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When developing a continuous sign language recognition (CSLR) system, a significant
challenge lies in processing the vast number of video frames, which demands extensive time
and computational resources during both the training and prediction phases. To address this,
we propose an efficient and scalable methodology that integrates cluster-based key frame
extraction with a VOGUE-based recognition model designed for continuous gestures. The
key frame extraction strategy clusters visually similar frames to reduce redundancy while
preserving only those with high semantic relevance. To further enhance recognition
accuracy, we introduce the Key Curvature Maximum Point (KCMP) technique, which
identifies pivotal motion points and captures essential hand trajectory changes inherent to
sign language. These refined frames are subsequently used to train a VOGUE-based model
that encodes spatial and temporal strokes dynamics, followed by probability distribution
modeling for robust prediction. The proposed approach was evaluated using a custom-built
Tamil Sign Language dataset. Performance was compared against several established
baseline methods, including Dynamic Time Warping (DTW), Hidden Markov Models
(HMM), and multiple Conditional Random Field (CRF) variants, as well as the VOM
model. The system achieved a recognition accuracy of 86.78% and a sign error rate of 5.3%.
A paired t-test confirmed that the improvements over baseline models were statistically
significant (p < 0.05). These results demonstrate that the proposed framework provides
improved efficiency and competitive accuracy, offering a promising solution for real-time

CSLR applications, particularly in low-resource regional sign languages.

1. INTRODUCTION

In the past, there has been a lack of attention towards sign
languages in India due to the absence of a comprehensive
corpus of sign languages for Indian languages. However,
following the initiatives taken post 2000, such as the release of
the first corpora of Indian Sign Language by Vivekananda
University in collaboration with IHRDC and CBM, the
emphasis has shifted towards promoting awareness and
education about the sign languages used by the deaf and hard-
of-hearing community. Sign language has proven to be the
most effective form of communication for the deaf population,
as it allows them to express themselves without causing
discomfort to others. This has underscored the importance of
educating the hearing community about sign language,
enabling them to understand and engage in effective
communication with the deaf community. Similarly to the
mother tongue of a traditional culture, sign language can be
considered the mother tongue of the deaf community,
characterized by its own syntax, structure, and expressive
elements. However, for the broader public to understand sign
language, the development of efficient translator or recognizer
systems is essential. These systems would decode signs into
voice or text, and the complexity of such systems would
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depend on whether they are static or dynamic, based on the
nature of the signs being conveyed. Typically, static or isolated
sign language recognition (ISR) focuses on recognizing a
single sign at a time, as illustrated by the sample sequence
shown in Figure 1. Since the signer pauses after each sign,
most solitary sign language videos do not contain non-sensical
movements when processed. However, continuous sign
language recognition (CSLR) is different because a continuous
sign consists of multiple isolated sign words (ISR). We need
to segment the isolated words to recognize each for a
continuous sign language.

The signer must use a stop sign between each isolated word
to differentiate between meaningful and meaningless
segments in a continuous sign [1]. Using stop signs for longer
phrases or paragraphs would become tedious if one were used
for each word in a sentence. Therefore, there should be a
method to separate the actual and meaningless segments.
“Movement In Epenthesis” (ME) frames refer to frames or
sections of a video that do not make sense. Figure 1 shows the
possibility of the movement-epenthesis frame where a
transition occurs between the end of the first word @&

(this) and the beginning frame for the second word 24,600
(clothing). Here, the movement of hands in between the first
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and third frames movement epenthesis frame. This work
proposes a system that identifies and eliminates ME portions
before starting any recognition. The significant contributions
of this work are as follows.

The context tree will extract the movement epenthesis

frames from the continuous sentence sequence and

segment the meaningful portions.

Determine whether the suggested methods are less time-

consuming than current maximum likelihood-based

movement epenthesis segmentation.
To address the limitations of traditional HMM-based and
CRF-based movement epenthesis segmentation, this work
adopts the VOGUE (Variable Order and Gapped HMM for
Unstructured Elements) model. Unlike classical HMMs,
which assume fixed-order dependencies and rely on Viterbi
decoding with high computational cost, VOGUE learns
variable-length contextual patterns directly from the mined
strokes sequences. It also models the gaps (durations) between
strokes, enabling the system to naturally handle irregular and
highly variable ME segments. These properties make VOGUE
particularly suitable for continuous sign language, where ME
durations are unpredictable and transition patterns differ
across signers. In addition, VOGUE performs likelihood
computation in linear time, offering a significant speed
advantage compared to the cubic time complexity of
traditional HMM and CRF segmentation methods.

ME Frame Dicoaflhgp) Clasmer

Ty

Figure 1. Sample movement epenthesis frames for a sentence
in the Tamil language

The remainder of the work is structured as follows. Section
2 explains the state-of-the-art work that attempted to solve the
movement epenthesis problem. Section 3 presents the
proposed approach, followed by the analysis of the results in
Section 4. Section 5 concludes the work.

2. RELATED WORKS

This section discusses the recognition of sign language,
particularly addressing the issue of movement epenthesis.
Researchers utilize various mathematical models, including
the hidden Markov model (HMM), conditional random fields
(CRF), dynamic temporal warping (DTW), and deep learning
models, to identify signs in continuous sign language.

2.1 Movement epenthesis problem solving using Dynamic
Temporal Warping (DTW)

The dynamic time-warping approach calculates the distance
between two-word frames of different lengths and is the first
step to find the epenthesis frame of movement [2, 3]. The main
idea behind employing DTW in sign language recognition is
to recognize identical sign sequences with changing speed and
duration.

