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Obstructive Sleep Apnea (OSA) is a common yet underdiagnosed sleep disorder associated
with serious cardiovascular and metabolic risks. Early and accurate detection is critical for
timely intervention and improved patient outcomes. To the best of our knowledge, this study
presents the first hybrid Multiscale Convolutional Neural Network (MSC-CNN) and Extra
Trees (ET) model for OSA detection using single-lead ECG signals, integrating deep
learning for feature extraction with ensemble learning for classification. The MSC-CNN
component uses three parallel convolutional branches with distinct kernel sizes (30, 15, and
3) to capture temporal features at multiple scales, which are then classified by the Extra
Trees classifier, an ensemble-based method known for its robustness and resistance to
overfitting. On the PhysioNet Apnea-ECG dataset, the proposed model achieved an
accuracy of 93.83%. It also demonstrated balanced classification performance, with a
precision of 91.72%, a recall of 92.28%, and an F1-score of 92.00%. In addition, the model
achieved a specificity of 94.79%, and its discriminative ability was reflected in an AUC of
97.82%. Compared with recent state-of-the-art methods, MSC-ET offers competitive
performance compared to existing methods, while remaining architecturally simple and
interpretable. These results demonstrate the potential of Al-driven ECG analysis to provide
cost-effective, non-invasive, and scalable screening for OSA in clinical and home
monitoring settings.

1. INTRODUCTION

These observations underscore the substantial global burden
of OSA and highlight the urgent need for effective and

Sleep occupies approximately one-third of the human
lifespan and is a fundamental biological process essential for
both physical and mental restoration [1]. High-quality sleep
strengthens the immune system, consolidates memory,
regulates metabolism, and supports cardiovascular health [2].
Conversely, poor sleep is associated with numerous disorders,
including Obstructive Sleep Apnea (OSA), insomnia, diabetes,
hypertension, and depression [3].

Among these disorders, OSA is one of the most common
and widely underdiagnosed conditions, posing serious health
risks, as it is estimated that approximately 1 billion individuals
worldwide suffer from OSA [4].

In the United States alone, OSA affects about 22 million
individuals [5], while prevalence rates in Europe range from
17 to 23% of the general population [6]. This high prevalence
is particularly concerning given that OSA often remains
undiagnosed, especially in low-resource settings or among
patients lacking access to specialized sleep laboratories.

accessible detection methods.

Sleep apnea is characterized by repeated cessations of
breathing during sleep, each lasting at least 10 seconds. It
manifests in two main forms: (i) Obstructive Sleep Apnea,
caused by a blockage of the upper airway, and (ii) central sleep
apnea, which results from the brain's failure to send signals to
the respiratory muscles [7].

Accurate diagnosis of these apnea events typically requires
the use of overnight monitoring systems. Polysomnography
(PSG) remains the gold standard for diagnosing OSA and its
subtypes. PSG is a comprehensive sleep study and diagnostic
tool commonly used in sleep medicine to monitor various
physiological signals, including the electrocardiogram (ECG),
electroencephalogram (EEG), electromyogram (EMG), blood
oxygen saturation, thoracic and abdominal movements, and
airflow [8]. While PSG offers high diagnostic accuracy, it has
several limitations: the need for overnight laboratory
monitoring, significant patient discomfort, high costs, and
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long waiting times [9]. These limitations have motivated
growing interest in alternative, noninvasive approaches for
sleep apnea detection.

To address these limitations, researchers have turned to
automated detection methods using simpler physiological
signals, particularly the electrocardiogram (ECG). The ECG
signal is noninvasive, widely available, and contains rich
information related to autonomic nervous system activity,
making it well suited for apnea detection [10, 11]. Early
studies applied traditional machine learning techniques using
handcrafted features derived from ECG or ECG-based signals
such as heart rate variability (HRV) and ECG-derived
respiration (EDR). Thachayani and Loganayagi [12] applied
Support Vector Machines (SVM) and achieved 84.38%
accuracy, Qatmh et al. [13] used an artificial neural network
(ANN) and reached 92.34% accuracy, and Ramachandran et
al. [14] employed a K-Nearest Neighbors (KNN) model with
84.7% accuracy.

Although these models are simple and interpretable, their
reliance on handcrafted, context-dependent features and
domain-specific knowledge limits their performance and
generalizability across different patients and recording
conditions.

In recent years, deep learning models have emerged as
powerful alternatives due to their ability to automatically learn
discriminative features from raw or minimally processed ECG
signals, thereby eliminating the need for handcrafted feature
engineering. Wicaksono and Yunanda [15] proposed a one-
dimensional CNN (1D-CNN) model with 88.36% accuracy,
Biswas and Yousuf [16] introduced a Transformer-based deep
learning model, reaching 91.85% accuracy, while Choudhury
et al. [17] applied a modified GoogLeNet to ECG scalograms,
achieving 93.85% accuracy. Overall, deep learning
approaches demonstrate strong performance but require high
computational resources and often lack interpretability, which
may limit their clinical adoption.

Hybrid approaches that combine CNN-based feature
extraction with conventional machine learning classifiers such
as random forest (RF), Support Vector Machine (SVM), or
Extra Trees remain underexplored in this domain. These
models offer the potential to combine the feature learning
capabilities of deep networks with the robustness and
interpretability of ensemble methods. In this study, we
leverage this hybrid design by introducing a multiscale CNN
feature extractor combined with an Extra Trees classifier.
Motivated by this observation, the present study introduces a
multiscale CNN feature extractor coupled with an Extra Trees
classifier, referred to as the MSC-ET model for ECG-based
sleep apnea detection, providing a robust solution without
relying on additional signal modalities.

Despite the progress of deep learning approaches in sleep
apnea detection, several challenges persist. Many models
suffer from high computational complexity, which restricts
their deployment in real-time or resource-constrained
environments. The widespread use of softmax classifiers also
limits flexibility in decision boundaries. Most existing models
also fail to incorporate multiscale temporal representations,
which are essential for capturing both short- and long-term
dependencies in ECG signals.

