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In this article, we introduce SHADO: A Semantics-Preserving Hybrid Framework for
Automatic Text Classification Using Domain Ontology, an innovative architecture that
systematically integrates domain ontologies throughout a multi-phase processing pipeline
to achieve superior classification accuracy. Our approach employs a comprehensive six-
phase methodology: rigorous text preprocessing, strategic ontology selection and mapping,
semantic enrichment with relationship preservation, intelligent feature extraction,
dimensionality reduction with semantic constraints, and hybrid ensemble classification
combining traditional machine learning algorithms with transformer-based models like
BERT. Our experiments, conducted on a multi-source corpus of 5,536 documents covering
five domains (politics, sports, technology, medical, and education) compiled from the 10
Newsgroups, BBC News, and Kaggle/UCI repositories, demonstrate excellent
performance. SHADO achieves up to 97.11% accuracy, surpassing purely lexical models
by 4.7%. These results confirm that SHADO consistently enhances both semantic
coherence and classification reliability. Overall, SHADO represents a robust and scalable
solution bridging the gap between statistical pattern recognition and semantic
understanding, delivering high accuracy and interpretable classifications through explicit

ontological knowledge integration.

1. INTRODUCTION

In today's digital era, organizations across industries face
unprecedented challenges in managing and extracting insights
from vast repositories of unstructured textual content. From
customer feedback analysis to regulatory compliance
monitoring, the ability to automatically categorize textual
documents has become a strategic imperative for competitive
advantage and operational efficiency.

Traditional text classification methodologies have
predominantly relied on feature extraction techniques such as
Bag of Words (BoW) [1], n-grams [2], and TF-IDF [3],
combined with machine learning algorithms including support
vector machines [4, 5], Naive Bayes [4, 6], decision trees [4],
and k-nearest neighbors (KNN) [7, 8]. While these approaches
have demonstrated reasonable performance in controlled
environments, they exhibit significant shortcomings when
confronted with domain-specific terminology, contextual
ambiguity, and the nuanced semantics that characterize real-
world textual data [9].

The emergence of pre-trained language models and deep
learning architectures has partially addressed these limitations,
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yet a critical gap remains: the lack of explicit domain
knowledge integration that could bridge the semantic divide
between surface-level textual features and deeper conceptual
understanding.

This research addresses this challenge by introducing
SHADO (A Semantics-Preserving Hybrid Framework for
Automatic Text Classification Using Domain Ontology), a
novel hybrid framework that systematically incorporates
structured  domain  knowledge through ontological
representations. Unlike existing approaches that treat
ontologies as supplementary resources, our method positions
domain ontologies as core semantic engines that guide both
feature enhancement and classification decision-making
processes.

Our contribution is threefold: (1) development of a semantic
enrichment pipeline that leverages domain ontologies for
contextual feature augmentation, (2) implementation of a
dimensionality reduction strategy that preserves semantic
relationships while optimizing computational efficiency, and
(3) design of a hybrid classification architecture that
synergistically combines traditional machine learning models
with transformer-based language models like BERT for
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enhanced accuracy and interpretability.

The structure of this paper follows a systematic progression:
we begin with a comprehensive literature analysis positioning
our work within the current research landscape, followed by
detailed methodology exposition, experimental validation
using benchmark datasets, and conclude with performance
analysis and future research directions.

2. STATE OF THE ART
2.1 Definition of the research problem

The problem of ontology-enhanced text classification can
be formally formulated as an optimization problem: we aim to
find the classifier f that minimizes the classification error
across a labeled document set while leveraging both textual
features and structured domain knowledge.

Let D ={d,;,d,, ...,d,} be a collection of n documents,
and let O denote the associated domain ontology comprising
concepts, relations, and instances. Each document d; has a
true class label y; € C = {c;, c3, ..., ¢}, and is represented as
a vector x; € R™ in the document-term space derived from
vocabulary W = {w;, w,, ..., w,,, }.

The ontology-enriched representation of d; is obtained
using a semantic enrichment function ¢ defined by Eq. (1):

=9 (x,0) (1)
where, X, € R incorporates domain knowledge to capture
semantic relationships between lexically diverse but
conceptually related terms.

The optimization objective is therefore defined by Eq (2):

ming . L0 f(3) @

where, f represents the classifier function, L is a loss function
measuring prediction error.

Ontology-based enrichment helps bridge the semantic gap,
where conceptually similar expressions may be lexically
dissimilar. It also mitigates issues of high dimensionality and
sparsity by adding domain-relevant semantic structure,
improving classification accuracy and model robustness. The
ultimate aim is to find the optimal f that effectively integrates
both textual and ontological knowledge to improve predictive
performance.

2.2 Literature review

Text classification has evolved from simple statistical
methods to sophisticated deep learning approaches, with
researchers increasingly turning to ontologies—structured
knowledge representations—to bridge the gap between raw
text and meaningful understanding. As Touza et al. [10]
confirmed, ontology integration represents a promising
pathway toward more intelligent, interpretable text analysis
systems. Ontologies act as carefully organized dictionaries
that define word meanings and explain how concepts relate
within specific domains, promising to give machines deeper
understanding rather than just word counting or pattern
recognition.

However, this journey has been filled with both discoveries
and challenges. Early pioneers like Tufis and Koeva [11]
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explored linguistic ontologies for resolving word ambiguities,
revealing both potential and computational demands. Wei et
al. [12] and Yang et al. [13] demonstrated how domain-
specific ontologies enhance semantic understanding, but
highlighted that results depend heavily on ontology quality—
creating comprehensive, accurate ontologies requires domain
experts and ongoing maintenance.

The challenge of aligning text with ontological concepts
proved complex. Lee et al. [14] developed ontology-based
categorization techniques for lexical ambiguities, while Netzer
et al. [15] found that maintaining optimal performance
required frequent manual adjustments. As the field matured,
researchers began exploring semantic techniques beyond
simple word matching. WordNet became popular, with Nasir
et al. [16] and Bouchiha et al. [17] using it to measure semantic
similarity, clearly outperforming bag-of-words approaches.
However, this reliance created limitations—what worked for
general English didn't transfer to specialized domains or other
languages.

Computational challenges became apparent as researchers
pushed boundaries further. Altinel et al. [18] developed
sophisticated semantic kernels for support vector machines,
achieving impressive results but at considerable computational
cost. Xu et al. [19] and Ma et al. [20] explored how ontologies
could improve short text classification, consistently finding
that semantic techniques offered advantages while introducing
complexities around data requirements and computational
resources.

Supervised learning brought new trade-offs. Risch et al.
[21] used ontologies as knowledge bases to enrich document
features, improving accuracy but remaining vulnerable to
ontology quality limitations. Tao et al. [22] explored large-
scale ontologies like Library of Congress Subject Headings,
achieving promising results but creating dependency on
labeled training data.

The emergence of deep learning opened possibilities for
combining both worlds. Nguyen et al. [23] and Yelmen et al.
[24] began integrating BERT with ontological knowledge,
creating hybrid systems leveraging both neural network
pattern recognition and structured ontological knowledge.
These approaches represent significant progress, though they
require careful optimization to handle noise and preserve
semantic information.

Recent advances demonstrate increasingly sophisticated
integration strategies. Uddin et al. [25] proposed the
Expressive Short text Classification framework integrating a
semantically enriched short text Topic Model, capturing
semantics of words, topics, and documents within joint
learning without requiring external knowledge sources. CB et
al. [26] combined enhanced Apriori algorithms with
healthcare-specialized BERT models for COVID-19 dataset
analysis, utilizing BERT embeddings to evaluate semantic
richness of extracted association rules.

