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When developing a continuous sign language recognition (CSLR) system, a significant 

challenge lies in processing the vast number of video frames, which demands extensive time 

and computational resources during both the training and prediction phases. To address this, 

we propose an efficient and scalable methodology that integrates cluster-based key frame 

extraction with a VOGUE-based recognition model designed for continuous gestures. The 

key frame extraction strategy clusters visually similar frames to reduce redundancy while 

preserving only those with high semantic relevance. To further enhance recognition 

accuracy, we introduce the Key Curvature Maximum Point (KCMP) technique, which 

identifies pivotal motion points and captures essential hand trajectory changes inherent to 

sign language. These refined frames are subsequently used to train a VOGUE-based model 

that encodes spatial and temporal strokes dynamics, followed by probability distribution 

modeling for robust prediction. The proposed approach was evaluated using a custom-built 

Tamil Sign Language dataset. Performance was compared against several established 

baseline methods, including Dynamic Time Warping (DTW), Hidden Markov Models 

(HMM), and multiple Conditional Random Field (CRF) variants, as well as the VOM 

model. The system achieved a recognition accuracy of 86.78% and a sign error rate of 5.3%. 

A paired t-test confirmed that the improvements over baseline models were statistically 

significant (p < 0.05). These results demonstrate that the proposed framework provides 

improved efficiency and competitive accuracy, offering a promising solution for real-time 

CSLR applications, particularly in low-resource regional sign languages. 
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1. INTRODUCTION

In the past, there has been a lack of attention towards sign 

languages in India due to the absence of a comprehensive 

corpus of sign languages for Indian languages. However, 

following the initiatives taken post 2000, such as the release of 

the first corpora of Indian Sign Language by Vivekananda 

University in collaboration with IHRDC and CBM, the 

emphasis has shifted towards promoting awareness and 

education about the sign languages used by the deaf and hard-

of-hearing community. Sign language has proven to be the 

most effective form of communication for the deaf population, 

as it allows them to express themselves without causing 

discomfort to others. This has underscored the importance of 

educating the hearing community about sign language, 

enabling them to understand and engage in effective 

communication with the deaf community. Similarly to the 

mother tongue of a traditional culture, sign language can be 

considered the mother tongue of the deaf community, 

characterized by its own syntax, structure, and expressive 

elements. However, for the broader public to understand sign 

language, the development of efficient translator or recognizer 

systems is essential. These systems would decode signs into 

voice or text, and the complexity of such systems would 

depend on whether they are static or dynamic, based on the 

nature of the signs being conveyed. Typically, static or isolated 

sign language recognition (ISR) focuses on recognizing a 

single sign at a time, as illustrated by the sample sequence 

shown in Figure 1. Since the signer pauses after each sign, 

most solitary sign language videos do not contain non-sensical 

movements when processed. However, continuous sign 

language recognition (CSLR) is different because a continuous 

sign consists of multiple isolated sign words (ISR). We need 

to segment the isolated words to recognize each for a 

continuous sign language. 

The signer must use a stop sign between each isolated word 

to differentiate between meaningful and meaningless 

segments in a continuous sign [1]. Using stop signs for longer 

phrases or paragraphs would become tedious if one were used 

for each word in a sentence. Therefore, there should be a 

method to separate the actual and meaningless segments. 

“Movement In Epenthesis” (ME) frames refer to frames or 

sections of a video that do not make sense. Figure 1 shows the 

possibility of the movement-epenthesis frame where a 

transition occurs between the end of the first word இந்த 

(this) and the beginning frame for the second word ஆடை 

(clothing). Here, the movement of hands in between the first 
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and third frames movement epenthesis frame. This work 

proposes a system that identifies and eliminates ME portions 

before starting any recognition. The significant contributions 

of this work are as follows. 

• The context tree will extract the movement epenthesis

frames from the continuous sentence sequence and

segment the meaningful portions.

• Determine whether the suggested methods are less time-

consuming than current maximum likelihood-based

movement epenthesis segmentation.

To address the limitations of traditional HMM-based and 

CRF-based movement epenthesis segmentation, this work 

adopts the VOGUE (Variable Order and Gapped HMM for 

Unstructured Elements) model. Unlike classical HMMs, 

which assume fixed-order dependencies and rely on Viterbi 

decoding with high computational cost, VOGUE learns 

variable-length contextual patterns directly from the mined 

strokes sequences. It also models the gaps (durations) between 

strokes, enabling the system to naturally handle irregular and 

highly variable ME segments. These properties make VOGUE 

particularly suitable for continuous sign language, where ME 

durations are unpredictable and transition patterns differ 

across signers. In addition, VOGUE performs likelihood 

computation in linear time, offering a significant speed 

advantage compared to the cubic time complexity of 

traditional HMM and CRF segmentation methods. 

Figure 1. Sample movement epenthesis frames for a sentence 

in the Tamil language 

The remainder of the work is structured as follows. Section 

2 explains the state-of-the-art work that attempted to solve the 

movement epenthesis problem. Section 3 presents the 

proposed approach, followed by the analysis of the results in 

Section 4. Section 5 concludes the work. 

