
SHADO: A Semantics-Preserving Hybrid Framework for Automatic Text Classification 

Using Domain Ontology 

Isaac Touza1,2* , Warda Lazarre1,2 , Gazissou Balama1,2 , Kaladzavi Guidedi2,3 , Kolyang2,4

1 Department of Mathematics - Computer Science, Faculty of Sciences, University of Maroua, Maroua P.O. Box 814, 

Cameroon  
2 Laboratoire de Recherche en Informatique, University of Maroua, Maroua P.O. Box 46, Cameroon  
3 Department of Computer Science and Telecommunications, National Advanced School of Engineering, University of 

Maroua, Maroua P.O. Box 46, Cameroon  
4 Department of Computer Science, Higher Teacher’s Training College, University of Maroua, Maroua P.O. Box 55, Cameroon 

Corresponding Author Email: isaac.touza@univ-maroua.cm 

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.301114 ABSTRACT 

Received: 2 September 2025 

Revised: 8 November 2025 

Accepted: 16 November 2025 

Available online: 30 November 2025 

In this article, we introduce SHADO: A Semantics-Preserving Hybrid Framework for 

Automatic Text Classification Using Domain Ontology, an innovative architecture that 

systematically integrates domain ontologies throughout a multi-phase processing pipeline 

to achieve superior classification accuracy. Our approach employs a comprehensive six-

phase methodology: rigorous text preprocessing, strategic ontology selection and mapping, 

semantic enrichment with relationship preservation, intelligent feature extraction, 

dimensionality reduction with semantic constraints, and hybrid ensemble classification 

combining traditional machine learning algorithms with transformer-based models like 

BERT. Our experiments, conducted on a multi-source corpus of 5,536 documents covering 

five domains (politics, sports, technology, medical, and education) compiled from the 10 

Newsgroups, BBC News, and Kaggle/UCI repositories, demonstrate excellent 

performance. SHADO achieves up to 97.11% accuracy, surpassing purely lexical models 

by 4.7%. These results confirm that SHADO consistently enhances both semantic 

coherence and classification reliability. Overall, SHADO represents a robust and scalable 

solution bridging the gap between statistical pattern recognition and semantic 

understanding, delivering high accuracy and interpretable classifications through explicit 

ontological knowledge integration. 
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1. INTRODUCTION

In today's digital era, organizations across industries face 

unprecedented challenges in managing and extracting insights 

from vast repositories of unstructured textual content. From 

customer feedback analysis to regulatory compliance 

monitoring, the ability to automatically categorize textual 

documents has become a strategic imperative for competitive 

advantage and operational efficiency. 

Traditional text classification methodologies have 

predominantly relied on feature extraction techniques such as 

Bag of Words (BoW) [1], n-grams [2], and TF-IDF [3], 

combined with machine learning algorithms including support 

vector machines [4, 5], Naive Bayes [4, 6], decision trees [4], 

and k-nearest neighbors (KNN) [7, 8]. While these approaches 

have demonstrated reasonable performance in controlled 

environments, they exhibit significant shortcomings when 

confronted with domain-specific terminology, contextual 

ambiguity, and the nuanced semantics that characterize real-

world textual data [9]. 

The emergence of pre-trained language models and deep 

learning architectures has partially addressed these limitations, 

yet a critical gap remains: the lack of explicit domain 

knowledge integration that could bridge the semantic divide 

between surface-level textual features and deeper conceptual 

understanding. 

This research addresses this challenge by introducing 

SHADO (A Semantics-Preserving Hybrid Framework for 

Automatic Text Classification Using Domain Ontology), a 

novel hybrid framework that systematically incorporates 

structured domain knowledge through ontological 

representations. Unlike existing approaches that treat 

ontologies as supplementary resources, our method positions 

domain ontologies as core semantic engines that guide both 

feature enhancement and classification decision-making 

processes.  

Our contribution is threefold: (1) development of a semantic 

enrichment pipeline that leverages domain ontologies for 

contextual feature augmentation, (2) implementation of a 

dimensionality reduction strategy that preserves semantic 

relationships while optimizing computational efficiency, and 

(3) design of a hybrid classification architecture that

synergistically combines traditional machine learning models

with transformer-based language models like BERT for
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enhanced accuracy and interpretability. 

The structure of this paper follows a systematic progression: 

we begin with a comprehensive literature analysis positioning 

our work within the current research landscape, followed by 

detailed methodology exposition, experimental validation 

using benchmark datasets, and conclude with performance 

analysis and future research directions. 

2. STATE OF THE ART

2.1 Definition of the research problem 

The problem of ontology-enhanced text classification can 

be formally formulated as an optimization problem: we aim to 

find the classifier f that minimizes the classification error 

across a labeled document set while leveraging both textual 

features and structured domain knowledge. 

Let 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛}  be a collection of 𝒏  documents,

and let 𝑶 denote the associated domain ontology comprising 

concepts, relations, and instances. Each document 𝑑𝑖  has a

true class label 𝑦𝑖 ∈ 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘}, and is represented as

a vector 𝑥𝑖 ∈ ℝ𝑚  in the document-term space derived from

vocabulary 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑚}.

The ontology-enriched representation of 𝑑𝑖  is obtained

using a semantic enrichment function 𝝋 defined by Eq. (1): 

𝑥̂𝑖 = 𝜑 (𝑥𝑖 , 𝑂) (1) 

where, 𝑥𝑖̂ ∈ ℝ  incorporates domain knowledge to capture

semantic relationships between lexically diverse but 

conceptually related terms. 

The optimization objective is therefore defined by Eq (2): 

𝑚𝑖𝑛𝑓 ∑ 𝐿(𝑦𝑖

𝑛

𝑖=1
, 𝑓(𝑥̂𝑖)) (2) 

where, 𝑓 represents the classifier function, 𝐿 is a loss function 

measuring prediction error. 

Ontology-based enrichment helps bridge the semantic gap, 

where conceptually similar expressions may be lexically 

dissimilar. It also mitigates issues of high dimensionality and 

sparsity by adding domain-relevant semantic structure, 

improving classification accuracy and model robustness. The 

ultimate aim is to find the optimal 𝑓 that effectively integrates 

both textual and ontological knowledge to improve predictive 

performance.  

2.2 Literature review 

Text classification has evolved from simple statistical 

methods to sophisticated deep learning approaches, with 

researchers increasingly turning to ontologies—structured 

knowledge representations—to bridge the gap between raw 

text and meaningful understanding. As Touza et al. [10] 

confirmed, ontology integration represents a promising 

pathway toward more intelligent, interpretable text analysis 

systems. Ontologies act as carefully organized dictionaries 

that define word meanings and explain how concepts relate 

within specific domains, promising to give machines deeper 

understanding rather than just word counting or pattern 

recognition. 

However, this journey has been filled with both discoveries 

and challenges. Early pioneers like Tufiş and Koeva [11] 

explored linguistic ontologies for resolving word ambiguities, 

revealing both potential and computational demands. Wei et 

al. [12] and Yang et al. [13] demonstrated how domain-

specific ontologies enhance semantic understanding, but 

highlighted that results depend heavily on ontology quality—

creating comprehensive, accurate ontologies requires domain 

experts and ongoing maintenance. 

The challenge of aligning text with ontological concepts 

proved complex. Lee et al. [14] developed ontology-based 

categorization techniques for lexical ambiguities, while Netzer 

et al. [15] found that maintaining optimal performance 

required frequent manual adjustments. As the field matured, 

researchers began exploring semantic techniques beyond 

simple word matching. WordNet became popular, with Nasir 

et al. [16] and Bouchiha et al. [17] using it to measure semantic 

similarity, clearly outperforming bag-of-words approaches. 

However, this reliance created limitations—what worked for 

general English didn't transfer to specialized domains or other 

languages. 

Computational challenges became apparent as researchers 

pushed boundaries further. Altinel et al. [18] developed 

sophisticated semantic kernels for support vector machines, 

achieving impressive results but at considerable computational 

cost. Xu et al. [19] and Ma et al. [20] explored how ontologies 

could improve short text classification, consistently finding 

that semantic techniques offered advantages while introducing 

complexities around data requirements and computational 

resources. 

Supervised learning brought new trade-offs. Risch et al. 

[21] used ontologies as knowledge bases to enrich document

features, improving accuracy but remaining vulnerable to

ontology quality limitations. Tao et al. [22] explored large-

scale ontologies like Library of Congress Subject Headings,

achieving promising results but creating dependency on

labeled training data.

