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Skin cancer (SC) is a global health concern, and improving patient outcomes needs early
detection. To improve the accuracy and dependability of SC diagnosis using dermoscopic
images, a novel method utilizing Hybrid Convolutional Neural Networks (CNNs) and
Vision Transformers (ViTs) with the addition of Affine Speeded-Up Robust Features
(ASUREF) is suggested. The CNNs are employed for the extraction of local spatial features.
Contrary to this, ViTs preserve global context and ASURF facilitates invariant feature
detection in affine transforms so that lesions can be detected irrespective of image
orientation and size. Our hybrid model of CNN-ViT sufficiently utilized hierarchical feature
extraction and long-range relations to provide improved all-around analysis of dermoscopic
patterns. Experimental results on common datasets validate the superiority of this approach
over ViTs and conventional CNNs with 98.38% accuracy rate on HAM10000. Through the
reduction of false positives and improvement in the model's ability to address visual
aberrations, this method presents it as an efficient instrument for precise, effective, and
automatic skin cancer diagnosis. This study uses artificial intelligence (Al) to improve
patient care in general, reduce reliance on experts, and improve early detection of skin

cancer.

1. INTRODUCTION

Skin cancer (SC) has been diagnosed in individuals of all
genders since the turn of the 20th century. In 2012,
approximately 8,790 melanoma-related deaths and 76,250
new melanoma cases were reported in the Joint States. Skin
cancer is developed by a variety of factors, including exposure
to sunlight, delayed detection of SC, and the developing
lifespan of the populace [1]. The noninvasive imaging method
known as dermoscopy, which looks at the skin, is one of the
best approaches to detect skin cancer early on. Skin condition
can significantly affect how a dermoscopic image of a skin
lesion appears [2].

The existence of additional artefact sources, including hair,
changes in skin condition, or airborne bubbles, might make it
more challenging to distinguish skin cancers. Although
dermoscopy is a valuable diagnostic technique for SC, even
highly qualified dermatologists may struggle to differentiate
between benign and malignant skin lesions based on many
dermoscopy images [3]. Then, it is essential to improve an
effective CAD scheme rely on invasive techniques for the
organization of skin cancer. A CAD method's four main
phases are segmentation, organisation, feature extraction, and
image preparation. It is significant to note that each stage
significantly influences the overall classification accuracy of
the CAD method. Therefore, adopting effective procedures at
every stage is crucial to achieving exceptional diagnostic
performance [4, 5].
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A new technology, artificial intelligence (Al) is causing a
revolution similar to the one that happened when technology
became ubiquitous in people's daily lives. Machine learning
(ML) methods accelerate the completion of classification tasks
by eliminating the laborious stage of manually extracting
features. Interest in using machine learning techniques to
precisely categorise cancer has grown recently. The accuracy
of cancer detection has increased by 15% to 20% in recent
decades due to developments in machine learning methods.
Due to its wide range of applications, deep learning (DL) has
emerged as one of the fastest-growing domains within Al [6].
Large datasets and sophisticated computational procedures
have made DL, and CNNs in particular. CNNs have also been
used for skin lesion detection. Unlike typical machine learning
algorithms, DL eliminates the need for sophisticated image
pre-processing procedures and extensive preliminary data for
image classification. Certain DL-based classifiers have been
demonstrated to be as correct as dermatologists in identifying
SC images. As a result, CNNs may aid in the improvement of
computer-aided rapid skin lesion classifiers comparable to
those used by dermatologists [7, 8].

1.1 Research of our work

Advances in dermoscopic imaging have provided valuable
tools for detecting malignant skin lesions; however, traditional
diagnostic approaches remain limited by subjectivity and
variability. Combining the advantages of CNNs, ViTs, and
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ASURF, hybrid AI models have become an effective solution
for these issues. Using the complementing advantages of
CNNs and ViTs for feature extraction and classification, this
work suggests a novel hybrid structure that is enhanced by
ASUREF for reliable affine-invariant feature detection. By
combining these, the presented approach for sweeten the
accuracy, dependability, and computing effective of skin
cancer detection employing dermoscopic images.

1.2 Motivation of this research

The motivation of the research was the continuous demand
for precise and efficient skin cancer screening from
dermoscopic images. ViTs' global features and CNNs' local
feature extraction ability can both be combined in a hybrid
CNN-ViTs framework. Coupled with ASURF, these improve
the capability of the model to detect extremely small patterns
and abnormalities in dermoscopic images, even in various
scenarios. With the benefit of computer-aided diagnostics and
reduced costs on trained dermatologists, this new strategy
should improve SC prognosis and early detection, and
ultimately improve patient outcomes.

The contributions of this study as follows:

This research developed a unique system for
improving skin cancer diagnostics by combining
CNNs and ViTs with ASURF.

The presented method uses CNNs to extract localized
spatial features, ViTs to capture global contextual
connections, and ASURF to identify robust features
under affine transformations.

A thorough examination of dermoscopic patterns is
also provided by the hybrid CNN-ViT design, which
combines  long-range  interdependence  and
hierarchical feature extraction. Tested on benchmark
dermoscopic datasets, the proposed approach
achieves better classification accuracy, fewer false
positives, and more robustness to visual distortions
than standalone ViTs and conventional CNNs.

