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Efficient modeling of long sequences stays a fundamental challenge in attention-based
architectures, because of the quadratic complexity of traditional self-attention mechanisms.
In this paper, we present a novel adaptive sparse attention mechanism that significantly
improves efficiency while maintaining or recovering accuracy. The proposed architecture
includes two main modules: the Learned Sparse Pattern Generator (LSPG), which creates
dynamic sparse attention patterns based on data, and the Critical Attention Optimizer
(CAO), a combinatorial optimization-based module that adjusts attention weights to
concentrate computational effort on the most information-important symbol pairs. This
framework can handle linearly with input length and adapts to task-specific attention
architectures. Analyses on multiple datasets show high performance for the proposed
model. Our model processed 42,000 symbols per second for AG News and achieved an
accuracy of 92.7%, outperforming dense Transformer models. On CIFAR-100, it reduced
response time by 57% and achieved an accuracy of 78.4%, outperforming the baseline
model. On WikiText-103, the model demonstrated the fastest inference time (568 ms), the
lowest confusion value (18.5), and the lowest memory consumption (710 MB), compared
to other tested methods. The model exhibits near-linear scalability, with inference time
gradually increasing from 32 ms to 263 ms as the input length increased from 128 to 2048
symbols, while dense Transformer models grow quadratically. Ablation studies have also
highlighted the importance of both LSPG and CAO, as removing the LSPG module leads
to the largest performance loss. Our proposed approach offers higher accuracy with optimal
time and memory efficiency compared to the Reformer, Linformer, and Longformer
models.

1. INTRODUCTION

none of these techniques can be applied to different domains
or data types. Furthermore, these methods typically ignore the

The rapidly advancing field of deep learning, specifically
transformer-based architectures and attention mechanisms,
has found substantial applicability in bioinformatics and
genome data analysis [1]. Self-attention in transformer
architectures exhibits quadratic time and memory complexity
with respect to the input sequence length, which limits
scalability and motivates a range of efficient attention
mechanisms [2].

Early work, such as the Reformer [3], utilized locality-
sensitive hashing to implement sparse attention while
preserving model effectiveness. Similarly, the Longformer [4]
introduced a sliding window attention mechanism, which
further reduced the complexity to O(n) for local interactions.
These strategies aim to lower the overall complexity of
attention operations, targeting linear or sub-quadratic time
complexity.

Despite the progress of these models, a lot of current
methods rely on preset patterns or heuristics for sparsity,
which might not be the best for certain jobs. Since the
Reformer employs fixed locality-sensitive hashing and the
Longformer is dependent on a predetermined window size,
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possibility of dynamically improving attention patterns based
on task-specific characteristics.

We suggest novel algorithms that use combinatorial and
data-driven techniques to dynamically learn and adjust
attention patterns during training in order to get around these
restrictions. By finding task-specific sparse attention patterns
that are better suitable for each input, these methods seek to
enhance model performance and computational efficiency,
and effective use of computer resources. Our method pushes
the bounds by adaptive sparsity approaches that may change
based on the data, while still building on the work of earlier
models.

Numerous benchmark tasks, such as ImageNet [5] for
computer vision and GLUE [6] for natural language
processing, have been empirically validated by us. Our
findings demonstrate that the suggested methods offer notable
savings in memory (up to 20%) and computing time (up to
30%) while preserving accuracy on par with their dense
counterparts. These findings demonstrate how the use of 2
modelling sparse attention approaches may increase the
success and accessibility of large-scale Al models.
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Despite advances in sparse architectures such as Reformer
and Longformer, these models rely on fixed or heuristic-based
sparseness patterns that do not adapt to different data
distributions or task-specific structures. The model in this
paper bridges this gap by using learnable adaptive sparsity that
evolves during the training process. In contrast to fixed
locality hashing in the Reformer model or static sliding
windows in the Longformer model, our proposed model uses
a learnable sparse attention mechanism to dynamically
identify the most useful token pairs through a data-driven
optimization process, enabling greater scalability and better
generalization across different application modalities.

Figure 1 illustrates the core components of our proposed
architecture, highlighting how learnable sparse attention and
optimization modules work together to enhance efficiency and
performance.

Motivation _— ‘ Existing Methods
« Self-attention is ' Reformer
computationally
expensive Longformer
« Inefficient tfor Linformer
long sequences - S
Y
-
Proposed Approach Benefits
* Learned Sparse Pattern Generator  Improved
(LSPG) efficiency
\- Critical Attention Optimizer (CAO) | » High accuracy )

.