The emergence of deep learning opened possibilities for 

combining both worlds. Nguyen et al. [23] and Yelmen et al. 

[24] began integrating BERT with ontological knowledge,

creating hybrid systems leveraging both neural network

pattern recognition and structured ontological knowledge.

These approaches represent significant progress, though they

require careful optimization to handle noise and preserve

semantic information.

Recent advances demonstrate increasingly sophisticated 

integration strategies. Uddin et al. [25] proposed the 

Expressive Short text Classification framework integrating a 

semantically enriched short text Topic Model, capturing 

semantics of words, topics, and documents within joint 

learning without requiring external knowledge sources. CB et 

al. [26] combined enhanced Apriori algorithms with 

healthcare-specialized BERT models for COVID-19 dataset 

analysis, utilizing BERT embeddings to evaluate semantic 

richness of extracted association rules. 

Several additional studies have examined the role of 

ontologies in semantic enrichment for text classification. 

Shanavas et al. [27] constructed enriched concept graphs using 

domain ontologies to improve biomedical document 

classification, demonstrating gains over traditional similarity 

measures. Stein et al. [28] examined hierarchical text 

classification with word embeddings, highlighting the role of 

distributed representations in capturing semantic relationships 

across classes and Hawalah [29] introduced a semantic 

ontology-based approach to enhance Arabic text 

categorization by leveraging ontological structure alongside 
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vector space models. 

The adoption of transformer architectures has become 

ubiquitous. Ouyang et al. [30] investigated fine-grained entity 

typing enriched with ontological information, aiming to 

enhance type prediction accuracy in a zero-shot setting while 

Ye et al. [31] explored ontology-enhanced prompt-tuning for 

few-shot classification. Ngo et al. [32] presented compelling 

approaches combining graph-based and transformer models 

for chemical-disease relation extraction, demonstrating how 

architectural hybridization leverages both paradigms' 

strengths. 

Table 1. Summary of recent text document classification approaches integration ontologies 

Ref. Author Year Algorithms Vector Representation Methods Ontologies 

[17] Bouchiha et al. 2023 SVM BoW, TF-IDF WordNet 

[20] Ma et al. 2015 Semantics-based methods, k-Means 
Continuous word embeddings, Vector 

space model 
Not specified 

[21] Risch et al. 2016 
SVM, KNN, Naive Bayes (NB), 

Probabilistic Methods 
Not specified 

Domain-specific ontology, 

enriched with probabilities 

[22] Tao et al. 2021 SVM, KNN BoW, TF-IDF LCSH 

[23] Nguyen et al. 2023 OneR, C4.5, NB, AdaBoost.M1 Doc2vec, Word2Vec, Word embeddings OntoModel 

[24] Yelmen et al. 2023 
CNN, RNN, BERT, Random Forest, 

SVM, MLP 

Bag of Words, TF-IDF, Word2Vec, 

Doc2Vec 
WordNet 

[25] Uddin et al. 2025 

StTM (Short text Topic Model), 

BERT/Transformers, LDA variants, 

BTM (Biterm Topic Model) 

Word embeddings, Document vectors, 

Probabilistic topic distributions, BERT-

based contextual embeddings 

External knowledge bases, Topic 

semantics for word-topic 

semantic relations, Context 

modeling semantic document 

[26] CB et al. 2023 
Apriori, BERT Healthcare models, OCA 

Mining algorithm, GraphDB/SPARQL 

BERT embeddings, Cosine similarity, 

RDF format conversion via ontology 

COVID-19 Knowledge Base, 

Healthcare domain ontology for 

COVID-19 knowledge 

structuring 

[27] Shanavas et al. 2020 CMK, CWK, SVM Bag of Words, TF-IDF Medical ontology 

[28] Stein et al. 2019 FastText Word embeddings Not specified 

[29] Hawalah 2019 DT, NB, SVM, SCM TF-IDF, Word embeddings Specific Arabic ontologies 

[30] Ouyang et al. 2024 
Fine-grained entity typing, Ontology 

enrichment 

Entity type vectors, Fine-grained 

representations 

Entity type ontologies, 

Hierarchical taxonomies 

[31] Ye et al. 2022 
Prompt-tuning, Few-shot learning, 

Ontology-enhanced prompting 

Prompt embeddings, Few-shot 

representations, Enhanced vectors 

Domain-specific ontologies, 

Task-oriented taxonomies 

[32] Ngo et al. 2025 
Graph Neural Networks, Transformers, 

Chemical-disease relation extraction 

Graph embeddings, Transformer 

representations, Document-level vectors 

Chemical ontologies, Disease 

taxonomies, Biomedical 

knowledge  

[33] Cao et al. 2024 

Ontology-enhanced LLMs, entity 

extraction, relation extraction, knowledge 

graph construction 

LLM semantic embeddings, entity and 

relation representations 

Rare disease ontologies, 

biomedical knowledge graphs 

[34] Feng et al. 2025 

Ontology-enhanced RAG, in-context 

learning with LLMs, SPARQL-based 

retrieval, reasoning and summarization 

LLM semantic embeddings, retrieval-

augmented representations, mapping 

proximity scoring 

Biomedical ontology knowledge 

graphs, ontology mapping files, 

SPARQL-queried KGs 

[35] Lee and Kim 2025 
Large Language Models, Sentiment 

classification, Ontology-based analysis 

LLM embeddings, Sentiment vectors, 

Attribute representations 

Sentiment ontologies, Emotion 

taxonomies 

[36] Tan et al. 2024 
Recommendation algorithms, Medical 

decision systems, Ontology reasoning 

Medical embeddings, Recommendation 

vectors, Diagnostic representations 

Medical ontologies, Disease 

taxonomies, Treatment 

ontologies 

[37] Li et al. 2025 

Machine Learning algorithms, Natural 

Language Processing, Classification 

models 

Text embeddings, Feature vectors, NLP 

representations 

Medical ontologies, Patient 

complaint taxonomies 

[38] 
Narmatha and 

Maniraj 
2024 C4.5, KNN 

Concept Mapping, Hypernyms, FT-IDF, 

χ² Filter 
MeSH Ontology 

[39] Idress et al. 2024 
Multi-layer neural networks, Siblings 

pattern extraction, Arabic NLP 

Arabic word embeddings, multi-layer 

representations, Pattern vectors 

Arabic linguistic ontologies, 

Semantic patterns ontology 

[40] Ali et al. 2025 
Semantic analysis algorithms, Sindhi 

language processing 

Sindhi language embeddings, Semantic 

vectors, Linguistic representations 

Sindhi language ontology, 

Linguistic taxonomies 

[41] 
Giri and

Deepak
2024 BiGRU, CNN, SDNN Word2Vec, TF-IDF Fuzzy Ontology 

[42] 
Hüsünbeyi and 

Scheffler 
2024 

TF-IDF, Counter algorithm, Zero-shot 

NLI (XLM-RoBERTa, mDeBERTa, 

BGE-M3, MiniLM), Logistic Regression, 

SVM 

Multilingual sentence embeddings (E5-

Large, E5-Mistral-7B, GTE-Qwen2-7B, 

E5-Small-V2), Cosine similarity, Static 

embeddings 

Wikidata knowledge graph, 

SPARQL queries for class 

hierarchies 

[43] 
Almuhaimeed 

et al. 
2024 

Deep learning models, Semantic infusion 

algorithms, Tweet classification 

Semantic embeddings, Deep 

representations, Ontology-infused 

vectors 

Disaster management ontology, 

Emergency response taxonomies 

[44] Kowsari et al. 2019 BERT + Ontology Embedding 
Sentence Embeddings (BERT), 

Ontology Embeddings (KG-based) 
Fact-check OWL Ontology 

[45] Mitchell 1999 SVM, Naive Bayes, BERT 
Ontology Enrichment + BERT (Bio_SA 

approach) 

EDAM, Environment Ontology, 

Wikipedia 
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Large Language Models have introduced new possibilities. 

Cao et al. [33] proposed AutoRD, an ontology-enhanced 

LLM-based system for rare disease entity extraction using 

ontology-guided LLMs, while Feng et al. [34] developed 

OntologyRAG combining retrieval-augmented generation 

with ontology-aware mechanisms for biomedical code 

mapping. An and An [35] proposed an ontology-based 

sentiment and attribute classification framework that enhances 

domain-specific contextual accuracy, and empirically 

demonstrate its effectiveness through comparisons with LLM-

based sentiment analysis approaches. 