2. RELATED WORKS

This section discusses the recognition of sign language, 

particularly addressing the issue of movement epenthesis. 

Researchers utilize various mathematical models, including 

the hidden Markov model (HMM), conditional random fields 

(CRF), dynamic temporal warping (DTW), and deep learning 

models, to identify signs in continuous sign language. 

2.1 Movement epenthesis problem solving using Dynamic 

Temporal Warping (DTW) 

The dynamic time-warping approach calculates the distance 

between two-word frames of different lengths and is the first 

step to find the epenthesis frame of movement [2, 3]. The main 

idea behind employing DTW in sign language recognition is 

to recognize identical sign sequences with changing speed and 

duration. 

This is helpful when the statement is brief, but it is more 

challenging to match the signs when the sentence has several 

words. This is the leading cause of the reduction in DTW-

based solutions for sign language recognition. Although 

comparing signs in DTW can be challenging, things become 

even more difficult when dealing with the movement 

epenthesis frames [4-6] point out that several movement 

epenthesis frames must be considered while developing a sign 

language detection system. We need a sizable corpus of ME 

frames, making it unable to apply the basic strategy of 

matching frames to corpora. Since ME frames are often 

present between the conclusion of the first sign and the 

beginning of the second sign, this strategy is the most practical. 

Manuel et al. [7] applied DTW in the AMBOC system for 

speaker verification, demonstrating its effectiveness in 

aligning variable length audio sequences a concept similarly 

applicable in gesture and sign segmentation were speed and 

transition variability impact accuracy. 

Consider two neighboring signs, called “first” and “second”, 

to illustrate this mathematically. The transition movement 

from first to second may be calculated as 𝑃(𝑠𝑒𝑐𝑜𝑛𝑑|𝑓𝑖𝑟𝑠𝑡). 

They claim that clustered models are the best at handling 

sentences with larger words since they have discovered that 

two adjacent signs will always have a near-end and a start. 

The automatic separation of transition movement from real 

word signs is accomplished using a suggested training 

algorithm. The major problem identified with the Gao 

approach is that, irrespective of different sentences, the ME 

between two adjacent signs will always be the same. This is 

addressed by the process adopted by the study [8] using the 

enhanced level building algorithm. Using this strategy within 

the dynamic programming framework, model creation for the 

ME frames is intended to be avoided. The standard approaches 

are compared using a schematic in Figure 2. 

Figure 2. State-of-the-art approaches using dynamic 

programming to solve the problem of movement epenthesis 

The ME frames could be interpreted as a sign. This is 

because standard methods, as shown in Figure 2, do not take 

them into account. When the sentence is long, it becomes 

practically difficult to build a model, and the no model 

approach aims to match the sign corpus. If a match cannot be 

found, it labels those frames as ME frames. The researchers 

focused on using Markov models to address the movement 

epenthesis problem because the identification of ME frames 

using DTW was unsatisfactory in both methods. There is also 

literature evidence demonstrating that the DTW approach 

performed better for character recognition than for sign 

recognition. 

2.2 Movement epenthesis problem solving using Markov 

models 

The variation of sign language over time is a crucial factor 
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for continuous sign language recognition systems. Models 

capturing temporal patterns can aid in sign classification, 

especially for time-varying signs. The Markov model is 

capable of handling spatiotemporal fluctuations in a sequence, 

while the hidden Markov model can identify unobserved 

information with the help of observed data [9]. The study [8] 

demonstrated that modeling movement epenthesis frames 

significantly improved the performance of sign categorization 

using the HMM model. Additionally, the study [10] extended 

the HMM model for gesture sign recognition to recognize 

continuous sign language. For Korean continuous sign 

language, the study [11] proposed an automata-based method 

considering hand movements and speed as the primary study 

parameter. They suggested a 3-phase system: preparation, 

strokes, and end. Each phase represents a state in automata 

theory, and hand motions are classified into 18 classes using 

HMM [12]. The study [13] utilized the threshold model 

labeling method and the quick HMM algorithm to enhance the 

recognition system’s performance, resulting in a lower error 

rate of 12.2%. However, due to extended dependencies, they 

found that the HMM-based model was not able to account for 

all the necessary relationships, leading to a shift in favor of the 

CRF method. 

2.3 Epenthesis problem solving using Continuous Random 

Field (CRF) 

The Continuous Random Field (CRF) is more flexible in 

associating labels with observations than Hidden Markov 

Models (HMM) [14]. This is because CRF focuses on directly 

collecting posterior probabilities [15], allowing for the 

creation of a single model for all sign labels. However, setting 

a fixed threshold for distinguishing between sign and non-sign 

patterns is challenging, as noted by Wang et al. [16], because 

a single fixed point may only work for some labels. To address 

this issue, Yang et al. [17] uses a slightly different method in 

which training for the non-sign models is not required when 

connecting a CRF model with a single labeled CRF model. 