This is helpful when the statement is brief, but it is more
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challenging to match the signs when the sentence has several
words. This is the leading cause of the reduction in DTW-
based solutions for sign language recognition. Although
comparing signs in DTW can be challenging, things become
even more difficult when dealing with the movement
epenthesis frames [4-6] point out that several movement
epenthesis frames must be considered while developing a sign
language detection system. We need a sizable corpus of ME
frames, making it unable to apply the basic strategy of
matching frames to corpora. Since ME frames are often
present between the conclusion of the first sign and the
beginning of the second sign, this strategy is the most practical.
Manuel et al. [7] applied DTW in the AMBOC system for
speaker verification, demonstrating its effectiveness in
aligning variable length audio sequences a concept similarly
applicable in gesture and sign segmentation were speed and
transition variability impact accuracy.

Consider two neighboring signs, called “first” and “second”,
to illustrate this mathematically. The transition movement
from first to second may be calculated as P(second|first).
They claim that clustered models are the best at handling
sentences with larger words since they have discovered that
two adjacent signs will always have a near-end and a start.

The automatic separation of transition movement from real
word signs is accomplished using a suggested training
algorithm. The major problem identified with the Gao
approach is that, irrespective of different sentences, the ME
between two adjacent signs will always be the same. This is
addressed by the process adopted by the study [8] using the
enhanced level building algorithm. Using this strategy within
the dynamic programming framework, model creation for the
ME frames is intended to be avoided. The standard approaches
are compared using a schematic in Figure 2.

Sentence

@95 ME Frame ai L amﬂw Qa e

//\

Conventional Model Building No Model

Figure 2. State-of-the-art approaches using dynamic
programming to solve the problem of movement epenthesis

The ME frames could be interpreted as a sign. This is
because standard methods, as shown in Figure 2, do not take
them into account. When the sentence is long, it becomes
practically difficult to build a model, and the no model
approach aims to match the sign corpus. If a match cannot be
found, it labels those frames as ME frames. The researchers
focused on using Markov models to address the movement
epenthesis problem because the identification of ME frames
using DTW was unsatisfactory in both methods. There is also
literature evidence demonstrating that the DTW approach
performed better for character recognition than for sign
recognition.

2.2 Movement epenthesis problem solving using Markov
models

The variation of sign language over time is a crucial factor



for continuous sign language recognition systems. Models
capturing temporal patterns can aid in sign classification,
especially for time-varying signs. The Markov model is
capable of handling spatiotemporal fluctuations in a sequence,
while the hidden Markov model can identify unobserved
information with the help of observed data [9]. The study [8]
demonstrated that modeling movement epenthesis frames
significantly improved the performance of sign categorization
using the HMM model. Additionally, the study [10] extended
the HMM model for gesture sign recognition to recognize
continuous sign language. For Korean continuous sign
language, the study [11] proposed an automata-based method
considering hand movements and speed as the primary study
parameter. They suggested a 3-phase system: preparation,
strokes, and end. Each phase represents a state in automata
theory, and hand motions are classified into 18 classes using
HMM [12]. The study [13] utilized the threshold model
labeling method and the quick HMM algorithm to enhance the
recognition system’s performance, resulting in a lower error
rate of 12.2%. However, due to extended dependencies, they
found that the HMM-based model was not able to account for
all the necessary relationships, leading to a shift in favor of the
CRF method.

2.3 Epenthesis problem solving using Continuous Random
Field (CRF)

The Continuous Random Field (CRF) is more flexible in
associating labels with observations than Hidden Markov
Models (HMM) [14]. This is because CRF focuses on directly
collecting posterior probabilities [15], allowing for the
creation of a single model for all sign labels. However, setting
a fixed threshold for distinguishing between sign and non-sign
patterns is challenging, as noted by Wang et al. [16], because
a single fixed point may only work for some labels. To address
this issue, Yang et al. [17] uses a slightly different method in
which training for the non-sign models is not required when
connecting a CRF model with a single labeled CRF model.
The fundamental principle behind handling these frames,
whether HMM-based or CRF-based, becomes clear after
examining the state-of-the-art methods for dealing with
movement epenthesis. Understanding the disparities in speed,
hand height, and facial expressions between each phrase is
crucial to mastering the technique.

This variability can be quantified by establishing a threshold
typically defined by a comparable figure, a minimum, and a
maximum. A non-sign frame consists of any movement falling
below the minimum or exceeding the maximum point. Despite
the similar concept, the main limitation of the current
techniques is the considerable time consumption of the Viterbi
and related algorithms [18]. Based on the latest analysis, we
have noticed that several methods are not suitable for real-time
sign detection because they require lengthy computations.
Therefore, sign detection algorithms should take into account
time complexity.

The study [17] have introduced an approach that decreases
the time complexity of the HMM model and is regarded as the
foundational model for future sign language recognition.

2.4 Keyframe-based and trajectory-based approaches
Recent studies have explored keyframe extraction and

variable-order models for continuous sign language
recognition. However, these approaches still face limitations
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in handling movement epenthesis efficiently, motivating the
proposed VOGUE-based framework.