The biomedical domain has emerged as a primary 

application area, driven by rich medical ontologies and critical 

healthcare information processing needs. Tan et al. [36] 

developed OntoMedRec for disease diagnosis and treatment. 

Liu et al. [37] developed an intelligent system that integrates 

machine learning and natural language processing (NLP) for 

the automated classification and analysis of patient 

complaints. Narmatha and Maniraj [38] achieved 30% 

improvement using MeSH ontology over traditional stem-

based methods on OHSUMED datasets. The field shows 

increasing attention to multilingual applications, with Idrees 

and Al-Solami [39] developing multi-layer Arabic text 

classification models and Ali et al. [40] creating semantic 

analysis frameworks for Sindhi language. 

Crisis management and social media analysis have gained 

prominence, with Giri and Deepak [41] proposing semantic 

ontology-infused deep learning for disaster tweet 

classification, and Hüsünbeyi and Scheffler [42] exploring 

ontology-enhanced claim detection for fact-checking by 

integrating ontology embeddings with BERT sentence 

embeddings. In academia, ontology-enriched sentiment 

analysis models [43] showed up to 26.4% improvement in F-

score. 

Despite significant advances, persistent challenges remain. 

Most approaches struggle with the fundamental tension 

between semantic richness and computational efficiency, as 

integrating large ontologies with deep learning models creates 

scalability issues limiting practical deployment. Effectiveness 

heavily depends on underlying ontology quality and 

comprehensiveness, which varies significantly across 

domains. The lack of standardized evaluation metrics makes 

comparing approaches difficult, hindering scientific progress. 

While domain-specific adaptations show promise, developing 

generalizable approaches remains challenging, as most 

methods are tightly coupled to specific ontological structures. 

Most importantly, few studies successfully combine the full 

spectrum of available techniques—classical machine learning, 

modern deep learning, and structured ontological 

knowledge—into unified frameworks leveraging each 

approach's strengths while mitigating individual weaknesses. 

Table 1 summarizes the most recent advances in ontology-

enhanced text classification from 2015 to 2025, highlighting 

the evolution of algorithmic approaches, vector representation 

methods, and ontological frameworks employed across 

different research domains. 

In reviewing the existing literature on text classification, we 

observed that while numerous innovative approaches have 

been introduced, several recurring limitations persist. A 

significant proportion of studies continue to rely on traditional 

or narrowly scoped techniques—such as purely statistical 

models or limited semantic strategies—without fully 

leveraging the advancements made in deep learning. For 

instance, models like SVMs and similarity-based classifiers, 

though effective in constrained contexts, often underperform 

compared to transformer-based architectures like BERT, 

which offer superior capacity for capturing nuanced contextual 

information. 

Another critical gap lies in the often-overlooked role of 

comprehensive preprocessing and semantic enrichment. These 

components are essential for improving classification 

accuracy, particularly when dealing with unstructured or noisy 

textual data. Unfortunately, many existing works either 

neglect these stages or implement them superficially, thereby 

weakening the overall performance of their systems. A notable 

exception is the contribution of Touza et al. [10], who 

illustrated the power of integrating domain ontologies into 

deep learning workflows. Their study demonstrates that 

coupling BERT with ontology-driven semantic enrichment not 

only enhances document representation but also improves 

semantic disambiguation. Their empirical results, validated on 

biomedical datasets, show that such hybrid models 

consistently outperform both traditional approaches and 

standalone deep learning techniques in terms of accuracy and 

robustness. 

Moreover, other common challenges include an 

overreliance on a single ontology, insufficient mechanisms to 

handle ambiguous or noisy data, and the use of dimensionality 

reduction techniques that may inadvertently discard valuable 

semantic information. While researchers like Nasir et al. [16] 

and Xu et al. [19] emphasized the relevance of ontologies, 

their approaches often lack a concrete strategy for effective 

integration, limiting the depth and relevance of semantic 

features extracted from the text. 

Building on these insights and addressing the identified 

gaps in current research, we propose a comprehensive 

framework that systematically integrates the full spectrum of 

available techniques—classical machine learning, modern 

deep learning, and structured ontological knowledge—into a 

unified approach that leverages the strengths of each 

methodology while mitigating their individual weaknesses. 

Our method addresses the scalability challenges through 

efficient integration strategies and incorporates robust 

evaluation mechanisms to ensure reliable performance across 

diverse datasets and domains. 

3. PROPOSED TEXT CLASSIFICATION APPROACH

Our classification model, called SHADO, introduces a 

comprehensive, multi-layered strategy for enhancing text 

classification through the integration of domain ontologies. Its 

primary objective is to improve the accuracy, robustness, and 

adaptability of classification systems by leveraging advanced 

NLP and machine learning techniques. The overall framework 

is structured into six key phases, as illustrated in Figure 1. 

3.1 Data preparation and cleaning 

Text preprocessing is the first critical step where textual 

data is cleaned and prepared for further analysis [44]. This 

process includes: 

• Cleaning: Removing irrelevant elements such as

extra spaces, special characters, punctuation, and

converting text to lowercase.

• Tokenization: Splitting the text into words, phrases,

symbols, or meaningful elements called token [27,

28].
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• Lemmatization: Reducing words to their base or root

form to ensure uniformity in text representation [22,

29].

• Stop Word Removal: Eliminating words that do not

contribute significant se-mantic meaning to focus

analysis on relevant content [23].

Figure 1. SHADO framework steps 

Our enhanced preprocessing incorporates pattern 

preservation techniques that maintain important semantic 

markers such as temporal expressions, email addresses, and 

compound words. Unlike traditional approaches that 

indiscriminately remove numeric content, our method 

intelligently transforms numerical entities into semantic 

placeholders (<YEAR>, <DECIMAL>, <NUMBER>) while 

preserving their contextual significance. Additionally, we 

implement sentence boundary preservation through 

<SENT_END> markers, enabling downstream semantic 

analysis to maintain discourse-level context. Algorithm 1 

details the steps involved in preprocessing text data: 

Algorithm 1: Enhanced Text Preprocessing 

Input: Raw text data 

Output: preprocessed text  

1. For each document in the raw text:

2. Pattern preservation (dates, emails, URLs)

3. Intelligent entity handling (years, decimals, numbers)

4. Sentence boundary marking for context preservation

5. Advanced cleaning with marker preservation

6. Optimized tokenization with length filtering (2-15 chars)

7. Smart stop word removal

8. Context-aware lemmatization

9. Enhanced token rejoining

10. End for

11. Return preprocessed text.

end

3.2 Semantic and learning integration 

This critical phase transforms preprocessed textual data into 

semantically enriched representations through strategic 

ontology integration. The semantic enhancement process 

bridges the gap between raw textual features and domain-

specific knowledge, enabling more contextually aware 

classification. This phase focuses on enhancing raw text data 

with domain-specific semantic information to improve the 

learning and classification process. It is composed of two key 

components: Domain Ontology Integration and Feature 

Engineering & Selection. 

3.2.1 Domain ontology integration 

To provide contextual and domain-aware understanding of 

the textual data, relevant domain ontologies are integrated into 

the pipeline. This integration involves three main sub-steps: 

(1) Ontology selection

Ontology selection is a critical process, as the quality and

relevance of the selected ontologies significantly influence the 

effectiveness of semantic enrichment. The following criteria 

guide the selection: 

 Domain Relevance: Ontologies must align closely

with the subject matter of the texts (e.g., medicine,

education, technology, politics) and include relevant

concepts and relationships.

 Semantic Richness: Chosen ontologies should be

conceptually dense, offering a rich network of terms

and relations.

 Accessibility and Maintenance: Preference is given to

open-access, well-documented, and actively

maintained ontologies, such as those from BioPortal,

OBO Foundry, or Linked Open Vocabularies.

 Technical Compatibility: Ontologies must be

available in standard formats (e.g., RDF, OWL) to

ensure smooth system integration.

These criteria are aligned with best practices outlined in 

Touza et al. [10], who emphasized the importance of 

relevance, richness, and format compatibility in selecting 

ontologies for semantic enrichment. 

The number of ontologies used depends on the nature and 

complexity of the do-main: 

 For well-established domains: At least two ontologies

are used, even if one is widely recognized. This

redundancy helps capture additional semantic

nuances and enhances the robustness of the approach.

 For complex or interdisciplinary domains: More than

two ontologies may be integrated to cover diverse

concepts and ensure comprehensive semantic

representation.