Several additional studies have examined the role of
ontologies in semantic enrichment for text classification.
Shanavas et al. [27] constructed enriched concept graphs using
domain ontologies to improve biomedical document
classification, demonstrating gains over traditional similarity
measures. Stein et al. [28] examined hierarchical text
classification with word embeddings, highlighting the role of
distributed representations in capturing semantic relationships
across classes and Hawalah [29] introduced a semantic
ontology-based approach to enhance Arabic text
categorization by leveraging ontological structure alongside



vector space models. few-shot classification. Ngo et al. [32] presented compelling

The adoption of transformer architectures has become approaches combining graph-based and transformer models
ubiquitous. Ouyang et al. [30] investigated fine-grained entity for chemical-disease relation extraction, demonstrating how
typing enriched with ontological information, aiming to architectural hybridization leverages both paradigms'
enhance type prediction accuracy in a zero-shot setting while strengths.

Ye et al. [31] explored ontology-enhanced prompt-tuning for

Table 1. Summary of recent text document classification approaches integration ontologies

Ref. Author  Year Algorithms Vector Representation Methods Ontologies
[17] Bouchiha et al. 2023 SVM BoW, TF-IDF WordNet
[20] Ma et al. 2015  Semantics-based methods, k-Means Continuous v:g;geemgggiimgs, Vector Not specified
. SVM, KNN, Naive Bayes (NB), - Domain-specific ontology,
[21] Rischetal. 2016 Probabilistic Methods Not specified enriched with probabilities
[22] Taoetal. 2021 SVM, KNN BoW, TF-IDF LCSH
[23] Nguyenetal. 2023 OneR, C4.5, NB, AdaBoost.M1 Doc2vec, Word2Vec, Word embeddings OntoModel
CNN, RNN, BERT, Random Forest, Bag of Words, TF-IDF, Word2Vec,
[24] Yelmenetal. 2023 SVM, MLP Doc2Vec WordNet
StTM (Short text Topic Model), Word embeddings, Document vectors, EXteSr:rilaﬁ?iz\SN]lg?%O?gsjos’ ;l(':oprc
[25] Uddinetal. 2025 BERT/Transformers, LDA variants, Probabilistic topic distributions, BERT- . . P
BTM (Biterm Topic Model) based contextual embeddings Semat‘“c relatlor_rs, Context
modeling semantic document
COVID-19 Knowledge Base,
[26] CBetal 2023 Apriori, BERT Healthcare models, OCA BERT embeddings, Cosine similarity, Healthcare domain ontology for
' Mining algorithm, GraphDB/SPARQL  RDF format conversion via ontology COVID-19 knowledge
structuring
[27] Shanavas et al. 2020 CMK, CWK, SVM Bag of Words, TF-IDF Medical ontology
[28] Steinetal. 2019 FastText Word embeddings Not specified
[29] Hawalah 2019 DT, NB, SVM, SCM TF-IDF, Word embeddings Specific Arabic ontologies
Fine-grained entity typing, Ontology Entity type vectors, Fine-grained Entity type ontologies,
[30] Ouyangetal. 2024 enrichment representations Hierarchical taxonomies
[31] Yeetal 2022 Prompt-tuning, Few-shot learning, Prompt embeddings, Few-shot Domain-specific ontologies,
' Ontology-enhanced prompting representations, Enhanced vectors Task-oriented taxonomies
. Chemical ontologies, Disease
[32] Ngoetal. 2025 Graph Neural_ Networks,_ Transformers, Graph gmbeddrngs, Transformer taxonomies, Biomedical
Chemical-disease relation extraction  representations, Document-level vectors knowledge
Ontology-enhanced LLMs, entity . . . . .
[33] Caoetal. 2024 extraction, relation extraction, knowledge LLM seman_trc embeddlngsf, entity and . Rare_dlsease ontologies,
. relation representations biomedical knowledge graphs
graph construction
Ontology-enhanced RAG, in-context ~ LLM semantic embeddings, retrieval- Biomedical ontology knowledge
[34] Fengetal. 2025 learning with LLMs, SPARQL-based augmented representations, mapping  graphs, ontology mapping files,
retrieval, reasoning and summarization proximity scoring SPARQL-queried KGs
[35] Leeand Kim 2025 Large Language Models, Sentiment LLM embeddings, Sentiment vectors,  Sentiment ontologies, Emotion
classification, Ontology-based analysis Attribute representations taxonomies
Recommendation algorithms, Medical Medical embeddings, Recommendation Medical on’rologres, Disease
[36] Tanetal. 2024 . - - - - taxonomies, Treatment
decision systems, Ontology reasoning vectors, Diagnostic representations ontologies
Machine Learning algorithms, Natural . . . .
[37] Lietal. 2025  Language Processing, Classification Text embeddings, Feature vectors, NLP Medrcallo_ntologres, Patient
models representations complaint taxonomies
[38] Narmatr_ra _and 2024 C4.5 KNN Concept Mapping, I-_Iypernyms, FT-1DF, MeSH Ontology
Maniraj y=Filter
[39] Idressetal. 2024 Multi-layer neural networks, Siblings  Arabic word embeddings, multi-layer Avrabic linguistic ontologies,
' pattern extraction, Arabic NLP representations, Pattern vectors Semantic patterns ontology
[40]  Alietal 2025 Semantic analysis algorithms, Sindhi  Sindhi language embeddings, Semantic Sindhi language ontology,
' language processing vectors, Linguistic representations Linguistic taxonomies
[41] %‘;‘e;;f 2024 BiGRU, CNN, SDNN Word2Vec, TF-IDF Fuzzy Ontology
TF-IDF, Counter algorithm, Zero-shot  Multilingual sentence embeddings (E5- Wikidata knowledae aranh
[az) HiBLNbeYi and ), NLI (XLM-ROBERTa, mDeBERTa, Large, ES-Mistral-7B, GTE-Qwen2-7B, ‘g o ueries?‘orgclapss'
Scheffler BGE-M3, MiniLM), Logistic Regression, E5-Small-\V2), Cosine similarity, Static -4 -
: hierarchies
SVM embeddings
. . . . Semantic embeddings, Deep .
[43] Almuhaimeed 2024 Deep Iearr_wrng models, Sema_n_trc |_nfu5|on representations, Ontology-infused Disaster management ontolog_y,
etal. algorithms, Tweet classification vectors Emergency response taxonomies
. . Sentence Embeddings (BERT), :
[44] Kowsarietal. 2019 BERT + Ontology Embedding Ontology Embeddings (KG-based) Fact-check OWL Ontology
[45] Mitchell 1999 SVM, Naive Bayes, BERT Ontology Enrichment + BERT (Bio_SA EDAM, Environment Ontology,

approach) Wikipedia
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Large Language Models have introduced new possibilities.
Cao et al. [33] proposed AutoRD, an ontology-enhanced
LLM-based system for rare disease entity extraction using
ontology-guided LLMs, while Feng et al. [34] developed
OntologyRAG combining retrieval-augmented generation
with ontology-aware mechanisms for biomedical code
mapping. An and An [35] proposed an ontology-based
sentiment and attribute classification framework that enhances
domain-specific contextual accuracy, and empirically
demonstrate its effectiveness through comparisons with LLM-
based sentiment analysis approaches.

The biomedical domain has emerged as a primary
application area, driven by rich medical ontologies and critical
healthcare information processing needs. Tan et al. [36]
developed OntoMedRec for disease diagnosis and treatment.
Liu et al. [37] developed an intelligent system that integrates
machine learning and natural language processing (NLP) for
the automated classification and analysis of patient
complaints. Narmatha and Maniraj [38] achieved 30%
improvement using MeSH ontology over traditional stem-
based methods on OHSUMED datasets. The field shows
increasing attention to multilingual applications, with Idrees
and Al-Solami [39] developing multi-layer Arabic text
classification models and Ali et al. [40] creating semantic
analysis frameworks for Sindhi language.