3. PROPOSED MODEL
3.1 Problem formulation

A thorough examination of the movement analysis literature
reveals that, given the video sequence, a system tries to
identify every gesture that appears in the stream of frames.
This issue is presented mathematically in the following
manner: Consider the video sequence m, which is a group of
frames represented by the symbol m = {m,,my,, -, m,}, all
the methods proposed in the literature try to find the most
likely gesture given as a conditional probability P = (n|m).
To obtain the value of n, HMM or CRF models are used that
try to find the state sequence n = (nl,nz, ,ny). Then the
maximum likelihood is obtained using the Eq. (1).

max P(nqy,ny, ..., n|my, my,, ...,my)

nyna.. (1)

With this configuration, it is necessary to train the sign
parameters to recognize the sign frames and ME frames, often
done by using the classic HMM or variants with a fixed or
adjustable threshold. Using the CRF, which we mentioned in
Section 2, some works perform this training of sign parameters.
Following completion of the training, methods such as Viterbi
are employed to calculate the maximum likelihood.

The current issue is the computational overhead with this
approach, which depends on the number of frames used for
likelihood estimates. Finding the ideal indication is more
accessible when the complete frame of the video sequence is
taken into account, which leads to a low detection rate. When
an approach considers the start and finish frames, as is
typically the case, ME frames present at either the beginning
or the end may cause features to be overlooked. So, an
algorithm that can quickly estimate the likelihood is needed
for the movement epenthesis problem.

Therefore, the goal of this work is to develop a methodology
that is less time-consuming than the state-of-the-art value
0(n®) and that also distinguishes between sign frames and
ME frames with a high level of classification accuracy.

3.2 Cluster-based key frame extraction of the sign video
sequence

Because signs vary depending on the signer, it might not be
easy to recognize them in a video sequence. This dependability
causes a video sequence to contain a variable number of
frames, which changes the frame rate. When developing a sign
recognition system, the system must recognize the signs while
not being concerned about frame rate or signer fluctuations.
Crisp, purposeful keyframes are required for this. This
necessitates a method for separating these distinct frames,
which can help with better sign recognition and segmenting of
the ME frames. To accomplish movement epenthesis
segmentation, key frame extraction is the initial step. The
critical frame extraction's overall block diagram is shown in
Figure 3.

The video sequence must be processed so that just a few
frames are considered before beginning the movement
epenthesis segmentation process. This stage is crucial for



reducing the number of training samples and enabling the
identification of a specific sign in fewer frames. One user's
interpretation of a word may differ slightly from another user's
interpretation depending on the user making the sign. However,
because the computation considers the strokes, it is simple to
pinpoint this using the crucial maximum curvature locations.
strokes are nothing but breaking a single sign language word
into multiple segments, so typically, a stroke is a 2D
representation of the hand and expressions.

'
'
Peiiaas Step 1 : Step 2 ' Step 3
& e ' Cluster Simitar Best Frame Selection
e PR IGeY Frames Key Frame From Cluster
| Compute Frame Centroid Finding in a
| & —>xl Difference Gray Scale Conversion F
'
! } ' |
'
I I Calculate Discrete Cosi s Key Maximum C
| cul rete ne, ' Key um Curvature
| Local Maxima Calculation T f ’ ci
0Q l | |
'
Video Reduced Set of Key Key Frame Clusters Using| | >
Frames HDBSCAN ' LNt ey Framak
'

Figure 3. Overall process of the key frame extraction

. Stoke 1
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™

Figure 4. Strokes formed by the sentence “[BIT60T [HT6D)6T
Q& ITLMIGHCmedt (I will start tomorrow)”

Qg mLkIgH Cmebr

mBreneT

In theory, this strategy aids in decreasing the training
samples since, as seen in Figure 4, there are fewer strokes than
words. A stroke is a movement in a video from one frame to
the next. If there are 100 frames between the first and second
words, it is unnecessary to consider all 100 frames because
they all signify the same strokes. The strokes will remain
constant regardless of the signer's speed or location on the
trajectory, preventing signer-based spatiotemporal
fluctuations. Additionally, the sign representation solves the
issues raised in the conventional HMM and CRF.

The suggested key frame extraction methodology aids in
locating the best frames from the video sequence and the
pertinent frames that may be used in additional processing to
find the ME frames and signer frames. There are several steps
involved in the retroactive frame extraction procedure, and the
overall flow of those steps is provided below:

A window of frames is considered, and the subsequent
frame difference value is then calculated between the
frames. This quantitative frame difference value will be
used as a gauge to identify significant frames. The
window's frame with the most significant difference value
is chosen to achieve the necessary frames.

Among the set of frames obtained after the frame
difference value undergoes a clustering operation in which
the grouping of similar frames happens, the scaling and
grayscale conversion of the frame precedes the group.
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Then the frames undergo a discrete cosine transform that
further helps extract informative frames.

In this work, k-means clustering was used to group visually
similar frames. Before clustering, all frames were
converted to grayscale and resized to a uniform resolution.
Each frame was then transformed using the Discrete
Cosine Transform (DCT), and the resulting DCT
coefficients were used as feature descriptors. The
Euclidean distance metric was employed to measure
similarity between frames. The number of clusters was set
to k = 6, selected empirically based on preliminary
evaluations across multiple sign samples. Frames that did
not strongly associate with any cluster centroid were
treated as outliers and retained as unique keyframes to
ensure that potentially informative frames were not
removed during the clustering process.

Following clustering, the best frames and those that did not
fall into any of the clusters form the unique keyframes,
which are then strokes segmented again.