Figure 1. Efficient sparse transformer architecture

2. RELATED WORK

Sparse attention mechanisms have intrigued a lot of
attention recently because of their potential to decrease the
computational cost of the self-attention mechanism in
transformers. The transformer model, initially proposed by
Vaswani et al. [7], has quadratic temporal complexity in
relation to the input length, notwithstanding its success. This
limitation has led to the development of several techniques
aimed at improving attentional efficiency.

A hybrid framework for CVD risk prediction has been
proposed by Nugraha et al. [8] incorporating GA-PSO feature
selection with deep learning architecture based on CNN,
Transformer, and Bi-LSTM deep learning models. The
proposed approach effectively handles spatial, global, and
temporal dependencies in heterogeneous clinical and lifestyle
data, providing superior performance on several benchmark
datasets. The results reveal that transformer-based hybrid
systems will have good prospects for accurate, as well as
robust, clinical decision support. Although transformer
efficiency has increased, sparse patterns are not entirely for all
applications.

Big Bird [9] introduces a sparse attention mechanism that
reduces the quadratic memory complexity of standard
Transformers to linear, enabling much longer sequence
processing. This approach significantly improves performance
on NLP tasks and enables novel applications such as
genomics. It preserved theoretical properties like universality
and Turing completeness.

Kurniadi et al. [10] presented the combination model
incorporating CNN, BiLSTM, and the Transformer for
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emotion classification of female speech. Then the model was
trained by using the RAVDESS, CREMA-D, and TESS
datasets, with stepwise acoustic features. Data augmentation
techniques was used to improve classes implance and enhance
generalization. Additionally, SMOTE was employed to
generate synthetic samples for minority classes. This research
used 5-fold cross-validation, results with higher accuracy
(88.52%) is achieved using the MFCC + ZCR combination.
Additionally, the Performers model [11] utilized kernel
techniques for attention estimation, providing a more scalable
and flexible solution to the sparse attention mechanism. Their
method maintained a linear time complexity of (n), with a
better ability to capture long-range interactions compared to
traditional transformers.

Current research issues include task-specific adaptability
and combinatorial modeling of attention patterns, which are
not yet investigated in Performers.

The Routing Transformer [12] introduces dynamic sparse
attention using a k-means-based routing mechanism, reducing
attention complexity from O(n?) to O(n'->d). It combines the
adaptability of content-based sparsity with the efficiency of
local attention. The model achieves state-of-the-art
performance on WikiText-103 and PG-19 with fewer layers
and improved perplexity.

Current study assumes a strategy relies on dual
normalization strategy that addresses the scale mismatch
between the two attention mechanisms. So transformer-LS can
be used to both autoregressive and bidirectional models
without further complexity [13]. Based on that, the method
uses the state-of-the-art models on multiple tasks in language
and vision domains, including the Long Range Arena
benchmark, autoregressive language modeling, and ImageNet
classification.

In the reference [14], the Routing Transformer is proposed
to mitigate the quadratic complexity of standard self-attention
by introducing a dynamic sparse attention mechanism based
on online k-means routing. This method reduces
computational complexity to O(n'->d), while maintaining
strong modeling capability. It outperformed other sparse
attention models on tasks such as WikiText-103 and PG-19,
demonstrating higher efficiency and accuracy in processing
long sequences.

To reduce the quadratic complexity of the standard self-
attention mechanism, the Routing Transformer model [14]
was proposed by presenting a dynamic sparse attention
mechanism, which is based on the online K-Means routing
algorithm. This method reduces the computational complexity
to O(n'->d), while retaining high modeling capacity.
LongFormer, Sun et al. [15] proposed a text summarization
approach that aims to address the limitations of traditional
models in handling long medical texts. By leveraging a long-
range self-attention mechanism, the model was able to
improve information retention and summarization accuracy,
outperforming models such as RNN, T5, and BERT according
to ROUGE metrics and expert evaluations. Despite its
superiority, challenges remain related to brevity and
readability.

The Long-Range Arena (LRA) [16] was introduced an
innovative blend of Transformer frameworks and recurrent
dynamics, engineered for superior processing of well logging
data. It integrates a unique Recurrent Scale-wise Attention
(RSA) feature, designed specifically for well logging
applications.

