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Skin cancer (SC) is a global health concern, and improving patient outcomes needs early 

detection. To improve the accuracy and dependability of SC diagnosis using dermoscopic 

images, a novel method utilizing Hybrid Convolutional Neural Networks (CNNs) and 

Vision Transformers (ViTs) with the addition of Affine Speeded-Up Robust Features 

(ASURF) is suggested. The CNNs are employed for the extraction of local spatial features. 

Contrary to this, ViTs preserve global context and ASURF facilitates invariant feature 

detection in affine transforms so that lesions can be detected irrespective of image 

orientation and size. Our hybrid model of CNN-ViT sufficiently utilized hierarchical feature 

extraction and long-range relations to provide improved all-around analysis of dermoscopic 

patterns. Experimental results on common datasets validate the superiority of this approach 

over ViTs and conventional CNNs with 98.38% accuracy rate on HAM10000. Through the 

reduction of false positives and improvement in the model's ability to address visual 

aberrations, this method presents it as an efficient instrument for precise, effective, and 

automatic skin cancer diagnosis. This study uses artificial intelligence (AI) to improve 

patient care in general, reduce reliance on experts, and improve early detection of skin 

cancer. 
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1. INTRODUCTION

Skin cancer (SC) has been diagnosed in individuals of all 

genders since the turn of the 20th century. In 2012, 

approximately 8,790 melanoma-related deaths and 76,250 

new melanoma cases were reported in the Joint States. Skin 

cancer is developed by a variety of factors, including exposure 

to sunlight, delayed detection of SC, and the developing 

lifespan of the populace [1]. The noninvasive imaging method 

known as dermoscopy, which looks at the skin, is one of the 

best approaches to detect skin cancer early on. Skin condition 

can significantly affect how a dermoscopic image of a skin 

lesion appears [2]. 

The existence of additional artefact sources, including hair, 

changes in skin condition, or airborne bubbles, might make it 

more challenging to distinguish skin cancers. Although 

dermoscopy is a valuable diagnostic technique for SC, even 

highly qualified dermatologists may struggle to differentiate 

between benign and malignant skin lesions based on many 

dermoscopy images [3]. Then, it is essential to improve an 

effective CAD scheme rely on invasive techniques for the 

organization of skin cancer. A CAD method's four main 

phases are segmentation, organisation, feature extraction, and 

image preparation. It is significant to note that each stage 

significantly influences the overall classification accuracy of 

the CAD method. Therefore, adopting effective procedures at 

every stage is crucial to achieving exceptional diagnostic 

performance [4, 5]. 

A new technology, artificial intelligence (AI) is causing a 

revolution similar to the one that happened when technology 

became ubiquitous in people's daily lives. Machine learning 

(ML) methods accelerate the completion of classification tasks

by eliminating the laborious stage of manually extracting

features. Interest in using machine learning techniques to

precisely categorise cancer has grown recently. The accuracy

of cancer detection has increased by 15% to 20% in recent

decades due to developments in machine learning methods.

Due to its wide range of applications, deep learning (DL) has

emerged as one of the fastest-growing domains within AI [6].

Large datasets and sophisticated computational procedures

have made DL, and CNNs in particular. CNNs have also been

used for skin lesion detection. Unlike typical machine learning

algorithms, DL eliminates the need for sophisticated image

pre-processing procedures and extensive preliminary data for

image classification. Certain DL-based classifiers have been

demonstrated to be as correct as dermatologists in identifying

SC images. As a result, CNNs may aid in the improvement of

computer-aided rapid skin lesion classifiers comparable to

those used by dermatologists [7, 8].

1.1 Research of our work 

Advances in dermoscopic imaging have provided valuable 

tools for detecting malignant skin lesions; however, traditional 

diagnostic approaches remain limited by subjectivity and 

variability. Combining the advantages of CNNs, ViTs, and 
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ASURF, hybrid AI models have become an effective solution 

for these issues. Using the complementing advantages of 

CNNs and ViTs for feature extraction and classification, this 

work suggests a novel hybrid structure that is enhanced by 

ASURF for reliable affine-invariant feature detection. By 

combining these, the presented approach for sweeten the 

accuracy, dependability, and computing effective of skin 

cancer detection employing dermoscopic images.  

1.2 Motivation of this research 

The motivation of the research was the continuous demand 

for precise and efficient skin cancer screening from 

dermoscopic images. ViTs' global features and CNNs' local 

feature extraction ability can both be combined in a hybrid 

CNN-ViTs framework. Coupled with ASURF, these improve 

the capability of the model to detect extremely small patterns 

and abnormalities in dermoscopic images, even in various 

scenarios. With the benefit of computer-aided diagnostics and 

reduced costs on trained dermatologists, this new strategy 

should improve SC prognosis and early detection, and 

ultimately improve patient outcomes.  

The contributions of this study as follows: 

• This research developed a unique system for

improving skin cancer diagnostics by combining

CNNs and ViTs with ASURF.

• The presented method uses CNNs to extract localized

spatial features, ViTs to capture global contextual

connections, and ASURF to identify robust features

under affine transformations.

• A thorough examination of dermoscopic patterns is

also provided by the hybrid CNN-ViT design, which

combines long-range interdependence and

hierarchical feature extraction. Tested on benchmark

dermoscopic datasets, the proposed approach

achieves better classification accuracy, fewer false

positives, and more robustness to visual distortions

than standalone ViTs and conventional CNNs.