Sign, and ME frames are present following the extraction
of unique frames. Therefore, it is crucial to divide the area
of interest. In the portrayal of signs, the hand region is
essential. Thus, the left- and right-hand areas are
considered, and the hand's centroid is used to understand
the overall trajectory of hand movement. The changes in
hand movement concerning direction and angle are used to
segment the global trajectory further. When there is a
sudden shift in focus, these changes, known as Key
Curvature Maximum Points (KCMP), are indicated. The
KCMP points are used to extract additional frames.

Every continuous sign language representation consists of
various signs, generating numerous centroid points that
could be uneven. To accomplish the KCMP stroke
segmentation, this discontinuity needs to be smoothed out.
Approximation must be performed using Bezier or B-
spline curves to make the centroid tracking procedure
continuous. If the second-order derivative is smooth, the
cubic or polynomial B-spline approximation may not work
well for dynamic sign language identification because the
centroid tracking points might not be equally distributed.
So here, nonuniform B-spline approximation is carried out.

3.3 Non-uniform B-spline approximation

A human movement must be captured for sign recognition
systems to work. You can accomplish this with hardware,
vision, or a hybrid. The hardware-based approach makes use
of more expensive, diverse sensors. We have incorporated it
into our system because most modern recognition algorithms
rely on vision-based information. For poses with varying arm,
hand, and face movements, concentration is attained using
vision-based data. Along with these benefits, this vision-based
strategy is non-intrusive and imposes no limitations on the
users. The approximation method that works best to handle the
higher-order derivative smoothing as well as the uneven
spacing of the points is a non-uniform B-spline. This
approximation has the benefit of having several knots that can
be used to pull out the curve in any direction without creating
a discontinuity. Derivatives can make the non-uniform B-
spline more complex, but for the sake of this article, let's stick
to the order 4-spline. An open Non-uniform B-spline with
control points (here the centroid value) ¢y, ¢, 5 ... ¢, consists
of, the knot vector will contain values from ¢t ... t,,,, based on



the order, the knot vector values also vary. Assume that there
will be four more knots than control points for a 4-spline order.

Based on the control points P; — 3, P; — 2, P, — 1, P;, the B-
spline segment P;(t) is obtained and the expression for
obtaining P;(t) is given by the Eq. (2).

+ N, —1,4)P, — 1+ N;, 4(t)P;
where, N denotes the recursive weight functions and 3 < i <
nand t; <t <t;,;. A sample 8-point B-spline curve is
shown in the Figure 5.

Figure 5. Sample eight-point B-spline curve [19]
3.4 Key Curvature Maximum Points (KCMP)

After approximating the continuous curve, the next step is
to find the maximum curvature points, which aid in creating
the strokes used for epenthesis frame identification.
Mathematically, the KCMP points are derived from the pixels
in the trajectory. A pixel is labeled as KCMP in the trajectory
if its degree of curvature exceeds the threshold. The
neighboring pixels that are considered adjacent to the
threshold slope values are computed, as seen in Figure 6. Eq.
(3) displays the computation of slope numerically.

ange sin sin
tantan 6 = angesmsmy 3)

ange sin sin x

Changesiny

-15

Figure 6. KCMP slope computation

Algorithm 1 illustrates the general process of how the
KCMP points are located and provides an algorithmic
depiction of KCMP.

The 2D trajectory data from both hands serve as the input
for the KCMP extraction, followed by the identification of the
region of interest. The area of interest is obtained using the
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turns of hand movement, which are unaffected by speed and
frame rate. Therefore, the speed or frame rate of the signer has
no bearing on this process. The main goal is to extract the
subunits, and many researchers use various subunits to do this.
Pitsikalis et al. [20] developed similar subunit strategies for the
German sign language and incorporated the hand as location,
shape, and movement as subunits. Similar studies, in which the
subunits are described as standard, are carried out by
Theodorakis et al. [21] and Aguilera et al. [22]. The
segmentation process in our suggested methodology is carried
out using the same principle of subunit utilization. The
innovative aspect of this study is the way components are used,
particularly the slope and direction of the hand, which is an
essential aspect in determining the sign language.

Algorithm 1. Key Curvature Maximum Point (KCMP)
Selection

1: function KCMP (All points in the Non-Uniform B-
spline Approximation)

2:  for each subsequent point P;_3, P;_, P;_;, P; do

3: Compute tan 8 = i—z

4. Suppose the sub-segment is

(X YVica) (0, i), (Xigar Yiga)

S: for each sub-segment do

6: Compute tan 6; = —

7: Compute tan 8, = ‘;—Z

8: Check the condition for marking KCMP:

9: if |tan 8, — tan 8,| > threshold

10: and (Xj14 — X;) OF (¥ — Yi—g and Yiq — Vi)
then

11: (x4, ¥;) is a point in KCMP

12: end if

13: end for

14:  end for

15: end function

3.5 Non-manual signs integration

Aside from understanding hand signs and reducing the
number of frames, other factors must be considered to identify
no-meaning frames in the video sequence, including a factor
that heavily depends on the expression and helps convey the
word or sentence. Determining the appropriate expression of
the sign is therefore crucial. The location of the head, the
mouth, and the specific features of the face are used to
determine the expressions of the face. The training samples
used to convert expressions into emotions and then link those
feelings to words are shown in Table 1. The development of a
better sign recognition system can benefit immensely from this.

