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In this paper, a better forecasting framework of traffic flow is proposed whereby the model 

is the Modified Hidden Markov Model (MHMM) to be optimized by the Mean Fitness-

oriented Dragonfly Algorithm (MF-DA). The model draws on four traffic indicators, which 

are input features namely, the Average True Range (ATR), Exponential Moving Average 

(EMA), Relative Strength Indicator (RSI) and the Rate of Change (ROC). The PeMS 

California public traffic dataset (District 7) is used as experimented comprising of 34,560 

samples of time-series as recorded by loop detector stations over 60 days. The data is 

divided into 70% as training, 15 percent as validation and 15 percent as testing to make 

comparative evaluation. The MF-DA optimizer dynamically adjusts the number of hidden 

states in the MHMM to gain superior separation between states and more rapid convergence 

to allow the state to model the traffic states that vary dynamically. The proposed MHMM 

is compared to such a state of the art as ANN, RNN, SVM, and Traditional HMM in various 

traffic conditions such as weekdays and holidays, left lane flow and right lane flow. The 

estimations of the queue length, reduction of waiting time and quicker computational 

efficiency are achieved in the suggested MHMM (MF-DA). It is said that the accuracy is 

96.4 of prediction classification accuracy at the test stage of predicting the category of 

traffic state (low/medium/high flow) correctly. Findings can prove the excellence of 

MHMM (MF-DA) that curbs congestions and ensures better transport networks.  

Keywords: 

Internet of Things (IoT), traffic flow 

prediction, Modified Hidden Markov Model 

(MHMM), Mean Fitness-oriented Dragonfly 

Algorithm (MF-DA), Support Vector 

Machine (SVM) 

1. INTRODUCTION

The extreme urbanization experienced in recent years and 

the ever-growing size of the vehicular population on the road 

have resulted in extreme traffic conditions experienced in 

cities all over the globe [1]. This congestion causes a lot of 

economic losses, environmental pollution, and the general 

damping of the quality of life of commuters. With the inability 

of the transportation facilities to meet the rising demand, 

smarter traffic management systems have turned into a center 

of attention of contemporary urban planning. Traffic flow 

prediction can be considered among the numerous elements of 

the intelligent transportation systems (ITS) because it is 

capable of enabling proactive congestion management and 

effective resources allocation. 

Traffic flow prediction is defined as the process of 

predicting future traffic status using the historical and current 

data of the traffic status. The traffic light management, 

recommended navigation routes, response to an emergency 

situation and optimization of the mass transportation may be 

enhanced through proper forecasting [2], as shown in Figure 1. 

Despite such profits, there still exist challenges [3-5]. The 

deep learning models are often quite resource intensive in both 

their computer demands and training data requirements which 

may not be easily available. Furthermore, such models often 

resemble the black boxes and this does not create a lot of 

accessibility to the derivation of estimates and this is a major 

problem especially in situations where transparency in 

decision-making is influential. In addition, it would take a lot 

of human intervention to modify the architecture and nature of 

such simulations based on different urban structures or 

circulation patterns. 
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Figure 1. Major determinants in traffic flow forecasting 

Application of traffic forecasting systems in real-time is a 

critical condition. The requirement of the rapidly evolving 

context puts models that need to adapt healthily to the new data 

within a very short duration of time, which requires not only a 

high predictive performance but also performance and 

adaptability [6]. This has made scholars explore ways that can 

be used to strike a balance between complexity of models and 

efficiency of runtime and still offer meaningful insights. The 

assessment of traffic prediction model and its analysis is 

enabled by the open datasets and transportation benchmarks 

[7]. Cities and research institutions are more and more sharing 

databases of traffic, determined by inductive loops, radar, and 

floating car data, to compare the performance of their models 

in different conditions. Non-homogeneity of data and privacy 

concerns however make the process of standardization of 

model training and evaluation challenging. 

Figure 1 shows the multiple factors, which have influences 

on the forecast of traffic flow. The most important part of the 

discussion is the traffic flow data such as parameters such as 

the speed and density. This data is affected by time, such as 

the daily activities and seasonal changes whereas environment 

variables like climate and activities within the traffic like 

accidents and constructions are also taken into consideration 

[8-10]. All the mentioned characteristics define the current 

state of traffic. Furthermore, the external condition, like the 

presence of the public holidays and special events, adds to the 

unpredictability. All these influencing parameters are 

uploaded into the analysis layer that is mandated with 

predicting the most likely traffic trends to enable effective 

functioning of the traffic. 