1.3 Outlines of our research
Table 1 displays the outline of our research work.

Table 1. Outline of our research work

Serial Sessions
NO.
1. Introduction
2. Background for Related Word
3. Proposed Methodology
4. Results and Discussion
5. Conclusion

2. BACKGROUND FOR LITERATURE SURVEY

In the fast-developing field of skin cancer detection, hybrid
CNN and ViT models were discovered to be a hopeful
approach. Agarwal and Mahto [9] suggested a CNN and ViT
hybrid model based on a Convolutional Kolmogorov-Arnold
Network (CKAN) to classify skin cancer. It integrates the
capability of the CNN to learn local features with the ability of
the ViTs to learn global context. This greatly improves
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classification performance on the HAM 10000 dataset, with the
model achieving a high 92.81% accuracy. One benefit of this
model is that it has the potential to enhance feature fusion due
to the use of CKAN. However, its complex computations
render it difficult to apply in real-time, and this may cause it
to be less efficient in a clinical setting. But the fact that this
model uses both CNNs and ViTs is an upgrade from needing
to circumvent the issue with the former approaches. Gupta et
al. [10] proposed a hybrid CNN-ViT model for the
classification of skin diseases like Psoriasis and Eczema.

The model, with the Swin-Tiny backbone, was able to
classify objects with 82.1% accuracy. This model was able to
learn localized features with CNNs and long-distance
dependencies with ViTs because it was a hybrid. This made it
suitable for classifying skin lesions into more than one class.
The model was good with the test dataset, but the accuracy
could be different depending on the dataset. This means that
additional testing on diverse datasets is needed to make the
model robust and usable in different scenarios. Liu et al. [11]
addressed skin lesion classification by employing a ResNet-50
model with adaptive spatial feature fusion to enhance
classification accuracy. The model did very well in classifying
malignant vs. benign lesions even if the images were scanned
in different illumination conditions or noise.

This study was not compared with other hybrid cutting-edge
models, so it was hard to say how well it did compared to the
newest ones. Another significant contribution in the domain
was provided by Qamar [12], where they used a hybrid CNN-
Transformer network to design a confidence-weighted semi-
supervised learning method for skin lesion segmentation. The
model was very efficient, especially when there was less
annotated data. It was due to the fact that it did not need fully
labeled sets as much.

The confidence-weighted learning method helped the model
get vastly skilled in segmenting, but its performance is heavily
dependent on how great the first labels were.

This dependence on good annotations is a shortcoming that
can affect the strength of the model when applied in actual
applications, where annotated sets are mostly limited. Krishna
et al. [13] also investigated if ViTs could be used to identify
skin cancer with their model, LesionAid. Their model
generated simulated skin lesions using ViTs to add extra
information onto them, thereby making the classification more
accurate and overcoming the lack of much annotated data sets.
This method was promising in improving the model stability
against image distortions and improving the accuracy of the
classifications.

It was hard to fully test the effectiveness of the process,
however, since there were no detailed performance measures
or comparisons with other models, especially with other
existing models. Maheshselvi et al. [14] also investigated
using a CNN-Transformer hybrid model for skin cancer
detection with Al. They combined EfficientNet with ViTs to
enrich the classification accuracy. The model performed well
for skin cancer diagnosis; however, like other studies, it was
not extensively contrasted with other hybrid models, and
hence its relative advantages cannot be fully assessed.
However, using CNNs to learn local features and ViTs to learn
global context is a decent foundation for future studies of
computer-aided skin cancer diagnosis. Lastly, in a
groundbreaking study, Esteva et al. [15] showed that deep
neural networks can classify skin cancer from dermoscopic
images with dermatologist-level accuracy, underscoring the
potential of automated methods for safe and early cancer



detection.

The research concentrated on how Al could assist in
detecting skin cancer, but it also illustrated how hybrid models
could make the diagnosis more accurate. The results were
promising, but the study did not include any real-world figures
on how effective it was, which would have been helpful in
determining if it can be employed in real-world deployment.
All things considered, the most recent advancements in hybrid
CNN-ViT models for SC diagnosis hold great promise for
enhancing automated skin cancer detection precision,
effectiveness, and dependability. These models have a lot of
promise for both research and real-world use, but there are still
several obstacles to be addressed, such as computational
complexity, dataset heterogeneity, and additional testing.
However, the combination of CNNs and ViTs with cutting-
edge methods like synthetic lesion formation and confidence-
weighted learning creates a strong basis for dermatological
diagnosis in the future.

2.1 Research gap

Even though automated SC detection and organization
using dermoscopic pictures has advanced significantly, there
are still a number of research gaps. Variability in picture
quality, variations in lesion appearance across different
populations, and the restricted accessibility of annotated
datasets—particularly for uncommon skin cancer subtypes—
are some of the issues that current models frequently
encounter. Furthermore, incorporating clinical context
including patient history and the progression of a lesion over
time—remains an  unexplored aspect of current
methodologies.

2.2 Problem identification of existing system

Inconsistent extraction of significant features like

asymmetry, border irregularities, and color variation

affects performance.

Insufficient or imbalanced datasets for training, with

an overrepresentation of certain skin types or cancer

classes, hinder model effectiveness.