We must recognize the face and pay attention to features
such as the eyebrows, mouth, eyes, and lips to separate
emotions from expression. Since this does not help identify
ME frames, we did not execute the procedure to encode
emotions into sentences in this work. To determine whether
the frames are an aid in the recognition of signs, it is crucial to
consider both the expression and the information of the hand.
The HOG classifier uses the histogram of directed gradients to
extract key points and identify the region of interest. For
testing reasons, these expressions are flags within the Tamil
sentence structure, indicating a 0 for no emotion and a 1 for
the sentiment. If a feeling is detected, this frame may belong
to the sign frames and should be removed from the ME frames.



Table 1. Facial expression and their associated emotions in Tamil

Feature

. Emotion Associated
Expression

Expression in English

Possible Sentence Form

Raised Eyebrows Yes/No

Question expecting answers to know the

Lowered Eyebrows
place, person etc.

Wide Lips Happiness
No Head Movement Negative
Mouth opens to an .
Surprise

oval

Question expecting answers in the form of

Do you want this? 9 & GalsmIlnm?

Why not play? g6t ellemerwimL_(h @ evemeu?
I have received a 6TeTE: @& LG e 2 wije
promotion. RS Sl6Teng)
Do not go there. ImICH GUMTHTECSH
Oh! / Wow! LM

The algorithm 2 shows the overall procedure involved in
identifying and decoding the facial expression of an emotion.

Algorithm 2. Face Expression Identification
1: function FaceExpression

2:  Boundaryl = HOG-SVM classifier of eye()

3:  Boundary2 = HOG-SVM classifier of mouth()

4:  Boundary3 = HOG-SVM classifier of head()

5: KeyPoint Eyebrow =

Extract Eyebrow(Boundaryl)

6:  KeyPoint Mouth = Extract Mouth(Boundary2)
7:  KeyPoint Head = Extract Head(Boundary3)

8: if KeyPoint Eyebrow moves upward then

9: Set flag =1

10: else if KeyPoint Head moves back and forth then
11: Set flag =1

12:  else if KeyPoint Eyebrow moves downward then
13: Set flag =1

14: else if KeyPoint Lips == wide then

15: Set flag =1

16: else if KeyPoint Mouth opens to oval then

17: Set flag =1

18: else

19: Set flag =0

20: endif

21: end function

3.6 VOGUE (Variable order and gapped HMM for
unstructured elements) model-based movement epenthesis
segmentation

The VOGUE model [19, 23] is employed in this work for
the segmentation of movement epenthesis in continuous sign
language. VOGUE is particularly advantageous because it
enables the detection of ME frames in linear time, significantly
reducing computational overhead compared to conventional
HMM- and CRF-based segmentation approaches.

Following the key frame extraction procedure described in
Section 3.2, a set of distinct frames is obtained and represented
as:

U= Uy, - Un

This set contains both meaningful sign frames and potential
ME frames. The objective is to accurately separate ME frames
from this sequence.

Prior studies [24, 25] eliminate filler gestures using
exhaustive search-based  procedures, = which  are
computationally intensive. In contrast, the proposed approach
integrates all relevant keyframes into a unified sequence,
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enabling VOGUE to isolate ME frames efficiently using
probabilistic modeling.

Traditional Markov models assume that the next state in a
sequence depends on a fixed number of preceding states.
However, in continuous sign language, the length of
contextual dependency varies depending on signer speed,
trajectory, and stylistic differences. VOGUE addresses this
limitation by employing a variable-order Markov model,
which automatically adapts the context length based on the
observed data. This ability to adjust context enables the model
to capture subtle sign transitions more accurately.

VOGUE incorporates gap modeling, allowing it to represent
variable-length transitions between strokes. Since ME frames
commonly appear as irregular gaps between meaningful
gestures, gap modeling plays a crucial role in identifying
epenthesis boundaries.

The process of movement epenthesis segmentation in
VOGUE involves the following steps:

e The Variable Gap Sequencer (VGS) extracts frequent
subsequences from the keyframe sequence.

A variable-order Markov model is constructed using these
variable-length subsequences.

During segmentation, the likelihood of each frame is
computed in the form of a log-ratio. The model order is
increased iteratively to identify ME frames based on
variations in the probability distribution.

3.6.1 Advantages of VOGUE over HMM and CRF models

The VOGUE model offers several advantages compared to
conventional HMM and CRF methods for movement
epenthesis segmentation. Classical HMMs rely on fixed-order
dependencies, making them inadequate for sequences in which
contextual requirements vary dynamically, as is typical in
continuous sign language. Although variable-duration HMMs
account for duration variability, they still require explicit
duration modeling, which becomes unreliable when ME
frames durations are inconsistent and unstructured.

In contrast, VOGUE automatically captures variable-length
contextual dependencies through the use of a context tree. It
also learns gap-length distributions directly from the mined
frequent sequences, enabling the model to distinguish between
meaningful sign strokes and non-sign transition movements
without the need to explicitly model ME frames.

Furthermore, HMM and CRF approaches typically rely on
Viterbi decoding, which has a cubic time complexity with
respect to sequence length. This presents a major
computational bottleneck for real-time systems. VOGUE
performs likelihood estimation in linear time, making it
significantly more efficient and suitable for real-time
continuous sign language recognition applications [26].



The capability to model unstructured segments, handle
variable-duration gaps, and compute probabilities efficiently
constitutes the primary motivation for adopting VOGUE as the
segmentation framework in this work.