2. RELATED WORK

In recent years, prediction of traffic flow has become one of 

the important research topics in intelligent transportation 

system. To manage traffic patterns which are dynamical, time 

dependent and non-linear, many algorithms have been 

suggested. These algorithms differ by their computational 

complexity, prediction accuracy, and the capability to get 

adapted to real-time data fluctuations. Another author 

proposed a noise robust prediction method, combining a 

support vector machine with some de-noising methods [11-13]. 

This approach was aimed at reducing the effects of unruly 

figures in traffic records. The model showed enhanced 

prediction results in a multi-step mode, especially when it is 

tested on data belonging to metropolitan areas.  

The other applicable solution discussed by the authors as 

shown in Table 1, was the application of reinforcement 

learning to control the traffic signals depending on the 

prediction of traffic [14-16]. The system envisaged learning 

the best timing patterns that would reduce waiting time and the 

lengths of queues of vehicles by forecasting the amount of 

traffic that would be entering the intersections. However, as 

promising, reinforcement learning models were identified to 

be vulnerable to the quality and quantity of training episodes, 

which made real-world deployment difficult [17]. 
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Table 1. Examinations of traditional traffic flow forecasting 

methods 

 
Techniques Features Challenges 

STANN [18] 

Precise forecasts, 

examines the temporal 

and geographical 

characteristics. 

Requires evaluation of 

temporal dependency. 

WNN [19] 

Minimized mistake, 

Dependable 

performance. 

Demands 

contemplation of a 

more educated 

methodology. 

SVM [20] 
Reduces noise, very 

precise. 

Must concentrate 

more on the multi-

source influx of traffic 

data. 

RNN [21-23] 
Reduces noise, 

Minimum error. 

Must focus on spatial 

and temporal 

characteristics. 

FDCN [24] 

Minimized data 

ambiguity, Enhanced 

precision. 

Demands more 

contemplation about 

learning by 

reinforcement. 

DBN [25] 

Decreased error, 

Minimizes training 

duration. 

The parallel 

computation paradigm 

is not relevant. 

DNN-BTF 

[26] 

Provides consistent 

performance; very 

dependable. 

Must concentrate on 

deep learning 

algorithms. 

Dynamic-

GRCNN [27] 

Minimal error value, 

Decreased time 

expenditure. 

Greater emphasis 

must be placed on 

complex and real-time 

predictions. 

 

Based on the achievements in the machine learning domain, 

another researcher worked on enhancing the explain ability 

and interpretability of the traffic forecasting models and their 

flexibility [28]. They looked at recurrent architectures and 

feedback signals, where traffic information was being 

constantly run through temporal loops to adapt to live changes. 

Although this has enhanced adaptability, it also requires a lot 

of computation power and massive infrastructure of data 

processing which may be a drawback in environments with 

limited resources. 

 

 

3. OBJECTIVE OF THE RESEARCH WORK 

 

•To construct a proper traffic flow prediction model based 

on the real-time and past traffic data with the help of such 

significant input features as Average True Range (ATR), 

Exponential Moving Average (EMA), Relative Strength 

Indicator (RSI), and Rate of Change (ROC). 

•To minimize the number of states and the performance of 

Hidden Markov Model (HMM) to achieve higher prediction 

accuracy through the integration of metaheuristic approach 

overcoming the drawback of fixed-state models. 

•To compare the results of the optimized model with the 

traditional classifiers (namely, HMM, ANN, RNN, and SVM) 

in various traffic conditions, namely, weekdays, holidays, and 

both ways of the road. 

 

 

4. MOTIVATION FOR THE RESEARCH WORK 

 

•With the sophistication of the urban traffic system, there is 

a greater need to have more precise and dynamic prediction 

models that can be used to control the congestion, delay, and 

improve efficiency in the transportation system in real time. 

•The current prediction models are usually less flexible to 

adapt to the dynamic traffic pattern and cannot effectively 

model the hidden traffic states because of the fixed model 

parameters and less optimization. 