The fundamental principle behind handling these frames, 

whether HMM-based or CRF-based, becomes clear after 

examining the state-of-the-art methods for dealing with 

movement epenthesis. Understanding the disparities in speed, 

hand height, and facial expressions between each phrase is 

crucial to mastering the technique. 

This variability can be quantified by establishing a threshold 

typically defined by a comparable figure, a minimum, and a 

maximum. A non-sign frame consists of any movement falling 

below the minimum or exceeding the maximum point. Despite 

the similar concept, the main limitation of the current 

techniques is the considerable time consumption of the Viterbi 

and related algorithms [18]. Based on the latest analysis, we 

have noticed that several methods are not suitable for real-time 

sign detection because they require lengthy computations. 

Therefore, sign detection algorithms should take into account 

time complexity. 

The study [17] have introduced an approach that decreases 

the time complexity of the HMM model and is regarded as the 

foundational model for future sign language recognition. 

2.4 Keyframe-based and trajectory-based approaches 

Recent studies have explored keyframe extraction and 

variable-order models for continuous sign language 

recognition. However, these approaches still face limitations 

in handling movement epenthesis efficiently, motivating the 

proposed VOGUE-based framework. 

3. PROPOSED MODEL

3.1 Problem formulation 

A thorough examination of the movement analysis literature 

reveals that, given the video sequence, a system tries to 

identify every gesture that appears in the stream of frames. 

This issue is presented mathematically in the following 

manner: Consider the video sequence m, which is a group of 

frames represented by the symbol 𝑚 = {𝑚1, 𝑚2, ⋯ , 𝑚𝑥}, all

the methods proposed in the literature try to find the most 

likely gesture given as a conditional probability 𝑃 = (𝑛|𝑚). 

To obtain the value of n, HMM or CRF models are used that 

try to find the state sequence 𝑛 = (𝑛1, 𝑛2, ⋯ , 𝑛𝑦). Then the

maximum likelihood is obtained using the Eq. (1). 

𝑚𝑎𝑥
𝑛1,𝑛2…

𝑃(𝑛1, 𝑛2, … , 𝑛𝑡|𝑚1, 𝑚2, … , 𝑚𝑡) (1) 

With this configuration, it is necessary to train the sign 

parameters to recognize the sign frames and ME frames, often 

done by using the classic HMM or variants with a fixed or 

adjustable threshold. Using the CRF, which we mentioned in 

Section 2, some works perform this training of sign parameters. 

Following completion of the training, methods such as Viterbi 

are employed to calculate the maximum likelihood.  

The current issue is the computational overhead with this 

approach, which depends on the number of frames used for 

likelihood estimates. Finding the ideal indication is more 

accessible when the complete frame of the video sequence is 

taken into account, which leads to a low detection rate. When 

an approach considers the start and finish frames, as is 

typically the case, ME frames present at either the beginning 

or the end may cause features to be overlooked. So, an 

algorithm that can quickly estimate the likelihood is needed 

for the movement epenthesis problem.  

Therefore, the goal of this work is to develop a methodology 

that is less time-consuming than the state-of-the-art value 

𝑂(𝑛3) and that also distinguishes between sign frames and

ME frames with a high level of classification accuracy. 

3.2 Cluster-based key frame extraction of the sign video 

sequence 

Because signs vary depending on the signer, it might not be 

easy to recognize them in a video sequence. This dependability 

causes a video sequence to contain a variable number of 

frames, which changes the frame rate. When developing a sign 

recognition system, the system must recognize the signs while 

not being concerned about frame rate or signer fluctuations. 

Crisp, purposeful keyframes are required for this. This 

necessitates a method for separating these distinct frames, 

which can help with better sign recognition and segmenting of 

the ME frames. To accomplish movement epenthesis 

segmentation, key frame extraction is the initial step. The 

critical frame extraction's overall block diagram is shown in 

Figure 3. 

The video sequence must be processed so that just a few 

frames are considered before beginning the movement 

epenthesis segmentation process. This stage is crucial for 
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reducing the number of training samples and enabling the 

identification of a specific sign in fewer frames. One user's 

interpretation of a word may differ slightly from another user's 

interpretation depending on the user making the sign. However, 

because the computation considers the strokes, it is simple to 

pinpoint this using the crucial maximum curvature locations. 

strokes are nothing but breaking a single sign language word 

into multiple segments, so typically, a stroke is a 2D 

representation of the hand and expressions. 

Figure 3. Overall process of the key frame extraction 

Figure 4. Strokes formed by the sentence “நான் நாடை 

ததாைங்குகிறேன் (I will start tomorrow)” 

In theory, this strategy aids in decreasing the training 

samples since, as seen in Figure 4, there are fewer strokes than 

words. A stroke is a movement in a video from one frame to 

the next. If there are 100 frames between the first and second 

words, it is unnecessary to consider all 100 frames because 

they all signify the same strokes. The strokes will remain 

constant regardless of the signer's speed or location on the 

trajectory, preventing signer-based spatiotemporal 

fluctuations. Additionally, the sign representation solves the 

issues raised in the conventional HMM and CRF. 