In this paper, we aim to develop a hybrid model for sleep
apnea detection using single-lead ECG signals. The proposed
method, Multiscale CNN-Extra Trees (MSC-ET), integrates
multiscale temporal feature extraction through a CNN
architecture with an ensemble Extra Trees classifier to
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enhance both detection accuracy and interpretability.
Specifically, the multiscale CNN extracts feature at multiple
temporal resolutions from raw ECG signals, capturing both
short- and long-term patterns associated with apnea events,
while these features are then classified using an Extra Trees
ensemble, offering robust performance and enhanced
interpretability.
The main contributions of this study are as follows:
We propose MSC-ET, a hybrid model that combines
multiscale convolutional feature extraction with the Extra
Trees ensemble classifier for effective ECG-based OSA
detection. This approach leverages both temporal feature
diversity and ensemble learning for enhanced detection
performance.
We perform a systematic evaluation of various kernel
configurations within the multiscale feature extraction
module to identify the most discriminative combinations
for apnea-related pattern recognition.
We benchmark multiple classifiers (SVM, RF, Extra
Trees) to demonstrate the superiority of the ensemble
method in terms of accuracy and robustness. Results
demonstrate that the Extra Trees model consistently
achieves the highest detection accuracy across
experimental settings.
The remainder of this paper is organized as follows: Section
2 reviews related work. Section 3 outlines the materials and
methods. Section 4 presents the experimental results and
discussion. Section 5 discusses limitations and directions for
future work. Section 6 concludes the paper.

2. RELATED WORK

Recent advancements in deep learning have led to the
development of diverse approaches for the automatic detection
of Obstructive Sleep Apnea (OSA) using single-lead ECG
signals. Existing methods can be broadly -categorized
according to the type of input representation employed: raw
ECG signals, derived ECG features, and ECG-transformed
image representations.

Raw ECG-based methods operate directly on unprocessed
or minimally processed waveforms, enabling end-to-end
learning from time-domain data. Li et al. [18] proposed
EDSFnet, combining a deep residual branch for extracting
high-level features with a shallow CNN for extracting lower-
level features with higher resolution. By employing Effective
Channel Attention for adaptive fusion, the model achieved an
accuracy of 92.6% on the Apnea-ECG dataset. Paul et al. [19]
developed a real-time CNN framework for raw ECG and SpO:
signals without any preprocessing. They addressed class
imbalance using SMOTE and tested different window sizes
(30 s, 20 s, and 10 s), finding that a 10-second window
delivered the best performance.

Their convolutional neural network achieved an accuracy of
96%, precision of 95%, recall of 97%, and F1-score of 96%
for SpO: signals. For ECG, the model reached an accuracy of
95%, precision of 94%, recall of 96%, and F1-score of 95%.
Wicaksono and Yunanda [15], on the other hand,
demonstrated that a ID-CNN trained on raw ECG
outperformed traditional machine learning models like
Random Forest (RF), Decision Tree (DT), and K-Nearest
Neighbors (KNN), reaching an accuracy of 88.36%, precision
of 89.63%, recall of 91.36%, and F1-score of 90.49%.

Furthermore, Hossan et al. [20] introduced DeepApneaNet,



a cascaded CNN-BIiLSTM architecture operating on raw 1-
minute ECG segments, reaching 88.61% accuracy, 84.23%
sensitivity, and 91.04% specificity. Additionally, Widad et al.
[21] proposed a lightweight end-to-end One-Dimensional
Convolutional Neural Network (1D-CNN) model for the
automatic detection of OSA using single-lead ECG signals.
The model processes 1-minute ECG segments and consists of
four convolutional layers, pooling layers (evaluated with both

max and average pooling), dropout, and fully connected layers.

The best performance was achieved using average pooling
with a filter length of 9 and 20 filters, reaching an accuracy of
92.6%.

More recently, Liu et al. [22] employed a CNN-
Transformer-based model. The architecture combines a
Convolutional Neural Network (CNN) to extract local features
from 3-minute ECG segments and a Transformer module that
leverages self-attention to model global temporal
dependencies and perform final classification. The model was
evaluated on the Apnea-ECG dataset, resulting an accuracy of
88.2%. Biswas and Yousuf [16] proposed a Transformer-
based framework. The architecture combines a multiscale 1D-
CNN for local feature extraction with a Transformer block to
capture long-term dependencies using self-attention.
Evaluated on 1-minute ECG segments from the PhysioNet
Apnea-ECG dataset, the model achieved 91.85% accuracy,
90.45% sensitivity, 92.92% specificity, 88.82% precision, and
an F1-score of 89.6%.

Yeh et al. [23] proposed a sleep apnea detection model using
filter bank decomposition and a 1D CNN. One-minute ECG
signals were decomposed into 15 subbands using Butterworth
filters, and each subband was processed by an independent
CNN for classification. The model, tested on both subject-
dependent and subject-independent datasets from the
PhysioNet Apnea-ECG database, achieved up to 88.6% per-
minute accuracy on the subject-dependent set and 85.8% per-
minute on the subject-independent set for the 31.25-37.5 Hz
subband.

ECG-derived feature methods, which use signals such as
RR intervals, heart rate variability (HRV), and ECG-derived
respiration (EDR), are widely utilized because of their strong
relationship with apnea events. Vu et al. [24] extracted RR
intervals and R amplitudes using the Teager Energy Operator
and trained an SE-ResNeXt50 model, which achieved 89.21%
accuracy, 90.29% sensitivity, 87.36% specificity, 92.43%
precision, and an Fl-score of 90.85%. Similarly, Jiao et al.
[25] proposed DAN-MTIF, which utilized standardized RR
intervals and R-peak amplitudes from variable-length
segments (1, 3, and 5 minutes) and applied a multi-head
attention mechanism to extract temporally relevant features,
resulting in 91.06% accuracy, 93.96% precision, 84.70%
sensitivity (recall), 95.88% specificity, and an Fl-score of
89.09%.