Models are poor to generalize across diverse

populations, skin types, and imaging conditions.
Heavy reliance on manual pre-processing or segmentation

reduces scalability and efficiency.

3. PROPOSED METHODOLOGY
3.1 Convolutional Neural Networks

Complex convolution computations are utilized by CNNs
[16]. CNN is an advanced technique with a multi-layer design
that draws inspiration from how live things see and
comprehend their environment. CNN is based on the
convolution process and is a subset of DL. It can process
different kinds of data organised in a sequential style
recognition to its multi-layer structure. CNN's victory in the
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012 indicated a dramatic paradigm shift in
computer vision, especially in the area of data extraction, as
evidenced by the methodology presented by Krizhevsky et al.
[17]. CNN's ability to automatically extract characteristics
from input images has allowed it to achieve impressive
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outcomes in a variety of organization tasks. Figure 1 displays
the workflow of the overall methodology.

Input Layers

Layers

Hybrid Convolutional Neural
Networks (CNNs)

Preprocessing

Pooling

Coavolutions  Pooling Global Averag
Feat

BY=

Maps.

Feature Extraction using Vision Transformers (ViTs)

__}
Figure 1. Block diagram of the suggested model

Affine
Speeded-
Up Robust
Features
(ASURF)

Output Predicted
images

3.2 SKkin cancer dataset

The ISIC archive provides free online access to the
HAM10000 dataset [18]. 10,015 photos from the HAM10000
collection, which is divided into seven subclasses, depict
different forms of skin conditions (SC). Table 2 provides a
summary of the HAM10000 dataset's details. The dataset
contains 1,099 benign keratoses (BKL), 1,113 melanomas
(MEL), 142 vascular lesions (VASC), 6,705 melanocytic nevi
(NV), 115 dermatofibromas (DF), 327 actinic keratoses
(AKIEC), and 514 basal cell carcinomas (BCC). Figure 2
shows sample photos from the HAM 10000 database. The class
imbalance is emphasized by the HAM10000 dataset, which
has a notably higher proportion of benign tumors than
malignant ones. This disparity might introduce bias into the
algorithm, improving its accuracy for most (benign)
classifications but possibly decreasing its ability to detect
malignant cases.

Table 2. Dataset details

Categories of Data Number of Images

VASC 142
AKIEC 327
BCC 514
BKL 1099
DF 115
MEL 1113
NV 6705
Total 10,015
_, ‘ ® SR & W AKIEC
WERe ]
. Er Fal DF
o Q < g
- e &K MEL
HEAN . v
® . . rﬂ' VASC

Figure 2. Sample images of HAM 10000 database
3.3 Image pre-processing



Sizes of dermoscopic images for the pooled datasets are
initially cropped to the dimensions of each CNN's input layer.
Unlike ASURF, which employs images of size 229 x 229 x 3,
ViT employs images of size 224 x 224 x 3. The two datasets
are further divided into 70% training and 30% testing [19]. To
enhance training performance and control overfitting, the
training set is enlarged with additional images using different
augmentation. Table 3 describes the augmentation in detail,
while Figure 3 is the resized pre-processed images. There are
much more benign cases than malignant cases in the
HAM10000 dataset because of class imbalance, which may
introduce bias into the model and reduce its capability to detect
less common but informative malignant lesions. In a bid to
overcome this hurdle, we used several methods during training
time to facilitate the balanced performance and reduce the risk
of bias. To provides that the model gives more significance to
classifying the critical but fairly rare cases in the right way, we
first employed class weighting in the loss function to assign
more significance to minority classes, especially to the
malignant classes. This does favor a well-balanced learning
process and does not let the model get too biased towards the
majority class (benign cases).

To artificially expand the training set, especially for
minority classes, we also performed data augmentation. The
transformation in this process included rotation, flipping, and
scaling to help produce a variety of samples from the limited
images of cancer lesions. The augmentations not only
increased the data set's complexity but also improved the
model's performance on minority classes and generalization.
We have addressed the HAM10000 dataset's class imbalance
by ensuring our model is robust and consistent in its
performance on benign and malignant skin lesions using a
combination of alternative performance measures, data
augmentation, and class weighting.

Table 3. Augmentation and their ranges

Augmentation Range
Rotation — 60 to 60
Shearing perpendicularly —50t0 50
Flipping —45t045
Scaling 0.5to 1.5

Resized image for CNN-ViT

Original Image N
° : .

20
100 -
150 3 o3
200 <
30
300 3
350
400 ¢

300

200 400 500

k

0 20

0 @0 80

Figure 3. Pre-processing resized image
3.4 Hybrid Convolutional Neural Networks (CNNS)

CNNs integrate multiple types of neural network
architectures, techniques, or features to enhance the
capabilities of standard CNNs. These networks are designed
to leverage the strengths of various models or techniques to
increase presentation on challenging tasks such as image
recognition, natural language processing, and time-series
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analysis [20].

LSTM
Layers

EC
Layers Layers

Convolution Output

Layers

Input
Layers

Y

Figure 4. Architecture of CNN

A hybrid CNN typically combines CNNs with other
architectures (e.g., RNNs, Transformers) or incorporates
additional components (e.g., attention mechanisms, feature
extraction layers). Mathematically, this can be represented by
the integration of operations in the pipeline of feature
extraction, selection, and forecast. Figure 4 illustrates the
architecture of the CNN.