(2) Ontology mapping

Ontology mapping links textual terms to structured

concepts defined within selected ontologies, enabling a 

semantic representation of the content. Formally, this process 

can be modeled by Eq. (3).  

𝐶 = 𝑓𝑚𝑎𝑝 (𝑇, 𝑂) (3) 

where, C is the set of corresponding concepts in the ontology, 

T the set of terms from the text, O the select ontology and fmap 

the function that maps each term t ∈ T to one or more concepts 

c ∈ O. 

The process by which textual terms are semantically linked 

to domain-specific concepts is illustrated in Figure 2, which 

visualizes the function 𝑓𝑚𝑎𝑝  by systematically associating

terms with ontology concepts based on their semantic 

relevance and structural alignment. The figure presents a 

structured workflow that explicitly outlines the conditional 

logic used for concept matching, including fallback 

mechanisms when direct mappings are not found. 

(3) Semantic enrichment

Once the terms have been associated with relevant concepts

in the ontology (as described in Algorithm 2), a further step is 

needed to deepen their meaning and contextual understanding. 

This is the role of semantic enrichment, which consists in 
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expanding each term’s representation by incorporating 

additional knowledge from the ontology—such as hierarchical 

relations (e.g., parent-child structures) and semantic links 

(e.g., "part of", "related to"). 

Figure 2. Flowchart of intelligent ontological mapping 

Algorithm 2: Semantic Enrichment 

Input: 

- Mapped_Concepts: Terms linked to ontology

concepts

- Ontology: Includes hierarchies, relations, and

properties

Output: Enriched_Terms: Terms enriched with semantic 

data 

1. Initialize Enriched_Terms as empty dictionary

2. for each term in Mapped_Concepts:

3. Initialize enriched_info as empty list

4. for each concept in Mapped_Concepts[term]:

5. Add descendants of concept to enriched_info

6. Add semantic relations of concept to enriched_info

7. Add properties of concept to enriched_info

8. end for

9. if enriched_info is not empty:

10. Enriched_Terms[term] ← enriched_info

11. else:

12. Enriched_Terms[term] ← empty list

13. end if

14. end for

15. return Enriched_Terms

end

This process allows the initial term set to be enhanced with 

richer, more structured information, enabling more accurate 

and meaningful interpretations of the text content. We 

formalize this enrichment process with the following 

expression (Eq. (4)): 

Tenriched=fenrich(T,C,R) (4) 

where, 

 T is the original set of terms extracted from the text.

 C represents the concepts to which those terms have

been mapped.

 R includes the relationships and hierarchies drawn

from the ontology.

 fenrich is the function that performs the enrichment by

combining these elements.

The goal is to go beyond simple matching and provide a 

semantically empowered view of the text—leveraging 

ontological knowledge to unlock deeper insights and more 

effective downstream processing. To operationalize this 

enrichment process, Algorithm 2 outlines how to retrieve and 

integrate semantic information from the ontology for each 

mapped term. 

3.2.2 Intelligent feature extraction and selection 

Building upon the semantic enrichment achieved in the 

previous phase, this step systematically identifies and selects 

the most informative features by integrating statistical 

significance measures with ontological semantic relevance. 

This hybrid approach ensures that selected features capture 

both distributional patterns and domain-specific semantic 

relationships, creating an optimal foundation for subsequent 

classification models. 

Our feature selection methodology combines traditional 

statistical measures with ontology-derived semantic indicators 

to create a comprehensive importance scoring system. This 

dual-criteria approach addresses the limitations of purely 

statistical methods while preserving computational efficiency. 

• Statistical Foundation: The TF-IDF weighting scheme

provides the statistical baseline for feature importance: 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑) × 𝑙𝑜𝑔
𝑁

𝐷𝐹(𝑡)
(5) 

where, 𝑇𝐹(𝑡, 𝑑) represents term frequency in document 𝑑, 𝑁 

is the total number of documents, and 𝐷𝐹(𝑡) is the number of 

documents containing the term 𝑡. 

• Semantic Enhancement: Ontological centrality measures

augment statistical importance by quantifying semantic 

significance within domain knowledge structures: 

𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 = 𝑇𝐹 − 𝐼𝐷𝐹 ×
𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑜𝑛𝑡𝑜(𝑐)

(6) 

where, Centrality𝑜𝑛𝑡𝑜(c)  represents the centrality score of

concept 𝑐 within the ontological graph structure. 

The feature extraction process operates through coordinated 

stages that progressively refine the feature space while 

maintaining semantic coherence. Algorithm 3a implements 

this coordinated approach through three sequential phases: 

statistical filtering, ontological enhancement, and semantic 

scoring. 

The concept centrality quantifies the importance of each 

ontological concept within its semantic network and is used to 

weight features in the document representation. This measure 

combines three complementary aspects of a concept c is 

defined by Eq. (7): 

𝑐𝑜𝑛𝑐𝑒𝑝𝑡_𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑐) = 𝛼 ⋅ 𝑑𝑒𝑔𝑟𝑒𝑒(𝑐) + 𝛽 ⋅
𝑑𝑒𝑝𝑡ℎ(𝑐) + 𝛾 ⋅ 𝑏𝑟𝑒𝑎𝑑𝑡ℎ(𝑐)  

(7) 
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where, 

 𝛼, 𝛽 and 𝛾, are tunable weights reflecting the relative

importance of each component.

 Degree centrality (𝑑𝑒𝑔𝑟𝑒𝑒(𝑐)): the number of direct

relationships that c has with other concepts in the

ontology.

 Hierarchical depth ( 𝑑𝑒𝑝𝑡ℎ(𝑐) ): the position of c

within the ontology hierarchy, normalized by the

maximum depth. Concepts closer to the root may be

more general, while deeper concepts capture domain-

specific semantics.

 Semantic breadth (𝑏𝑟𝑒𝑎𝑑𝑡ℎ(𝑐)): the total number of

indirectly connected concepts reachable from c,

representing the semantic scope of the concept.

Algorithm 3a: Ontology-Enhanced Feature Extraction 

Input: Preprocessed_Texts, Ontologies, 

TFIDF_Threshold, Semantic_Threshold 

Output: Document_Features, Feature_Metadata 

1. Compute TF-IDF matrix for all documents

2. for each document in Preprocessed_Texts:

3. select terms where TF-IDF ≥ TFIDF_Threshold

4. Apply ontological mapping using Algorithm 2

5. Apply semantic enrichment using Algorithm 3

6. for each enriched term:

7. Compute total_importance = TF-IDF × 

concept_centrality 

8. if total_importance ≥ Semantic_Threshold:

9. Store feature and associated metadata

10. end for

11. Add selected features and metadata to 

Document_Features

12. end for

13. return Document_Features, Feature_Metadata

end

Algorithm 3b: Multi-Configuration Feature Extraction 

Input: Preprocessed texts T, domain D (for ontology 

mapping) 

Output: Combined feature matrix X_combined 

1. Apply word-level TF-IDF with n-grams (1,2)

2. Apply character-level TF-IDF with n-grams (3,6)

3. Apply Truncated SVD to character features

4. Extract semantic features from ontology mapping

- Domain-specific concept counting

- Fallback to text complexity metrics

5. Combine all feature types:

𝑋𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = [𝑋𝑤𝑜𝑟𝑑𝑠 | 𝑋𝑐ℎ𝑎𝑟𝑠_𝑟𝑒𝑑𝑢𝑐𝑒𝑑  | 𝑋𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐]
6. return X_combined, feature_metadata 

end 

These three components are combined into a normalized 

score in the range [0,1]: 

To address the limitations of single-configuration feature 

extraction, we propose a multi-modal approach that combines 

three complementary feature types: (1) word-level TF-IDF 

with bi-gram extensions capturing semantic relationships, (2) 

character-level TF-IDF with 3-6 gram patterns capturing 

morphological information, and (3) ontology-derived 

semantic features quantifying domain-specific concept 

density. This hybrid approach increases feature space richness 

from traditional single-vector representations to multi-

dimensional semantic embeddings of 3100+ features. 

Algorithm 3b describes this process. 

3.3 Dimensionality reduction with semantic preservation 

Following feature extraction and semantic enrichment, the 

resulting high-dimensional feature space requires careful 

dimensionality reduction to maintain computational efficiency 

while preserving the rich semantic relationships captured 

through ontological integration. This phase implements a 

sophisticated reduction strategy that balances performance 

optimization with semantic fidelity. Our approach employs a 

multi-stage reduction pipeline that progressively refines the 

feature space. 

The reduction process operates through three coordinated 

stages, each optimized for specific aspects of the feature space 

transformation. 