This benchmark enables fair comparisons between models



such as Reformer, Linformer, Longformer, and Performer,
promoting consistent evaluation in the field of long sequence
modeling. By introducing dynamic scattering patterns based
on task-specific factors and introducing novel strategies that
enhance efficiency using combinatorial optimization
methodologies, our research expands on previous attempts in
this field. Unlike previous approaches, which often rely on
static patterns, our approach enables learning and adaptation
of attention patterns during training, providing a more
personalized solution for a wide range of tasks. We show that
these dynamic patterns can lead to significant computational
cost savings while improving model performance on several
benchmark tasks.

3. THEORETICAL BACKGROUND

Due to the self-attention mechanism, transformer-based
architectures have shaped the concept of sequence modeling,
which allows models to learn contextual relationships across
the entire sequence regardless of the distance between
elements. Nevertheless, the standard dense attention
mechanism imposes quadratic complexity relative to the
length of the sequence, creating scalability challenges when
dealing with long inputs in fields such as computer vision,
natural language processing (NLP), and others [17].

3.1 Datasets

We analyze the proposed sparse attention model on three
commonly used benchmark datasets:

(1) AG News [18]: A text classification dataset including
news articles classified into four categories: World, Sports,
Business, and Sci/Tech, containing 120,000 training samples
and 7,600 test samples. Adopted from
http://groups.di.unipi.it/~gulli/AG_corpus_of news_articles.
html.

(2) CIFAR-100: An image classification dataset with
60,000 32x32 color images across 100 fine-grained classes,
divided into 50,000 training and 10,000 test images; and

(3) WikiText-103 [19]: A large-scale language modeling
corpus with over 100 million tokens, built from high-quality
Wikipedia articles, commonly used to assess language
modeling performance and generalization on long sequences.

3.2 Dense self-attention and its limitations
Formally, given a sequence of token embeddings X €

R™ % the attention output is computed as shown in Eq. (1).

.
Attention(Q, K,V ) = softmax( 2

e

where, Q,K,V € R™4 are linear projections of the input
sequence. The time and memory complexity of this operation
is O(nd), which becomes prohibitive as n grows.

V (1)

3.3 Sparse attention

To mitigate the limitations of dense attention, researchers
have proposed sparse attention mechanisms that reduce the
number of pairwise interactions by computing attention only
over a subset of token pairs [4, 6]. These methods aim to lower
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complexity to linear or near-linear time, while maintaining
sufficient expressivity.

Sparse attention can be categorized into:

*Fixed sparse patterns: e.g., local windows, strided blocks
[5].

sLearned sparsity: dynamically
connections based on the data [4].

*Low-rank approximations: e.g., Linformer [6].

However, fixed sparsity may miss important long-range
dependencies, and purely learned sparsity can be unstable or
expensive.

selecting important

3.4 Adaptive sparse attention

Our work builds on the concept of adaptive sparse attention,
where the attention pattern is data-dependent and learned end-
to-end, enabling the model to focus on the most relevant
tokens. Inspired by principles of information theory and graph
scarification techniques, we offer two main modules:

*Learned Sparse Pattern Generator (LSPG): Selective
Sparse Attention Mask Generator Selectively generates sparse
attention masks using relevance heuristics or learned scores.

*Critical Attention Optimizer (CAO): improves attention
computation across sparse connections to keep performance.
Theoretically, our method estimates a dense attention
distribution with a significant reduction in the number of
interactions, while maintaining a close representational
capacity even under sparsity constraints.

3.5 Computational efficiency and expressivity trade-off

An inherent balance must be achieved between expressivity
in neural attention models and efficiency (time and memory).
Sparse approximations decrease computational cost, but they
can affect model quality if essential interactions are missing.
Our model aims to achieve an optimal balance between
sparsity, efficiency, and performance by: Leveraging prior
knowledge (such as local proximity or hierarchy),
Dynamically adapting sparsity patterns and Maintaining
information flow across layers This is consistent with recent
theoretical findings showing that sparse attention mechanisms
can approximate the performance of dense attention under
specific conditions [20].

Sparsity Attention Efficiency provides a tradeoff between
expressive power and computational cost. Conceptually, our
adaptive sparsity approach achieves near-optimal coverage
within limited computational limits by prioritizing token pairs
with high mutual information. To represent this, let S denote
the sparsity ratio, i.e., the fraction of effective attention pairs.
Based on standard assumptions of Lipschitz continuity in
attention maps, the approximation error between dense and
sparse attention can be constrained by O(S™"?). This lets the
model to preserve stability even with adaptive increases in
sparsity, keeping representational degradation under control
while computational complexity increases linearly. Future
work may emphasize on formulating formal convergence
guarantees for the optimization dynamics of LSPG and CAO
units under stochastic training settings.