1. Standard Convolutional Layer

The major operation in a CNN is the convolution described

in Eq. (1):

M N

2= 2,2 Won Xiam(jan) +D

m=1 n=1

(1

where, Z;; is the output feature map, Wy, is the kernel of size
M X N, X;; is the input feature map, b is the bias term.
2. Hybrid Layer Integration
In a hybrid model, additional structures are included, such
as the following:

e Recurrent Layer (for sequential data):

h = U(thxt +Winhe_y + bh) 2)
Here, A, signifies the hidden state combining current input

x; and earlier hidden state /,_,.

Transformer-based Attention: The self-attention

mechanism enhances spatial feature learning:

QK

Ja

where, Q,K, and V are query, key, and value matrices
resulting since feature maps.
Graph-based Layers (for structured data):

\%

Attention(Q, K,V ) = soft max 3)

H'=o(DAHW) )

Here A is the adjacency matrix, D is the degree matrix, H is
the input features, and W are learnable weights.
3. Fusion Layers
The outputs of the above layers are concatenated or fused,
often through the use of:



F = feoncar (2, hy, Attention, H') 5)
This ensures the incorporation of diverse features from
various sources.
4. Fully Connected Layers
These layers map the combined features to output
predictions.

y=o(W;F+by ) ©)

3.5 Vision Transformers

Neural network architectures known as ViTs utilize the
Transformer model, initially designed for natural language
processing, to process image input. Different CNNs, which use
convolutions for local image processing, ViTs leverage self-
attention mechanisms to capture global relationships within
the data [21]. Figure 5 illustrates the architecture of a ViT.

Pooling Con

Convolutions

nvolutions

Pooled
Feature Maps

Pooling Global Average

Pooling

:I Quiput

Pooled
Feature Maps

Feature Maps Feature Maps

Figure 5. Architecture of ViT

1. Image Patchification:
The input image (height H, width W, channels C) is
alienated to non-overlapping updates of size P X P. Each

patch is deformed to a vector of size P2C, resultingin N = 11;_1;/
patches.
Patch embeddings :
X, = Flatten(1,)W, i=12,..,N )
2. Positional Encoding:

The Transformer lacks an inherent sense of spatial structure,

a learnable or fixed positional encoding P is included to the
patch embeddings:
Zo=[ X+ P X + Py Xy + Py | (8)
where, P; are positional embeddings.
3. Transformer Encoder:
The Transformer encoder contains of several layers, each
with:

Multi-head self-attention (MHSA):
oK'

ﬁ]v

where, Q, K,V are queries, keys, and values derived since the
input Z;_, using learned weight matrices.
Feed-forward network (FFN):

Attention(Q, K,V ) = Soft max[ )

FEN (X): ReLU (XW1 +by )W, +b,
The final layer output is:

(10)
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ZI = LayerNorm(Z, ; + MHSA(Z, ,))

+LayerNorm(FFN (Z,)) (1

4. Classification Token
A special learnable " [CLS]" token Z is prepended to the
update embeddings. The output of this token, after passing
through all Transformer layers, is used for classification.

Output = Soft max ( Zs W ) (12)

3.6 Affine Speeded-Up Robust Features

ASUREF is a feature detection and description algorithm
designed to detect local features in photos. ASURF builds
upon the Speeded-Up Robust Features (SURF) algorithm but
incorporates affine invariance, making it more robust to
viewpoint changes, scale variations, and image distortions
[22].

1. Interest Point Detection:

Similar to SURF, ASURF utilized a Hessian matrix-
based detector to detect crucial points in the image.
The determinant of the Hessian matrix is calculated

for each point.
} (13)

L, are second-order Gaussian derivatives at

Ly (X,0) Ly (X0)

HessianmatrixH (x, o)
L (X, 0') L (X, G)
Xy vy

where, Ly, L
scale o.

Xy

The determinant of H is:

2
det(H)=LXXLW—(LXy) (14)
2. Affine Shape Estimation:

e To achieve affine invariance, ASURF refines the
detected key points by estimating the local shape of
the feature. The goal is to adaptively normalize the
region around the key point into an isotropic circular
region.

This process involves computing the second-moment
matrix (M):

v {#Xx Hy }
lLle /’lyy
where, Uyy, Hyy, Uy, are calculated using weighted image
gradients over the region of interest.

e FEigenvalue decomposition of M gives the principal
axes and scale of the region, enabling affine
normalization.

3. Scale and Orientation Assignment:

e ASURF computes the dominant orientation using
Haar wavelet and the scale of the areas is estimated
by maximizing the determinant of the Hessian matrix
across multiple scales.

4. Descriptor Computation:

e The affine-normalized region is divided into

subregions, and gradient information is summarized

(15)



of each subregion.
A descriptor vector is formed by concatenating the
gradient magnitudes and orientations.

S| 2l 2yl
D lax+dy], D | dx—dyl,..

where, dx and dy are the vertical and horizontal gradient
components.
5. Affine Invariance:
e By adapting the detected features to their local affine
shape and normalizing them, ASURF achieves
invariance to affine transformations.