1.3 Outlines of our research 

Table 1 displays the outline of our research work. 

Table 1. Outline of our research work 

Serial 

NO. 
Sessions 

1. Introduction 

2. Background for Related Word 

3. Proposed Methodology 

4. Results and Discussion 

5. Conclusion 

2. BACKGROUND FOR LITERATURE SURVEY

In the fast-developing field of skin cancer detection, hybrid 

CNN and ViT models were discovered to be a hopeful 

approach. Agarwal and Mahto [9] suggested a CNN and ViT 

hybrid model based on a Convolutional Kolmogorov-Arnold 

Network (CKAN) to classify skin cancer. It integrates the 

capability of the CNN to learn local features with the ability of 

the ViTs to learn global context. This greatly improves 

classification performance on the HAM10000 dataset, with the 

model achieving a high 92.81% accuracy. One benefit of this 

model is that it has the potential to enhance feature fusion due 

to the use of CKAN. However, its complex computations 

render it difficult to apply in real-time, and this may cause it 

to be less efficient in a clinical setting. But the fact that this 

model uses both CNNs and ViTs is an upgrade from needing 

to circumvent the issue with the former approaches. Gupta et 

al. [10] proposed a hybrid CNN-ViT model for the 

classification of skin diseases like Psoriasis and Eczema. 

The model, with the Swin-Tiny backbone, was able to 

classify objects with 82.1% accuracy. This model was able to 

learn localized features with CNNs and long-distance 

dependencies with ViTs because it was a hybrid. This made it 

suitable for classifying skin lesions into more than one class. 

The model was good with the test dataset, but the accuracy 

could be different depending on the dataset. This means that 

additional testing on diverse datasets is needed to make the 

model robust and usable in different scenarios. Liu et al. [11] 

addressed skin lesion classification by employing a ResNet-50 

model with adaptive spatial feature fusion to enhance 

classification accuracy. The model did very well in classifying 

malignant vs. benign lesions even if the images were scanned 

in different illumination conditions or noise. 

This study was not compared with other hybrid cutting-edge 

models, so it was hard to say how well it did compared to the 

newest ones. Another significant contribution in the domain 

was provided by Qamar [12], where they used a hybrid CNN-

Transformer network to design a confidence-weighted semi-

supervised learning method for skin lesion segmentation. The 

model was very efficient, especially when there was less 

annotated data. It was due to the fact that it did not need fully 

labeled sets as much. 

The confidence-weighted learning method helped the model 

get vastly skilled in segmenting, but its performance is heavily 

dependent on how great the first labels were. 

This dependence on good annotations is a shortcoming that 

can affect the strength of the model when applied in actual 

applications, where annotated sets are mostly limited. Krishna 

et al. [13] also investigated if ViTs could be used to identify 

skin cancer with their model, LesionAid. Their model 

generated simulated skin lesions using ViTs to add extra 

information onto them, thereby making the classification more 

accurate and overcoming the lack of much annotated data sets. 

This method was promising in improving the model stability 

against image distortions and improving the accuracy of the 

classifications. 

It was hard to fully test the effectiveness of the process, 

however, since there were no detailed performance measures 

or comparisons with other models, especially with other 

existing models. Maheshselvi et al. [14] also investigated 

using a CNN-Transformer hybrid model for skin cancer 

detection with AI. They combined EfficientNet with ViTs to 

enrich the classification accuracy. The model performed well 

for skin cancer diagnosis; however, like other studies, it was 

not extensively contrasted with other hybrid models, and 

hence its relative advantages cannot be fully assessed. 

However, using CNNs to learn local features and ViTs to learn 

global context is a decent foundation for future studies of 

computer-aided skin cancer diagnosis. Lastly, in a 

groundbreaking study, Esteva et al. [15] showed that deep 

neural networks can classify skin cancer from dermoscopic 

images with dermatologist-level accuracy, underscoring the 

potential of automated methods for safe and early cancer 
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detection. 

The research concentrated on how AI could assist in 

detecting skin cancer, but it also illustrated how hybrid models 

could make the diagnosis more accurate. The results were 

promising, but the study did not include any real-world figures 

on how effective it was, which would have been helpful in 

determining if it can be employed in real-world deployment. 

All things considered, the most recent advancements in hybrid 

CNN-ViT models for SC diagnosis hold great promise for 

enhancing automated skin cancer detection precision, 

effectiveness, and dependability. These models have a lot of 

promise for both research and real-world use, but there are still 

several obstacles to be addressed, such as computational 

complexity, dataset heterogeneity, and additional testing. 

However, the combination of CNNs and ViTs with cutting-

edge methods like synthetic lesion formation and confidence-

weighted learning creates a strong basis for dermatological 

diagnosis in the future.  

2.1 Research gap 

Even though automated SC detection and organization 

using dermoscopic pictures has advanced significantly, there 

are still a number of research gaps. Variability in picture 

quality, variations in lesion appearance across different 

populations, and the restricted accessibility of annotated 

datasets—particularly for uncommon skin cancer subtypes—

are some of the issues that current models frequently 

encounter. Furthermore, incorporating clinical context 

including patient history and the progression of a lesion over 

time—remains an unexplored aspect of current 

methodologies.  