(1) Stage 1: Statistical Variance Reduction (PCA)

Principal Component Analysis provides the initial

dimensionality reduction by identifying the directions of 

maximum variance in the feature space is given by Eq. (8). 

where 𝑋 represents the original feature matrix, 𝑊𝑃𝐶𝐴 contains

the principal components, and 𝑌 is the reduced representation. 

𝑌 = 𝑋𝑊𝑃𝐶𝐴 (8) 

(2) Stage 2: Semantic Structure Preservation

This stage applies semantic constraints to ensure that

ontologically related features maintain their relationships in 

the reduced space is given by Eq. (9).  

𝑚𝑖𝑛𝑤 ∣∣ 𝑋𝑊 − 𝑌 ∣∣𝐹
2

+ 𝜆∑(𝑖,𝑗) ∈𝑆 𝑤𝑠(𝑖, 𝑗) ∣∣ 𝑤𝑖 − 𝑤𝑗 ∣∣2
2 (9) 

where, 𝑆 represents semantic similarity pairs, 𝑤𝑠(𝑖, 𝑗) denotes

semantic weights, and  𝜆  controls the semantic preservation 

strength. 

(3) Stage 3: Non-linear Manifold Learning (t-SNE)

The final stage employs t-distributed Stochastic Neighbor

Embedding to capture non-linear relationships while 

preserving local semantic neighborhoods is given by Eq. (10). 

𝑃𝑗∣𝑖 =
𝑒𝑥𝑝(−∣∣ 𝑥𝑖 − 𝑥𝑗 ∣∣2/2𝜎𝑖

2)

∑𝑘≠𝑖  𝑥𝑝(−∣∣ 𝑥𝑖 − 𝑥𝑘 ∣∣2/2𝜎𝑖
2)

(10) 

where, 

 𝑃𝑗∣𝑖  is Conditional probability that point 𝑥𝑖  chooses

𝑥𝑗 as its neighbor.

 𝑥𝑖 , 𝑥𝑗 are data points in the original high-dimensional

space. 

 ∣∣ 𝑥𝑖 − 𝑥𝑗 ∣∣2 Squared Euclidean distance between

points i and j.

 𝜎𝑖
2 Variance of the Gaussian kernel centered on point

i.

The reduction process is implemented through Algorithm 4, 

which coordinates the three stages while continuously 

monitoring semantic preservation quality. The algorithm 

begins with statistical variance reduction via PCA, followed 

by the application of semantic constraints derived from the 

ontological graph structure, and concludes with adaptive t-

SNE transformation based on dataset characteristics. 

Algorithm 4: Semantic-Preserving Dimensionality 

Reduction 

Input: Enriched_Features, Semantic_Graph, 

Target_Dimensions 
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Output: Reduced_Features, Preservation_Score 

Apply PCA 

Apply semantic constraints using ontological 

relationships (Eq. (9)) 

Apply t-SNE for final reduction 

Evaluate semantic preservation (SNP and ORR metrics) 

return Final_Features, Preservation_Score 

end 

The Semantic_Graph G = (V, E) is constructed from all 

ontology-enriched concepts extracted during feature 

extraction. Nodes 𝑣 ∈ 𝑉 represent concepts, while edges 𝑒 ∈
𝐸  represent semantic relationships such as is-a, part-of, or 

domain-specific connections. Edge weights 𝑤𝑠(𝑖, 𝑗)  reflect

semantic similarity between connected concepts, computed 

based on ontological proximity or co-occurrence in the corpus. 

During dimensionality reduction, semantic constraints are 

applied to preserve the ontological relationships among 

features. In Stage 2 of Algorithm 4, these constraints are 

incorporated into the objective function for linear reduction 

(Eq. (9)), ensuring that concepts linked in the Semantic_Graph 

remain close in the reduced space. The regularization 

parameter λ controls the trade-off between preserving 

semantic relationships and minimizing reconstruction error. 

Quality assessment employs Semantic Neighborhood 

Preservation (SNP) metrics that measure the retention of k-

nearest semantic neighbors and Ontological Relationship 

Retention (ORR) scores that evaluate the preservation of 

ontological relationships in the reduced space. 

The optimal target dimensionality is determined through 

cross-validation using classification performance as the 

primary criterion, balanced with semantic preservation scores 

and computational efficiency measures. This adaptive 

approach ensures that the reduced feature space maintains both 

computational tractability and the rich semantic structure 

essential for accurate ontology-enhanced classification, 

providing an optimal foundation for the subsequent hybrid 

classification phase. 

3.4 Hybrid classification model 

The final training phase leverages the semantically enriched 

and dimensionally optimized feature representations to 

construct a sophisticated ensemble classifier that combines the 

complementary strengths of traditional machine learning 

algorithms with modern transformer architectures. This hybrid 

approach integrates six distinct learning paradigms: Support 

Vector Machines excel at finding optimal decision boundaries 

in high-dimensional spaces, Random Forest provides robust 

feature importance estimates, Gradient Boosting provides a 

powerful trade-off between bias and variance, making it ideal 

for capturing complex patterns in structured data, KNN 

captures local neighborhood patterns enhanced by semantic 

similarity, Multi-Layer Perceptron learns complex non-linear 

mappings, and BERT contributes contextualized 

understanding of textual semantics. 

The ensemble employs a two-tier architecture where base 

models generate individual predictions that are subsequently 

combined through an intelligent voting mechanism. Unlike 

simple majority voting, our approach implements weighted 

voting that assigns different importance to each model based 

on their reliability and past performance on similar semantic 

contexts. Algorithm 5 coordinates this multi-algorithm 

approach through systematic training, prediction aggregation, 

and consensus formation. 

Algorithm 5: Hybrid Classification Model 

Input: Reduced_Features, Labels, Base_Models   

Output: Final_Classifications, Confidence_Scores 

Initialize prediction_matrix for storing base model 

outputs 

Apply BERT vectorization to reduced features for 

contextual enhancement 

for each base_model in Base_Models: 

     Train model on reduced_features and labels 

     Generate predictions and confidence scores 

     Store predictions in prediction_matrix 

end for 

Apply weighted voting based on model reliability scores 

Calculate final class assignments and aggregate 

confidence scores 

return final_classifications, confidence_scores 

end 

To enhance the ensemble’s robustness, each base model is 

assigned a model reliability score, which reflects its predictive 

performance on a validation set. In our implementation, the 

reliability score 𝑤𝑖  for classifier i is proportional to its cross-

validation accuracy and normalized over all base models, as 

given in Eq. (11): 

𝑤𝑖 =
 𝐶𝑉𝑠𝑐𝑜𝑟𝑒_𝑖

∑ 𝐶𝑉𝑠𝑐𝑜𝑟𝑒𝑠
(11) 

During ensemble prediction, each classifier contributes to 

the final decision based on its weight 𝑤𝑖  and its predicted

probability 𝑝𝑖  for each class. The final prediction is

determined by aggregating the weighted probabilities and 

selecting the class with the highest total score, as shown in Eq. 

(12): 

𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =  𝑎𝑟𝑔 𝑚𝑎𝑥 (∑𝑤𝑖 × 𝑃𝑖) (12) 

This performance-based weighted voting ensures that 

models demonstrating higher reliability have greater influence 

on the ensemble decision, while models with lower accuracy 

contribute less. Consequently, the approach leverages the 

collective intelligence of multiple algorithms, improving 

overall classification accuracy and providing more stable and 

interpretable confidence scores. 

3.5 Optimization and validation 

This critical phase implements comprehensive evaluation 

protocols to ensure optimal performance and robust 

generalization of the trained ensemble model. The 

optimization process operates through three coordinated 

activities: cross-validation for generalization assessment, 

hyperparameter tuning for performance maximization, and 

result analysis for model selection and validation. 

Cross-validation evaluates generalization capability 

through systematic data partitioning into training and test sets, 

preventing overfitting while enabling robust performance 

assessment. Hyperparameter tuning employs GridSearchCV 

to optimize each base model's configuration, systematically 

exploring parameter spaces for all ensemble components 

including traditional machine learning models and BERT fine-

tuning parameters. Performance analysis evaluates models 
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across multiple dimensions using precision, recall, F1-score, 

and accuracy metrics, while confusion matrices reveal detailed 

classification patterns and semantic coherence assessment 

measures alignment with ontological relationships. 