Additionally, Tyagi and Agrawal [26] explored biologically
inspired processing by designing a spiking neural network
trained on spike-encoded HRV and EDR features using a leaky
integrate-and-fire (LIF) model and temporal encoding. The
model demonstrated exceptional performance, achieving
94.63% accuracy in per-segment classification, along with
strong specificity (96.21%), sensitivity (92.04%), and an AUC
of 0.9851. Validation on the UCD dataset yielded 84.57%
accuracy. Moreover, Shen et al. [27] proposed a multiscale
dilated CNN using RR interval sequences in combination with
a weighted-loss time-dependent hidden Markov model
(WLTD-HMM), achieving 89.4% accuracy, 89.8%
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sensitivity, 89.1% specificity, 83.6% precision, 86.6% F1-
score, an AUC of 0.964 per segment, and 100% accuracy with
a mean absolute error of 0.42 at the subject level.

Image-based ECG representations convert 1D signals into
2D time—frequency formats such as spectrograms, scalograms,
or Gramian angular fields to leverage the spatial pattern
recognition strengths of convolutional architectures. For
instance, Lin et al. [28] employed wavelet-based time—
frequency images as input to a Coordinate Attention—enhanced
EfficientNet (CA-EfficientNet). Their study showed that
longer ECG segments (3 minutes) and Fbsp wavelets
improved OSA detection. Additionally, coordinate attention
(CA) and Dice loss helped address feature localization and
data imbalance. The model achieved an accuracy of 92.51%,
precision of 94.8%, sensitivity of 84.5%, specificity of 97.3%,
F1-score of 89.4%, and an AUC of 90.9%.

In a related approach, Bhongade and Gandhi [29] proposed
WIVIDOSA-Net, which uses Wigner—Ville Distribution
spectrograms smoothed with a Savitzky—Golay filter and
classified using a six-layer CNN, achieving an accuracy of
90.09%, sensitivity of 87.41%, specificity of 91.12%,
precision of 86.68%, and F1-score of 87.03%. Choudhury et
al. [17] introduced a transfer learning framework in which
ECG signals were converted into scalograms using continuous
wavelet transform (CWT) and classified using a modified
GoogLeNet. Enhanced with LIME-based visual explanations,
the model achieved 93.85% accuracy, 93.42% sensitivity,
94.30% specificity, and an F1-score of 93.83% on the Apnea-
ECG dataset, while also performing well on UCDDB
(87.20%) and MIT-BIH (88.58%).

Furthermore, Zhou and Kang [30] proposed MFAE-OSA, a
multi-feature ensemble framework using both scalogram and
Gramian Angular Field (GAF) representations, which were
fed into a hybrid residual-inception CNN ensemble with a soft
voting mechanism. Their method achieved 96.37% accuracy,
94.67% sensitivity, 97.44% specificity, and an AUC of 0.96.

Table 1 provides a synthesized comparison of the reviewed
studies, emphasizing their key findings and contributions.
Previous studies on sleep apnea detection have predominantly
relied on end-to-end deep learning architectures, such as
convolutional neural networks, bidirectional long short-term
memory networks (BiLSTMs), and Transformer-based
models.

These approaches often incorporate complex time—
frequency transformations (e.g., scalograms, spectrograms) or
derived ECG features such as RR intervals and heart rate
variability (HRV). While they demonstrate strong
classification performance, they typically introduce significant
computational overhead and lack the flexibility required for
real-time deployment.

Moreover, limited research has explored multiscale kernel
optimization or the integration of ensemble learning
techniques, which have the potential to enhance model
robustness and interpretability. Most existing models rely on
softmax-based classifiers without benchmarking alternative
methods.

To address these limitations, this study proposes a novel
hybrid framework that combines multiscale CNN-based
feature extraction with the Extra Trees ensemble classifier.
The proposed approach is modular, interpretable, and
computationally efficient, eliminating the need for extensive
signal transformations and supporting real-time applicability.



3. MATERIALS AND METHODS
3.1 Overview of the proposed model

The proposed framework employs a hybrid architecture to
automatically identify sleep apnea episodes from raw single-
lead ECG data. As illustrated in Figure 1, the framework
consists of three stages: preprocessing, multiscale feature
extraction, and classification.

During the preprocessing stage, ECG signals were filtered
and segmented to reduce noise and standardize the input.

In the feature extraction stage, a multiscale convolutional
neural network (CNN) was employed to capture both short-
term and long-term temporal dependencies present in the ECG
signals. These learned feature representations are then fed into
an Extra Trees ensemble classifier, selected for its robustness,
interpretability, and resistance to overfitting.