Crisis management and social media analysis have gained
prominence, with Giri and Deepak [41] proposing semantic
ontology-infused deep learning for disaster tweet
classification, and Hiisiinbeyi and Scheffler [42] exploring
ontology-enhanced claim detection for fact-checking by
integrating ontology embeddings with BERT sentence
embeddings. In academia, ontology-enriched sentiment
analysis models [43] showed up to 26.4% improvement in F-
score.

Despite significant advances, persistent challenges remain.
Most approaches struggle with the fundamental tension
between semantic richness and computational efficiency, as
integrating large ontologies with deep learning models creates
scalability issues limiting practical deployment. Effectiveness
heavily depends on underlying ontology quality and
comprehensiveness, which varies significantly across
domains. The lack of standardized evaluation metrics makes
comparing approaches difficult, hindering scientific progress.
While domain-specific adaptations show promise, developing
generalizable approaches remains challenging, as most
methods are tightly coupled to specific ontological structures.
Most importantly, few studies successfully combine the full
spectrum of available techniques—classical machine learning,
modern deep learning, and structured ontological
knowledge—into unified frameworks leveraging each
approach's strengths while mitigating individual weaknesses.
Table 1 summarizes the most recent advances in ontology-
enhanced text classification from 2015 to 2025, highlighting
the evolution of algorithmic approaches, vector representation
methods, and ontological frameworks employed across
different research domains.

In reviewing the existing literature on text classification, we
observed that while numerous innovative approaches have
been introduced, several recurring limitations persist. A
significant proportion of studies continue to rely on traditional
or narrowly scoped techniques—such as purely statistical
models or limited semantic strategies—without fully
leveraging the advancements made in deep learning. For
instance, models like SVMs and similarity-based classifiers,
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though effective in constrained contexts, often underperform
compared to transformer-based architectures like BERT,
which offer superior capacity for capturing nuanced contextual
information.

Another critical gap lies in the often-overlooked role of
comprehensive preprocessing and semantic enrichment. These
components are essential for improving classification
accuracy, particularly when dealing with unstructured or noisy
textual data. Unfortunately, many existing works -either
neglect these stages or implement them superficially, thereby
weakening the overall performance of their systems. A notable
exception is the contribution of Touza et al. [10], who
illustrated the power of integrating domain ontologies into
deep learning workflows. Their study demonstrates that
coupling BERT with ontology-driven semantic enrichment not
only enhances document representation but also improves
semantic disambiguation. Their empirical results, validated on
biomedical datasets, show that such hybrid models
consistently outperform both traditional approaches and
standalone deep learning techniques in terms of accuracy and
robustness.

Moreover, other common challenges include an
overreliance on a single ontology, insufficient mechanisms to
handle ambiguous or noisy data, and the use of dimensionality
reduction techniques that may inadvertently discard valuable
semantic information. While researchers like Nasir et al. [16]
and Xu et al. [19] emphasized the relevance of ontologies,
their approaches often lack a concrete strategy for effective
integration, limiting the depth and relevance of semantic
features extracted from the text.

Building on these insights and addressing the identified
gaps in current research, we propose a comprehensive
framework that systematically integrates the full spectrum of
available techniques—classical machine learning, modern
deep learning, and structured ontological knowledge—into a
unified approach that leverages the strengths of each
methodology while mitigating their individual weaknesses.
Our method addresses the scalability challenges through
efficient integration strategies and incorporates robust
evaluation mechanisms to ensure reliable performance across
diverse datasets and domains.

3. PROPOSED TEXT CLASSIFICATION APPROACH

Our classification model, called SHADO, introduces a
comprehensive, multi-layered strategy for enhancing text
classification through the integration of domain ontologies. Its
primary objective is to improve the accuracy, robustness, and
adaptability of classification systems by leveraging advanced
NLP and machine learning techniques. The overall framework
is structured into six key phases, as illustrated in Figure 1.

3.1 Data preparation and cleaning

Text preprocessing is the first critical step where textual
data is cleaned and prepared for further analysis [44]. This
process includes:

* Cleaning: Removing irrelevant elements such as
extra spaces, special characters, punctuation, and
converting text to lowercase.

*  Tokenization: Splitting the text into words, phrases,
symbols, or meaningful elements called token [27,
28].



* Lemmatization: Reducing words to their base or root
form to ensure uniformity in text representation [22,
29].

*  Stop Word Removal: Eliminating words that do not
contribute significant se-mantic meaning to focus
analysis on relevant content [23].

. A~ ~
), ®) O,
> o | @
o ©
o ° S
Dets Semantic& — Dimensionality —» Trained
Preproc essing Learning Integration Reduction Hybrid Model
) PCA. t-SNE, SVM, RF, GB,
« Text Cleaning Domain Ontology KNN, MLP,
« Tokenization Integration Logistic Regression
+ Lemmatization Feature
* Stopword Engineering
Removal &Selection
*Special
Character
Removal Prediction
v 0 &V:ﬂz‘l';ln * Load New Documents
idat| » Automatic Text
« Cross-Validation ‘ ‘ Classification
|+ Hyperparameter Tuning + Return Predicted Class

Figure 1. SHADO framework steps

Our enhanced preprocessing incorporates pattern
preservation techniques that maintain important semantic
markers such as temporal expressions, email addresses, and
compound words. Unlike traditional approaches that
indiscriminately remove numeric content, our method
intelligently transforms numerical entities into semantic
placeholders (<YEAR>, <DECIMAL>, <NUMBER>) while
preserving their contextual significance. Additionally, we
implement sentence boundary preservation through
<SENT END> markers, enabling downstream semantic
analysis to maintain discourse-level context. Algorithm 1
details the steps involved in preprocessing text data:

Algorithm 1: Enhanced Text Preprocessing

Input: Raw text data

Output: preprocessed text

. For each document in the raw text:

. Pattern preservation (dates, emails, URLSs)

. Intelligent entity handling (years, decimals, numbers)
. Sentence boundary marking for context preservation
. Advanced cleaning with marker preservation

. Optimized tokenization with length filtering (2-15 chars)
. Smart stop word removal

. Context-aware lemmatization

. Enhanced token rejoining

10. End for

11. Return preprocessed text.

end

O 001N L AW —

3.2 Semantic and learning integration

This critical phase transforms preprocessed textual data into
semantically enriched representations through strategic
ontology integration. The semantic enhancement process
bridges the gap between raw textual features and domain-
specific knowledge, enabling more contextually aware
classification. This phase focuses on enhancing raw text data
with domain-specific semantic information to improve the
learning and classification process. It is composed of two key
components: Domain Ontology Integration and Feature
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Engineering & Selection.

3.2.1 Domain ontology integration

To provide contextual and domain-aware understanding of
the textual data, relevant domain ontologies are integrated into
the pipeline. This integration involves three main sub-steps:

(1) Ontology selection

Ontology selection is a critical process, as the quality and
relevance of the selected ontologies significantly influence the
effectiveness of semantic enrichment. The following criteria
guide the selection:

* Domain Relevance: Ontologies must align closely
with the subject matter of the texts (e.g., medicine,
education, technology, politics) and include relevant
concepts and relationships.

Semantic Richness: Chosen ontologies should be
conceptually dense, offering a rich network of terms
and relations.

Accessibility and Maintenance: Preference is given to
open-access, well-documented, and actively
maintained ontologies, such as those from BioPortal,
OBO Foundry, or Linked Open Vocabularies.
Technical Compatibility: Ontologies must be
available in standard formats (e.g., RDF, OWL) to
ensure smooth system integration.