•The increased demand is in the development of smart 

systems capable of combining real-time information with 

more sophisticated learning methods to enhance the accuracy 

of forecasting and shorten the waiting time of vehicles and aid 

in smarter transportation planning systems in a city.  

 

 

5. EXPERIMENTAL SET UP 

 

Experimental environment the traffic flow prediction model 

was coded in MATLAB. Traffic variables were observed in 

real-time, where the following variables were recorded: date, 

day, time sessions, and the number of vehicles on both sides 

of the road. To pick up the differences in the traffic flow, each 

day was split into seven-time sessions between midnight and 

midnight. There were four different test cases considered, that 

is, left side weekdays, left side holidays, right side weekdays, 

and right-side holidays. The prediction accuracy and error 

analysis were used to compare the proposed model to existing 

classifiers, which include HMM, ANN, RNN and SVM. Also, 

the optimizing ability of the metaheuristic algorithm was 

tested through a series of iterations (0 to 100) to judge the 

convergence behaviour. The efficiency and soundness of the 

proposed solution were confirmed with the aid of different 

evaluation measures including the number of vehicles, waiting 

time, queue length, and computational time. 

 

 

6. DATASET USED 

 

The data utilized in this study includes real-time traffic data 

on the PeMS California public traffic dataset (District 7) 

consisting of 34,560 time-series samples recorded from loop 

detector stations over 60 days. It features detailed 

characteristics, containing the date, type of day (weekday or 

holiday), time of the day, the number of the session, and the 

respective number of vehicles. The whole day was placed into 

seven-time sessions as 12am to 6am, 6am to 9am, 9am to 

12pm, 12pm to 3pm, 3pm to 6pm, 6pm to 9pm, 9pm to 12am 

so that the traffics flow could be analysed over the day.  

The traffic information was collected on the left and right 

sides of the road separately. There were four different 

scenarios, which were factored: left side during weekdays, left 

side during holidays, right side during weekdays, and right-

side during holidays. This data was standardized to make it 

homogeneous and applied in the training and testing of the 

model. This extensive data facilitated the analysis of the traffic 

flow behaviour in various conditions aiding in the estimation 

of the model accuracy and reliability of the prediction.  

 

 

7. THE PROJECTED METHOD 

 

The suggested method focuses on the construction of a 

better predictive model of the crowd traffic in the city by fine-

tuning the traditional HMM and adding an optimization 

process in the form of metaheuristic in Figure 2. With the 

increased urban population and traffic movement the necessity 
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to have decent and reliable traffic flow prediction has 

increased.  

Non-linearity, time varying nature and external 

dependencies of the traffic data demand an adaptive model of 

prediction that can dynamically moderate the mapping process 

between observed and latent states of the traffic. The proposed 

approach is aimed at adaptation of MHMM with a recently 

developed optimization algorithm the MF-DA that is 

specifically designed to optimize number of hidden states and 

the values of model parameters that are incorporated into the 

HMM model. 

This traffic flow prediction model, which is created in the 

work, starts with processing of real-time traffic data. The 

variables gathered are number of vehicles, time, location of the 

road segment and direction of traffic. Using this information, 

four main characteristics are derived namely; ATR, EMA, RSI 

and ROC. 

 

 
 

Figure 2. Advanced process of the suggested MHMM 

system for smart traffic flow forecasting 

 

These are indicators which are calculated using time series 

statistical operations and they provide an informative picture 

on the traffic trends and anomalies. The chosen features are 

used as inputs into the main MHMM framework. The feature 

extraction mechanism is the initial step of the presented 

process. ATR can be used to measure variability or volatility 

in the traffic flow and the calculation is done based on the true 

range of the range of values series at a chosen interval. ATR 

mathematically is indicated as: 

 

𝐴𝑇𝑅 = 𝐴𝑣𝑒𝑟(𝑉𝑆, 𝑚) (1) 

 

Here, VS signifies the actual range for each interval, 

whereas m indicates the total number of periods utilized for 

the average movement computation, Aver signifies the mean 

value calculated over m successive periods. 

The EMA is used to provide a smoothed averaged of flow 

of traffic across time, assigning more significance to recent 

results. The EMA is articulated by the recursion formula: 

 

𝐸𝑀𝐴 = (𝑆 − 𝐸𝑀𝐴𝑣) ⋅ 𝐸 + 𝐸𝑀𝐴𝑣 (2) 

 
S represents the current flow of traffic value, EMAv denotes 

the preceding EMA value, and E signifies the smoothing effect. 