The validation process compares weighted voting, majority 

voting, and stacking approaches to identify optimal ensemble 

configurations. Final model selection balances classification 

accuracy with semantic consistency and computational 

efficiency, ensuring practical applicability while maintaining 

the ontology-enhanced performance advantages that 

distinguish our approach from traditional classification 

approaches. 

3.6 Prediction phase 

After thorough optimization and validation, the SHADO 

framework moves into operational deployment for real-world 

document classification. In this phase (Figure 3), a streamlined 

prediction pipeline is activated to process new, unseen 

documents by applying a predefined sequence of steps 

established during training. 

Figure 3. Prediction phase workflow for new document 

classification 

Unlike the training phase, supervised ontology-based 

enrichment is not applied here, since the document’s class is 

not yet known. The system instead performs class-independent 

operations, including text preprocessing, feature extraction 

(TF-IDF and general semantic weighting if applicable), 

dimensionality reduction using pre-trained transformation 

matrices, and final classification through the optimized 

ensemble model. 

The system delivers comprehensive classification results 

including definitive class assignments representing the 

ensemble's highest confidence predictions and detailed 

confidence scores indicating prediction reliability. These 

confidence metrics prove valuable for applications requiring 

threshold-based decision making or scenarios where multiple 

potential classifications need consideration. Additional 

outputs include individual model predictions for transparency. 

This comprehensive output supports both automated decision-

making and human interpretation, ensuring practical 

applicability across diverse domain-specific classification 

tasks while maintaining the semantic richness that 

distinguishes ontology-enhanced classification from 

traditional approaches. 

4. IMPLEMENTATION AND EXPERIMENTATION

This section presents the practical implementation of the 

SHADO framework alongside comprehensive experiments 

conducted to evaluate its performance across multiple domains 

and datasets. 

4.1 Implementation architecture 

The SHADO framework is built on Python’s robust 

ecosystem, offering a modular and scalable architecture that 

supports the entire classification pipeline. It combines 

powerful tools for semantic processing (NLTK, spaCy, 

Gensim), ontology management (OWLReady2, rdflib, 

NetworkX), machine and deep learning (scikit-learn, 

Transformers, TensorFlow/Keras), and dimensionality 

reduction and optimization (PCA, t-SNE, GridSearchCV). 

This setup ensures high performance, flexibility, and 

extensibility throughout the system. 

4.2 Experimental protocol 

4.2.1 Datasets and experimental design 

Our evaluation uses a multi-source corpus to assess 

SHADO’s performance across varied textual domains. The 

dataset combines three established sources: 10 Newsgroups 

(subset of the 20 Newsgroups collection by Ken Lang, Kaggle 

version by Jensen Baxter, 2018), BBC News Dataset (Bimal 

Timilsina, 2021), and the Website Classification Dataset 

(Hetul Mehta, Kaggle/UCI Repository). 

The 10 Newsgroups [45] subset contains around 1,000 

cleaned documents across ten categories, with duplicates 

removed and only key headers retained. The BBC dataset 

provides 2,000 validated medical articles from Medical News 

Today, while the Website Classification set adds textual and 

structural data for web categorization. 

Together, these sources yield 5,536 curated documents 

covering five major domains — politics, sports, technology, 

medical, and education. All texts were standardized using 

Algorithm 1 (Preprocessing Pipeline), which performs 

normalization, lemmatization, stopword removal, and GloVe-

based vectorization. 

Figure 4. Dataset distribution by class 
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Figure 5. Document length distribution by class 
Figure 6. Heatmap of the correlation between data sources and 

classification categories 

Table 2. Domain-specific ontologies used for semantic enrichment 

Domain Ontology Description 

Technology 

Software Ontology Software artifacts, development processes, and programming concepts 

Computer science ontology Hierarchical classification of computer science research topics 

Computer network ontology Network protocols, topologies, and distributed computing concepts. 

Artificial intelligence ontology 
AI subfields: machine learning, NLP, computer vision, knowledge 

representation 

Medical 

Human Disease Ontology 
Standardized classification of human diseases with cross-references to 

symptoms, causes, and anatomical locations 

Medical Action Ontology Standardized classification of human diseases and symptoms 

The Ontology of Medically Related Social Entities Medical procedures, treatments, and clinical interventions 

Ontology for Biomedical Investigations Biomedical research terminology and experimental protocols 

Politics 

DBpedia Political Classifications Political entities, government structures, and electoral systems 

European Legislation Identifier (ELI) Legal and political terminologies used in European contexts 

EU Vocabularies EU policies, institutions, and administrative procedures 

Sports 

Sport ontology Sports terminology: disciplines, competitions, athletes, venues 

Olympic Games Ontology Olympic sports, events, records, and competition structure 

Sports Performance Analytics Ontology Athletic performance data, statistics, and sports science 

Education 

Social Determinants of Education Ontology Socioeconomic factors affecting educational outcomes 

EduKG: An Educational Knowledge Graph Educational concepts, curriculum standards, and learning objectives 

EducOnto Learning activities, educational resources, and assessment methods 

To ensure methodological rigor, datasets were split 80/20 

for training and testing, maintaining balanced domain 

representation and semantic diversity. Figure 4 summarizes 

the distribution of documents across domains. 

Figure 5 illustrates the detailed distribution of document 

lengths across all classes in the dataset, highlighting variations 

in text size that may affect classification performance. 

Figure 6 presents a comprehensive heatmap showing the 

correlations between the different data sources and 

classification categories, providing insights into potential 

domain-specific relationships and patterns within the corpus. 

4.2.2 Ontological resources and selection 

The semantic enrichment component of SHADO relies on a 

carefully curated set of domain-specific ontologies obtained 

from authoritative repositories and standards organizations. A 

multi-ontology approach is adopted for each domain to ensure 

broad semantic coverage and to mitigate the limitations of 

relying on a single source. Ontologies are selected based on 

their domain relevance, semantic richness, standardization 

(e.g., OWL, TTL, RDF), and ongoing maintenance. Typically, 

2 to 5 complementary ontologies are employed per domain to 

balance expressiveness and computational efficiency. To find 

these ontologies, we explored several well-known platforms 

known for their ontology collections, such as Archivo, 

BioPortal, the Ontology Library Service of the Open 

Biological and Biomedical Ontology (OBO) Foundry, github 

repository and other specialized repositories, ensuring 

extensive and accurate coverage for each category. The 

selected ontologies for each domain are summarized in Table 

2, which outlines the sources and roles of each ontology used 

in the semantic enhancement process. 

Table 3. Global ontological framework statistics 

Metric Value 

Total Ontologies 20 

Total Concepts 34,024 

Total Relations 3,139 

Total RDF Triples 908,935 

Our comprehensive ontological framework encompasses a 

meticulously curated collection of domain-specific ontologies 

distributed across five critical knowledge domains. Table 3 

presents the overall statistics of our ontological infrastructure, 

demonstrating the scale and scope of semantic resources 

employed in our experimental evaluation. 

The distribution of ontological resources across domains is 
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detailed in Table 4, which illustrates the strategic allocation of 

semantic knowledge bases to ensure balanced coverage while 

accommodating domain-specific complexity requirements. 

To assess the semantic richness and structural 

characteristics of our ontological framework, Table 5 provides 

derived metrics that quantify the density, granularity, and 

balance of the integrated knowledge bases. 

Table 4. Domain distribution of ontological resources 

Domain Number of Ontologies Percentage 

Technology 5 25.0% 

Education 4 20.0% 

Medical 4 20.0% 

Politics 4 20.0% 

Sports 3 15.0% 

Total 20 100.0% 

Table 5. Framework density and balance metrics 

Statistic Value Description 

Average Concepts 

per Ontology 
1,701 

Mean concept density across all 

ontologies 

Average Relations 

per Ontology 
157 

Mean semantic relationship 

density 

RDF Triples per 

Concept 
26.7 

Knowledge representation 

granularity 

Domain Balance 

Score 
95% 

Measure of balanced 

distribution across domains 

This ontology infrastructure forms the backbone of SHADO 

semantic enhancement process, allowing domain-specific 

context to be encoded and leveraged during feature extraction 

and classification stages. 

4.2.3 Evaluation metrics and performance assessment 

Table 6. Primary classification metrics 

Metrics Formula Description 

Accuracy 
TP +  TN 

TP +  FP +  FN +  TN

Represents the ratio of 

correctly classified 

instances to the total 

number of instances, 

reflecting the global 

effectiveness of the 

classification model. 

Recall 
∑ TPi

N
i=1  

∑ (TPi + FNi)
N
i=1  

Quantifies the capacity 

of the model to retrieve 

relevant positive 

instances among all 

actual positives. 