These criteria are aligned with best practices outlined in
Touza et al. [10], who emphasized the importance of
relevance, richness, and format compatibility in selecting
ontologies for semantic enrichment.

The number of ontologies used depends on the nature and
complexity of the do-main:

*  For well-established domains: At least two ontologies
are used, even if one is widely recognized. This
redundancy helps capture additional semantic
nuances and enhances the robustness of the approach.
For complex or interdisciplinary domains: More than
two ontologies may be integrated to cover diverse
concepts and ensure comprehensive semantic
representation.

(2) Ontology mapping

Ontology mapping links textual terms to structured
concepts defined within selected ontologies, enabling a
semantic representation of the content. Formally, this process
can be modeled by Eq. (3).

¢ = fmap (T,0) (3)
where, C is the set of corresponding concepts in the ontology,
T the set of terms from the text, O the select ontology and f.qp
the function that maps each term ¢ € T'to one or more concepts
c €0.

The process by which textual terms are semantically linked
to domain-specific concepts is illustrated in Figure 2, which
visualizes the function f,,, by systematically associating
terms with ontology concepts based on their semantic
relevance and structural alignment. The figure presents a
structured workflow that explicitly outlines the conditional
logic used for concept matching, including fallback
mechanisms when direct mappings are not found.

(3) Semantic enrichment

Once the terms have been associated with relevant concepts
in the ontology (as described in Algorithm 2), a further step is
needed to deepen their meaning and contextual understanding.
This is the role of semantic enrichment, which consists in



expanding each term’s representation by incorporating
additional knowledge from the ontology—such as hierarchical
relations (e.g., parent-child structures) and semantic links

(e.g., "part of", "related to").

- *| Preprocessed Terms i

l ]
[ Seach in ontologies ]
All terms processed

compute similarity

Return mapped_Terms
Y

No

Yes

No

Dl

Yes
No match found

| I

Add to dictionnary
(confidence=1)

Add to dictionnary
(similarity_score)

l Add Empty List I

v
E‘—

Figure 2. Flowchart of intelligent ontological mapping

Algorithm 2: Semantic Enrichment

Input:
- Mapped_Concepts: Terms linked to ontology
concepts
- Ontology: Includes hierarchies, relations, and
properties

Output: Enriched Terms: Terms enriched with semantic
data
Initialize Enriched Terms as empty dictionary
for each term in Mapped_Concepts:
Initialize enriched info as empty list
for each concept in Mapped_Concepts[term]:
Add descendants of concept to enriched info
Add semantic relations of concept to enriched info
Add properties of concept to enriched info
end for
if enriched info is not empty:
. Enriched Terms[term] «<— enriched_info
. else:
. Enriched Terms[term] «— empty list
. end if
. end for
. return Enriched Terms
end

XA R L=

— e e
Nk W = O

This process allows the initial term set to be enhanced with
richer, more structured information, enabling more accurate
and meaningful interpretations of the text content. We
formalize this enrichment process with the following
expression (Eq. (4)):
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T enriched:fenrich(T , C,R) (4)
where,
* Tisthe original set of terms extracted from the text.
*  (represents the concepts to which those terms have
been mapped.
* R includes the relationships and hierarchies drawn
from the ontology.
®  fenrich 1S the function that performs the enrichment by
combining these elements.

The goal is to go beyond simple matching and provide a
semantically empowered view of the text—Ieveraging
ontological knowledge to unlock deeper insights and more
effective downstream processing. To operationalize this
enrichment process, Algorithm 2 outlines how to retrieve and
integrate semantic information from the ontology for each
mapped term.

3.2.2 Intelligent feature extraction and selection

Building upon the semantic enrichment achieved in the
previous phase, this step systematically identifies and selects
the most informative features by integrating statistical
significance measures with ontological semantic relevance.
This hybrid approach ensures that selected features capture
both distributional patterns and domain-specific semantic
relationships, creating an optimal foundation for subsequent
classification models.

Our feature selection methodology combines traditional
statistical measures with ontology-derived semantic indicators
to create a comprehensive importance scoring system. This
dual-criteria approach addresses the limitations of purely
statistical methods while preserving computational efficiency.

+ Statistical Foundation: The TF-IDF weighting scheme
provides the statistical baseline for feature importance:

N

TF —IDF(¢t,d) = TF(t,d) x log -

)

where, TF (t, d) represents term frequency in document d, N
is the total number of documents, and DF(t) is the number of
documents containing the term t.

 Semantic Enhancement: Ontological centrality measures
augment statistical importance by quantifying semantic
significance within domain knowledge structures:

Total Importance = TF — IDF X
- (6)

Centrality e, (C)

where, Centrality,,;,(c) represents the centrality score of

concept ¢ within the ontological graph structure.

The feature extraction process operates through coordinated
stages that progressively refine the feature space while
maintaining semantic coherence. Algorithm 3a implements
this coordinated approach through three sequential phases:
statistical filtering, ontological enhancement, and semantic
scoring.

The concept centrality quantifies the importance of each
ontological concept within its semantic network and is used to
weight features in the document representation. This measure
combines three complementary aspects of a concept ¢ is
defined by Eq. (7):

concept_centrality(c) = a - degree(c) + 8 -

depth(c) +y - breadth(c) )



where,

a, B and v, are tunable weights reflecting the relative
importance of each component.

Degree centrality (degree(c)): the number of direct
relationships that ¢ has with other concepts in the
ontology.

Hierarchical depth (depth(c)): the position of ¢
within the ontology hierarchy, normalized by the
maximum depth. Concepts closer to the root may be
more general, while deeper concepts capture domain-
specific semantics.

Semantic breadth (breadth(c)): the total number of
indirectly connected concepts reachable from e,
representing the semantic scope of the concept.

Algorithm 3a: Ontology-Enhanced Feature Extraction
Input: Preprocessed Texts, Ontologies,
TFIDF_Threshold, Semantic Threshold

Output: Document Features, Feature Metadata

1. Compute TF-IDF matrix for all documents

2. for each document in Preprocessed Texts:

3. select terms where TF-IDF > TFIDF _Threshold

4. Apply ontological mapping using Algorithm 2

5. Apply semantic enrichment using Algorithm 3

6. for each enriched term:

7. Compute total importance = TF-IDF X
concept_centrality

8. if total importance > Semantic Threshold:

9. Store feature and associated metadata

10. end for

11. Add  selected features and  metadata to
Document_Features

12. end for

13. return Document Features, Feature Metadata
end

Algorithm 3b: Multi-Configuration Feature Extraction
Input: Preprocessed texts T, domain D (for ontology
mapping)

Output: Combined feature matrix X combined

Apply word-level TF-IDF with n-grams (1,2)
Apply character-level TF-IDF with n-grams (3,6)
Apply Truncated SVD to character features

Extract semantic features from ontology mapping

- Domain-specific concept counting

- Fallback to text complexity metrics

Combine all feature types:

el

Xcombined = [Xwords | Xchars,reduced | Xsemantic]
return X combined, feature metadata

end

These three components are combined into a normalized
score in the range [0,1]:

To address the limitations of single-configuration feature
extraction, we propose a multi-modal approach that combines
three complementary feature types: (1) word-level TF-IDF
with bi-gram extensions capturing semantic relationships, (2)
character-level TF-IDF with 3-6 gram patterns capturing
morphological information, and (3) ontology-derived
semantic features quantifying domain-specific concept
density. This hybrid approach increases feature space richness
from traditional single-vector representations to multi-
dimensional semantic embeddings of 3100+ features.
Algorithm 3b describes this process.