Algorithm 3. Variable Key Frame Sequence Mining
(VKFSM)
1: function VKFSM
2:  Input:
Maximum Gap Allowed (MG)
Maximum Sequence Length (L)
Minimum Frequency Threshold (MT)
for every element in L do
Find the sequences with frequencies of length 1
for all elements with length 1 do
: Extend sequence length to 2

D A

10: Obtain gap length distribution
11: for each frequent sequence do
12: Record symbol distribution
13: end for

14: end for

15:  end for

16: end function
After obtaining the mined sequence set using the VGS
algorithm, these are used for the building of the VOGUE
model. Every non gap frame in the keyframe is represented as
a state here, and the gap length and symbol distribution are

considered when adding any state in between two states. This
is particularly useful in extracting the ME frames because the
gaps generally denote the end of the first word, which could
be a part of the ME frames, and also because the symbol
distribution helps us conclude regarding the not-so-ME frames.

The VOGUE model must learn two things to perform ME
segmentation. First, the set of all Tamil sentences captured as
sign videos is named as data. The procedure for learning these
training data is based on the probability distribution algorithm.
The context tree is then used to learn the strokes sequences as
well as the mined sequence of the sign language. Given past
data, the model assigns future key frame probabilities based
on the given past data. The calculation performed internally
and the probability calculation for the next frame are given by
Eq. (4). The conditional distributions of the VOGUE model
take the form P(sign of keyframe | past history). Here,
the approach we are following is to group all the sign frames
of a word so that when the end of the word is reached before
the start of the next word, all these signs are not recognized,
so these will be marked as ME frames. So, the likelihood
computation is done using Eq. (4).

The procedure for learning the VOGUE model is shown in
algorithm 4. Since this method aims to aggregate the frames
that make up signs, it is not necessary to specific model ME
frames. This methodology is effective since the most
challenging part of segmenting ME frames is modeling them.

Number of stroke occurrences in training data after context

1
P(sign of keyframe | past history) = > +

Algorithm 4. VOGUE-Based Momentum Epenthesis

Segmentation
1: function VOGUE
2:  Input:
3: Test Sentence: Length N, set of keyframes
4: S={sl,s2,...,sn}
5:  Output:
6: Sign Symbols [] = sign words list[]
7:  Parameters:
8: State Prev =0
9: State Current = starting index
10: State Next =2
11:  function ContextTree(<word, vocabulary>)
12: for each word in the word vocabulary do
13: Update state probability and compute
14:
P(every sign of keyframe | past history of each sign.
15: end for
16: end function
17: fori=1toNdo
18: Current State Keyframe = Current State
Keyframe + State Current
19: Previous State Keyframe = Previous State

Keyframe + State Prev

20: Compute Log Ratio

21: if Log Ratio > Threshold then

22: Set Sign Flag = 1

23: Add the current frame to the sign frame group
24: end if

25:  end for

26: return Sign Frames []

27: end function

Total occurrences of context in training data
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4. RESULT AND DISCUSSION
4.1 Data set

Ten videos created and used based on the Tamil sign
language are used to test the separation between ME and sign
frames. The dataset used in this study consists of 30 video
samples derived from 10 distinct Tamil sign language
sentences, each performed by three different signers. A train—
test split of 70% and 30% was employed, respectively, while
ensuring signer independence by assigning different signers to
the training and testing sets. This cross-signer evaluation
strategy was adopted to assess the generalization capability of
the proposed method across variations in signer style, speed,
and trajectory. Since publicly available datasets for Tamil Sign
Language are limited, the dataset was custom-recorded for this
study, and its size reflects the practical constraints of data
collection in low-resource sign languages. Three separate
samples are produced using these ten sentences, each signed
by a different signer whose pace, trajectory, and hand shape
differ. In terms of sign exposure, only a small number of
phrases exactly matched the three signers, and in a few
instances also had wider stylistic variances.

4.2 Cluster based on frame extraction results and
discussion

The reduction of training time is the main objective of
cluster-based frame extraction. Figure 7 illustrates how few
important frames were retrieved during KCMP frame
extraction. The frame ratio is calculated as a ratio between the
total number of keyframes produced after the -cluster
extraction and the total number of frames to comprehend the



number of frames reduced quantitatively. The sequence in
Figure 7 was given a frame ratio of 0.0159. Because the signer
becomes more aware of each word and casually keeps the
remaining spaces, the turning points of the hand trajectory
viewed as the final step for collecting the keyframes made
sense and made our job more manageable. Figures 8 and 9
represent the point extracted KCMP on the trajectory and the
equivalent frames extracted.

The suggested method for decreased key frame extraction

yielded good results with fewer frames. However, it is crucial
to understand whether or not this decrease in frames affects
how well indications can be detected. So, sign identification is
validated using some of the matching algorithms like scale-
invariant feature transform (SIFT), speed-up robust feature
(SURF), robust independent elementary features (BRIEF),
oriented FAST, rotated BRIEF (ORB), and the results
obtained are tabulated in Table 2.
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Figure 7. Cluster-based frame extraction of a hand trajectory for sign identification
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Table 2. Tabulated values showing the state-of-the-art matching algorithms for sign recognition without cluster-based key frame
extraction and with cluster-based key frame extraction

Without Cluster-Based Key Frames With Cluster-Based Key Frames
Matc.hing Per Sign Key Frgmes Frame Accuracy Per Sign Key Frgmes Fran_1e Accuracy
Algorithms Frames for Sign Ratio Frames for Sign Ratio
SIFT 18 18 1 68.92% 18 1 0.05 58.92%
SURF 18 18 1 73.72% 18 1 0.05 83.76%
ORB 18 18 1 75.76% 18 1 0.05 82.17%
Table 3. State-of-the-art results in terms of error rate for various methods
Model Sign Error Rate