Table 1. Overview and comparison of related sleep apnea studies

Precision Recall Specificity F1-Score

Ref Input Type Model Key Features Accuracy (%) (%) (%) (%) (%) AUC
Deep residual branch extracts
EDSFnet high-level+Shallow CNN
[18] Raw ECG (Deep—Shallow  captures high resolution+ 92 - - - - -
Fusion) Effective, Channel Attention for
adaptive feature fusion
End-to-end architecture + Class ECG:
[19] Raw ECG &  Real-Time imbalance addressed using ECG: 95 ECG:94 96 3 ECG: 95
SpO2 CNN SMOTE+ Evaluation across SpO2: 96 Sp02: 95 SpOq: SpO2: 96
window sizes (10s, 20s, 30s) 97
End-to-end model+ CNN model
[15] Raw ECG 1D-CNN  outperforms traditional machine 88.36 89.63 91.36 - 90.49 -
learning classifiers
Deep
ApneaNet Cascaded architecture combining
[20] Raw ECG (CNN- CNN and BiLSTM 88.61 - 84.23 91.04 - -
BiLSTM)
[21] Raw ECG 1D-CNN End-to-end model 92.6 - - - - -
CNN + CNN extracts local features +
[22] Raw ECG self-attention to capture global 88.2 - - - - -
transformer ;
temporal dependencies
Utilized Filter Bank+ End-to- 88.6(SD)
[23] Raw ECG 1D-CNN end CNN model+ +Subject- ' - - - - -
Independent Evaluation 858 (SI)
p
CNN + Multi-scale 1D-CNN+ Applied
[16] Raw ECG Transformer blocks to capture 91.85 88.82  90.45 92.92 89.6 -
transformer :
long-term temporal dependencies
Employed a Squeeze and
[24) RRintervals, Rgp peonextso Excitation ResNeXt-50 model + = gq 9243 9029 8736 9085 -
amplitudes Applied Teager Energy Operator
(TEO)
RR intervals, Used variable-length segments +
[25] R-peak am- DAN-MTIF applied CNN + Multihead 91.06 93.96 84.70 95.88 89.09 -
plitudes attention
Used a biologically inspired
Spiking Neural neural 94.63
[26] HRV, EDR  Network (LIF) + Applied temporal encoding to 84.57 B 9204 921 B 0.9851
convert ECG signals into spike
MS(':DN':\?ted Applied Multiscale dilation
[27]  RRintervals WLTD- attention 1D CNN + Utlised 89.4 83.6 89.8 89.1 86.6 0.964
Attention Mechanism
HMM
used Wavelet transform to turn
CA- ECG signals into time—frequency
[28] Scalogram EfficientNet images + Utilized EfficientNet 9251 98 845 973 89.4 0.909
model with coordinated attention
Used smoothed Wigner—Ville
[29]  Spectrogram WIVIDOSA- spectrograms (SWVSs) + 90.09 86.68  87.41 91.12 87.03 -
Net - - .
Applied Savitzky Golay filtering
[17] Scalogram G((.)I_Orgrl]‘:f’:ft U_sed CWT to turn ECG signals g?gg 3 93.42 9430 93.83 3
(CWT) - into scalograms+ Used LIME
Learning) 88.58
Scalogram + MFAE-OSA Utilized CWT + GAF for image
[30] GAF (Hybrid conversion+ Combines residual 96.37 - 94.67 97.44 - 0.96

Ensemble) and inception blocks
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The model produces a binary output for each input segment,
where 0 indicates a normal event and 1 denotes the presence
of a sleep apnea episode. By combining automatic learning of
complex patterns from raw ECG signals with the stability of
ensemble-based classification, the hybrid model effectively
addresses variability in ECG data and improves detection
accuracy while reducing the risk of overfitting.

Notch Filter

1 Butterworth
H High-pass Filter

Size (3000"1)

Input Signal

'ﬁ Segmentation

Z-score
Normalization
“““Pieprocessng [ T
Multi-scale Feature
Extraction Block

Size (45*1)

| Classification Block 1

size (1)

Output (Normal OR Apnea)

Figure 1. The structure of the proposed framework
3.2 Apnea-ECG data description

This study employed the Apnea-ECG dataset [31, 32] which
was provided by Philipps University. The dataset contains 70
single-lead ECG recordings obtained from 32 subjects,
sampled at 100 Hz with a 16-bit resolution.

The dataset is divided into:

A released set of 35 records (a01-a20, b01-b05, c01-
c10)
A withheld set of 35 records (x01-35).

Recording durations range from approximately 7 to 10
hours. Only the released dataset includes apnea annotations—
A (Apnea) or N (Normal)—provided by a human expert,
indicating the presence or absence of apnea events at each
minute.

—— Normal ECG
2.0 ~—— Apnea ECG _
. 15+
>
E
> 1.0
©
2
. 0.5
Eos A
0.0 -

Figure 2. Ten seconds of normal and apnea ECG signals
from record a0l

All annotated apnea events are either obstructive or mixed,
while events of pure central apnea and Cheyne—Stokes
respiration are not included. In addition, the dataset includes
machine-generated QRS annotations.

Recordings are categorized into three classes:

o Class A: at least 100 minutes of detected apnea
Class B: 5-99 minutes of apnea
Class C: 0—4 minutes of apnea.
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Although these record-level categories are defined, the
present study adopted a minute-level classification strategy
using binary labels (A/N). Minute-wise ECG segments with
valid labels from recordings in all three classes are pooled to
construct the training and test sets. Therefore, the A/B/C
classification of each record does not directly influence the
sample distribution used for model training.

Figure 2 illustrates ten seconds of normal and apnea ECG
signals from record a0l.

3.3 Preprocessing

Electrocardiogram (ECQG) signals are frequently used for
detecting Obstructive Sleep Apnea due to their non-invasive
nature and their ability to effectively reflect changes in both
the autonomic nervous system and respiratory activity during
sleep [33]. However, raw ECG recordings are commonly
affected by noise, typically introduced by electromyographic
activity, respiratory motion artifacts, and unstable electrode-
skin contact [34].