Precision 
∑ TPi

N
i=1  

∑ (TPi  +  FPi)
N
i=1  

Indicates the reliability 

of positive predictions 

by measuring how many 

predicted positives are 

truly correct. 

F1-Score 
∑ 2TPi

N
i=1

∑ (2TPi  +  FPi  +  FNi)
N
i=1

Combines precision and 

recall into a single 

metric, ensuring a

balanced evaluation of 

classification 

performance. 

The evaluation of the SHADO framework integrates both 

classical classification metrics and semantic-aware measures, 

providing a comprehensive assessment of performance. While 

standard metrics quantify the predictive effectiveness of the 

model, semantic metrics evaluate its ability to preserve 

ontological integrity and semantic structure throughout the 

processing pipeline.  

(1) Primary classification metrics

To evaluate predictive performance, we employ widely

accepted classification metrics computed across all classes. 

The formal definitions of the four primary metrics—Accuracy, 

Precision, Recall, and F1-Score—are provided in Table 6. 

These metrics follow standard evaluation practices commonly 

used in supervised classification studies [46]. 

(2) Semantic coherence metrics

To assess the semantic integrity of the SHADO framework,

we introduce two specialized metrics tailored to ontology-

enhanced classification systems: SNP and ORR. Unlike 

traditional performance metrics, these evaluate the model’s 

ability to preserve ontological coherence in its learned 

representations. 

- Semantic Neighborhood Preservation (SNP): Measures

the model’s ability to retain semantically coherent clusters

by evaluating whether semantically similar documents 

remain close in the feature space after transformation. 

Let:  

 𝐶 be the set of ontology concepts extracted from a test

document;

 𝑁ont(𝑐) the semantic neighbors of concept 𝑐 in the

ontology. For each concept 𝑐𝐶, collect the directly 

related concepts in the ontology (hierarchical or 

associative links). Example: For 𝑐 = diabetes, 𝑁ont(𝑐) 

= {insulin, blood sugar, obesity}; 

 𝑁vec(𝑐) the 𝑘-nearest neighbors of 𝑐 in the vector space

(e.g., after PCA or embedding). After embedding or

dimensionality reduction, determine the KNN for

each concept 𝑐 in the vector space using distance

metric (cosine similarity or Euclidean distance).

Then, SNP is computed as Eq. (13). 

𝑆𝑁𝑃 =
1

|𝐶|
∑

|𝑁𝑜𝑛𝑡(𝑐) ∩ 𝑁𝑣𝑒𝑐(𝑐)|

|𝑁𝑜𝑛𝑡(𝑐)|
𝑐∈𝐶

(13) 

A higher SNP value indicates that the semantic structure of 

the ontology is well-reflected in the model’s learned 

representations. 

- Ontological Relationship Retention (ORR): Assesses the

extent to which hierarchical and associative relationships

defined in the ontology are maintained in the classification 

outputs. 

Let : 

 𝑅 = {(𝑐𝑖 , 𝑐𝑗)} be the set of related concept pairs in the

ontology. Extract all pairs (𝑐𝑖, 𝑐𝑗) that are linked

hierarchically or associatively;

 𝑣𝑐𝑖  and 𝑣𝑐𝑗  be the vector representations of concepts

𝑐𝑖 and 𝑐𝑗;

 𝑑𝑖𝑠𝑡(; )  be a distance function. Choose a metric:

cosine similarity or Euclidean distance;

 𝜃  a pre-defined proximity threshold. Determine

experimentally or heuristically. Example: For cosine 

similarity, 𝜃 = 0.8 means two concepts are considered 

close if similarity ≥ 0.8. 

Then, ORR is defined as (Eq. (14)): 

𝑆𝑁𝑃 =
1

|𝑅|
∑ 1[𝑑𝑖𝑠𝑡(𝑣𝑐𝑖 ,𝑣𝑐𝑗 )≤0]

(𝑐𝑖,𝑐𝑗)∈ℝ

(14) 

2971



where 1[⋅] is the indicator function returning 1 if the condition 

holds, 0 otherwise. Values near 1 indicate that the ontology 

relationships are well-preserved in vector space. 

- Aggregation Across Domains

Given that SHADO uses distinct ontologies per domain,

SNP and ORR are computed per domain, using the ontology 

associated with each category. This ensures semantic integrity 

is assessed contextually. Final scores are then aggregated as a 

mean across domains. These calculations are performed using 

Eqs. (15) (global SNP) and (16) (global ORR) defined by: 

𝑆𝑁𝑃𝑔𝑙𝑜𝑏𝑎𝑙 =
1

|𝐷|
∑ 𝑆𝑁𝑃𝑑

|𝐷|
𝑑=1 (15) 

𝑂𝑅𝑅𝑔𝑙𝑜𝑏𝑎𝑙 =
1

|𝐷|
∑ 𝑂𝑅𝑅𝑑

|𝐷|
𝑑=1 (16) 

where, D represents the set of all domains used in your 

evaluation. d refers to one specific domain within D. 

These combined metrics offer a dual-layered evaluation 

framework—quantitative and semantic—that ensures robust 

and meaningful assessment of model performance within 

semantically enriched classification contexts. 

5. RESULTS AND DISCUSSIONS

In this section, we present a comprehensive analysis of 

SHADO’s experimental results across multiple domains, 

discuss comparative performance metrics, and highlight the 

framework’s impact on advancing semantic-driven text 

classification. 

5.1 Results 

This section provides a detailed experimental evaluation of 

the proposed SHADO framework. It includes a domain-wise 

performance assessment with semantic coherence metrics 

across five thematic areas, results obtained using baseline 

machine learning methods, an analysis of the confusion matrix 

generated by SHADO, and a comparative evaluation against 

recent state-of-the-art ontology-enhanced classification 

approaches published between 2023 and 2025. 

5.1.1 SHADO performance evaluation 

A comprehensive evaluation shows that SHADO performs 

better than traditional classification methods in all domains. 

The ontology-based approach achieves high accuracy and 

preserves semantic meaning. Table 7 summarizes the results, 

including both standard metrics and measures of semantic 

coherence across the five domains. 

Table 7. SHADO performance summary across domains 

Domain Accuracy Precision Recall 
F1-

Score 

SNP 

Score 

ORR 

Score 

Technology 0.9729 1.0000 0.9729 0.9964 0.892 0.915 

Medical 0.9928 1.0000 0.9863 0.9928 0.901 0.923 

Politics 0.9509 1.0000 0.9509 0.9748 0.884 0.907 

Sports 0.9696 1.0000 0.9696 0.9846 0.888 0.911 

Education 0.9587 1.0000 0.9587 0.9789 0.895 0.918 

The results in Table 7 indicate consistently strong 

performance across all five domains, with F1-scores above 

97% and only minor variations between domains. The Medical 

and Technology categories exhibit slightly higher accuracy 

and F1-scores, which can be attributed to the richness and 

structural completeness of their ontological resources. 

Notably, SNP and ORR scores remain high (average ≈ 0.89 

and 0.91, respectively), confirming that the learned 

embeddings preserve both semantic proximity (SNP) and 

ontological relationships (ORR). A cross-domain correlation 

analysis shows that domains with higher SNP/ORR values 

tend to achieve higher F1-scores (Pearson r = 0.82 for SNP, r 

= 0.79 for ORR), indicating that maintaining semantic 

coherence in the representation space directly enhances 

classification reliability. 

5.1.2 Performance results using baseline methods 

SHADO’s performance is presented alongside results 

obtained from standard classification algorithms applied to the 

same preprocessed datasets. These baseline models represent 

traditional approaches with semantic enrichment and ontology 

integration. Table 8 reports the outcomes of these methods, 

allowing the effectiveness of SHADO’s ontology-driven 

framework to be contextualized in relation to established 

techniques. 

Table 8. Comparative performance analysis 

Classifier Accuracy Precision Recall F1-Score CV Score 

Random Forest 0.9603 0.9608 0.9603 0.9604 0.9484 

SVM 0.9675 0.9679 0.9675 0.9676 0.9668 

Gradient Boosting 0.9540 0.9546 0.9540 0.9541 0.9524 

KNN 0.9684 0.9685 0.9684 0.9684 0.9538 

MLP 0.9693 0.9696 0.9693 0.9693 0.9582 

Logistic Regression  0.9504 0.9504 0.9827 0.9502 0.9538 

Overall  0.9711 0.9713 0.9711 0.9712 0.9560 

To ensure a fair comparison, we further evaluated the 

baseline classifiers on the same datasets without semantic or 

ontological enrichment, using only lexical features after 

standard preprocessing (Algorithm 1). This complementary 

analysis isolates the contribution of the ontology-based 

enrichment introduced in SHADO. 