The suggested key frame extraction methodology aids in 

locating the best frames from the video sequence and the 

pertinent frames that may be used in additional processing to 

find the ME frames and signer frames. There are several steps 

involved in the retroactive frame extraction procedure, and the 

overall flow of those steps is provided below: 

• A window of frames is considered, and the subsequent

frame difference value is then calculated between the

frames. This quantitative frame difference value will be

used as a gauge to identify significant frames. The

window's frame with the most significant difference value

is chosen to achieve the necessary frames.

• Among the set of frames obtained after the frame

difference value undergoes a clustering operation in which

the grouping of similar frames happens, the scaling and

grayscale conversion of the frame precedes the group.

Then the frames undergo a discrete cosine transform that 

further helps extract informative frames. 

• In this work, k-means clustering was used to group visually

similar frames. Before clustering, all frames were

converted to grayscale and resized to a uniform resolution.

Each frame was then transformed using the Discrete

Cosine Transform (DCT), and the resulting DCT

coefficients were used as feature descriptors. The

Euclidean distance metric was employed to measure

similarity between frames. The number of clusters was set

to k = 6, selected empirically based on preliminary

evaluations across multiple sign samples. Frames that did

not strongly associate with any cluster centroid were

treated as outliers and retained as unique keyframes to

ensure that potentially informative frames were not

removed during the clustering process.

• Following clustering, the best frames and those that did not

fall into any of the clusters form the unique keyframes,

which are then strokes segmented again.

• Sign, and ME frames are present following the extraction

of unique frames. Therefore, it is crucial to divide the area

of interest. In the portrayal of signs, the hand region is

essential. Thus, the left- and right-hand areas are

considered, and the hand's centroid is used to understand

the overall trajectory of hand movement. The changes in

hand movement concerning direction and angle are used to

segment the global trajectory further. When there is a

sudden shift in focus, these changes, known as Key

Curvature Maximum Points (KCMP), are indicated. The

KCMP points are used to extract additional frames.

• Every continuous sign language representation consists of

various signs, generating numerous centroid points that

could be uneven. To accomplish the KCMP stroke

segmentation, this discontinuity needs to be smoothed out.

Approximation must be performed using Bezier or B-

spline curves to make the centroid tracking procedure

continuous. If the second-order derivative is smooth, the

cubic or polynomial B-spline approximation may not work

well for dynamic sign language identification because the

centroid tracking points might not be equally distributed.

So here, nonuniform B-spline approximation is carried out.

3.3 Non-uniform B-spline approximation 

A human movement must be captured for sign recognition 

systems to work. You can accomplish this with hardware, 

vision, or a hybrid. The hardware-based approach makes use 

of more expensive, diverse sensors. We have incorporated it 

into our system because most modern recognition algorithms 

rely on vision-based information. For poses with varying arm, 

hand, and face movements, concentration is attained using 

vision-based data. Along with these benefits, this vision-based 

strategy is non-intrusive and imposes no limitations on the 

users. The approximation method that works best to handle the 

higher-order derivative smoothing as well as the uneven 

spacing of the points is a non-uniform B-spline. This 

approximation has the benefit of having several knots that can 

be used to pull out the curve in any direction without creating 

a discontinuity. Derivatives can make the non-uniform B-

spline more complex, but for the sake of this article, let's stick 

to the order 4-spline. An open Non-uniform B-spline with 

control points (here the centroid value) 𝑐1, 𝑐2, 𝑐3 … 𝑐𝑛 consists

of, the knot vector will contain values from 𝑡0 … 𝑡𝑛+4 based on
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the order, the knot vector values also vary. Assume that there 

will be four more knots than control points for a 4-spline order. 

Based on the control points 𝑃𝑖 − 3, 𝑃𝑖 − 2, 𝑃𝑖 − 1, 𝑃𝑖 , the B-

spline segment 𝑃𝑖(𝑡) is obtained and the expression for

obtaining 𝑃𝑖(𝑡) is given by the Eq. (2).

𝑃𝑖(𝑡) =  𝑁𝑖 − 3,4(𝑡)𝑃𝑖 − 3 + 𝑁𝑖 − 2,4(𝑡)𝑃𝑖 − 2
+ 𝑁𝑖 − 1,4(𝑡)𝑃𝑖 − 1 + 𝑁𝑖 , 4(𝑡)𝑃𝑖

(2) 

where, N denotes the recursive weight functions and 3 ≤ 𝑖 ≤
𝑛  and 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1 . A sample 8-point B-spline curve is

shown in the Figure 5. 

Figure 5. Sample eight-point B-spline curve [19] 

3.4 Key Curvature Maximum Points (KCMP) 

After approximating the continuous curve, the next step is 

to find the maximum curvature points, which aid in creating 

the strokes used for epenthesis frame identification. 