I v e ok e o i

100 200 300

Sample

400 500

Figure 3. Example of a 5-second ECG segment before and
after filtering

To address these challenges and improve signal clarity,
several preprocessing steps were applied:
High-pass filtering: A fourth-order Butterworth high-
pass filter with a cutoff frequency of 0.5 Hz was employed
to remove low-frequency baseline drift caused by
respiration and body movements. The Butterworth design
ensures a flat passband response without distortion, and
the selected order provides a sharp transition without
excessive computational cost. These parameters were
chosen because they effectively remove baseline drift and
power-line interference while preserving the essential
ECG waveform features that are critical for apnea
detection. This configuration has been widely
recommended in ECG preprocessing literature [35, 36].
Notch filtering: A notch filter was applied to the
physiological signals to suppress 50 Hz power-line
interference [37], due to its simple design effectiveness
and low computational complexity [38, 39]. Visual
inspection of the filtered signals confirmed that power-
line noise was substantially reduced without distorting the
underlying ECG morphology (Figure 3).
Normalization: After filtering, the ECG signals were
normalized using Z-score normalization. This step
standardizes the data by centering it around the mean and
scaling it based on the standard deviation [40], helping to
improve consistency and model performance. The
normalization is defined as:



(1)

where, X is the original signal, p is the mean, and o is the
standard deviation of the segment
o Segmentation: ECG signals were divided into 30-second
segments. Any segments shorter than this were excluded
to ensure consistent input lengths for classification.
Figure 3 presents an example of a 5-second ECG segment
before and after applying the high-pass and notch filters.

3.4 The model architecture

In this section, we introduce a novel framework, named
MSC-ET (Multiscale CNN with Extra Trees), for automatic
sleep apnea (SA) detection using single-lead ECG signals. The
proposed model consists of two main modules:

1. A multiscale CNN-based feature extraction
module, which captures relevant temporal and
morphological features from ECG signals.

2. A classification module, which employs the Extra
Trees algorithm to detect apnea events.

The step-by-step procedure of the proposed model is
illustrated in Algorithm 1.

Algorithm 1. Proposed MSC-ET model

1: Input: ECG_segment « 30-second preprocessed single-
lead ECG signal
2: Output: label € {1, 0}, where 1 = Apneic and 0 =
Normal
. Xnormalized «— BatchNormalization(ECG_segment)
kernel_sizes < {3, 15, 30}
branches «— empty list
for each kernel_size in kernel_sizes do
Block 1:
X <« COnVlD(Xnormalized,ﬁIterS:45,
padding="same’)
9: X « BatchNormalization(x)
10:  x «— ReLU(x)
11:  x « MaxPoolinglD(x, pool_size=2, stride=2)
12: Block 2:
13: X <«  Conv1D(Xnormalized, filters=90, kernel _ size,
padding="same’)
14: X «— BatchNormalization(x)
15: X «— RelLU(x)
16: X «— MaxPooling1D(x, pool_size=2, stride=2)
17: Block 3:

AR

kernel _ size,

18: X <« Conv1D(Xnormatized,filters=135, kernel _size,
padding="same’)
19: X «— BatchNormalization(x)

20: X «— ReLU(x)

21: X «— MaxPooling1D(x, pool_size=2, stride=2)

22: X <« Dropout(x, rate=0.5)

23:  Append x to branches

24:  end for

25: merged _ features — Concatenate(branches along
channel axis)

26: feature_vector «GlobalAveragePooling1 D(merged_
features)

27: Train Extra Trees Classifier using feature_vector and
corresponding labels

28:  for each new ECG_segment do

29: extract feature_vector

30: Predict label using trained classifier

31: end for
32: return predicted label

Multiscale Convolutional Neural Network: The proposed
multiscale feature extraction module is designed to extract
time-series features from single-lead ECG signals at various
scales via convolutional layers with multiple kernel sizes. This
enables sensitive characterization of apnea-related signal
changes.

Initially, the input signal was normalized using a batch
normalization layer to stabilize training. The signal was then
processed through three parallel convolutional branches, each
designed with a unique kernel size (30, 15, and 3), which were
selected empirically to enable multiscale feature extraction.
This approach allows the model to capture both fine-grained
details and long-range dependencies, which are crucial for
accurately detecting apnea events.

Each branch has three convolutional blocks:

e Block 1: One-dimensional convolutional layer with
45 filters, followed by batch normalization, ReLU
activation, and max pooling (pool size and stride =2).

e Block 2: Number of filters doubled to 90,
maintaining the same kernel size and layer sequence.

e Block 3: Filters increased to 135, with the same
structure, plus a dropout layer (rate = 0.5) to reduce
overfitting and improve generalization

The convolution computation in each layer is
mathematically defined as:

k

l —
VO = it wl b @
j

where, x'"! is the input, w'is the kernel weights, b’ is the bias
term, and £ is the kernel size.

Once feature extraction has been completed, the outputs
from the three branches are concatenated along the channel
dimension to form a multiscale feature map with ¢ channels
and ¢ time steps.

To eliminate the time dimension and retain the salient
information from each multiscale output, we apply a global
average pooling (GAP) layer. The GAP layer computes the
mean of each feature map (channel) across the ¢ time steps,
producing a compact feature vector for classification.
Mathematically,the global average pooling (GAP) operation
produces a feature vector z € RS, where each element is
computed as:

Zc = %+ ch(t) forc=12,...C 3)

where, f(f) denotes the activation of the c-th channel at time
step ¢, T is the number of time steps, and C is the total number
of channels. The resulting vector z = [z1, z5, . . ., zc] captures
the average activation of each channel, with each component
representing the temporal summary of a specific feature map.
The full structure of this module is illustrated in Figure 4.

Classification module: To classify each 30-second ECG
segment as apneic or normal, we adopted the Extremely
Randomized Trees (Extra Trees) algorithm, a robust ensemble
method.

The classifier uses feature vectors generated from the global
average pooling (GAP) layer in the multiscale CNN-based



feature extraction module. Extra Trees constructs multiple
decision trees using randomized subsets of features and split
points, even during the tree construction phase.

This increased randomness results in a more diverse set of
trees, enhancing generalization, reducing overfitting, and
often leading to faster training times. It enables the model to
form more flexible and robust decision boundaries [41].