2.2 Problem identification of existing system 

• Inconsistent extraction of significant features like

asymmetry, border irregularities, and color variation

affects performance.

• Insufficient or imbalanced datasets for training, with

an overrepresentation of certain skin types or cancer

classes, hinder model effectiveness.

• Models are poor to generalize across diverse

populations, skin types, and imaging conditions.

Heavy reliance on manual pre-processing or segmentation 

reduces scalability and efficiency. 

3. PROPOSED METHODOLOGY

3.1 Convolutional Neural Networks 

Complex convolution computations are utilized by CNNs 

[16]. CNN is an advanced technique with a multi-layer design 

that draws inspiration from how live things see and 

comprehend their environment. CNN is based on the 

convolution process and is a subset of DL. It can process 

different kinds of data organised in a sequential style 

recognition to its multi-layer structure. CNN's victory in the 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) in 2012 indicated a dramatic paradigm shift in 

computer vision, especially in the area of data extraction, as 

evidenced by the methodology presented by Krizhevsky et al. 

[17]. CNN's ability to automatically extract characteristics 

from input images has allowed it to achieve impressive 

outcomes in a variety of organization tasks. Figure 1 displays 

the workflow of the overall methodology. 

Figure 1. Block diagram of the suggested model 

3.2 Skin cancer dataset 

The ISIC archive provides free online access to the 

HAM10000 dataset [18]. 10,015 photos from the HAM10000 

collection, which is divided into seven subclasses, depict 

different forms of skin conditions (SC). Table 2 provides a 

summary of the HAM10000 dataset's details. The dataset 

contains 1,099 benign keratoses (BKL), 1,113 melanomas 

(MEL), 142 vascular lesions (VASC), 6,705 melanocytic nevi 

(NV), 115 dermatofibromas (DF), 327 actinic keratoses 

(AKIEC), and 514 basal cell carcinomas (BCC). Figure 2 

shows sample photos from the HAM10000 database. The class 

imbalance is emphasized by the HAM10000 dataset, which 

has a notably higher proportion of benign tumors than 

malignant ones. This disparity might introduce bias into the 

algorithm, improving its accuracy for most (benign) 

classifications but possibly decreasing its ability to detect 

malignant cases. 

Table 2. Dataset details 

Categories of Data Number of Images 

VASC 142 

AKIEC 327 

BCC 514 

BKL 1099 

DF 115 

MEL 1113 

NV 6705 

Total 10,015 

Figure 2. Sample images of HAM10000 database 

3.3 Image pre-processing 
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Sizes of dermoscopic images for the pooled datasets are 

initially cropped to the dimensions of each CNN's input layer. 

Unlike ASURF, which employs images of size 229 × 229 × 3, 

ViT employs images of size 224 × 224 × 3. The two datasets 

are further divided into 70% training and 30% testing [19]. To 

enhance training performance and control overfitting, the 

training set is enlarged with additional images using different 

augmentation. Table 3 describes the augmentation in detail, 

while Figure 3 is the resized pre-processed images. There are 

much more benign cases than malignant cases in the 

HAM10000 dataset because of class imbalance, which may 

introduce bias into the model and reduce its capability to detect 

less common but informative malignant lesions. In a bid to 

overcome this hurdle, we used several methods during training 

time to facilitate the balanced performance and reduce the risk 

of bias. To provides that the model gives more significance to 

classifying the critical but fairly rare cases in the right way, we 

first employed class weighting in the loss function to assign 

more significance to minority classes, especially to the 

malignant classes. This does favor a well-balanced learning 

process and does not let the model get too biased towards the 

majority class (benign cases). 

To artificially expand the training set, especially for 

minority classes, we also performed data augmentation. The 

transformation in this process included rotation, flipping, and 

scaling to help produce a variety of samples from the limited 

images of cancer lesions. The augmentations not only 

increased the data set's complexity but also improved the 

model's performance on minority classes and generalization. 

We have addressed the HAM10000 dataset's class imbalance 

by ensuring our model is robust and consistent in its 

performance on benign and malignant skin lesions using a 

combination of alternative performance measures, data 

augmentation, and class weighting. 

Table 3. Augmentation and their ranges 

Augmentation Range 

Rotation − 60 to 60

Shearing perpendicularly − 50 to 50

Flipping − 45 to 45

Scaling 0.5 to 1.5

Figure 3. Pre-processing resized image 

3.4 Hybrid Convolutional Neural Networks (CNNS) 

CNNs integrate multiple types of neural network 

architectures, techniques, or features to enhance the 

capabilities of standard CNNs. These networks are designed 

to leverage the strengths of various models or techniques to 

increase presentation on challenging tasks such as image 

recognition, natural language processing, and time-series 

analysis [20]. 

Figure 4. Architecture of CNN 

A hybrid CNN typically combines CNNs with other 

architectures (e.g., RNNs, Transformers) or incorporates 

additional components (e.g., attention mechanisms, feature 

extraction layers). Mathematically, this can be represented by 

the integration of operations in the pipeline of feature 

extraction, selection, and forecast. Figure 4 illustrates the 

architecture of the CNN. 

1. Standard Convolutional Layer

The major operation in a CNN is the convolution described 

in Eq. (1): 

( )( )
1 1

.

M N

ij mn i m j n

m n

Z W X b
+ +

= =

= + (1) 

where, 𝑍𝑖𝑗 is the output feature map, 𝑊𝑚𝑛 is the kernel of size

𝑀 × 𝑁, 𝑋𝑖𝑗 is the input feature map, b is the bias term.