In this Eq. (2), S represents the latest traffic reading, EMAv 

is the preceding EMA value, and E is the smoothing parameter 

that is specified as: 

 

𝐷 =
2

𝑡+1
  (3) 

 

where, t signifies the total amount of data points utilized for 

the ordinary moving average. 

The Relative Strength Indicator (RSI) measures the extent 

of recent fluctuations in traffic to assess overbought or 

oversold states within the traffic system. The RSI is calculated 

as follows: 

 

𝑅𝑆𝐼 = 100 − (
100

1+𝑆𝐵
)  (4) 

 

SB denotes the smoothing average of the ratios of upward 

and downward movements in traffic data. 

The ROC quantifies the percentage variation in traffic flow 

throughout a specific amount of time intervals. It serves to 

identify momentum changes and may be mathematically 

articulated as: 
 

𝑅𝑂𝐶 = (
𝐶𝑉−𝑃𝑉

𝑃𝑉
) × 100  (5) 

 

CV denotes the current traffic flow, whereas PV refers to the 

traffic flow from a selected prior time interval. 

All these characteristics form the observation set of the 

MHMM. These features are them subsequently processed in 

the MHMM to forecast the underlying traffic states. Standard 

HMMs are probabilistic models that are used to represent a 

system whereby, there is an assumption of a Markov process 

with a hidden state. But it is one of the primary shortcomings 

of classic HMMs that they have a strict definition of the hidden 

states amount and this is predetermined and is not customized 

depending on data. This limitation has the tendency of 

resulting to not-so-good modelling of intricate traffic patterns. 

In an attempt to circumvent this shortcoming, the suggested 

approach is an adaptation of the standard HMM, through the 

incorporation of a state count optimization mechanism. The 

MHMM is built with the help of three major blocks including 

the state transition probability matrix Q, the observation 

probability matrix T, and the initial state probability 

distribution \rho. The formulations of the elements of each 

component are as shown below: 
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The transition probability matrix Q is given: 

 

𝑃𝑚𝑛 = 𝐴(𝑚𝑣+1 = 𝑒𝑛 ∣ 𝑚𝑣 = 𝑒𝑚), 𝑚, 𝑛 = 1,2, . . . , 𝐺 (6) 

 

mv and mv+1 represent the current and subsequent hidden 

states, em and en denote particular state labels, and G signifies 

the overall number of hidden states. 

The observed probabilities matrix T associates each hidden 

state with the seen characteristics and is denoted as: 

 

𝑟𝑛(𝑙) = 𝐵(𝑉𝑣 = 𝑡𝑙 ∣ 𝑛𝑣 = 𝑒𝑚),  𝑙 = 1,2, . . . , 𝐽,  𝑛
= 1,2, . . . , 𝐺 

(7) 

 

Here, V is the traffic feature that was seen at time v, tl 

denotes the lth feasible observations, nv denotes the hidden 

state at time v, em denotes a particular hidden state, J stands for 

the total quantity of observations, and G reflects the overall 

quantity of hidden states. 

The initial state distribution of probabilities ρ is as follows: 

 

𝜌𝑚 = 𝐵(𝑚1 = 𝑒𝑚),  𝑚 = 1,2, . . . , 𝐺 (8) 

 
𝜌𝑚 is the initial possibility of commencing in hidden state 

𝑒𝑚, where G denotes the total amount of hidden states. It must 

meet the following probabilistic requirements: 

 

∑ 𝑄𝑚𝑛
𝐺
𝑚=1 = 1, ∑ 𝑣𝑛

𝐽
𝑙=1 (𝑙) = 1, ∑ 𝜌𝑚

𝐺
𝑚=1 = 1  (9) 

 
𝑄𝑚𝑛  represents the probability of transition among hidden 

states, 𝑣𝑛(𝑙) denotes the observation probabilities of the l-th 

features from state n, and ρ m signifies the starting 

probabilities of state m; G indicates the total number of hidden 

states, whereas J refers to the total number of observer types. 

This structure connects the observed sequence V= {v1, v2, 

vK} and the hidden state sequencing L={l1,l2,...,lK} using 

probability inference, aiming to ascertain the most probable 

sequence of hidden states that produces the seen data. 