3.5 Training

In the first stage of the proposed framework, a multiscale
CNN-based feature extraction module was trained to
automatically learn high-level representations from the input
signals. The network was initialized using the He normal
initializer [42] and optimized with the Adam optimizer
(learning rate = 0.001) [43]. The model was trained for up to
200 epochs with a batch size of 32, using binary cross-entropy

as the loss function. Early stopping with a patience of 25
epochs and a ReduceLROnPlateau scheduler (factor = 0.5,
patience = 10) were applied to prevent overfitting and enhance
training efficiency. The model achieved its highest validation
accuracy at epoch 62, as illustrated in Figure 5. A summary of
the training hyperparameters is provided in Table 2.

In the second stage, the feature vectors extracted by the
CNN were used as inputs to an Extra Trees classifier,
implemented using the ExtraTreesClassifier from scikit-learn,
with 100 estimators and a fixed random state of 42. All other
hyperparameters were kept at their default values. Model
training and evaluation were carried out using 5-fold cross-
validation, where the entire dataset was partitioned into five
equal folds. In each iteration, four folds were used for training
and the remaining fold for testing, ensuring that every sample
was evaluated exactly once.
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Table 2. Hyperparameter configurations used in the proposed

model
Hyperparameter Value  Hyperparameter Value
R He Optimization
Initializer normal Algorithm Adam
Learning Rate 0.001 Number of Training 200
Epochs
Batch Size 32 Loss Function Binary Cross-
Entropy
Early Stoppmg 25 LR Scheduler Factor 0.5
Patience
LR Scheduler Minimum Learning
. 10 le-6
Patience Rate
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This approach provided a reliable estimate of model
performance without requiring a separate hold-out test set. All
experiments were conducted on the Kaggle platform using an
NVIDIA T4 GPU. The dataset contained 17,010 samples
(10,496 normal and 6,514 apnea).

3.6 Performance metrics

The evaluation metrics for SA detection include Accuracy
(Acc), Sensitivity (Sens), Specificity (Spec) and Fl-score,
which are defined to be:

TP + TN
TP + TN + FP + FN

(4)

Accuracy (Acc) =



TP

s, . — 5
Sensitivity (Sens) TP FN Q)
Precision (Prec) = =—— ©

recision (Prec = TP T TP
Specificity (Spec) = ™ (7
pecificity (Spec = INTFP

Due to the class imbalance in the dataset—where normal
segments significantly outnumber apneic ones—accuracy
alone may be misleading. To provide a more reliable
evaluation, we additionally report the Fl-score, which
balances precision and sensitivity, and the Area Under the
ROC Curve (AUC), which provides a threshold-independent
measure of the classifier’s discriminative ability. These
metrics are defined as follow:

Perc X Sens

F1 Score =2 X ®)

Perc + Sens

1
AUC = f TPR(FPR)d(FPR) 9)
0

where, TP indicates the number of SA segments correctly
identified as SA, TN is the number of normal segments
correctly identified as normal, FN represents the SA segments
incorrectly identified as normal, FP is the number of normal
segments incorrectly identified as SA.

4. RESULTS AND DISCUSSION

This section presents the experimental results of the
proposed framework, followed by ablation studies designed to
evaluate the contribution of individual model components.
Model performance was assessed using standard evaluation
metrics, including accuracy, precision, recall, specificity, and
F1-score.

4.1 Classification results

The proposed model, which combines a multiscale
convolutional neural network with three parallel convolutional
branches and an Extra Trees classifier, demonstrated strong
performance on the test dataset. High accuracy, precision,
recall, and Fl-score values indicate the model’s ability to
reliably differentiate between apneic and non-apneic ECG
segments. These findings emphasize the ability of the
multiscale feature extraction module to capture both short- and
long-term temporal patterns in ECG signals, as well as the
generalizability of the Extra Trees ensemble classifier.

The classification performance of each iteration in the 5-
fold cross-validation is presented in Table 3, while Figure 6
illustrates the average performance across the five folds. The
results demonstrate consistent performance, with an overall
accuracy of 93.82% =+ 0.29, indicating robust model behavior.
Precision (91.67% =+ 0.59) and recall (92.25% = 0.47) were
well balanced, reflecting the model’s ability to detect apnea
events while minimizing false positives. Reflecting the
model’s ability to detect apnea events while minimizing false
positives. Similarly, the high specificity (94.80% =+ 0.40)
confirms that the model correctly identifies normal cases with
strong reliability. The Fl-score (91.96% =+ 0.37) further
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supports the balance between precision and recall, while the
ROC AUC (98.27% =+ 0.09) highlights the excellent
discriminative power of the model in distinguishing between
apneic and normal segments Finally, the low standard
deviations across folds demonstrate the stability of the model
during cross-validation.

To better understand the model’s classification behavior, an
average confusion matrix was generated from the predictions
obtained during the cross-validation process. This matrix
provides insight into the distribution of correctly and
incorrectly classified apneic and normal ECG segments,
thereby illustrating the balance between sensitivity (true
positive rate) and specificity (true negative rate). As shown in
Figure 7, the model correctly classified most of the apneic and
normal segments with accuracies of 92.25% and 94.80%,
respectively, while maintaining minimal false positives and
false negatives. This indicates that the model performs well in
detecting apnea events while preserving a low
misclassification rate. Furthermore, Figure 8 illustrates the
average ROC curve, which demonstrates the trade-off between
sensitivity and specificity across different classification
thresholds. The high area under the curve (AUC) further
confirms the model’s effectiveness in distinguishing between
apnea and normal events.
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Table 2. Performance metrics across 5-fold cross-validation

Folds Accuracy Precision Recall Specificity F1-Score ROC AUC
Fold 1 93.83 91.18 92.86 94.43 92.01 98.24
Fold 2 93.92 91.58 93.63 94.71 92.10 98.37
Fold 3 94.06 92.51 91.94 95.38 92.22 98.28
Fold 4 94.03 92.18 92.25 95.14 92.21 98.35
Fold 5 93.27 90.93 91.56 94.33 91.24 98.12
Average 93.82£0.29 91.67 £0.59 92.25+0.47 94.80+0.40 91.96+0.37 98.27 +0.09