2967

3.3 Dimensionality reduction with semantic preservation

Following feature extraction and semantic enrichment, the
resulting high-dimensional feature space requires careful
dimensionality reduction to maintain computational efficiency
while preserving the rich semantic relationships captured
through ontological integration. This phase implements a
sophisticated reduction strategy that balances performance
optimization with semantic fidelity. Our approach employs a
multi-stage reduction pipeline that progressively refines the
feature space.

The reduction process operates through three coordinated
stages, each optimized for specific aspects of the feature space
transformation.

(1) Stage 1: Statistical Variance Reduction (PCA)

Principal Component Analysis provides the initial
dimensionality reduction by identifying the directions of
maximum variance in the feature space is given by Eq. (8).
where X represents the original feature matrix, Wp, contains
the principal components, and Y is the reduced representation.

Y = XWpcq (3)

(2) Stage 2: Semantic Structure Preservation

This stage applies semantic constraints to ensure that
ontologically related features maintain their relationships in
the reduced space is given by Eq. (9).

min,, || XW —Y ||% ©)
+ AZ(i,}') ESWS(i'j) 1 wp —Ww; ”%
where, S represents semantic similarity pairs, wg(i, j) denotes
semantic weights, and 4 controls the semantic preservation
strength.
(3) Stage 3: Non-linear Manifold Learning (t-SNE)
The final stage employs t-distributed Stochastic Neighbor
Embedding to capture non-linear relationships while
preserving local semantic neighborhoods is given by Eq. (10).

p (Il x =% I17/207)
T Y et Xp(—1l X, — %, 112/202)

(10)

where,

P;j; is Conditional probability that point x; chooses
X; as its neighbor.

X;, X; are data points in the original high-dimensional
space.

” X; — Xj
points i and j.

o Variance of the Gaussian kernel centered on point
L.

The reduction process is implemented through Algorithm 4,
which coordinates the three stages while continuously
monitoring semantic preservation quality. The algorithm
begins with statistical variance reduction via PCA, followed
by the application of semantic constraints derived from the
ontological graph structure, and concludes with adaptive t-
SNE transformation based on dataset characteristics.

[I? Squared Euclidean distance between

Algorithm 4: Semantic-Preserving Dimensionality
Reduction

Input: Enriched Features, Semantic_Graph,
Target Dimensions




Output: Reduced Features, Preservation_Score

Apply PCA

Apply semantic constraints using ontological
relationships (Eq. (9))

Apply t-SNE for final reduction

Evaluate semantic preservation (SNP and ORR metrics)
return Final Features, Preservation Score
end

The Semantic Graph G = (V, E) is constructed from all
ontology-enriched concepts extracted during feature
extraction. Nodes v € V represent concepts, while edges e €
E represent semantic relationships such as is-a, part-of, or
domain-specific connections. Edge weights w, (i, j) reflect
semantic similarity between connected concepts, computed
based on ontological proximity or co-occurrence in the corpus.

During dimensionality reduction, semantic constraints are
applied to preserve the ontological relationships among
features. In Stage 2 of Algorithm 4, these constraints are
incorporated into the objective function for linear reduction
(Eq. (9)), ensuring that concepts linked in the Semantic_Graph
remain close in the reduced space. The regularization
parameter A controls the trade-off between preserving
semantic relationships and minimizing reconstruction error.

Quality assessment employs Semantic Neighborhood
Preservation (SNP) metrics that measure the retention of k-
nearest semantic neighbors and Ontological Relationship
Retention (ORR) scores that evaluate the preservation of
ontological relationships in the reduced space.

The optimal target dimensionality is determined through
cross-validation using classification performance as the
primary criterion, balanced with semantic preservation scores
and computational efficiency measures. This adaptive
approach ensures that the reduced feature space maintains both
computational tractability and the rich semantic structure
essential for accurate ontology-enhanced classification,
providing an optimal foundation for the subsequent hybrid
classification phase.

3.4 Hybrid classification model

The final training phase leverages the semantically enriched
and dimensionally optimized feature representations to
construct a sophisticated ensemble classifier that combines the
complementary strengths of traditional machine learning
algorithms with modern transformer architectures. This hybrid
approach integrates six distinct learning paradigms: Support
Vector Machines excel at finding optimal decision boundaries
in high-dimensional spaces, Random Forest provides robust
feature importance estimates, Gradient Boosting provides a
powerful trade-off between bias and variance, making it ideal
for capturing complex patterns in structured data, KNN
captures local neighborhood patterns enhanced by semantic
similarity, Multi-Layer Perceptron learns complex non-linear
mappings, and BERT contributes contextualized
understanding of textual semantics.

The ensemble employs a two-tier architecture where base
models generate individual predictions that are subsequently
combined through an intelligent voting mechanism. Unlike
simple majority voting, our approach implements weighted
voting that assigns different importance to each model based
on their reliability and past performance on similar semantic
contexts. Algorithm 5 coordinates this multi-algorithm
approach through systematic training, prediction aggregation,
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and consensus formation.

Algorithm 5: Hybrid Classification Model
Input: Reduced Features, Labels, Base Models
Output: Final Classifications, Confidence Scores
Initialize prediction matrix for storing base model
outputs
Apply BERT vectorization to reduced features for
contextual enhancement
for each base_model in Base Models:
Train model on reduced features and labels
Generate predictions and confidence scores
Store predictions in prediction matrix
end for
Apply weighted voting based on model reliability scores
Calculate final class assignments and aggregate
confidence scores
return final classifications, confidence scores
end

To enhance the ensemble’s robustness, each base model is
assigned a model reliability score, which reflects its predictive
performance on a validation set. In our implementation, the
reliability score w; for classifier i is proportional to its cross-
validation accuracy and normalized over all base models, as
given in Eq. (11):

_ CVscore_i
Y. CVscores

w; (11)

During ensemble prediction, each classifier contributes to
the final decision based on its weight w; and its predicted
probability p; for each class. The final prediction is
determined by aggregating the weighted probabilities and
selecting the class with the highest total score, as shown in Eq.

(12):

Final Prediction = arg max Qw; X P;) (12)

This performance-based weighted voting ensures that
models demonstrating higher reliability have greater influence
on the ensemble decision, while models with lower accuracy
contribute less. Consequently, the approach leverages the
collective intelligence of multiple algorithms, improving
overall classification accuracy and providing more stable and
interpretable confidence scores.

3.5 Optimization and validation

This critical phase implements comprehensive evaluation
protocols to ensure optimal performance and robust
generalization of the trained ensemble model. The
optimization process operates through three coordinated
activities: cross-validation for generalization assessment,
hyperparameter tuning for performance maximization, and
result analysis for model selection and validation.

Cross-validation  evaluates  generalization capability
through systematic data partitioning into training and test sets,
preventing overfitting while enabling robust performance
assessment. Hyperparameter tuning employs GridSearchCV
to optimize each base model's configuration, systematically
exploring parameter spaces for all ensemble components
including traditional machine learning models and BERT fine-
tuning parameters. Performance analysis evaluates models



across multiple dimensions using precision, recall, F1-score,
and accuracy metrics, while confusion matrices reveal detailed
classification patterns and semantic coherence assessment
measures alignment with ontological relationships.

The validation process compares weighted voting, majority
voting, and stacking approaches to identify optimal ensemble
configurations. Final model selection balances classification
accuracy with semantic consistency and computational
efficiency, ensuring practical applicability while maintaining
the ontology-enhanced performance advantages that
distinguish our approach from traditional classification
approaches.