Mathematically, the KCMP points are derived from the pixels 

in the trajectory. A pixel is labeled as KCMP in the trajectory 

if its degree of curvature exceeds the threshold. The 

neighboring pixels that are considered adjacent to the 

threshold slope values are computed, as seen in Figure 6. Eq. 

(3) displays the computation of slope numerically.

𝑡𝑎𝑛 𝑡𝑎𝑛 𝜃 =
𝑎𝑛𝑔ⅇ 𝑠𝑖𝑛 𝑠𝑖𝑛 𝑦

𝑎𝑛𝑔ⅇ 𝑠𝑖𝑛 𝑠𝑖𝑛 𝑥
(3) 

Figure 6. KCMP slope computation 

Algorithm 1 illustrates the general process of how the 

KCMP points are located and provides an algorithmic 

depiction of KCMP. 

The 2D trajectory data from both hands serve as the input 

for the KCMP extraction, followed by the identification of the 

region of interest. The area of interest is obtained using the 

turns of hand movement, which are unaffected by speed and 

frame rate. Therefore, the speed or frame rate of the signer has 

no bearing on this process. The main goal is to extract the 

subunits, and many researchers use various subunits to do this. 

Pitsikalis et al. [20] developed similar subunit strategies for the 

German sign language and incorporated the hand as location, 

shape, and movement as subunits. Similar studies, in which the 

subunits are described as standard, are carried out by 

Theodorakis et al. [21] and Aguilera et al. [22]. The 

segmentation process in our suggested methodology is carried 

out using the same principle of subunit utilization. The 

innovative aspect of this study is the way components are used, 

particularly the slope and direction of the hand, which is an 

essential aspect in determining the sign language. 

Algorithm 1. Key Curvature Maximum Point (KCMP) 

Selection 

1:  function KCMP (All points in the Non-Uniform B-

spline Approximation) 

2:      for each subsequent point 𝑃𝑖−3, 𝑃𝑖−, 𝑃𝑖−1, 𝑃𝑖  do

3:        Compute tan 𝜃 =
Δ𝑦

Δ𝑥

4: Suppose the sub-segment is 
(𝑥𝑖−4, 𝑦𝑖−4), (𝑥𝑖 , 𝑦𝑖), (𝑥𝑖+4, 𝑦𝑖+4)

5:          for each sub-segment do 

6:        Compute tan 𝜃1 =
∂y

∂x

7:        Compute tan 𝜃2 =
∂y

∂x

8:              Check the condition for marking KCMP: 

9:        if |tan 𝜃2 − tan 𝜃1| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
10: and (𝑥𝑖+4 − 𝑥𝑖) or (𝑦𝑖 − 𝑦𝑖−4 and 𝑦𝑖+4 − 𝑦𝑖)

then 

11: (𝑥𝑖 , 𝑦𝑖) is a point in KCMP

12:  end if 

13:      end for 

14:      end for 

15:  end function 

3.5 Non-manual signs integration 

Aside from understanding hand signs and reducing the 

number of frames, other factors must be considered to identify 

no-meaning frames in the video sequence, including a factor 

that heavily depends on the expression and helps convey the 

word or sentence. Determining the appropriate expression of 

the sign is therefore crucial. The location of the head, the 

mouth, and the specific features of the face are used to 

determine the expressions of the face. The training samples 

used to convert expressions into emotions and then link those 

feelings to words are shown in Table 1. The development of a 

better sign recognition system can benefit immensely from this. 

We must recognize the face and pay attention to features 

such as the eyebrows, mouth, eyes, and lips to separate 

emotions from expression. Since this does not help identify 

ME frames, we did not execute the procedure to encode 

emotions into sentences in this work. To determine whether 

the frames are an aid in the recognition of signs, it is crucial to 

consider both the expression and the information of the hand. 

The HOG classifier uses the histogram of directed gradients to 

extract key points and identify the region of interest. For 

testing reasons, these expressions are flags within the Tamil 

sentence structure, indicating a 0 for no emotion and a 1 for 

the sentiment. If a feeling is detected, this frame may belong 

to the sign frames and should be removed from the ME frames. 
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Table 1. Facial expression and their associated emotions in Tamil 

Feature 

Expression 
Emotion Associated Expression in English Possible Sentence Form 

Raised Eyebrows 
Question expecting answers in the form of 

Yes/No 
Do you want this? இது றேணுமா? 

Lowered Eyebrows 
Question expecting answers to know the 

place, person etc. 
Why not play? ஏன் விடையாை்டு இல்டல? 

Wide Lips Happiness 
I have received a 

promotion. 

எனக்கு பதவி உயரவ்ு

கிடைத்துை்ைது 

No Head Movement Negative Do not go there. அங்றக றபாகாறத 

Mouth opens to an 

oval 
Surprise Oh! / Wow! ஆஹா 

The algorithm 2 shows the overall procedure involved in 

identifying and decoding the facial expression of an emotion. 