4.2 Performance comparison with state-of-the-art

The proposed MSC-ET model was compared with recent
state-of-the-art (SOTA) methods for OSA detection based on
raw ECG signals. For a fair and consistent comparison, we
evaluate MSC-ET against models that process raw ECG
signals directly. Methods that transform ECG into images or
extract statistical features are excluded due to differences in
input representation and task complexity. As shown in Table
4, the proposed MSC-ET model, which combines a Multiscale
Convolutional Neural Network for feature extraction with an
Extra Trees ensemble classifier, demonstrates strong
performance across all evaluation metrics. It employs
multiscale convolutional kernels (sizes 30, 15, and 3) to extract
both global and local temporal features (Table 3), performance
of state-of-the-art sleep apnea detection models using ECG
signals enhancing temporal resolution, and leverages an
efficient ensemble classifier to improve robustness in binary
classification.

Among the compared methods, Paul et al. [19] reported the
highest accuracy (95%), precision (94%), recall (96%), AUC
(99%), and Fl-score (95%) using a real-time CNN on raw
ECG. However, their model’s use of a short 10-second
window, while improving granularity, may limit performance
on longer segments, as they noted a drop in AUC when
extending to 30 seconds, the length used in our model
Wicaksono and Yunanda [15] developed a simple 1D-CNN
trained on raw ECG and achieved 88.36% accuracy and an F1-
score of 90.49%. The performance gap compared to our model
highlights the benefit of multiscale feature extraction and
ensemble learning for capturing complex temporal dynamics
in ECG signals. Widad et al. [21] proposed a lightweight 1D-
CNN architecture with a reported accuracy of 92.6%.
However, the absence of detailed metrics such as sensitivity or
Fl-score limits a comprehensive comparison. Similarly, Yeh
et al. [23] applied a filter bank followed by parallel 1D-CNNs
and achieved 88.6% accuracy, 92.28% sensitivity, and 91.5%
specificity. However, this approach introduces additional
preprocessing complexity without yielding proportional
performance gains.

Transformer-based models have also shown promise. Li et
al. [18] proposed EDSFnet, a hybrid deep-shallow CNN
architecture augmented with Effective Channel Attention,
achieving 92.6% accuracy. Similarly, Liu et al. [22] combined
CNN and Transformers using 3-minute ECG segments,
attaining 88.2% accuracy and an AUC of 0.95. Biswas and
Yousuf [16] employed a multi-scale 1D-CNN with
Transformer blocks, reporting 91.85% accuracy, 90.45%
sensitivity, 92.92% specificity, 88.82% precision, and an F1-
score of 89.6%. Although these models achieve competitive
results, their reliance on self-attention mechanisms increases
computational overhead, which may limit their suitability for
lightweight or real-time deployment. Furthermore, the use of
extended 3-minute input windows, as in the work of Liu et al.
[22], may obscure short-term apnea events and introduce
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latency in detection. Finally, Hossan et al. [20] proposed
DeepApneaNet, a cascaded CNN-BiLSTM architecture that
achieved 88.61% accuracy, 84.23% sensitivity, and 91.04%
specificity. While BiLSTM layers improve long-term
temporal modeling, the increased model complexity can raise
the risk of overfitting and reduce applicability in lightweight
or real-time environments.

The superior performance of MSC-ET can be attributed to
the synergy between multiscale feature extraction and the
Extra Trees classifier. The multiscale CNN captures temporal
patterns at multiple resolutions, while the Extra Trees
ensemble leverages randomization in feature selection and tree
splits to enhance robustness and reduce overfitting [40]. This
combination allows MSC-ET to achieve consistently high
accuracy, precision, recall, and F1-score, outperforming other
models that rely solely on CNNs, Transformers, or longer
input windows [18-23].

Table 4. Performance of state-of-the-art sleep apnea
detection models using ECG signals

Ref. Accuracy Sensitivity Specificity Precision F1-Score

.070
[18]  92.6% N/A N/A N/A N/A
U770 .U70 U770 U770
[19] 95.0%  96.0% N/A 94.0%  95.0%
[15] 88.36%  91.36% N/A  89.63%  90.49%
[20] 88.61%  84.23%  91.04%  N/A N/A
[21] 92.6% N/A N/A N/A N/A
[22] 88.2% N/A N/A N/A N/A
. 0 B 0 . 0 . 0 . 0
16] 91.85%  90.45%  92.92%  88.82%  89.60%
[23] 886%  838%  915% N/A N/A
Our 93.82%  92.25%  94.80%  91.67%  91.96%

4.3 Ablation study

To evaluate the contribution of each component in the
proposed MSC-ET model and to justify the selected design
choices, a series of ablation experiments was conducted. These
experiments aimed to systematically evaluate how variations
in the feature extraction and classification components affect
model performance, helping to identify the most effective
configuration for detecting OSA from ECG signals.

Feature extraction module: To assess the impact of the
multiscale CNN-based feature extraction, we developed
several model variants with different convolutional kernel
configurations. Single-kernel models M11, M21, and M31
used kernel sizes of 3, 15, and 30, respectively. Among these,
M31, with the largest kernel, achieved the highest
performance among single-kernel models, with an average
accuracy of 93.60% and an F1-score of 91.65%. These results
suggest that larger convolutional kernels are more effective in
capturing relevant temporal patterns associated with apnea
events.

Dual-kernel models were then developed to investigate the
benefits of multiscale feature extraction. Model M41 used
kernels of sizes 3 and 15, M51 used 3 and 30, and M61 used
15 and 30. All dual-kernel models consistently outperformed



their single-kernel counterparts, indicating that combining
multiple resolutions improves the model’s ability to extract
apnea-relevant features. Among these, M41 (3 & 15) achieved
the highest dual-kernel performance, with an average accuracy
of 93.76% and an Fl-score of 91.87%, demonstrating that
integrating fine-grained and medium-scale features captures
both local details and broader context.