3.6 Prediction phase

After thorough optimization and validation, the SHADO
framework moves into operational deployment for real-world
document classification. In this phase (Figure 3), a streamlined
prediction pipeline is activated to process new, unseen
documents by applying a predefined sequence of steps
established during training.

Confidence
Scores

x%e®
0 ciet
Text Reduced

L Predicted
Class

Figure 3. Prediction phase workflow for new document
classification

Unlike the training phase, supervised ontology-based
enrichment is not applied here, since the document’s class is
not yet known. The system instead performs class-independent
operations, including text preprocessing, feature extraction
(TF-IDF and general semantic weighting if applicable),
dimensionality reduction using pre-trained transformation
matrices, and final classification through the optimized
ensemble model.

The system delivers comprehensive classification results
including definitive class assignments representing the
ensemble's highest confidence predictions and detailed
confidence scores indicating prediction reliability. These
confidence metrics prove valuable for applications requiring
threshold-based decision making or scenarios where multiple
potential classifications need consideration. Additional
outputs include individual model predictions for transparency.
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This comprehensive output supports both automated decision-
making and human interpretation, ensuring practical
applicability across diverse domain-specific classification
tasks while maintaining the semantic richness that
distinguishes  ontology-enhanced  classification  from
traditional approaches.

4. IMPLEMENTATION AND EXPERIMENTATION

This section presents the practical implementation of the
SHADO framework alongside comprehensive experiments
conducted to evaluate its performance across multiple domains
and datasets.

4.1 Implementation architecture

The SHADO framework is built on Python’s robust
ecosystem, offering a modular and scalable architecture that
supports the entire classification pipeline. It combines
powerful tools for semantic processing (NLTK, spaCy,

Gensim), ontology management (OWLReady2, rdflib,
NetworkX), machine and deep learning (scikit-learn,
Transformers, TensorFlow/Keras), and dimensionality

reduction and optimization (PCA, t-SNE, GridSearchCV).
This setup ensures high performance, flexibility, and
extensibility throughout the system.

4.2 Experimental protocol

4.2.1 Datasets and experimental design

Our evaluation uses a multi-source corpus to assess
SHADO’s performance across varied textual domains. The
dataset combines three established sources: 10 Newsgroups
(subset of the 20 Newsgroups collection by Ken Lang, Kaggle
version by Jensen Baxter, 2018), BBC News Dataset (Bimal
Timilsina, 2021), and the Website Classification Dataset
(Hetul Mehta, Kaggle/UCI Repository).

The 10 Newsgroups [45] subset contains around 1,000
cleaned documents across ten categories, with duplicates
removed and only key headers retained. The BBC dataset
provides 2,000 validated medical articles from Medical News
Today, while the Website Classification set adds textual and
structural data for web categorization.

Together, these sources yield 5,536 curated documents
covering five major domains — politics, sports, technology,
medical, and education. All texts were standardized using
Algorithm 1 (Preprocessing Pipeline), which performs
normalization, lemmatization, stopword removal, and GloVe-
based vectorization.

Percentage Distribution by Class
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Figure 4. Dataset distribution by class
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Figure 6. Heatmap of the correlation between data sources and

classification categories

Table 2. Domain-specific ontologies used for semantic enrichment

Domain Ontology Description
Software Ontology Software artifacts, development processes, and programming concepts
Computer science ontology Hierarchical classification of computer science research topics
Technology Computer network ontology Network protocols, topologies, and distributed computing concepts.
Artificial intelligence ontology Al subfields: machine learning, NLP,. computer vision, knowledge
representation
. Standardized classification of human diseases with cross-references to
Human Disease Ontology . .
symptoms, causes, and anatomical locations
Medical Medical Action Ontology Standardized classification of human diseases and symptoms
The Ontology of Medically Related Social Entities Medical procedures, treatments, and clinical interventions
Ontology for Biomedical Investigations Biomedical research terminology and experimental protocols
DBpedia Political Classifications Political entities, government structures, and electoral systems
Politics European Legislation Identifier (ELI) Legal and political terminologies used in European contexts
EU Vocabularies EU policies, institutions, and administrative procedures
Sport ontology Sports terminology: disciplines, competitions, athletes, venues
Sports Olympic Games Ontology Olympic sports, events, records, and competition structure
Sports Performance Analytics Ontology Athletic performance data, statistics, and sports science
Social Determinants of Education Ontology Socioeconomic factors affecting educational outcomes
Education EduKG: An Educational Knowledge Graph Educational concepts, curriculum standards, and learning objectives

EducOnto

Learning activities, educational resources, and assessment methods

To ensure methodological rigor, datasets were split 80/20
for training and testing, maintaining balanced domain
representation and semantic diversity. Figure 4 summarizes
the distribution of documents across domains.

Figure 5 illustrates the detailed distribution of document
lengths across all classes in the dataset, highlighting variations
in text size that may affect classification performance.

Figure 6 presents a comprehensive heatmap showing the
correlations between the different data sources and
classification categories, providing insights into potential
domain-specific relationships and patterns within the corpus.

4.2.2 Ontological resources and selection

The semantic enrichment component of SHADO relies on a
carefully curated set of domain-specific ontologies obtained
from authoritative repositories and standards organizations. A
multi-ontology approach is adopted for each domain to ensure
broad semantic coverage and to mitigate the limitations of
relying on a single source. Ontologies are selected based on
their domain relevance, semantic richness, standardization
(e.g., OWL, TTL, RDF), and ongoing maintenance. Typically,
2 to 5 complementary ontologies are employed per domain to
balance expressiveness and computational efficiency. To find
these ontologies, we explored several well-known platforms

known for their ontology collections, such as Archivo,
BioPortal, the Ontology Library Service of the Open
Biological and Biomedical Ontology (OBO) Foundry, github
repository and other specialized repositories, ensuring
extensive and accurate coverage for each category. The
selected ontologies for each domain are summarized in Table
2, which outlines the sources and roles of each ontology used
in the semantic enhancement process.

Table 3. Global ontological framework statistics

Metric Value
Total Ontologies 20
Total Concepts 34,024
Total Relations 3,139
Total RDF Triples 908,935

Our comprehensive ontological framework encompasses a
meticulously curated collection of domain-specific ontologies
distributed across five critical knowledge domains. Table 3
presents the overall statistics of our ontological infrastructure,
demonstrating the scale and scope of semantic resources
employed in our experimental evaluation.

The distribution of ontological resources across domains is
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detailed in Table 4, which illustrates the strategic allocation of
semantic knowledge bases to ensure balanced coverage while
accommodating domain-specific complexity requirements.

To assess the semantic richness and structural
characteristics of our ontological framework, Table 5 provides
derived metrics that quantify the density, granularity, and
balance of the integrated knowledge bases.

Table 4. Domain distribution of ontological resources

Domain Number of Ontologies Percentage
Technology 5 25.0%
Education 4 20.0%
Medical 4 20.0%
Politics 4 20.0%
Sports 3 15.0%
Total 20 100.0%

Table 5. Framework density and balance metrics

Statistic Value Description
Average Concepts 1701 Mean concept density across all
per Ontology ’ ontologies
Average Relations Mean semantic relationship
157 .
per Ontology density
RDF Triples per 267 Knowledge representation
Concept ’ granularity
Domain Balance 95% Measure of balanced
Score distribution across domains

This ontology infrastructure forms the backbone of SHADO
semantic enhancement process, allowing domain-specific
context to be encoded and leveraged during feature extraction
and classification stages.

4.2.3 Evaluation metrics and performance assessment

Table 6. Primary classification metrics

Metrics Formula Description

Represents the ratio of
correctly classified
instances to the total
number of instances,
reflecting the global
effectiveness of the
classification model.
Quantifies the capacity
of the model to retrieve
relevant positive
instances among all
actual positives.
Indicates the reliability
of positive predictions
by measuring how many
predicted positives are
truly correct.
Combines precision and
recall into a single
metric, ensuring a
balanced evaluation of
classification
performance.