Algorithm 2. Face Expression Identification 

1:  function FaceExpression 

2:      Boundary1 = HOG-SVM classifier of eye() 

3:      Boundary2 = HOG-SVM classifier of mouth() 

4:      Boundary3 = HOG-SVM classifier of head() 

5: KeyPoint_Eyebrow = 

Extract_Eyebrow(Boundary1) 

6:      KeyPoint_Mouth   = Extract_Mouth(Boundary2) 

7:      KeyPoint_Head    = Extract_Head(Boundary3) 

8:      if KeyPoint_Eyebrow moves upward then 

9:          Set flag = 1 

10:     else if KeyPoint_Head moves back and forth then 

11:  Set flag = 1 

12:     else if KeyPoint_Eyebrow moves downward then 

13:  Set flag = 1 

14:     else if KeyPoint_Lips == wide then 

15:  Set flag = 1 

16:     else if KeyPoint_Mouth opens to oval then 

17:  Set flag = 1 

18:     else 

19:  Set flag = 0 

20:     end if 

21: end function 

3.6 VOGUE (Variable order and gapped HMM for 

unstructured elements) model-based movement epenthesis 

segmentation 

The VOGUE model [19, 23] is employed in this work for 

the segmentation of movement epenthesis in continuous sign 

language. VOGUE is particularly advantageous because it 

enables the detection of ME frames in linear time, significantly 

reducing computational overhead compared to conventional 

HMM- and CRF-based segmentation approaches. 

Following the key frame extraction procedure described in 

Section 3.2, a set of distinct frames is obtained and represented 

as: 

𝑢 = 𝑢1,𝑢2,𝑢3
… ⋅ 𝑢𝑛

This set contains both meaningful sign frames and potential 

ME frames. The objective is to accurately separate ME frames 

from this sequence. 

Prior studies [24, 25] eliminate filler gestures using 

exhaustive search-based procedures, which are 

computationally intensive. In contrast, the proposed approach 

integrates all relevant keyframes into a unified sequence, 

enabling VOGUE to isolate ME frames efficiently using 

probabilistic modeling. 

Traditional Markov models assume that the next state in a 

sequence depends on a fixed number of preceding states. 

However, in continuous sign language, the length of 

contextual dependency varies depending on signer speed, 

trajectory, and stylistic differences. VOGUE addresses this 

limitation by employing a variable-order Markov model, 

which automatically adapts the context length based on the 

observed data. This ability to adjust context enables the model 

to capture subtle sign transitions more accurately. 

VOGUE incorporates gap modeling, allowing it to represent 

variable-length transitions between strokes. Since ME frames 

commonly appear as irregular gaps between meaningful 

gestures, gap modeling plays a crucial role in identifying 

epenthesis boundaries. 

The process of movement epenthesis segmentation in 

VOGUE involves the following steps: 

• The Variable Gap Sequencer (VGS) extracts frequent

subsequences from the keyframe sequence.

• A variable-order Markov model is constructed using these

variable-length subsequences.

• During segmentation, the likelihood of each frame is

computed in the form of a log-ratio. The model order is

increased iteratively to identify ME frames based on

variations in the probability distribution.

3.6.1 Advantages of VOGUE over HMM and CRF models 

The VOGUE model offers several advantages compared to 

conventional HMM and CRF methods for movement 

epenthesis segmentation. Classical HMMs rely on fixed-order 

dependencies, making them inadequate for sequences in which 

contextual requirements vary dynamically, as is typical in 

continuous sign language. Although variable-duration HMMs 

account for duration variability, they still require explicit 

duration modeling, which becomes unreliable when ME 

frames durations are inconsistent and unstructured. 

In contrast, VOGUE automatically captures variable-length 

contextual dependencies through the use of a context tree. It 

also learns gap-length distributions directly from the mined 

frequent sequences, enabling the model to distinguish between 

meaningful sign strokes and non-sign transition movements 

without the need to explicitly model ME frames. 

Furthermore, HMM and CRF approaches typically rely on 

Viterbi decoding, which has a cubic time complexity with 

respect to sequence length. This presents a major 

computational bottleneck for real-time systems. VOGUE 

performs likelihood estimation in linear time, making it 

significantly more efficient and suitable for real-time 

continuous sign language recognition applications [26]. 
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The capability to model unstructured segments, handle 

variable-duration gaps, and compute probabilities efficiently 

constitutes the primary motivation for adopting VOGUE as the 

segmentation framework in this work. 

Algorithm 3. Variable Key Frame Sequence Mining 

(VKFSM) 

1:  function VKFSM 

2:      Input: 

3:          Maximum Gap Allowed (MG) 

4:          Maximum Sequence Length (L) 

5:          Minimum Frequency Threshold (MT) 

6:      for every element in L do 

7:          Find the sequences with frequencies of length 1 

8:          for all elements with length 1 do 

9:              Extend sequence length to 2 

10:  Obtain gap length distribution 

11:  for each frequent sequence do 

12:  Record symbol distribution 

13:      end for 

14:  end for 

15:     end for 

16: end function 

After obtaining the mined sequence set using the VGS 

algorithm, these are used for the building of the VOGUE 

model. Every non gap frame in the keyframe is represented as 

a state here, and the gap length and symbol distribution are 

considered when adding any state in between two states. This 

is particularly useful in extracting the ME frames because the 

gaps generally denote the end of the first word, which could 

be a part of the ME frames, and also because the symbol 

distribution helps us conclude regarding the not-so-ME frames. 