2. Hybrid Layer Integration

In a hybrid model, additional structures are included, such 

as the following: 

• Recurrent Layer (for sequential data):

( )1t xh t hh t hh W x W h b −= + + (2) 

Here, ℎ𝑡 signifies the hidden state combining current input 

𝑥𝑡 and earlier hidden state ℎ𝑡−1.

• Transformer-based Attention: The self-attention

mechanism enhances spatial feature learning:

( ), , max
T

k

QK
Attention Q K V soft V

d

 
 =
 
 

(3) 

where, 𝑄, 𝐾,  and 𝑉  are query, key, and value matrices 

resulting since feature maps. 

• Graph-based Layers (for structured data):

( )1H D AHW − = (4) 

Here 𝐴 is the adjacency matrix, 𝐷 is the degree matrix, 𝐻 is 

the input features, and 𝑊 are learnable weights. 

3. Fusion Layers

The outputs of the above layers are concatenated or fused, 

often through the use of: 
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( ), , ,concat tF f Z h Attention H = (5) 

This ensures the incorporation of diverse features from 

various sources. 

4. Fully Connected Layers

These layers map the combined features to output 

predictions. 

( )f fy W F b= + (6) 

3.5 Vision Transformers 

Neural network architectures known as ViTs utilize the 

Transformer model, initially designed for natural language 

processing, to process image input. Different CNNs, which use 

convolutions for local image processing, ViTs leverage self-

attention mechanisms to capture global relationships within 

the data [21]. Figure 5 illustrates the architecture of a ViT. 

Figure 5. Architecture of ViT 

1. Image Patchification:

The input image (height 𝐻 , width 𝑊 , channels 𝐶 ) is 

alienated to non-overlapping updates of size 𝑃 × 𝑃 . Each 

patch is deformed to a vector of size 𝑃2𝐶, resulting in 𝑁 =
𝐻.𝑊

𝑃2

patches. 

( ) ,

:

. 1,2,...,i i e

Patchembeddings

X Flatten I W i N= =
(7) 

2. Positional Encoding:

The Transformer lacks an inherent sense of spatial structure, 

a learnable or fixed positional encoding P  is included to the

patch embeddings: 

0 1 1 2 2; ;...; N NZ X P X P X P= + + +   (8) 

where, 𝑃𝑖  are positional embeddings.

3. Transformer Encoder:

The Transformer encoder contains of several layers, each 

with: 

• Multi-head self-attention (MHSA):

( ), , max
T

K

QK
Attention Q K V Soft V

D

 
 =
 
 

(9) 

where, 𝑄, 𝐾, 𝑉 are queries, keys, and values derived since the 

input 𝑍𝑙−1 using learned weight matrices.

• Feed-forward network (FFN):

( ) ( )1 1 2 2ReFFN X LU XW b W b= + + (10) 

The final layer output is: 

( )( )

( )( )
1 1l l

l

Zl LayerNorm Z MHSA Z

LayerNorm FFN Z

− −= +

+
(11) 

4. Classification Token

A special learnable " [𝐶𝐿𝑆]" token 𝑍𝑐𝑙𝑠 is prepended to the

update embeddings. The output of this token, after passing 

through all Transformer layers, is used for classification. 

( )max .cls clsOutput Soft Z W= (12) 

3.6 Affine Speeded-Up Robust Features 

ASURF is a feature detection and description algorithm 

designed to detect local features in photos. ASURF builds 

upon the Speeded-Up Robust Features (SURF) algorithm but 

incorporates affine invariance, making it more robust to 

viewpoint changes, scale variations, and image distortions 

[22]. 

1. Interest Point Detection:

• Similar to SURF, ASURF utilized a Hessian matrix-

based detector to detect crucial points in the image.

• The determinant of the Hessian matrix is calculated

for each point.

( )
( ) ( )

( ) ( )

, ,
,

, ,

xx xy

xy yy

L x L x
Hessianmatrix H x

L x L x

 


 

 
=  
  

(13) 

where, 𝐿𝑥𝑥, 𝐿𝑥𝑦 , 𝐿𝑦𝑦 are second-order Gaussian derivatives at

scale 𝜎. 

• The determinant of 𝐻 is:

( ) ( )
2

det xx yy xyH L L L= − (14) 

2. Affine Shape Estimation:

• To achieve affine invariance, ASURF refines the

detected key points by estimating the local shape of

the feature. The goal is to adaptively normalize the

region around the key point into an isotropic circular

region.

• This process involves computing the second-moment

matrix (M):

xx xy

xy yy

M
 

 

 
=  
  

(15) 

where, 𝜇𝑥𝑥 , 𝜇𝑥𝑦 , 𝜇𝑦𝑦  are calculated using weighted image

gradients over the region of interest. 

• Eigenvalue decomposition of 𝑀 gives the principal

axes and scale of the region, enabling affine

normalization.

3. Scale and Orientation Assignment:

• ASURF computes the dominant orientation using

Haar wavelet and the scale of the areas is estimated

by maximizing the determinant of the Hessian matrix

across multiple scales.

4. Descriptor Computation:

• The affine-normalized region is divided into

subregions, and gradient information is summarized
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of each subregion. 