TP + TN

Accurac
Y TP+ FP +FN+ TN

N, TR

Recall N o o
i=,1(TP, + FN;)

TP

Precision i —
i=1(Th + FP)

L, 2TR

F1-Score N
ie1(2TP;, + FP, + FN;)

The evaluation of the SHADO framework integrates both
classical classification metrics and semantic-aware measures,
providing a comprehensive assessment of performance. While
standard metrics quantify the predictive effectiveness of the
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model, semantic metrics evaluate its ability to preserve

ontological integrity and semantic structure throughout the

processing pipeline.

(1) Primary classification metrics

To evaluate predictive performance, we employ widely
accepted classification metrics computed across all classes.

The formal definitions of the four primary metrics—Accuracy,

Precision, Recall, and F1-Score—are provided in Table 6.

These metrics follow standard evaluation practices commonly

used in supervised classification studies [46].

(2) Semantic coherence metrics

To assess the semantic integrity of the SHADO framework,
we introduce two specialized metrics tailored to ontology-
enhanced classification systems: SNP and ORR. Unlike
traditional performance metrics, these evaluate the model’s
ability to preserve ontological coherence in its learned
representations.

- Semantic Neighborhood Preservation (SNP): Measures
the model’s ability to retain semantically coherent clusters
by evaluating whether semantically similar documents
remain close in the feature space after transformation.

Let:
*  ( bethe set of ontology concepts extracted from a test
document;

Nontc) the semantic neighbors of concept c¢ in the

ontology. For each concept ceC, collect the directly

related concepts in the ontology (hierarchical or
associative links). Example: For ¢ = diabetes, Non(c)
= {insulin, blood sugar, obesity};

Nvee() the k-nearest neighbors of ¢ in the vector space

(e.g., after PCA or embedding). After embedding or

dimensionality reduction, determine the KNN for

each concept ¢ in the vector space using distance
metric (cosine similarity or Euclidean distance).

Then, SNP is computed as Eq. (13).

SNP = Zl
IC|
ceC

A higher SNP value indicates that the semantic structure of
the ontology is well-reflected in the model’s learned
representations.

- Ontological Relationship Retention (ORR): Assesses the
extent to which hierarchical and associative relationships
defined in the ontology are maintained in the classification
outputs.

Let:

Nont (C) n NVEC (C)l
[None (€)1

(13)

R = {(c;, ¢j)} be the set of related concept pairs in the
ontology. Extract all pairs (ci, cj) that are linked
hierarchically or associatively;

v¢; and v,; be the vector representations of concepts
¢; and ¢j;

dist(;) be a distance function. Choose a metric:
cosine similarity or Euclidean distance;

0 a pre-defined proximity threshold. Determine
experimentally or heuristically. Example: For cosine
similarity, 8 = 0.8 means two concepts are considered
close if similarity = 0.8.

Then, ORR is defined as (Eq. (14)):

1
SNP:ﬁ Z Laist(vei wej)=ol

(Ci,Cj)E]R

(14)



where 1(. is the indicator function returning 1 if the condition
holds, 0 otherwise. Values near 1 indicate that the ontology
relationships are well-preserved in vector space.
- Aggregation Across Domains

Given that SHADO uses distinct ontologies per domain,
SNP and ORR are computed per domain, using the ontology
associated with each category. This ensures semantic integrity
is assessed contextually. Final scores are then aggregated as a
mean across domains. These calculations are performed using
Egs. (15) (global SNP) and (16) (global ORR) defined by:

1
SNPglobal ZEZﬂlSNPd (15)
ORR =L yPl oRR 16

global ID| d=1 d ( )

where, D represents the set of all domains used in your
evaluation. d refers to one specific domain within D.

These combined metrics offer a dual-layered evaluation
framework—quantitative and semantic—that ensures robust
and meaningful assessment of model performance within
semantically enriched classification contexts.

5. RESULTS AND DISCUSSIONS

In this section, we present a comprehensive analysis of
SHADQO’s experimental results across multiple domains,
discuss comparative performance metrics, and highlight the
framework’s impact on advancing semantic-driven text
classification.

5.1 Results

This section provides a detailed experimental evaluation of
the proposed SHADO framework. It includes a domain-wise
performance assessment with semantic coherence metrics
across five thematic areas, results obtained using baseline
machine learning methods, an analysis of the confusion matrix
generated by SHADO, and a comparative evaluation against
recent state-of-the-art ontology-enhanced classification
approaches published between 2023 and 2025.

5.1.1 SHADO performance evaluation

A comprehensive evaluation shows that SHADO performs
better than traditional classification methods in all domains.
The ontology-based approach achieves high accuracy and
preserves semantic meaning. Table 7 summarizes the results,
including both standard metrics and measures of semantic
coherence across the five domains.

Table 7. SHADO performance summary across domains

F1- SNP ORR

Domain Accuracy Precision Recall
Score Score  Score

Technology 0.9729  1.0000 0.9729 0.9964 0.892  0.915
Medical ~ 0.9928  1.0000 0.9863 0.9928 0.901 0.923
Politics ~ 0.9509  1.0000 0.9509 0.9748 0.884  0.907
Sports 0.9696  1.0000 0.9696 0.9846 0.888  0.911

Education 0.9587  1.0000 0.9587 0.9789 0.895  0.918

The results in Table 7 indicate consistently strong
performance across all five domains, with Fl-scores above
97% and only minor variations between domains. The Medical

and Technology categories exhibit slightly higher accuracy
and Fl-scores, which can be attributed to the richness and
structural completeness of their ontological resources.

Notably, SNP and ORR scores remain high (average =~ 0.89
and 091, respectively), confirming that the learned
embeddings preserve both semantic proximity (SNP) and
ontological relationships (ORR). A cross-domain correlation
analysis shows that domains with higher SNP/ORR values
tend to achieve higher F1-scores (Pearson r = 0.82 for SNP, r
= 0.79 for ORR), indicating that maintaining semantic
coherence in the representation space directly enhances
classification reliability.

5.1.2 Performance results using baseline methods

SHADOQ’s performance is presented alongside results
obtained from standard classification algorithms applied to the
same preprocessed datasets. These baseline models represent
traditional approaches with semantic enrichment and ontology
integration. Table 8 reports the outcomes of these methods,
allowing the effectiveness of SHADO’s ontology-driven
framework to be contextualized in relation to established
techniques.

Table 8. Comparative performance analysis

Classifier Accuracy Precision Recall F1-Score CV Score
Random Forest ~ 0.9603  0.9608 0.9603 0.9604 0.9484
SVM 0.9675  0.9679 0.9675 0.9676  0.9668
Gradient Boosting  0.9540  0.9546 0.9540 0.9541 0.9524
KNN 0.9684  0.9685 0.9684 0.9684 0.9538

MLP 0.9693  0.9696 0.9693 0.9693 0.9582
Logistic Regression 0.9504  0.9504 0.9827 0.9502 0.9538
Overall 09711 0.9713 0.9711 0.9712  0.9560

To ensure a fair comparison, we further evaluated the
baseline classifiers on the same datasets without semantic or
ontological enrichment, using only lexical features after
standard preprocessing (Algorithm 1). This complementary
analysis isolates the contribution of the ontology-based
enrichment introduced in SHADO.