The VOGUE model must learn two things to perform ME 

segmentation. First, the set of all Tamil sentences captured as 

sign videos is named as data. The procedure for learning these 

training data is based on the probability distribution algorithm. 

The context tree is then used to learn the strokes sequences as 

well as the mined sequence of the sign language. Given past 

data, the model assigns future key frame probabilities based 

on the given past data. The calculation performed internally 

and the probability calculation for the next frame are given by 

Eq. (4). The conditional distributions of the VOGUE model 

take the form 𝑃(𝑠𝑖𝑔𝑛 𝑜𝑓 𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒 | 𝑝𝑎𝑠𝑡 ℎ𝑖𝑠𝑡𝑜𝑟𝑦). Here, 

the approach we are following is to group all the sign frames 

of a word so that when the end of the word is reached before 

the start of the next word, all these signs are not recognized, 

so these will be marked as ME frames. So, the likelihood 

computation is done using Eq. (4). 

The procedure for learning the VOGUE model is shown in 

algorithm 4. Since this method aims to aggregate the frames 

that make up signs, it is not necessary to specific model ME 

frames. This methodology is effective since the most 

challenging part of segmenting ME frames is modeling them. 

𝑃(𝑠𝑖𝑔𝑛 𝑜𝑓 𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒 | 𝑝𝑎𝑠𝑡 ℎ𝑖𝑠𝑡𝑜𝑟𝑦) =
1

2
 +

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑜𝑘𝑒 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑥𝑡

𝑇𝑜𝑡𝑎𝑙 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎
(4) 

Algorithm 4. VOGUE-Based Momentum Epenthesis 

Segmentation 

1:  function VOGUE 

2:      Input: 

3:          Test Sentence: Length N, set of keyframes 

4:          S = {s1, s2, …, sn} 

5:      Output: 

6:          Sign Symbols [] = sign words list[] 

7:      Parameters: 

8:          State_Prev    = 0 

9:          State_Current = starting index 

10:  State_Next    = 2 

11:     function ContextTree(<word, vocabulary>) 

12:  for each word in the word vocabulary do 

13:  Update state probability and compute 

14:     

𝑃(𝑒𝑣𝑒𝑟𝑦 𝑠𝑖𝑔𝑛 𝑜𝑓 𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒 | 𝑝𝑎𝑠𝑡 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑖𝑔𝑛)
15:         end for 

16:     end function 

17:     for i = 1 to N do 

18: Current State Keyframe = Current State 

Keyframe     + State_Current 

19:  Previous State Keyframe = Previous State 

Keyframe + State_Prev 

20:  Compute Log Ratio 

21:  if Log Ratio > Threshold then 

22:  Set Sign Flag = 1 

23:      Add the current frame to the sign frame group 

24:  end if 

25:     end for 

26:     return Sign Frames [] 

27: end function 

4. RESULT AND DISCUSSION

4.1 Data set 

Ten videos created and used based on the Tamil sign 

language are used to test the separation between ME and sign 

frames. The dataset used in this study consists of 30 video 

samples derived from 10 distinct Tamil sign language 

sentences, each performed by three different signers. A train–

test split of 70% and 30% was employed, respectively, while 

ensuring signer independence by assigning different signers to 

the training and testing sets. This cross-signer evaluation 

strategy was adopted to assess the generalization capability of 

the proposed method across variations in signer style, speed, 

and trajectory. Since publicly available datasets for Tamil Sign 

Language are limited, the dataset was custom-recorded for this 

study, and its size reflects the practical constraints of data 

collection in low-resource sign languages. Three separate 

samples are produced using these ten sentences, each signed 

by a different signer whose pace, trajectory, and hand shape 

differ. In terms of sign exposure, only a small number of 

phrases exactly matched the three signers, and in a few 

instances also had wider stylistic variances. 

4.2 Cluster based on frame extraction results and 

discussion 

The reduction of training time is the main objective of 

cluster-based frame extraction. Figure 7 illustrates how few 

important frames were retrieved during KCMP frame 

extraction. The frame ratio is calculated as a ratio between the 

total number of keyframes produced after the cluster 

extraction and the total number of frames to comprehend the 
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number of frames reduced quantitatively. The sequence in 

Figure 7 was given a frame ratio of 0.0159. Because the signer 

becomes more aware of each word and casually keeps the 

remaining spaces, the turning points of the hand trajectory 

viewed as the final step for collecting the keyframes made 

sense and made our job more manageable. Figures 8 and 9 

represent the point extracted KCMP on the trajectory and the 

equivalent frames extracted. 