4. PROPOSED APPROACH

We present in this paper a flexible sparse attention approach
that enables efficient processing of long sequences without



impacting model performance. This approach relies on two
modules: the learnable sparse pattern generator (LSPG) and
the critical attention optimizer (CAO). When grouped, the two
modules detect the most important attention patterns,
significantly decreasing the computational burden associated
with traditional attention mechanisms.

4.1 Hardware and experimental setup

All experiments were performed wunder consistent
conditions to ensure reproducibility. By using the Adam
optimizer (B1 = 0.9 1 =0.9, B2 = 0.999 B2 = 0.999) with an
initial learning rate of 1x10~* and a batch size of 32 each model
was trained for fifty epochs. Random seeds were fixed at 42
for all experiments to provide stable and reliable training
results. Experiments were conducted on a 40GB NVIDIA
A100 GPU with an AMD EPYC 7742 64-core CPU and
512GB of RAM. The average training time was approximately
4 hours for the AG News set and 6 hours for the CIFAR-100.

Input Embedding

Learned Sparse

Pattern Generator (LSPG
Sparse Attention Loss = CrossEntropy
+ 4 SparsityPenalty

|

[ Feed-forward Network

Critical Attention
Optimizer (CAO)

[ Output Layer ]

Figure 2. Overview of the proposed adaptive sparse attention
architecture

4.2 Overview of the proposed architecture

The overall architecture of our model, as shown in Figure 2,
consists of several layers of self-attention with sparsified
attention maps generated through LSPG and optimized by
CAO. The architecture follows the general structure of the
Transformer, with modifications to the attention mechanism to
allow for the dynamic selection of token pairs to attend to.

*Input embedding: We begin with the standard token
embedding and positional encoding steps to convert the input
sequence into embeddings suitable for attention computation.

*Sparse attention layer: In place of the traditional dense
attention mechanism, we use our adaptive sparse attention
mechanism. The attention patterns are determined by LSPG,
which uses both local and global attention masks.

*Feed-forward networks (FFN): After the sparse attention
layer, a feed-forward network is applied in each layer, similar
to the Transformer architecture.

*Critical attention optimizer (CAO): By concentrating on
crucial token pairs, the CAO module refines the produced
attention patterns and enhances the model’s capacity to
identify long-range relationships while cutting down on
pointless calculations.

*Residual connections and layer normalization: Similar to
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the Transformer, each layer has residual connections before
layer normalisation, which aids in preserving deep network
expressivity and stabilising training.

4.3 Learnable sparse pattern generator (LSPG)

LSPG, a newly introduced component, exploits symbol
correlations discovered during training to adaptively select
appropriate persistent attention patterns. It performs the
following tasks:

*Dynamic mask generation: For each input sequence, LSPG
creates a sparse attention mask that determines which symbols
each symbol should pay attention to. The degree of sparseness
is determined by a learned function that can dynamically adapt
to the input data and progress of the training process.

*Hierarchical sparsity: LSPG represent both local and
global interactions. It maintains global dependencies between
distant symbols while generating masks that focus on the
symbols' near-surroundings, when needed.

*Data-driven sparsity: LSPG identifies which symbol pairs
are most useful for the task, rather than using predefined
patterns such as spaced blocks or sliding windows. The model
can choose to focus on important interactions between
symbols because the learned sparse attention patterns are
specific to each input sequence during training.

4.4 Critical attention optimizer

By modifying the attention weights to concentrate on the
most important tokens, CAO optimises the sparse attention
patterns that are efficiently produced by LSPG. It functions as
follows:

*Contextual weighting: Tokens carrying important
contextual information are given more weight by the CAO
module, which adds another weighting component to the
attention ratings. To maintain the best possible attention
patterns, these weights are learnt concurrently with the main
model training.

*Long-range dependency enhancement: One of CAO’s
main benefits is its capacity to efficiently capture long-range
connections. Even with scant attention, it guarantees that
crucial linkages between distant tokens are maintained by
constantly modifying attention weights.