Dynamic Time Warping 90.83%

Hidden Markov Model 82.70%

Conditional Random Field (Fixed Threshold) 66.04%

Conditional Random Field (Short Sign Detector) 67.08%

Conditional Random Field (Non-Sign Patterns Labelling) 59.79%

VOM Model [25] 6.8%

It is observed that the accuracy of certain feature-based extracting relevant frames that contain information about hand
matching methods, such as SIFT, decreases after applying shape, movement, and facial expression. The methodology
cluster-based key frame extraction. This reduction occurs utilizes a clustering technique to group similar frames,
because SIFT relies heavily on dense local keypoints, and the followed by the Key Frame Capturing (KCMP) process to
removal of intermediate frames results in fewer distinctive identify key frames. A VOGUE-based learning model is then
feature points available for matching. Consequently, the used to learn sequences and compute probabilities to
descriptor becomes less discriminative when only one or two determine the relevance of the current frame to the previous
frames represent a complete strokes. In contrast, SURF and frame. If there is a significant variation in the log ratio value,
ORB remain more stable or even improve in accuracy because it is understood that the frame does not belong to the current
they use more robust gradient-based and binary descriptors word; it may be a movement epenthesis frame or a sign for the
that tolerate reduced frame density. These results highlight a next word. The proposed model demonstrated improved
trade-off between frame reduction and the sensitivity of performance, with a sign error rate of around 5%. The error
different feature extractors, explaining why SIFT shows rate remained consistent despite changes in speed and
decreased performance in the clustered condition. direction within the sequence. The experimental results

Next, the performance of the VOGUE model is verified indicate that the proposed method achieves competitive
using testing sentences that were not part of the training phase. accuracy and improved computational efficiency compared to
The key frame sequence then goes through the probability established baseline techniques, within the constraints of the
computation for every iteration in the context tree before a evaluated Tamil Sign Language dataset.
particular frame is considered for grouping as sign frames. These findings demonstrate that the VOGUE-based
Finally, the state-of-the-art comparisons in terms of the sign framework is effective for real-time movement epenthesis
error rate are verified with our methodology, and the segmentation without overstating generalization beyond the
tabulation for the same is depicted in Table 3. Because this current dataset. One potential enhancement could involve the
data set was created specifically for this study and is much use of a Bayesian deep learning network for matching and
smaller in size, the results achieved with our methodology recognition.
cannot be compared to those obtained with other state-of-the-
art methods.

Thus, these data are displayed to perform a comparative ACKNOWLEDGMENT
analysis, but they are not displayed to highlight the superiority
of our model over competing models. The mistake rate The authors express their heartfelt thanks to Dr. R. I. Minu,
discovered using our suggested strategy is 5.3% with an Professor at SRM Institute of Science and Technology,
overall accuracy of 86.78%. Because most of the learning Chengalpattu, India, for their constant support, encouragement,
occurs via the Viterbi algorithm, another significant issue with and help rendered to complete this research work.
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the suggested approaches is cubic as 0(n3) . However,

because the estimation is based on probability and logarithmic REFERENCES

ratio, this VOGUE model executes the learning in linear time.

As a result, 0(n) is the time complexity. [1] Theodorakis, S., Pitsikalis, V., Maragos, P. (2010).

Model-level data-driven sub-units for signs in videos of
continuous sign language. In 2010 IEEE International

5. CONCLUSIONS AND FUTURE WORK Conference on Acoustics, Speech and Signal Processing,
Dallas, TX, USA, pp. 2262-2265.

The focus of this project was to develop a new methodology https://doi.org/10.1109/ICASSP.2010.5495875
for solving the movement “epenthesis” problem in the context [2] Myers, C., Rabiner, L. (1981). A level building dynamic
of sign language recognition, to create a more effective sign time warping algorithm for connected word recognition.
language recognition system. The proposed approach involves In IEEE Transactions on Acoustics, Speech, and Signal

2957



[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Processing, 29(2): 284-297.
https://doi.org/10.1109/TASSP.1981.1163527
Lichtenauer, J.F., Hendriks, E.A., Reinders, M.J. (2008).
Sign language recognition by combining statistical DTW
and independent classification. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 30(11):
2040-2046. http://doi.org/10.1109/TPAMI.2008.123

Li, W., Luo, Z., Xi, X. (2020). Movement trajectory
recognition of sign language based on optimized
dynamic time warping. Electronics, 9(9): 1400.
http://doi.org/10.3390/electronics9091400

Fang, G., Gao, W., Zhao, D. (2006). Large-vocabulary
continuous sign language recognition based on
transition-movement models. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and
Humans, 37(1): 1-9.
http://doi.org/10.1109/TSMCA.2006.886347

Yang, R., Sarkar, S., Loeding, B. (2009). Handling
movement  epenthesis and hand segmentation
ambiguities in continuous sign language recognition
using nested dynamic programming. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 32(3):
462-477. http://doi.org/10.1109/TPAMI.2009.26
Manuel, M., Menon, A.S., Kallivayalil, A., Isaac, S., KS,
D.L. (2021). Automated generation of meeting minutes
using deep learning techniques. International Journal of
Computing and Digital System, 12(1): 109-120.
http://doi.org/10.12785/ijcds/1201010