(16)

3.7 Integration of CNNs, ViTs, and ASURF

This hybrid system combines CNNs, ViTs, and AASURF

to make use of the advantages of every method to improve the
classification of SC. The process takes place in several steps,
and each model helps with a different part of feature extraction
and improvement.
CNN Feature Extraction: Initially, the CNN model
analyzes the dermoscopic input image. The CNN
locates and extracts local features like edges,
textures, and fine-grained patterns using convolution
processes. The identification of basic picture
structures, which form the foundation for later stages
of more complex pattern recognition, depends on
these characteristics. Mathematically, the
convolution operation is stated as:

Fepn =W *1+B

where, W defines the convolutional filters (kernels), I is the
input picture, F.,,,, is the output feature map, and b is the bias
term.

e ViT Global Contextualization: The model can
consider the image as a whole because ViTs employ
self-attention mechanisms to make connections
between various picture elements. This is how self-

attention works:
T

K Y
dk

A,y = softmax (

where, Q, K, and V are the query, key, and value matrices that
come from the input feature maps, dj, is the size of the key
matrix.

o ASUREF Affine-Invariant Feature Detection: After
the steps of feature extraction and contextualization,
the ASUREF algorithm is used to find affine-invariant
features. ASURF finds essential points in the image
that stay the same when the image is scaled, rotated,
or changed in other ways. This process starts with
finding interest points using a detector based on a
Hessian matrix:

212
Det (H) = DI D 1| - (D, I)?
et (H) = D1/ D 1| - (Dx1)

where, D, I and D, I represent the partial derivatives of the
image 1. The key points are then normalized for affine
invariance by computing the second-moment matrix M around

2982

each interest point:
—_\ym T
M= Zi=1 Wi. Xi. X;

where, w; are the weights and x; are the coordinates of the key
points. The matrix M is employed to calculate the affine
transformation and normalize the feature.

Feature Fusion: After using CNNs, ViTs, and
ASURF to get features, these features are
incorporated into a single feature vector. This fusion
process takes the local, global, and invariant features
from each part and combines them. Mathematically,
this looks like:

Ffused = [Fenns Avits Fasurf]

where, F.,, is the CNN's feature vector, 4,;; is the global
feature vector from the ViT, and Fyg, is the ASURF
invariant feature vector. The last step in the classification
process is to send the fused feature vector to a fully connected
layer.

e C(Classification: Finally, the fully connected layers
sort the photos into one of the skin cancer categories
that have already been set. You can show the final
classification by:

¥y = softmax (W.Fpyseq + b)

where, ¥ is the predicted class label, W is the weight matrix,
and b is the bias term.

™ Load Load Image
CNN g g Feature Extraction
ViT g:g Feature Contextualization
viTend 1 |
A §
ASURF ) Feature Detection
1
S
Feature Feature Fusion
Fusion (Concatenate NN, VIT ASURF)
L
- CIaSSIﬁcatlo" @ Fully Connected Layers

Figure 6. An illustrates flowchart of the CNN-ViT-ASURF
system architecture

This integration strategy makes sure that each model brings
its own strengths: CNNs for recognizing patterns in small
areas, ViTs for understanding the big picture, and ASURF for
extracting features that are strong and not affected by changes
in the environment. Combining these features makes for a
more authentic and dependable skin cancer classification
system, using the strengths of each model to enrich the
system's capability to find and classify skin lesions. Table 4
displays the hyperparameters along with their corresponding
values, while the default settings are retained for the remaining
parameters. Figure 6 depicts the flowchart of the presented
model.



3.8 Advantages of proposed system

e  The hybrid combination of CNNs, ViTs, and ASURF
leverages CNNss for local feature extraction, ViTs for
capturing global context, and ASURF for robust
affine-invariant features, resulting in superior feature

representation.
e By combining several techniques, the system
decreases false positives and improves the

classification accuracy of skin cancer diagnoses,
mainly in complex dermoscopic images.

e ASURF  provides  robustness  to affine
transformations, making the system more efficient
for dermoscopic images with variations in scale,
rotation, or viewpoint.

Table 4. Experimental setup and parameter details of the

suggested model

Parameter Value

Randorn. seed 4

selection
Tralmnzc;r:)\lfihdatlon 70% training, 30% validation

Batch size 32
Optimizer Adam optimizer

Learning rate 0.001

Learning rate Learning rate decay factor = 0.9 every
adjustment 10 epochs

Weight initialization

Regularization
(Dropout)
Epochs
Early stopping
Validation metrics
Multiclass
classification
Binary classification

Mini batch

He initialization: Chosen for better
performance in deep networks with
ReLU activations.

Dropout rate = 0.5

40
10 epochs
Accuracy, Precision, Sensitivity,
Specificity, F1-Score, MCC

701

230
10

4. RESULTS and DISCUSSION

Figure 7. Final predicted images for dataset
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In Figure 7, the outcomes of the suggested CNN-ViT
dermoscopic image-based skin cancer diagnosis technique are
displayed. Windows 7 was installed on a PC with an Intel Core
i5 processor, 8 GB of RAM, and a 2.50 GHz CPU to perform
the computations. The presented Python model was evaluated
using a number of presentation indicators. The following
models were compared in order to assess the CNN-ViT
approach's results: DSCC-Net [23], Weighted ensemble [24],
Spiking VGG-13 [25], FixMatch-LS [26], and DeepLabV3+
[27], and Figure 6 shows the dataset's final anticipated images.