• A descriptor vector is formed by concatenating the

gradient magnitudes and orientations.

| |, | |,

| |, | |,...

dx dy
D

dx dy dx dy

 
 =
 + −
 

 
 

(16) 

where, 𝑑𝑥  and 𝑑𝑦  are the vertical and horizontal gradient 

components. 

5. Affine Invariance:

• By adapting the detected features to their local affine

shape and normalizing them, ASURF achieves

invariance to affine transformations.

3.7 Integration of CNNs, ViTs, and ASURF 

This hybrid system combines CNNs, ViTs, and AASURF 

to make use of the advantages of every method to improve the 

classification of SC. The process takes place in several steps, 

and each model helps with a different part of feature extraction 

and improvement.  

• CNN Feature Extraction: Initially, the CNN model

analyzes the dermoscopic input image. The CNN

locates and extracts local features like edges,

textures, and fine-grained patterns using convolution

processes. The identification of basic picture

structures, which form the foundation for later stages

of more complex pattern recognition, depends on

these characteristics. Mathematically, the

convolution operation is stated as:

𝐹𝑐𝑛𝑛 = W * I + B

where, W defines the convolutional filters (kernels), I is the 

input picture, 𝐹𝑐𝑛𝑛 is the output feature map, and b is the bias

term.  

• ViT Global Contextualization: The model can

consider the image as a whole because ViTs employ

self-attention mechanisms to make connections

between various picture elements. This is how self-

attention works:

𝐴𝑣𝑖𝑡  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 

where, Q, K, and V are the query, key, and value matrices that 

come from the input feature maps, 𝑑𝑘 is the size of the key

matrix.  

• ASURF Affine-Invariant Feature Detection: After

the steps of feature extraction and contextualization,

the ASURF algorithm is used to find affine-invariant

features. ASURF finds essential points in the image

that stay the same when the image is scaled, rotated,

or changed in other ways. This process starts with

finding interest points using a detector based on a

Hessian matrix:

Det (H) = |D
2
𝑥

I| |D
2
𝑦

I| - (𝐷𝑥𝐼)2

where, 𝐷𝑥𝐼  and 𝐷𝑦𝐼  represent the partial derivatives of the

image I. The key points are then normalized for affine 

invariance by computing the second-moment matrix M around 

each interest point: 

M = ∑ 𝑤𝑖 . 𝑥𝑖 . 𝑥𝑖
𝑇𝑛

𝑖=1

where, 𝑤𝑖  are the weights and 𝑥𝑖 are the coordinates of the key

points. The matrix M is employed to calculate the affine 

transformation and normalize the feature. 

• Feature Fusion: After using CNNs, ViTs, and

ASURF to get features, these features are

incorporated into a single feature vector. This fusion

process takes the local, global, and invariant features

from each part and combines them. Mathematically,

this looks like:

𝐹𝑓𝑢𝑠𝑒𝑑  =  [𝐹𝑐𝑛𝑛;  𝐴𝑣𝑖𝑡;  𝐹𝑎𝑠𝑢𝑟𝑓]

where, 𝐹𝑐𝑛𝑛  is the CNN's feature vector, 𝐴𝑣𝑖𝑡  is the global

feature vector from the ViT, and 𝐹𝑎𝑠𝑢𝑟𝑓  is the ASURF

invariant feature vector. The last step in the classification 

process is to send the fused feature vector to a fully connected 

layer.  

• Classification: Finally, the fully connected layers

sort the photos into one of the skin cancer categories

that have already been set. You can show the final

classification by:

𝑦̂  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊. 𝐹𝑓𝑢𝑠𝑒𝑑  +  𝑏)

where, 𝑦̂ is the predicted class label, W is the weight matrix, 

and b is the bias term. 

Figure 6. An illustrates flowchart of the CNN-ViT-ASURF 

system architecture 

This integration strategy makes sure that each model brings 

its own strengths: CNNs for recognizing patterns in small 

areas, ViTs for understanding the big picture, and ASURF for 

extracting features that are strong and not affected by changes 

in the environment. Combining these features makes for a 

more authentic and dependable skin cancer classification 

system, using the strengths of each model to enrich the 

system's capability to find and classify skin lesions. Table 4 

displays the hyperparameters along with their corresponding 

values, while the default settings are retained for the remaining 

parameters. Figure 6 depicts the flowchart of the presented 

model. 
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3.8 Advantages of proposed system 

• The hybrid combination of CNNs, ViTs, and ASURF

leverages CNNs for local feature extraction, ViTs for

capturing global context, and ASURF for robust

affine-invariant features, resulting in superior feature

representation.

• By combining several techniques, the system

decreases false positives and improves the

classification accuracy of skin cancer diagnoses,

mainly in complex dermoscopic images.

• ASURF provides robustness to affine

transformations, making the system more efficient

for dermoscopic images with variations in scale,

rotation, or viewpoint.

Table 4. Experimental setup and parameter details of the 

suggested model 

Parameter Value 

Random seed 

selection 
42 

Training/validation 

split 
70% training, 30% validation 

Batch size 32 

Optimizer Adam optimizer 

Learning rate 0.001 

Learning rate 

adjustment 

Learning rate decay factor = 0.9 every 

10 epochs 

Weight initialization 

He initialization: Chosen for better 

performance in deep networks with 

ReLU activations. 