Table 9. Comparative performance of baseline models 

without semantic enrichment 

Classifier Accuracy Precision Recall F1-Score CV Score 

Random Forest 0.9231 0.9228 0.9231 0.9229 0.9184 

SVM 0.9326 0.9329 0.9326 0.9327 0.9278 

Gradient Boosting 0.9189 0.9193 0.9189 0.9190 0.9162 

KNN 0.9278 0.9280 0.9278 0.9278 0.9224 

MLP 0.9342 0.9344 0.9342 0.9343 0.9285 

Logistic Regression 0.9104 0.9106 0.9104 0.9105 0.9081 

Overall 0.9245 0.9247 0.9245 0.9245 0.9202 

The results in Table 9 reveal a notable improvement of 

+4.6% in average accuracy when semantic enrichment and

ontology integration are applied (Table 8). This demonstrates

that the observed performance gain of SHADO does not

merely result from model architecture or hyperparameter

tuning, but from the semantic reinforcement provided by

ontological grounding and contextual feature expansion. By

comparing both settings (with and without enrichment), we

confirm that SHADO’s ontology-driven representation

significantly enhances document understanding, leading to

higher stability (CV Score) and better generalization across

domains.
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5.1.3 Ablation study: Component-wise contribution analysis 

To further quantify the contribution of each component 

within the SHADO framework, we conducted an ablation 

study. This analysis isolates the effect of three major modules: 

(i) ontology-based enrichment, (ii) semantics-preserving

dimensionality reduction, and (iii) hybrid ensemble

aggregation. Each variant was tested under identical

experimental settings using the same preprocessed corpus.

Table 10. Ablation analysis of key ATCIADO components 

Configuration 
Ontology 

Enrichment 

Semantic 

Reduction 

Hybrid 

Ensemble 
Accuracy 

F1-

Score 

Baseline (no enrichment) × × × 0.924 0.924 

+ Ontology Enrichment only √ × × 0.951 0.950 

+ Ontology + Semantic Reduction √ √ × 0.962 0.962 

+ Ontology + Semantic Reduction + Hybrid Ensemble (Full SHADO) √ √ √ 0.971 0.971 

Results in Table 10 clearly show that each module 

contributes progressively to the overall performance of 

SHADO. Ontology enrichment alone yields a +2.7% accuracy 

improvement by embedding domain semantics and resolving 

lexical ambiguity. The semantics-preserving reduction adds a 

further +1.1% gain, demonstrating the benefit of structure-

aware compression. Finally, integrating the hybrid ensemble 

boosts both accuracy and robustness (+0.9%), validating the 

synergy between diverse learners. 

These findings confirm that SHADO effectiveness 

emerges from the cumulative interaction of its components, 

rather than from a single module. 

5.1.4 Evaluation against recent state-of-the-art approaches 

To show that SHADO competes well with recent methods, 

we compared it with the latest ontology-enhanced and 

transformer-based approaches from 2023 to 2025. This 

highlights where SHADO fits in current research and what 

makes it stand out. Table 11 provides a detailed comparison 

with recent state-of-the-art models, showing SHADO's strong 

performance across various domains. 

Table 11. Comparative discussion with recent ontology-enhanced approaches 

Method Year Ontology Type Adaptivity Complexity Explainability Accuracy F1 

Bouchiha et al. [17] 2023 Domain No Medium Low 0.82 - 

Yelmen et al. [24] 2023 Domain No High Low 0.9377 - 

Li et al. [37] 2025 Hybrid Partial Medium Medium 0.91 - 

Ali et al. [40] 2025 Knowledge Graph Partial High Medium 0.93 0.95 

Ngo et al. [32] 2025 Ontology No Medium Medium 0.96 - 

SHADO 2025 Ontology + Semantics Yes Medium High 0.971 0.971 

Beyond quantitative metrics, Table 11 outlines the 

qualitative distinctions that set SHADO apart from prior 

ontology-enhanced systems.  

Unlike earlier classifiers such as Bouchiha et al. [17] and 

Yelmen et al. [24], which employed fixed ontology mappings, 

SHADO dynamically reconfigures semantic relations through 

contextual graph propagation and semantic centrality 

weighting. This adaptability deepens semantic reasoning while 

preserving computational efficiency (O(n log n) for ontology 

updates). 

Compared with Li et al. [37] and Ali et al. [40], SHADO 

achieves a superior balance between lexical precision and 

conceptual abstraction, enabled by its hybrid lexical–semantic 

scoring (α = 0.7). 

Although the model of Ngo et al. [32] attained competitive 

accuracy, its static ontology and higher processing cost limit 

its interpretability. 

In contrast, SHADO integrates explainable ontology-driven 

constraints, offering transparent decision paths and stronger 

domain alignment—qualities essential for real-world expert 

systems. 

5.1.5 Confusion matrix of the proposed SHADO approach 

To illustrate SHADO’s classification performance, Figure 7 

presents the confusion matrix across five target domains. It 

highlights correct classifications, residual errors, and provides 

a concise diagnostic view of the model’s precision and 

consistency.  

5.2 Discussions 

The experimental results confirm the effectiveness of 

SHADO in leveraging ontologies to enhance text 

classification. Achieving F1-scores above 97% across all 

domains demonstrates the robustness of the framework, 

supported by rich ontological resources. High scores in SNP 

(0.884–0.901) and ORR (0.907–0.923) validate the core 

hypothesis that semantic structures can be preserved 

throughout the classification pipeline. This highlights not only 

strong predictive accuracy but also semantic coherence 

essential for interpretability in domain-specific applications. 

The framework demonstrates exceptional semantic 

preservation capabilities, with medical domain achieving the 

highest SNP (0.901) and ORR (0.923) scores, reflecting the 

rich ontological resources available in healthcare. 

Cross-validation analysis reveals strong model stability, 

with CV scores consistently above 0.90 across all ensemble 

components, indicating robust generalization capabilities and 

minimal overfitting. The alignment between CV scores and 

test performance validates the framework's reliability for real-

world deployment. Notably, the correlation between semantic 

preservation metrics and classification performance suggests 

that domains with richer ontological structures benefit more 

from the SHADO approach, while domains with sparse or 

ambiguous semantic relationships present greater challenges 

for ontology-enhanced classification. 

Compared to recent ontology-based approaches, SHADO 

stands out for its consistent high performance across multiple 
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domains—thanks to its adaptive ontology selection and 

semantic preservation strategies—while many other methods 

focus on single-domain optimization. 

Figure 7. Confusion matrix 

Two key innovations support this performance: (1) 

semantically constrained dimensionality reduction, which 

preserves ontological relationships during feature 

transformation, and (2) a hybrid ensemble architecture that 

combines traditional algorithms with transformer models, 

using ontology-informed weighting. 

Finally, the SNP and ORR metrics offer valuable indicators 

for real-world deployment, especially in domains requiring 

explainable decisions. SHADO thus combines accuracy, 

semantic integrity, and practical applicability, marking a 

promising direction for hybrid approaches in text 

classification. 

6. CONCLUSION AND FUTURE WORK

This study introduces SHADO, an innovative framework 

that systematically integrates ontological knowledge 

throughout the text classification pipeline, embedding 

semantic understanding at every stage rather than treating 

ontologies as supplementary features. SHADO consistently 

achieves over 97.11% accuracy across diverse domains while 

preserving semantic relationships, resulting in classifications 

that are both accurate and interpretable. The framework 

outperforms sophisticated transformer-based models 

enhanced with knowledge graphs without compromising 

computational efficiency, effectively bridging the gap 

between statistical pattern recognition and semantic 

understanding. Its success across multiple domains—from 

medical to political texts—demonstrates practical versatility 

for real-world applications where semantic coherence is 

critical. While current performance depends on ontology 

quality and the focus on English texts limits multilingual 

applicability, future work will explore dynamic ontology 

integration, expansion to multilingual corpora, and enhanced 

hybrid learning combining semi-supervised approaches with 

next-generation language models such as GPT-4 or T5. This 

research highlights that meaningful progress in NLP requires 

a thoughtful combination of symbolic knowledge and neural 

algorithms, enabling systems that truly understand text 

meaning rather than merely processing it efficiently. 
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