The evaluation metrics and optimal hyperparameter values
used to evaluate the proposed CNN-ViT model's presentation
are shown in this section. Every CNN has a number of
hyperparameter settings that have been modified. SGDM was
the optimization technique used to train the CNNs. A 0.001
learning rate is shown in Figure 8.

Learning Rate

0.0010
0.0008
3
@ 0.0006 ~
o
c
E
m 0.0004
L}
0.0002
0.0000 - L
T T T T T T T
0 1000 2000 3000 4000 5000 6000
steps

Figure 8. Learning rate analysis

The ROC, specificity, precision, sensitivity, Fl-score,
MCC, and accuracy are some of the evaluation measures used
to gauge CNN-ViT's efficacy. The formulas listed below are
used to determine the assessment metrics:

TP+TN
Accuracy = (17)
TP+FP+TN+FN
F1-Score = 2xTP (18)
(2xTP)+FP+FN
Precision = ———— (19)
TP +FP
e TP
Sensitivity = ————
vy TP+FN 29)
e TN
Specificity = —————
P v TN +FP @D
TP+TN -FPxFN
MCC = (22)
J(TP+FP)(TP+FN)(TN + FP)(TN + FN)
Here,

*  True Positives (TP),
*  True Negatives (TN),



¢ False Negatives (FN), and
¢ False Positives (FP)

Confusion matrix

AKIEC { 300 5 0 ) 2 5 5

BCC 4 500 5 o 2 2 1

BKL{ 12 3 1060 1 8 10 2

DF 1 o 1 1o 2 0 1

True label
g

2000

1000

H
@
A
B
B
w
5
5

& & F @ &
Predicted lable

&

Figure 9. Confusion matrix for dataset

The classification model output on the provided dataset,
which is the categories AKIEC, BCC, BKL, DF, MEL, NV,
and VASC, is displayed in the confusion matrix in Figure 9.
Every row of the matrix is the actual class, and every column
is the forecasted class. The diagonal shows the correct

Accuracy
101 — train
val
0.9 4 — highest
% best
f o

0.8 4
>
L%
£
2074
K]

0.6 4

05

0 5 10 15 20 25 30 35 40

epochs

(2)

classifications, and it is apparent that the model correctly
predicted the respective categories. For instance, the model
labeled 300 images as AKIEC, 500 as BCC, and so on. Off-
diagonal elements are misclassifications, where the predicted
class is not the true label. For instance, the model incorrectly
predicted 5 of the AKIEC class images as BCC and 12 of the
BKL class images as AKIEC. The overall performance of the
model can be ensured by corresponding off-diagonal values
with diagonal values, with higher diagonal values indicating
higher performance. As the misclassifications are reasonably
low, further model tuning may be necessary, particularly for
classes with higher rates of misclassifications, e.g., BKL or
NV.

The graphs above display the effectiveness of the presented
model, which includes CNNs, ViTs, and ASURF of skin
cancer diagnosis using dermoscopic pictures. As demonstrated
in Figure 10(a), which displays training and validation
accuracy across 40 epochs, the model maintains stability in
validation while achieving a high degree of accuracy, despite
minor variations. The model's effective generalization is
shown by the corresponding loss in Figure 10(b), where the
validation loss stabilizes and the training loss progressively
decreases.
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Figure 10. (a) Training and validation accuracy analysis (b) Training and validation loss analysis
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Figure 11. ROC curve analysis for the proposed model

In identifying SC from dermoscopic images, Figure 11
illustrates the ROC curves for the ViT, ASURF, and Hybrid
CNN models. Every model has an AUC (Area Under the

Curve) of 1.00, meaning they all performed perfectly in
classification. Given that the curves roughly resemble the
graph's axes, this illustrates how effectively each model
distinguishes between positive and negative classes. The
models’ impressive ability to increase true positive rates while
reducing false positives is demonstrated by using the diagonal
reference line to represent random guessing.

Comparison of performance metric values presented in
Table 5 and Figure 12 is a proximate measurement of
classification capacity between different SC types in
HAM10000. The table further highlights the variation in the
metric representation based on dataset skewness and
uniqueness of each SC type. For example, BCC is the best
overall accuracy (98.38%) and is extremely robust on almost
all of the metrics, with good discrimination for this class.
VASC and AKIEC also have excellent accuracy (95.45% and
95.77%, respectively), but with very poor MCC values, with
possible problems when working with imbalanced sets. On the
contrary, MEL shows comparatively lower precision (89.77%)
and sensitivity (83.78%), again substantiating the difficulty in
accurately predicting malignant cases, in favor of the class
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imbalance nature of the dataset. NV (Melanocytic Nevus) is
superb in precision (96.49%) and F1-Score (94.39%), again
substantiating the capability of the model to well manage this
common benign class. DF and BKL reflect balanced

accomplishment of organization. The metrics depict the
model's good whole accuracy high, sensitivity variation,
MCC, and specificity depict dataset features such as feature
complexity and class imbalance to influence organization

presentation in all metrics and portray moderate results.
Table 5. Comparison analysis of performance metrics with dataset types
Dataset Types Accuracy Precision Sensitivity Specificity F1-Score MCC
VASC 95.45 93.87 91.77 92.18 90.34 88.39
NV 91.66 96.49 93.87 90.89 94.39 92.56
MEL 89.77 84.48 83.78 87.28 86.89 94.88
BKL 91.77 89.69 87.59 85.22 88.38 85.56
DF 93.58 90.78 88.44 92.48 91.39 93.38
AKIEC 95.77 85.84 83.19 87.28 86.38 90.73
BCC 98.38 91.97 90.19 93.19 92.67 95.67