The full MSC-ET model, containing three convolutional
branches with kernel sizes 3, 15, and 30, achieved the highest
overall performance (accuracy 93.82%, Fl-score 91.96%).
This confirms that multiscale convolution effectively captures
both short- and long-range dependencies in ECG signals,
allowing the model to extract the most comprehensive

representation of apnea patterns. Detailed results for the
feature extraction variants are presented in Table 5.

Classification module: To evaluate the contribution of the
classification module, we replaced the Extra Trees ensemble
with a variety of conventional machine learning classifiers.
M12, which used a Support Vector Machine (SVM), achieved
the best performance among non-ensemble classifiers
(accuracy 93.12%, Fl-score 90.98%). Simpler classifiers,
such as Decision Tree (M32) and Logistic Regression (M22),
performed worse, and Naive Bayes (M62) showed the weakest
performance (F1-score 76.15%), highlighting its limitations in
handling complex, high-dimensional features generated by the
CNN.

Table 5. Performance comparison of multiscale CNN variants

Model Accuracy Precision Recall Specificity F1-Score
M11 92.73 £0.31 90.44 £0.45 90.59 +0.51 94.05+0.30 90.51 +0.40
M21 93.57 £0.25 9157 x0.41 91.66 £0.37 94.76 £0.27 91.61 +0.32
M31 93.60 £0.32 91.59 £0.57 91.71 +0.65 94.77 £0.39 91.65+0.43
M41 93.76 £0.19 91.63+0.42 92.11+0.11 94.78+0.28 91.87 +0.24
M51 93.66 £0.14 9151 +0.37 91.99 £0.23 94.70 £0.26 91.75 %0.17
M61 93.61 +0.09 91.68+0.26 91.63+0.35 94.84 £0.19 91.65+0.13

MSC-ET 93.82 +£0.29 91.67 £0.59 92.25+0.47 94.80 £0.40 91.96 +0.37
Table 6. Performance comparison of classification algorithms

Model Accuracy Precision Recall Specificity F1-Score
M12 93.12 +0.39 91.45+0.87 90.51+0.28 94.74 £0.58 90.98 +0.48
M22 92.06 £0.43 89.51 £0.74 89.81 +0.70 93.46 £0.50 89.66 +0.56
M32 89.66 +0.32 86.44 +0.38 86.58 +0.51 91.57 £0.22 86.51 +0.44
M42 93,57 £0.19 91.76 £0.37 91.42 +0.37 94.90 £0.26 91.59 +0.24
M52 93.63 £0.26 91.38+0.42 92.06 £0.49 94.61+0.29 91.72 +0.34
M62 79.07 £0.47 67.57 £0.62 87.23+0.94 74.01+0.83 76.15+0.50
M72 92.91 +0.40 90.16 £0.78 91.48 +0.37 93.80 £0.54 90.81 +0.49
M82 90.72 £0.37 87.11+0.70 88.95+0.51 91.83+0.50 88.02 +0.45

MSC-ET 93.82 +0.29 91.67 £0.59 92.25+0.47 94.80 £0.40 91.96 +0.37

Ensemble classifiers demonstrated superior performance.
Random Forest (M42) and XGBoost (M52) achieved F1-
scores of 91.59% and 91.72%, respectively, confirming the
effectiveness of ensemble methods in leveraging multiscale
CNN features. Gradient Boosting (M72) and AdaBoost (M82)
provided moderate performance with F1-scores 0f90.81% and
88.02%, respectively. The detailed classification results for
these variants are summarized in Table 6.

Overall, these ablation experiments highlight the
importance of both multiscale feature extraction and ensemble
classification in achieving high performance. The MSC-ET
model, combining a three-branch multiscale CNN with the
Extra Trees classifier, consistently achieved the highest
accuracy and Fl-score across all variants. These results
confirm that the proposed configuration effectively balances
feature richness and classifier robustness, making it well-
suited for accurate and reliable detection of OSA from ECG
signals.

5. LIMITATIONS AND FUTURE WORK

This study demonstrates the detection of sleep apnea
through ECG signals; however, several important limitations
must be acknowledged. While single-lead ECG provides an
accessible and noninvasive approach, it may not adequately
capture the multifaceted nature of sleep apnea events in the
absence of complementary signals such as SpO., airflow, or
respiratory effort. The model was trained and tested on a single
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dataset, which limits its generalizability to other patient
populations and real-world clinical environments.

Although the multiscale CNN branches enhance
classification accuracy, experimental observations indicate
that the model requires approximately 3.23 MB of memory for
its parameters, while the Extra Trees classifier requires 8.94
MB of memory for its nodes. These computational and
memory requirements present practical challenges for
wearable and real-time deployment.

Moreover, the limited interpretability of the proposed model
may hinder clinical trust and adoption, as healthcare
professionals are unable to directly understand the rationale
behind its predictions.

Future research should focus on multimodal signal
integration, model complexity reduction through pruning and
quantization to improve deployment efficiency, and
robustness testing via noise simulation or cross-domain
evaluation. Additionally, incorporating explainability methods
such as SHAP or Grad-CAM could further enhance the
model’s clinical relevance, transparency, and acceptance in
medical environments

6. CONCLUSIONS
In this study, MSC-ET, a Multiscale Convolutional Neural

Network combined with an Extra Trees classifier, was
proposed for the automatic detection of OSA using single-lead



ECG signals. The use of multiscale kernels significantly
enhanced feature diversity by extracting both local and global
temporal patterns, while the Extra Trees classifier provided
robust and efficient classification. Experimental results
demonstrated that MSC-ET achieved strong performance
across all evaluation metrics, confirming its effectiveness in
segment-level apnea detection.
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