Establishing the correct amount of hidden states H is a 

complex problem that greatly influences the reliability of 

predictions. 

In order to optimize the state count to select the best possible 

combination, and, to improve the learning capacity of the 

HMM, the MF-DA is suggested. The MF-DA is an 

optimization algorithm model that borrows its behaviour on 

the dragonflies in nature, e.g., separating, aligning, flocking, 

and leaving enemies to find food. The algorithm in this 

improved version is also fitted with a fitness-based adjustment 

mechanism that employs the evaluation and optimization of 

candidate solutions in algorithms within the predictive 

performances. 

The MF-DA optimization procedure is driven by a fitness 

(objective) function and in this study, the fitness function is 

referred to as the maximization of the classification accuracy 

of the MHMM. The objective function PE is Formulated as: 

 

PE = max(𝐴𝑐𝑐) (10) 

 

whereas, PE denotes the effectiveness evaluations value, Acc 

signifies the accuracy of the predictive model. 

The MF-DA proceeds by instantiating a population with 

dragonflies, each of which represents one potential solution 

that is characterized by a counting-of-states problem 

configuration. A set of behavioral rules is then repeatedly 

applied to the population re-creating the natural behavior of 

dragonflies. 

The average velocity of the neighbors controls the 

alignment behavior of the swarm and mathematically this can 

be expressed as: 

 

𝐶𝑚 =
1

𝑁−𝑎
∑ 𝑃𝑘

𝑁
𝐽=1   (11) 

 
𝐶𝑚  denotes the measure of alignment or cohesiveness, N 

signifies the quantity of surrounding people, 𝑎 indicates a 

modifications constant, and 𝑃𝑘  indicates the velocity or 

location of the k-th neighbor. 

The separation element, which mitigates overpopulation, is 

characterized as: 

 

𝐷𝑚 = ∑ (𝑁
𝑘=1 𝑅 − 𝑅𝑘) ⋅ 𝑝  (12) 

 

𝐷𝑚 is the separation significance, R is the positioning of the 

current person, 𝑅𝑘 is the positioning of the k-th neighbor, p is 

the separating weight, and N is the overall amount of neighbors. 

The cohesive behaviour, which compels dragonflies to 

orient towards the swarm's centre, is articulated as follows: 

 

𝑃𝑚 =
1

𝑁𝑐
∑ 𝑅𝑘

𝑁𝑐
𝑘=1 − 𝑅  (13) 

 
𝑃𝑚 denotes the cohesiveness value, 𝑅𝑘 signifies the position 

of the k-th nearby person, R represents the current member's 

position, and 𝑁𝑐 indicates the number of surrounding people 

taken into account for cohesion. 

To figure out the movement regarding food sources, use: 

 

𝐸𝑚 = 𝑅+ − 𝑅 (14) 

 
𝐸𝑚 is the draw to the food source, 𝑅+ is the food source's 

location, and R is the person's present position. 

 

𝐸𝑚 = 𝑅− − 𝑅 (15) 

 

By including all behaviours, the final step vector ΔR is 

calculated for updating the locations of the dragonflies:  

 

Δ𝑅(𝑚𝑣 + 1) = 𝑝𝐷𝑚 + 𝑎𝐶𝑚 + 𝑑𝑃𝑚 + 𝑒𝐸𝑚 + 𝑐𝐹𝑚

+ 𝑧Δ𝑅(𝑚𝑣) 
(16) 

 
𝑅(mv + 1) = 𝑅(mv) + Δ𝑅(mv + 1) (17) 

 
ΔR(mv+1) represents the revised velocity or movements 

vector, 𝐷𝑚  denotes the separation element, Cm signifies the 

alignment element, Pm indicates the cohesion element, Em 

reflects the attraction to food, Fm denotes the repulsive force 

component exerted by adversaries in the dragonfly optimizing 

framework., ΔR(mv) refers to the prior velocity, and p, a, d, e, 

c, z are the corresponding weight parameters. 