W Accuracy M Precision

VASC

Sensitivity M Specificity WF1-Score WMCC

NV BKL DF BCC

MEL AKIEC
Figure 12. Comparison analysis of performance metrics with
dataset type
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Table 6. Computational time analysis for proposed model

with dataset types
Dataset Types Computational Time (s)

VASC 1.2654
NV 15.3286
MEL 10.5185

BKL 8.9165

DF 0.8586

AKIEC 2.5286

BCC 3.712

For each subclass of the HAMI10000 dataset, the

computational time needed by the proposed CNN-ViT model
is broken down in detail in Table 6 and Figure 13. According
to the results, there are significant differences between the
different types of datasets. The NV class takes the longest to
compute (15.33 seconds) because of its bigger demonstration
in the dataset, while the DF class takes the shortest (0.86
seconds), representing its smaller sample size. With respect to
their respective dataset sizes and levels of complexity, other
classes, including MEL, BKL, AKIEC, and BCC, exhibit
intermediate computational times.

Computational Time Analysis

Computational Time (s)
©

[ ]
DF

VASC MEL BKL

Dataset Types

AKIEC BCC

Figure 13. Computational time analysis for the proposed
model with the dataset types

4.1 Statistical analysis

Table 7 shows an overview of the HAM10000 database,
giving a test case of data entries. Each row corresponds to a
different skin lesion, which is assigned its Lesion id and
associated with specific images by Image id. The Dx column
describes the diagnostic class of the lesion, where in this
instance "BKL" refers to benign keratosis. Where "histo"
represents histological confirmation, the Dx_type column
specifies the detection method. The demographic and
localization information of each lesion is also included in the
table. For example, the patient's age is listed in the Age
column; the majority of patients in this population are elderly
men. Whereas the Localisation column provides the lesion's
physical location, it also indicates the patient's sex and
highlights the comprehensive labelling and high-density
metadata in the dataset, enabling measurement of age, gender,
and anatomical region distributions and bias detection in
machine learning models. Figures 14-17 display the frequency
distribution, gender distribution of disease, histogram of
patient age, and disease localisation.

Table 7. HAM1000 dataset analysis

Image _id Lesion_id Dx_type Dx Sex Age Localization
ISIC 0026769 HAM_ 0002730 histo BKL male 75.0 Scalp
ISIC 0025661 HAM 0002730 histo BKL male 63.0 Scalp
ISIC_ 0031633 HAM 0001466 histo BKL male 75.0 Ear
ISIC_0027419 HAM_0000118 histo BKL male 81.0 Scalp
ISIC 0025030 HAM 0000118 histo BKL male 80.0 Scalp
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4.2 Ablation study analysis

An ablation study evaluates the separate and combined
contributions of the Hybrid CNN-ViT and ASURF technique's
components to the overall effectiveness in the diagnosis of
skin cancer.
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Figure 14. Frequency distribution of dataset classes analysis
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Figure 15. Distribution of disease over gender analysis
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Figure 16. Histogram of age of patients

By methodically removing or separating particular
components—for example, CNNs for feature extraction, ViTs
for attention-based learning, or ASURF for robust detection—
this article emphasizes how each contributes to the
development of accuracy, robustness, and generalization.
Results usually show that the hybrid model performs better
than configurations with one or more components missing,
confirming the synergy between CNNs, ViTs, and ASURF in
capturing complex dermoscopic image features and
addressing experiments such as class imbalance and subtle
variations in lesion features.
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4.2.1 Influence of ViTs

ViTs have transformed picture analysis by using self-
attention processes to detect long-range dependences and
background relationships in visual data. For diemoscopic
image-based skin cancer detection, the suggested hybrid
strategy incorporates CNNs, ViTs, and ASURF; ViTs are
crucial for enhancing feature extraction. With their capacity to
exhibit worldwide, they enhance CNNs' localized feature
learning. A comprehensive analysis of compound
dermoscopic pictures is made possible by the model's
potentiality to jointly capture intricate patterns and texture
variations that are necessary for accurate identification. This
improves organization display.
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Figure 18. K-fold cross validation analysis

4.2.2 Influence of the K-fold cross validation

For the CNNs', ViTs', and ASURF skin cancer detectors'
estimation with the dermoscopic images, 5-fold cross-
validation process shown in Figure 18 is an important
mechanic. Five equal datasets are created by each fold; four of
them are utilized for training, and one is the validation set. This
procedure is done five times to ensure that every block has one
validation set. To limit overfitting and give a more precise
evaluation of the presentation of the model, predictions from
each fold are included to produce the final forecast.
Difficulties like dataset imbalance and variation in
dermoscopic image analysis are overcome with this approach,
which makes sure that model evaluation is accurate and
increases its universality capability.