The suggested method for decreased key frame extraction 

yielded good results with fewer frames. However, it is crucial 

to understand whether or not this decrease in frames affects 

how well indications can be detected. So, sign identification is 

validated using some of the matching algorithms like scale-

invariant feature transform (SIFT), speed-up robust feature 

(SURF), robust independent elementary features (BRIEF), 

oriented FAST, rotated BRIEF (ORB), and the results 

obtained are tabulated in Table 2. 

 

 
 

Figure 7. Cluster-based frame extraction of a hand trajectory for sign identification 

 

 
 

Figure 8. Cluster based trajectory for the word “நான் நாடை ததாைங்குகிறேன் (I will start tomorrow)” 

 

 
 

Figure 9. Key frame extraction for the sign “நான் நாடை ததாைங்குகிறேன் (I will start tomorrow)” 
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Table 2. Tabulated values showing the state-of-the-art matching algorithms for sign recognition without cluster-based key frame 

extraction and with cluster-based key frame extraction 

Without Cluster-Based Key Frames With Cluster-Based Key Frames 

Matching 

Algorithms 

Per Sign 

Frames 

Key Frames 

for Sign 

Frame 

Ratio 
Accuracy 

Per Sign 

Frames 

Key Frames 

for Sign 

Frame 

Ratio 
Accuracy 

SIFT 18 18 1 68.92% 18 1 0.05 58.92% 

SURF 18 18 1 73.72% 18 1 0.05 83.76% 

ORB 18 18 1 75.76% 18 1 0.05 82.17% 

Table 3. State-of-the-art results in terms of error rate for various methods 

Model Sign Error Rate 

Dynamic Time Warping 90.83% 

Hidden Markov Model 82.70% 

Conditional Random Field (Fixed Threshold) 66.04% 

Conditional Random Field (Short Sign Detector) 67.08% 

Conditional Random Field (Non-Sign Patterns Labelling) 59.79% 

VOM Model [25] 6.8% 

It is observed that the accuracy of certain feature-based 

matching methods, such as SIFT, decreases after applying 

cluster-based key frame extraction. This reduction occurs 

because SIFT relies heavily on dense local keypoints, and the 

removal of intermediate frames results in fewer distinctive 

feature points available for matching. Consequently, the 

descriptor becomes less discriminative when only one or two 

frames represent a complete strokes. In contrast, SURF and 

ORB remain more stable or even improve in accuracy because 

they use more robust gradient-based and binary descriptors 

that tolerate reduced frame density. These results highlight a 

trade-off between frame reduction and the sensitivity of 

different feature extractors, explaining why SIFT shows 

decreased performance in the clustered condition. 

Next, the performance of the VOGUE model is verified 

using testing sentences that were not part of the training phase. 

The key frame sequence then goes through the probability 

computation for every iteration in the context tree before a 

particular frame is considered for grouping as sign frames. 

Finally, the state-of-the-art comparisons in terms of the sign 

error rate are verified with our methodology, and the 

tabulation for the same is depicted in Table 3. Because this 

data set was created specifically for this study and is much 

smaller in size, the results achieved with our methodology 

cannot be compared to those obtained with other state-of-the-

art methods.  

Thus, these data are displayed to perform a comparative 

analysis, but they are not displayed to highlight the superiority 

of our model over competing models. The mistake rate 

discovered using our suggested strategy is 5.3% with an 

overall accuracy of 86.78%. Because most of the learning 

occurs via the Viterbi algorithm, another significant issue with 

ME frames segmentation is that the temporal complexity of 

the suggested approaches is cubic as 𝑂(𝑛3)  . However,

because the estimation is based on probability and logarithmic 

ratio, this VOGUE model executes the learning in linear time. 

As a result, 𝑂(𝑛) is the time complexity. 

5. CONCLUSIONS AND FUTURE WORK

The focus of this project was to develop a new methodology 

for solving the movement “epenthesis” problem in the context 

of sign language recognition, to create a more effective sign 

language recognition system. The proposed approach involves 

extracting relevant frames that contain information about hand 

shape, movement, and facial expression. The methodology 

utilizes a clustering technique to group similar frames, 

followed by the Key Frame Capturing (KCMP) process to 

identify key frames. A VOGUE-based learning model is then 

used to learn sequences and compute probabilities to 

determine the relevance of the current frame to the previous 

frame. If there is a significant variation in the log ratio value, 

it is understood that the frame does not belong to the current 

word; it may be a movement epenthesis frame or a sign for the 

next word. The proposed model demonstrated improved 

performance, with a sign error rate of around 5%. The error 

rate remained consistent despite changes in speed and 

direction within the sequence. The experimental results 

indicate that the proposed method achieves competitive 

accuracy and improved computational efficiency compared to 

established baseline techniques, within the constraints of the 

evaluated Tamil Sign Language dataset. 

These findings demonstrate that the VOGUE-based 

framework is effective for real-time movement epenthesis 

segmentation without overstating generalization beyond the 

current dataset. One potential enhancement could involve the 

use of a Bayesian deep learning network for matching and 

recognition. 
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