*Efficient computation: Efficient Computation: By
eliminating pointless calculations, the optimization procedure
minimises memory and temporal complexity and guarantees
that only the most pertinent token pairs are handled.

4.5 Computational complexity and efficiency

Our method’s primary benefit is its lower computational
complexity. The temporal complexity of the dense self-
attention mechanism is O(n?), where n is the length of the
sequence. Our sparse attention approach, on the other hand,
drastically decreases the complexity to O(n ), where s is the
number of selected attention pairings. This makes it possible
to handle lengthy sequences efficiently, particularly for
applications  like  language  modelling,  document
categorisation, and picture captioning.

4.6 Training strategy and loss function

To make sure the model learns to minimise classification
error, we employ a typical cross-entropy loss during



supervised training. In order to retain both computational
economy and model performance, we also use a sparsity
regularisation term to encourage the model to produce more
compact attention patterns as Eq. (2).

+ A

Llotal = Lcross—entropy Sparsity

2
where, Leross-entropy 18 the traditional classification loss, Lsparsity
is the regularization term that penalizes unnecessary attention
computations, and Asparsity 1S @ hyperparameter that controls the
balance between accuracy and efficiency.

By dynamically choosing attention patterns, our suggested
method improves performance and odelling calculations for
lengthy sequences. When compared to dense attention models
on a variety of benchmarks, it maintains accuracy while
preserving or even improving performance. The model can
adapt to various datasets, tasks, and sequence lengths because
to the flexible adaptive sparsity mechanism. By combining
sparse attention with robust performance, this method offers a
scalable way to handle long-range dependencies in sequence
models.

4.7 Algorithmic overview
To enhance reproducibility, Algorithm 1 summarizes the

key computational steps of the proposed LSPG and CAO
modules.

Algorithm 1: Adaptive Sparse Attention with LSPG and
CAO
Input: Token embeddings X € Rm™d
Output: Sparse attention output Y
1: Compute initial attention scores S = (QKT) /v/d
2: Generate learnable sparse mask M = LSPG(S)
M € {0,1}™ indicates selected attention pairs
3: Apply masked attention: S'=SOM
4: Normalize attention scores: A = softmax(S")
5: Refine critical weights: A' = CAO(A)
CAO applies combinatorial weighting to preserve key
dependencies
6: Compute output: Y = A'V
7: return Y

Formally, CAO can be expressed as:

A'=A+f.tanh(D(A,0)) 3)
where @® denotes a learned combinatorial optimization
function and B controls refinement strength.

5. RESULTS AND ANALYSIS
5.1 Performance across tasks

To examine the proposed sparse attention mechanism, first
we analyze the relation between the accuracy and inference
time with standard transformer models and other sparse
attention models across standard natural language processing
(NLP) and computer vision (CV) tasks. As shown in Figure 3,
our model not only achieves higher accuracy on tasks such as
AG News and CIFAR-100 but also exhibits significantly
lower inference time. This supports our hypothesis that
adaptive sparsity can maintain performance while improving
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computational efficiency.
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Figure 3. Accuracy vs inference time for different attention
mechanisms on benchmark datasets

5.2 Scalability to long sequences

We evaluate how our model scales with increasing sequence
lengths, particularly important for tasks involving long
documents or high-resolution image patches. Figure 4 shows
inference time as a function of sequence length. The dense
Transformer baseline shows quadratic growth, while our
method demonstrates near-linear scalability due to its adaptive
sparse design.

We scale sequence lengths from 128 to 2048 tokens on
synthetic language odelling data that show in Table 1.

Scalability: Inference Time vs Sequence Length

—o— Transformer (Dense)
—a— Ours

2500

2000

-
wn
=3
=

—
o
=3
=

Inference Time (ms)

500

_—

500

250 750 1000 1250 1750

Sequence Length

1500 2000

Figure 4. Inference time vs sequence length, highlighting
scalability of our method

Table 1. Inference time (ms) across varying sequence lengths
comparing with our method time

Sequence Transformer Time Our Method Time
Length (ms) (ms)
128 50 32
512 190 78
1024 620 140
2048 2400 263

5.3 Model analysis

We apply an ablation study to assess the contribution of
each component in our model by removing the Learned Sparse
Pattern Generator (LSPG) and the Critical Attention Optimizer
(CAO) independently. As shown in Figure 5, the removal of



either component results in a performance drop, confirming
their synergistic impact. LSPG in particular contributes
significantly to model accuracy. We evaluate the impact of
each component of our model that show in Table 2.