Regularization 

(Dropout) 
Dropout rate = 0.5 

Epochs 40 

Early stopping 10 epochs 

Validation metrics 
Accuracy, Precision, Sensitivity, 

Specificity, F1-Score, MCC 

Multiclass 

classification 
701 

Binary classification 230 

Mini batch 10 

4. RESULTS and DISCUSSION

Figure 7. Final predicted images for dataset 

In Figure 7, the outcomes of the suggested CNN-ViT 

dermoscopic image-based skin cancer diagnosis technique are 

displayed. Windows 7 was installed on a PC with an Intel Core 

i5 processor, 8 GB of RAM, and a 2.50 GHz CPU to perform 

the computations. The presented Python model was evaluated 

using a number of presentation indicators. The following 

models were compared in order to assess the CNN-ViT 

approach's results: DSCC-Net [23], Weighted ensemble [24], 

Spiking VGG-13 [25], FixMatch-LS [26], and DeepLabV3+ 

[27], and Figure 6 shows the dataset's final anticipated images. 

The evaluation metrics and optimal hyperparameter values 

used to evaluate the proposed CNN-ViT model's presentation 

are shown in this section. Every CNN has a number of 

hyperparameter settings that have been modified. SGDM was 

the optimization technique used to train the CNNs. A 0.001 

learning rate is shown in Figure 8. 

Figure 8. Learning rate analysis 

The ROC, specificity, precision, sensitivity, F1-score, 

MCC, and accuracy are some of the evaluation measures used 

to gauge CNN-ViT's efficacy. The formulas listed below are 

used to determine the assessment metrics:  

TP TN
Accuracy

TP FP TN FN

+
=

+ + +
(17) 

2
1

(2 )

TP
F Score

TP FP FN


− =

 + +
(18) 

Pr
TP

ecision
TP FP

=
+

(19) 

TP
Sensitivity

TP FN
=

+
(20) 

TN
Specificity

TN FP
=

+
(21) 

( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

+ − 
=

+ + + +
(22) 

Here, 

 True Positives (TP),

 True Negatives (TN),
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 False Negatives (FN), and

 False Positives (FP)

Figure 9. Confusion matrix for dataset 

The classification model output on the provided dataset, 

which is the categories AKIEC, BCC, BKL, DF, MEL, NV, 

and VASC, is displayed in the confusion matrix in Figure 9. 

Every row of the matrix is the actual class, and every column 

is the forecasted class. The diagonal shows the correct 

classifications, and it is apparent that the model correctly 

predicted the respective categories. For instance, the model 

labeled 300 images as AKIEC, 500 as BCC, and so on. Off-

diagonal elements are misclassifications, where the predicted 

class is not the true label. For instance, the model incorrectly 

predicted 5 of the AKIEC class images as BCC and 12 of the 

BKL class images as AKIEC. The overall performance of the 

model can be ensured by corresponding off-diagonal values 

with diagonal values, with higher diagonal values indicating 

higher performance. As the misclassifications are reasonably 

low, further model tuning may be necessary, particularly for 

classes with higher rates of misclassifications, e.g., BKL or 

NV. 

The graphs above display the effectiveness of the presented 

model, which includes CNNs, ViTs, and ASURF of skin 

cancer diagnosis using dermoscopic pictures. As demonstrated 

in Figure 10(a), which displays training and validation 

accuracy across 40 epochs, the model maintains stability in 

validation while achieving a high degree of accuracy, despite 

minor variations. The model's effective generalization is 

shown by the corresponding loss in Figure 10(b), where the 

validation loss stabilizes and the training loss progressively 

decreases. 

(a) (b) 

Figure 10. (a) Training and validation accuracy analysis (b) Training and validation loss analysis 

Figure 11. ROC curve analysis for the proposed model 

In identifying SC from dermoscopic images, Figure 11 

illustrates the ROC curves for the ViT, ASURF, and Hybrid 

CNN models. Every model has an AUC (Area Under the 

Curve) of 1.00, meaning they all performed perfectly in 

classification. Given that the curves roughly resemble the 

graph's axes, this illustrates how effectively each model 

distinguishes between positive and negative classes. The 

models’ impressive ability to increase true positive rates while 

reducing false positives is demonstrated by using the diagonal 

reference line to represent random guessing. 

Comparison of performance metric values presented in 

Table 5 and Figure 12 is a proximate measurement of 

classification capacity between different SC types in 

HAM10000. The table further highlights the variation in the 

metric representation based on dataset skewness and 

uniqueness of each SC type. For example, BCC is the best 

overall accuracy (98.38%) and is extremely robust on almost 

all of the metrics, with good discrimination for this class. 

VASC and AKIEC also have excellent accuracy (95.45% and 

95.77%, respectively), but with very poor MCC values, with 

possible problems when working with imbalanced sets. On the 

contrary, MEL shows comparatively lower precision (89.77%) 

and sensitivity (83.78%), again substantiating the difficulty in 

accurately predicting malignant cases, in favor of the class 
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imbalance nature of the dataset. NV (Melanocytic Nevus) is 

superb in precision (96.49%) and F1-Score (94.39%), again 

substantiating the capability of the model to well manage this 

common benign class. DF and BKL reflect balanced 

presentation in all metrics and portray moderate 

accomplishment of organization. The metrics depict the 

model's good whole accuracy high, sensitivity variation, 

MCC, and specificity depict dataset features such as feature 

complexity and class imbalance to influence organization 

results. 