Vogler, C., Metaxas, D. (1997). Adapting hidden
Markov models for ASL recognition by using three-
dimensional computer vision methods. In 1997 IEEE
International Conference on Systems, Man, and
Cybernetics. Computational Cybernetics and Simulation,
Orlando, FL, USA, pp. 156-161, IEEE.
http://doi.org/10.1109/ICSMC.1997.625741

Lee, H.K., Kim, J.H. (1999). An HMM-based threshold
model approach for gesture recognition. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 21(10): 961-973.
https://doi.org/10.1109/34.799904

Kelly, D., McDonald, J., Markham, C. (2009).
Recognizing spatiotemporal gestures and movement
epenthesis in sign language. In 2009 13th International
Machine Vision and Image Processing Conference,
Dublin, Ireland, pp. 145-150.
http://doi.org/10.1109/IMVI1P.2009.33

Kim, J.B., Park, K.H., Bang, W.C., Bien, Z.Z. (2002).
Continuous Korean sign language recognition using
gesture segmentation and hidden Markov model. In 2002
IEEE World Congress on Computational Intelligence.
2002 IEEE International Conference on Fuzzy Systems.
FUZZ-IEEE'02. Proceedings (Cat. No0.02CH37291),
Honolulu, HI, USA.
http://doi.org/10.1109/FUZZ.2002.1006741

Yang, W., Tao, J., Ye, Z. (2016). Continuous sign
language recognition using level building based on fast
hidden Markov model. Pattern Recognition Letters, 78:
28-35. http://doi.org/10.1016/j.patrec.2016.03.030
Choudhury, A., Kumar Talukdar, A., Kamal Bhuyan, M.,
Kumar Sarma, K. (2017). Movement epenthesis
detection for continuous sign language recognition.
Journal of Intelligent Systems, 26(3): 471-481.
http://doi.org/10.1515/jisys-2016-0009

Lafferty, J., McCallum, A., Pereira, F.C. (2001).

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proceedings
of the 18th International Conference on Machine
Learning 2001 (ICML 2001), pp. 282-289.

Yang, H.D., Lee, S.W. (2010). Simultaneous spotting of
signs and fingerspellings based on hierarchical
conditional random fields and boostmap embeddings.
Pattern Recognition, 43(8): 2858-2870.
https://doi.org/10.1016/j.patcog.2010.03.007

Wang, S.B., Quattoni, A., Morency, L.P., Demirdjian, D.,
Darrell, T. (2006). Hidden conditional random fields for
gesture recognition. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR'06), New York, NY, USA, pp. 1521-1527.
http://doi.org/10.1109/CVPR.2006.132

Yang, H.D., Sclaroff, S., Lee, SW. (2008). Sign
language spotting with a threshold model based on
conditional random fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(7): 1264-1277.
http://doi.org/10.1109/TPAMI.2008.172

Schmidt, C., Koller, O., Ney, H., Hoyoux, T., Piater, J.
(2013). Using viseme recognition to improve a sign
language translation system. In Proceedings of the 10th
International Workshop on  Spoken Language
Translation: Papers.

Koller, O., Bowden, R., Ney, H. (2016). Automatic
alignment of hamnosys subunits for continuous sign
language recognition. LREC 2016 Proceedings, pp. 121-
128.

Pitsikalis, V., Theodorakis, S., Vogler, C., Maragos, P.
(2011). Advances in phonetics-based sub-unit modeling
for transcription alignment and sign language recognition.
In CVPR 2011 Workshops, Colorado Springs, CO, USA,
pp. 1-6. http://doi.org/10.1109/CVPRW.2011.5981681
Theodorakis, S., Pitsikalis, V., Maragos, P. (2014).
Dynamic-static unsupervised sequentiality, statistical
subunits and lexicon for sign language recognition.

Image and Vision Computing, 32(8): 533-549.
http://doi.org/10.1016/j.imavis.2014.04.012
Aguilera, A.M., Aguilera-Morillo, M.C. (2013).

Comparative study of different B-spline approaches for
functional data. Mathematical and Computer Modelling,
58(7-8): 1568-1579.
http://doi.org/10.1016/j.mcm.2013.04.007

Zaki, M.J., Carothers, C.D., Szymanski, B.K. (2010).
Vogue: A variable order hidden Markov model with
duration based on frequent sequence mining. ACM
Transactions on Knowledge Discovery from Data
(TKDD), 4(1): 1-31.
http://doi.org/10.1145/1644873.1644878

Wilcox, L.D., Bush, M.A. (1992). Training and search
algorithms for an interactive wordspotting system. In
[Proceedings] ICASSP-92: 1992 IEEE International
Conference on Acoustics, Speech, and Signal Processing,
San Francisco, CA, USA, pp. 97-100.
https://doi.org/10.1109/ICASSP.1992.226111

Geetha, M., Kaimal, M.R. (2018). A 3D stroke based
representation of sign language signs using key
maximum curvature points and 3D chain codes.
Multimedia Tools and Applications, 77(6): 7097-7130.
https://doi.org/10.1007/s11042-017-4624-y
Duraimutharasan, N.K.B., Sangeetha, K. (2023).
Machine learning and vision based techniques for
detecting and recognizing Indian sign language. Revue


https://doi.org/10.1007/s11042-017-4624-y

d'Intelligence Artificielle, 37(5): 1361-1366. https://doi.org/10.18280/ria.370529

2959





