURE WORK

This study demonstrates the detection of sleep apnea 

through ECG signals; however, several important limitations 

must be acknowledged. While single-lead ECG provides an 

accessible and noninvasive approach, it may not adequately 

capture the multifaceted nature of sleep apnea events in the 

absence of complementary signals such as SpO₂, airflow, or 

respiratory effort. The model was trained and tested on a single 

dataset, which limits its generalizability to other patient 

populations and real-world clinical environments. 

Although the multiscale CNN branches enhance 

classification accuracy, experimental observations indicate 

that the model requires approximately 3.23 MB of memory for 

its parameters, while the Extra Trees classifier requires 8.94 

MB of memory for its nodes. These computational and 

memory requirements present practical challenges for 

wearable and real-time deployment. 

Moreover, the limited interpretability of the proposed model 

may hinder clinical trust and adoption, as healthcare 

professionals are unable to directly understand the rationale 

behind its predictions. 

Future research should focus on multimodal signal 

integration, model complexity reduction through pruning and 

quantization to improve deployment efficiency, and 

robustness testing via noise simulation or cross-domain 

evaluation. Additionally, incorporating explainability methods 

such as SHAP or Grad-CAM could further enhance the 

model’s clinical relevance, transparency, and acceptance in 

medical environments 

6. CONCLUSIONS

In this study, MSC-ET, a Multiscale Convolutional Neural 

Network combined with an Extra Trees classifier, was 

proposed for the automatic detection of OSA using single-lead 
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ECG signals. The use of multiscale kernels significantly 

enhanced feature diversity by extracting both local and global 

temporal patterns, while the Extra Trees classifier provided 

robust and efficient classification. Experimental results 

demonstrated that MSC-ET achieved strong performance 

across all evaluation metrics, confirming its effectiveness in 

segment-level apnea detection. 
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