Table 5. Comparison analysis of performance metrics with dataset types 

Dataset Types Accuracy Precision Sensitivity Specificity F1-Score MCC 

VASC 95.45 93.87 91.77 92.18 90.34 88.39 

NV 91.66 96.49 93.87 90.89 94.39 92.56 

MEL 89.77 84.48 83.78 87.28 86.89 94.88 

BKL 91.77 89.69 87.59 85.22 88.38 85.56 

DF 93.58 90.78 88.44 92.48 91.39 93.38 

AKIEC 95.77 85.84 83.19 87.28 86.38 90.73 

BCC 98.38 91.97 90.19 93.19 92.67 95.67 

Figure 12. Comparison analysis of performance metrics with 

dataset type 

Table 6. Computational time analysis for proposed model 

with dataset types 

Dataset Types Computational Time (s) 

VASC 1.2654 

NV 15.3286 

MEL 10.5185 

BKL 8.9165 

DF 0.8586 

AKIEC 2.5286 

BCC 3.712 

For each subclass of the HAM10000 dataset, the 

computational time needed by the proposed CNN-ViT model 

is broken down in detail in Table 6 and Figure 13. According 

to the results, there are significant differences between the 

different types of datasets. The NV class takes the longest to 

compute (15.33 seconds) because of its bigger demonstration 

in the dataset, while the DF class takes the shortest (0.86 

seconds), representing its smaller sample size. With respect to 

their respective dataset sizes and levels of complexity, other 

classes, including MEL, BKL, AKIEC, and BCC, exhibit 

intermediate computational times. 

Figure 13. Computational time analysis for the proposed 

model with the dataset types 

4.1 Statistical analysis 

Table 7 shows an overview of the HAM10000 database, 

giving a test case of data entries. Each row corresponds to a 

different skin lesion, which is assigned its Lesion_id and 

associated with specific images by Image_id. The Dx column 

describes the diagnostic class of the lesion, where in this 

instance "BKL" refers to benign keratosis. Where "histo" 

represents histological confirmation, the Dx_type column 

specifies the detection method. The demographic and 

localization information of each lesion is also included in the 

table. For example, the patient's age is listed in the Age 

column; the majority of patients in this population are elderly 

men. Whereas the Localisation column provides the lesion's 

physical location, it also indicates the patient's sex and 

highlights the comprehensive labelling and high-density 

metadata in the dataset, enabling measurement of age, gender, 

and anatomical region distributions and bias detection in 

machine learning models. Figures 14-17 display the frequency 

distribution, gender distribution of disease, histogram of 

patient age, and disease localisation. 

Table 7. HAM1000 dataset analysis 

Image_id Lesion_id Dx_type Dx Sex Age Localization 

ISIC_0026769 HAM_0002730 histo BKL male 75.0 Scalp 

ISIC_0025661 HAM_0002730 histo BKL male 63.0 Scalp 

ISIC_0031633 HAM_0001466 histo BKL male 75.0 Ear 

ISIC_0027419 HAM_0000118 histo BKL male 81.0 Scalp 

ISIC_0025030 HAM_0000118 histo BKL male 80.0 Scalp 
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4.2 Ablation study analysis 

An ablation study evaluates the separate and combined 

contributions of the Hybrid CNN-ViT and ASURF technique's 

components to the overall effectiveness in the diagnosis of 

skin cancer.  

Figure 14. Frequency distribution of dataset classes analysis 

Figure 15. Distribution of disease over gender analysis 

Figure 16. Histogram of age of patients 

By methodically removing or separating particular 

components—for example, CNNs for feature extraction, ViTs 

for attention-based learning, or ASURF for robust detection—

this article emphasizes how each contributes to the 

development of accuracy, robustness, and generalization. 

Results usually show that the hybrid model performs better 

than configurations with one or more components missing, 

confirming the synergy between CNNs, ViTs, and ASURF in 

capturing complex dermoscopic image features and 

addressing experiments such as class imbalance and subtle 

variations in lesion features.  

Figure 17. Location of disease count 

4.2.1 Influence of ViTs 

ViTs have transformed picture analysis by using self-

attention processes to detect long-range dependences and 

background relationships in visual data. For diemoscopic 

image-based skin cancer detection, the suggested hybrid 

strategy incorporates CNNs, ViTs, and ASURF; ViTs are 

crucial for enhancing feature extraction. With their capacity to 

exhibit worldwide, they enhance CNNs' localized feature 

learning. A comprehensive analysis of compound 

dermoscopic pictures is made possible by the model's 

potentiality to jointly capture intricate patterns and texture 

variations that are necessary for accurate identification. This 

improves organization display.  

Figure 18. K-fold cross validation analysis 

4.2.2 Influence of the K-fold cross validation 

For the CNNs', ViTs', and ASURF skin cancer detectors' 

estimation with the dermoscopic images, 5-fold cross-

validation process shown in Figure 18 is an important 

mechanic. Five equal datasets are created by each fold; four of 

them are utilized for training, and one is the validation set. This 

procedure is done five times to ensure that every block has one 

validation set. To limit overfitting and give a more precise 

evaluation of the presentation of the model, predictions from 

each fold are included to produce the final forecast. 