4.3 Comparative analysis and discussion

Table 8 and Figure 19 depict various models on skin lesion
organization tasks employing the HAM10000 and ISIC 2019
datasets. They highlight the methodologies and accuracy
stages of these models. Tahir et al.'s [23] DSCC-Net achieved
94.17% accuracy on the HAM10000 dataset, Ibrahim et al.'s
[24] Weighted ensemble reached 94.49%, and Zafar et al.'s

[27] DeepLabV3+ obtained 92.07%. For the ISIC 2019
dataset, Spiking VGG-13 by Qasim Gilani et al. [25] and
FixMatch-LS by Zhou et al. [26] achieved accuracies of
89.50% and 91.81%, respectively. Our suggested method, a
hybrid CNN-ViT architecture, outclassed all others, achieving
98.38% accuracy on HAM10000, demonstrative its superior
efficiency in skin lesion organization.

Table 8. Comparation evaluation with existing systems

Reference Method Year Datasets Accuracy
Tahir et al. [23] DSCC-Net 2023 HAM1000 94.17%
Ibrahim et al. [24] Weighted ensemble 2025 HAM1000 94.49%
Qasim Gilani et al. [25] Spiking VGG-13 2023 ISIC 2019 89.50%
Zhou et al. [26] FixMatch-LS 2023 ISIC 2019 91.81%
Zafar et al. [27] DeepLabV3+ 2023 HAM1000 92.07%
Our Model CNN-ViT - HAM10000 98.38%
100.00% 08385 have the highest accuracy, but it is also reporting a statistically
98.00% improved result from others. The use of both CNNs and ViTs
96.00% - in our architecture is an effective way of classifying skin
94.00% e lesions and the statistical evidence of results.
0,005 91.81% 92.07%
50.00% 89.50% 4.4 Limitations and challenges
88.00%
45.00% The suggested model, which combines CNNs, ViTs, and
2000 ASUREF to detect skin cancer from dermoscopic images, has
u Tahir et al. [23] Sukanya et al. [24] Gilani et al. [25] some problems. One of the largest problems is that combining

Zhou et al. [26] m Zafar et al. [27] m Our Mode!

Figure 19. Comparation evaluation with existing systems

In fact, the HAM10000 and ISIC 2019 datasets, which are
extensively used in the skin lesion classification community,
were used to train the majority of the models mentioned in the
comparison, including DSCC-Net, Deep Belief Net, and
DeepLabV3+. Additionally, preprocessing procedures like
image resizing and augmentation methods were used in
accordance with industry standards. We are aware,
nevertheless, that small differences in model architectures and
hyperparameter tuning between studies could have an impact
on the outcomes.

It was the combination of CNNs and ViTs in our
architecture that improved the performance. CNNs are
renowned for their capacity to capture spatial features that are
proximal to one another. ViTs are also excellent at capturing
long-range relationships and dependencies between various
components of an image, which play a critical role in
accurately classifying lesions. This mixed approach, therefore,
has a more potent feature extraction mechanism than CNN or
ViT individually. This is probably why our model performs
better. We conducted statistical testing can measure the
significance of the differences in accuracy between our model
and current systems, thereby enabling a statistically more
robust comparison.

Early results show that we do have a statistically significant
accuracy difference between our CNN-ViT model and models
like DSCC-Net, Deep Belief Net, and DeepLabV3+. The
assumption is that the improvements we saw aren't a one-off,
which shows in turn that our methodology is solid and
dependable. We also compared the standard deviations of the
accuracy of all the models to see how their performances are
different from each other. Not only does the CNN-ViT model
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these deep learning models makes the math much more
complex can lead to slower processing times, which might
make it complex to employ in real time in a clinical setting.
Moreover, the model's performance might not be good when
the number of annotated datasets is minimal, and therefore it
may lead to overfitting and the model is also limited as it is
vulnerable to differences in image quality. As an example,
dermoscopic images are prone to lighting, resolution, and
image noise. Finally, unobtrusive integration into clinical
workflows without compromising speed and accuracy is
another important challenge that needs to be optimized for
daily use.

5. CONCLUSION

The combination of CNNs, ViTs, and ASURF is a new and
promising method for the automatic diagnosis. Our model has
high potential in effectively detecting and classifying skin
lesions as it combines the local feature extraction ability of
CNN:s, the global contextual comprehension ability of ViTs,
and the robustness of ASURF in handling image condition
variations. Nevertheless, for the model to be used in real
clinical setups, made more robust, especially for noisy and
heterogeneous datasets.

This hybrid approach not only pushes the boundary of what
can be achieved with computer-assisted dermatology, but also
makes it possible to develop more precise, trustworthy, and
scalable skin cancer detection systems. More generally in
medical imaging, this strategy could provide a model for the
employment of DL approaches in a broad range of
applications.

Future work includes enhancing the hybrid model by using
more advanced feature fusion techniques and enhancing
transformer architectures for greater performance. The
purpose is to optimize the model's performance on mobile and



real-time systems so that it is suitable for clinical settings
where computational resources are minimal. Another of the
primary goals will be to make the model more useful by
bringing other skin diseases within its scope will make it
robust and flexible for a greater range of medical uses. To
further improve generalizability, future work will include
training the model on bigger and more varied datasets, solving
problems of data imbalance and overfitting, and pursuing
cross-domain applications.
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