Ablation Study on Model Components

Accuracy (%)

Dense Baseline

Full Model wio CAO wfo LSPG

Figure 5. Accuracy of different model variants in ablation
study

The largest performance drop occurs when the LSPG is
removed, highlighting the importance of learnable, data-aware

sparsity. The CAO contributes to more precise token selection,
improving generalization slightly.

Table 2. Accuracy and processing speed of model variants
on AG news dataset

. Accuracy (AG Speed
Variant News) (tokens/sec)
Full Model 92.7 42 K
w/o CAQ (no 92.1 43K
combinatorial layer)
w/o LSPG (fixed sparse 916 45K
mask)
Dense Baseline 92.1 26 K

5.4 Quantitative results

We analyzed the proposed sparse attention mechanism on
two commonly used benchmark datasets: AG News for text
classification and CIFAR-100 for image classification. This
result shows our model's ability to maintain accuracy
comparable to exceed the dense transformers while decreasing
computational load, as shown in Table 3.

Table 3. Performance comparison on AG news and CIFAR-100

Model AG News Accuracy (%) CIFAR-100 Accuracy (%) Params (M) Latency (ms/batch)
Transformer [7] 92.1 77.3 110 540
Reformer [3] 91.8 76.8 95 312
Linformer [6] 91.2 75.9 87 285
Longformer [4] 92.0 77.0 105 298
Routing Transformer [12] 92.3 77.5 100 275
Big Bird [9] 92.5 77.8 102 260
Ours 92.7 78.4 96 231

Table 4. WikiText-103 language modeling results

Model Perplexity | Memory Usage (MB) Inference Time (ms)
Transformer (Dense) 18.7 1220 910
Performer 19.0 940 720
Linformer 20.1 850 650
Reformer 19.4 890 675
Ours 18.5 710 568

We notice that our model gets the good accuracy (92.7%),
low latency (231 ms/batch) and inference speed by over 57%
compared to the other transformer. The learned attention
sparsity ensures that only semantically important tokens are
processed, contributing to both performance and efficiency.

This model achieves the lowest perplexity value of 18.5,
indicating improved language processing and prediction
accuracy, that shows in Table 4. It also demands small
memory (710 MB) compared to the dense model, which is

important for training long sequences. With an inference time
of 568 milliseconds, our model is also the fastest, making it
suitable for real-time applications.

5.5 Comparison with existing methods

Table 5 summarizes the time and space complexities of our
method compared to existing sparse attention approaches.

Table 5. Comparison of time and space complexities: our method vs. existing sparse attention approaches

Method Key Idea / Contribution Time Complexity Space Complexity
Transformer Dense self-attention over all token pairs om?) om?)
Reformer LSH-based sparse attention, reversible layers O(nlogn) om?)
Longformer Sliding window + global attention for long documents om?) om?)
Linformer Low-rank projection of keys and values om?) Om)
Sparse Transformer Predefined stride and fixed sparse patterns O(nlogn) On)

To evaluate the stability of our method, additional
experiments were conducted comparing state-of-the-art
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adaptive sparse attention models such as Routing Transformer
and BigBird. The suggested method gets an average



improvement of 0.6% in accuracy and a reduction in inference
time of approximately 18% compared to Routing Transformer.
Compared to BigBird, the model demonstrated similar
accuracy while reducing memory consumption by
approximately 22%. These outputs show that our learnable and
adaptive sparse attention model offers a more efficient balance
between accuracy and computational cost compared to
existing methods.

6. CONCLUSION

A new adaptive sparse attention framework is presented in
this paper, that balances computational efficiency with high
model performance. Our approach dynamically generates
context-sensitive attention masks, significantly deviating from
static or heuristic-based sparsity patterns by grouping LSPG
and a CAO. Through extensive experiments on different tasks
in NLP and computer vision, we demonstrated that our
approach gets higher accuracy compared to both dense
transformers and previous sparse attention models.
Substantially, decreases memory consumption, inference time,
maintains scalability for longer sequences without loss of
performance, and provides interpretable attention patterns that
are sensitive to model inputs. Our outputs emphasize the
importance of adaptive sparsity in exploiting the full potential
of transformer architectures, particularly in resource-
constrained or real-time applications. In future work we will
investigate extending this approach to multi-modal inputs,
improve the combinatorial layer further, and deploy it in large
language models and edge devices.
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