Table 9. Comparative performance of baseline models
without semantic enrichment

Classifier Accuracy Precision Recall F1-Score CV Score
Random Forest ~ 0.9231  0.9228 0.9231 0.9229 0.9184

SVM 0.9326  0.9329 0.9326 0.9327 0.9278
Gradient Boosting  0.9189  0.9193 0.9189 0.9190 0.9162
KNN 0.9278  0.9280 0.9278 0.9278  0.9224
MLP 0.9342  0.9344 0.9342 0.9343  0.9285
Logistic Regression 0.9104 0.9106 0.9104 0.9105 0.9081
Overall 0.9245  0.9247 0.9245 0.9245  0.9202

The results in Table 9 reveal a notable improvement of
+4.6% in average accuracy when semantic enrichment and
ontology integration are applied (Table 8). This demonstrates
that the observed performance gain of SHADO does not
merely result from model architecture or hyperparameter
tuning, but from the semantic reinforcement provided by
ontological grounding and contextual feature expansion. By
comparing both settings (with and without enrichment), we
confirm that SHADQO’s ontology-driven representation
significantly enhances document understanding, leading to
higher stability (CV Score) and better generalization across
domains.



5.1.3 Ablation study: Component-wise contribution analysis
To further quantify the contribution of each component

within the SHADO framework, we conducted an ablation

study. This analysis isolates the effect of three major modules:

(i) ontology-based enrichment, (ii) semantics-preserving
dimensionality reduction, and (iii) hybrid ensemble
aggregation. Each variant was tested under identical
experimental settings using the same preprocessed corpus.

Table 10. Ablation analysis of key ATCIADO components

. . Ontolo Semantic Hybrid F1-
Configuration Enrichmge);lt Reduction Engemble Accuracy Score
Baseline (no enrichment) x x x 0.924  0.924
+ Ontology Enrichment only S x x 0.951  0.950
+ Ontology + Semantic Reduction S S x 0.962  0.962
+ Ontology + Semantic Reduction + Hybrid Ensemble (Full SHADO) \ \ \ 0971 0971

Results in Table 10 clearly show that each module
contributes progressively to the overall performance of
SHADO. Ontology enrichment alone yields a +2.7% accuracy
improvement by embedding domain semantics and resolving
lexical ambiguity. The semantics-preserving reduction adds a
further +1.1% gain, demonstrating the benefit of structure-
aware compression. Finally, integrating the hybrid ensemble
boosts both accuracy and robustness (+0.9%), validating the
synergy between diverse learners.

These findings confirm that SHADO effectiveness
emerges from the cumulative interaction of its components,

rather than from a single module.

5.1.4 Evaluation against recent state-of-the-art approaches

To show that SHADO competes well with recent methods,
we compared it with the latest ontology-enhanced and
transformer-based approaches from 2023 to 2025. This
highlights where SHADO fits in current research and what
makes it stand out. Table 11 provides a detailed comparison
with recent state-of-the-art models, showing SHADO's strong
performance across various domains.

Table 11. Comparative discussion with recent ontology-enhanced approaches

Method Year Ontology Type Adaptivity Complexity Explainability Accuracy F1
Bouchiha et al. [17] 2023 Domain No Medium Low 0.82 -
Yelmen et al. [24] 2023 Domain No High Low 0.9377 -
Lietal. [37] 2025 Hybrid Partial Medium Medium 0.91 -
Ali et al. [40] 2025 Knowledge Graph Partial High Medium 0.93 0.95
Ngo et al. [32] 2025 Ontology No Medium Medium 0.96 -
SHADO 2025 Ontology + Semantics Yes Medium High 0.971 0.971

Beyond quantitative metrics, Table 11 outlines the
qualitative distinctions that set SHADO apart from prior
ontology-enhanced systems.

Unlike earlier classifiers such as Bouchiha et al. [17] and
Yelmen et al. [24], which employed fixed ontology mappings,
SHADO dynamically reconfigures semantic relations through
contextual graph propagation and semantic centrality
weighting. This adaptability deepens semantic reasoning while
preserving computational efficiency (O(n log n) for ontology
updates).

Compared with Li et al. [37] and Ali et al. [40], SHADO
achieves a superior balance between lexical precision and
conceptual abstraction, enabled by its hybrid lexical-semantic
scoring (o= 0.7).

Although the model of Ngo et al. [32] attained competitive
accuracy, its static ontology and higher processing cost limit
its interpretability.

In contrast, SHADO integrates explainable ontology-driven
constraints, offering transparent decision paths and stronger
domain alignment—qualities essential for real-world expert
systems.

5.1.5 Confusion matrix of the proposed SHADO approach

To illustrate SHADQ’s classification performance, Figure 7
presents the confusion matrix across five target domains. It
highlights correct classifications, residual errors, and provides
a concise diagnostic view of the model’s precision and
consistency.
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5.2 Discussions

The experimental results confirm the effectiveness of
SHADO in leveraging ontologies to enhance text
classification. Achieving Fl-scores above 97% across all
domains demonstrates the robustness of the framework,
supported by rich ontological resources. High scores in SNP
(0.884-0.901) and ORR (0.907-0.923) validate the core
hypothesis that semantic structures can be preserved
throughout the classification pipeline. This highlights not only
strong predictive accuracy but also semantic coherence
essential for interpretability in domain-specific applications.
The framework demonstrates exceptional semantic
preservation capabilities, with medical domain achieving the
highest SNP (0.901) and ORR (0.923) scores, reflecting the
rich ontological resources available in healthcare.

Cross-validation analysis reveals strong model stability,
with CV scores consistently above 0.90 across all ensemble
components, indicating robust generalization capabilities and
minimal overfitting. The alignment between CV scores and
test performance validates the framework's reliability for real-
world deployment. Notably, the correlation between semantic
preservation metrics and classification performance suggests
that domains with richer ontological structures benefit more
from the SHADO approach, while domains with sparse or
ambiguous semantic relationships present greater challenges
for ontology-enhanced classification.

Compared to recent ontology-based approaches, SHADO
stands out for its consistent high performance across multiple



domains—thanks to its adaptive ontology selection and
semantic preservation strategies—while many other methods
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Figure 7. Confusion matrix

Two key innovations support this performance: (1)
semantically constrained dimensionality reduction, which
preserves  ontological  relationships  during feature
transformation, and (2) a hybrid ensemble architecture that
combines traditional algorithms with transformer models,
using ontology-informed weighting.

Finally, the SNP and ORR metrics offer valuable indicators
for real-world deployment, especially in domains requiring
explainable decisions. SHADO thus combines accuracy,
semantic integrity, and practical applicability, marking a
promising direction for hybrid approaches in text
classification.

6. CONCLUSION AND FUTURE WORK

This study introduces SHADO, an innovative framework
that systematically integrates ontological knowledge
throughout the text classification pipeline, embedding
semantic understanding at every stage rather than treating
ontologies as supplementary features. SHADO consistently
achieves over 97.11% accuracy across diverse domains while
preserving semantic relationships, resulting in classifications
that are both accurate and interpretable. The framework
outperforms  sophisticated  transformer-based = models
enhanced with knowledge graphs without compromising
computational efficiency, effectively bridging the gap
between statistical pattern recognition and semantic
understanding. Its success across multiple domains—from
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medical to political texts—demonstrates practical versatility
for real-world applications where semantic coherence is
critical. While current performance depends on ontology
quality and the focus on English texts limits multilingual
applicability, future work will explore dynamic ontology
integration, expansion to multilingual corpora, and enhanced
hybrid learning combining semi-supervised approaches with
next-generation language models such as GPT-4 or T5. This
research highlights that meaningful progress in NLP requires
a thoughtful combination of symbolic knowledge and neural
algorithms, enabling systems that truly understand text
meaning rather than merely processing it efficiently.
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