Difficulties like dataset imbalance and variation in 

dermoscopic image analysis are overcome with this approach, 

which makes sure that model evaluation is accurate and 

increases its universality capability. 
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4.3 Comparative analysis and discussion 

Table 8 and Figure 19 depict various models on skin lesion 

organization tasks employing the HAM10000 and ISIC 2019 

datasets. They highlight the methodologies and accuracy 

stages of these models. Tahir et al.'s [23] DSCC-Net achieved 

94.17% accuracy on the HAM10000 dataset, Ibrahim et al.'s 

[24] Weighted ensemble reached 94.49%, and Zafar et al.'s

[27] DeepLabV3+ obtained 92.07%. For the ISIC 2019

dataset, Spiking VGG-13 by Qasim Gilani et al. [25] and

FixMatch-LS by Zhou et al. [26] achieved accuracies of

89.50% and 91.81%, respectively. Our suggested method, a

hybrid CNN-ViT architecture, outclassed all others, achieving

98.38% accuracy on HAM10000, demonstrative its superior

efficiency in skin lesion organization.

Table 8. Comparation evaluation with existing systems 

Reference Method Year Datasets Accuracy 

Tahir et al. [23] DSCC-Net 2023 HAM1000 94.17% 

Ibrahim et al. [24] Weighted ensemble 2025 HAM1000 94.49% 

Qasim Gilani et al. [25] Spiking VGG-13 2023 ISIC 2019 89.50% 

Zhou et al. [26] FixMatch-LS 2023 ISIC 2019 91.81% 

Zafar et al. [27] DeepLabV3+ 2023 HAM1000 92.07% 

Our Model CNN-ViT - HAM10000 98.38% 

Figure 19. Comparation evaluation with existing systems 

In fact, the HAM10000 and ISIC 2019 datasets, which are 

extensively used in the skin lesion classification community, 

were used to train the majority of the models mentioned in the 

comparison, including DSCC-Net, Deep Belief Net, and 

DeepLabV3+. Additionally, preprocessing procedures like 

image resizing and augmentation methods were used in 

accordance with industry standards. We are aware, 

nevertheless, that small differences in model architectures and 

hyperparameter tuning between studies could have an impact 

on the outcomes. 

It was the combination of CNNs and ViTs in our 

architecture that improved the performance. CNNs are 

renowned for their capacity to capture spatial features that are 

proximal to one another. ViTs are also excellent at capturing 

long-range relationships and dependencies between various 

components of an image, which play a critical role in 

accurately classifying lesions. This mixed approach, therefore, 

has a more potent feature extraction mechanism than CNN or 

ViT individually. This is probably why our model performs 

better. We conducted statistical testing can measure the 

significance of the differences in accuracy between our model 

and current systems, thereby enabling a statistically more 

robust comparison. 

Early results show that we do have a statistically significant 

accuracy difference between our CNN-ViT model and models 

like DSCC-Net, Deep Belief Net, and DeepLabV3+. The 

assumption is that the improvements we saw aren't a one-off, 

which shows in turn that our methodology is solid and 

dependable. We also compared the standard deviations of the 

accuracy of all the models to see how their performances are 

different from each other. Not only does the CNN-ViT model 

have the highest accuracy, but it is also reporting a statistically 

improved result from others. The use of both CNNs and ViTs 

in our architecture is an effective way of classifying skin 

lesions and the statistical evidence of results. 

4.4 Limitations and challenges 

The suggested model, which combines CNNs, ViTs, and 

ASURF to detect skin cancer from dermoscopic images, has 

some problems. One of the largest problems is that combining 

these deep learning models makes the math much more 

complex can lead to slower processing times, which might 

make it complex to employ in real time in a clinical setting. 

Moreover, the model's performance might not be good when 

the number of annotated datasets is minimal, and therefore it 

may lead to overfitting and the model is also limited as it is 

vulnerable to differences in image quality. As an example, 

dermoscopic images are prone to lighting, resolution, and 

image noise. Finally, unobtrusive integration into clinical 

workflows without compromising speed and accuracy is 

another important challenge that needs to be optimized for 

daily use. 

5. CONCLUSION

The combination of CNNs, ViTs, and ASURF is a new and 

promising method for the automatic diagnosis. Our model has 

high potential in effectively detecting and classifying skin 

lesions as it combines the local feature extraction ability of 

CNNs, the global contextual comprehension ability of ViTs, 

and the robustness of ASURF in handling image condition 

variations. Nevertheless, for the model to be used in real 

clinical setups, made more robust, especially for noisy and 

heterogeneous datasets. 

This hybrid approach not only pushes the boundary of what 

can be achieved with computer-assisted dermatology, but also 

makes it possible to develop more precise, trustworthy, and 

scalable skin cancer detection systems. More generally in 

medical imaging, this strategy could provide a model for the 

employment of DL approaches in a broad range of 

applications.  

Future work includes enhancing the hybrid model by using 

more advanced feature fusion techniques and enhancing 

transformer architectures for greater performance. The 

purpose is to optimize the model's performance on mobile and 
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real-time systems so that it is suitable for clinical settings 

where computational resources are minimal. Another of the 

primary goals will be to make the model more useful by 

bringing other skin diseases within its scope will make it 

robust and flexible for a greater range of medical uses. To 

further improve generalizability, future work will include 

training the model on bigger and more varied datasets, solving 

problems of data imbalance and overfitting, and pursuing 

cross-domain applications. 
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