Whenever nearby solutions are unavailable, then global 

exploration is guaranteed by using a Levy flight mechanism, 

which is defined as: 

 

𝑅(mv + 1) = 𝑅(mv) + 𝐿𝑒𝑣𝑥(𝑤) ⋅ 𝑅(mv + 1) (18) 

 

𝐿𝑒𝑣𝑥(𝑏) = 0.01 ⋅
𝑠1−𝛿

|𝑠2|1/𝜂  (19) 

 

where, R(mv+1) denotes the revised location after a stochastic 

exploration step, Levx(w) signifies the Levy flight functions 
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executed with dimension w, and R(mv) indicates the present 

state. Levx(b) is the Levy flight values in dimensions b, s1 and 

s2 are random parameters within the interval [0, 1], η 

represents the stable index of the Levy distribution, and δ is a 

scaled constant derived from the Levy distributed formula. 

The overall MF-DA optimizing procedure is delineated by 

the following algorithm: 

Algorithm 1: MF-DA 

Establish a colony of dragonflies with arbitrary placements 

and velocities. 

 While the dismissal condition is not satisfied: 

     Compute the objective function (accuracy) 

     Determine the optimal option (nutritional source) and 

the suboptimal solution (adversary) 

     Revise behavioral weights (p, a, d, e, c, z) 

     For every dragonfly: 

         Calculate separation (D), alignments (C), 

cohesiveness (P), food attraction (G), and enemy repelled 

(F). 

         Assuming the neighborhood be present: 

    Revise velocity utilizing the ΔS equation. 

    Revise position using R(mv+1) =R(mv)+ΔR 

Otherwise: 

    Utilize 𝐿𝑒𝑣𝑥 flying for exploration 

         Implement border restrictions 

     Terminate For Loop Terminate While Loop Return 

optimum solution (configuration of state counts) 

The optimum configuration from MF-DA is then 

implemented in the MHMM for final trained and predictions. 

The training procedure involves calculating the HMM 

variables λ=(Q,T,ρ) by an estimation of maximum likelihood. 

The probability of observing a sequence given the model is 

optimized by iterative methods like the Expectation 

maximization algorithm, often used in Hidden Markov Model 

training. This technique yields a trained MHMM model 

proficient in predicting traffic flow by analysing observable 

traffic characteristics to infer traffic states computationally. 

The second Algorithm demonstrates the comprehensive 

training and prediction process of the MHMM using the 

optimum state configurations derived from MF-DA. 

Input: Processing traffic dataset with attributes (ATR, 

EMA, RSI, ROC) 

 Utilize MF-DA to ascertain the optimum count of hidden 

states (G_opt). 

 Initialize the MHMM with the optimal state count G_opt. 

 Determine the variables of the Hidden Markov Model (Q, 

T, ρ) via Maximum Probability Estimation. 

 Train the MHMM using historic features patterns. 

 For every novel observed sequence: 

     Employ the Viterbi or Forward-Backward algorithms to 

deduce the most likely sequence of states. 

     Estimate the future traffic condition using probabilities 

of transitions 

 End For  

output: Forecasted traffic flow condition for each time 

segment 

Upon selecting the best state count using the MF-DA 

method, the MHMM becomes operational with the specified 

quantity of hidden states. The last stage is training the model 

to ascertain the probabilistic parameters—transition 

probability Qmn, observable probability vn (l), and starting state 

possibilities ρm—that characterize the stochastic framework of 

the system. The variables are evaluated to optimize the chance 

of witnessing the training patterns. The Baum-Welch method, 

a specific instance of the Expectation-Maximization (EM) 

technique, is often used for this operation. 

Let S=(s1,s2,...,sV) denote a series of observable derived 

from traffic data (i.e., attributes such as ATR, EMA, RSI, and 

ROC), and let P=(p1,p2,...,pV) signify the associated hidden 

state pattern, where each p_t∈{R1,R2,...,RG}. The objective is 

to identify the set of variables λ=(Q,T,ρ) that optimizes the 

probability ratio. 

Q(𝑆 ∣ 𝜆) = ∑ 𝑄𝑃 (S, 𝑄 ∣ 𝜆) (20) 

The calculation of Q(𝑆 ∣ 𝜆) requires the determination of 

forward probabilities α_v (m), which are defined as the 

likelihood of being in state Rv at time v while observing the 

partial pattern s1,s2,...,sV. The calculation is performed 

recursively in the following manner:  

Initialize: 

𝛼1(𝑚) = 𝜌𝑚 ⋅ 𝑣𝑚(𝑠1),  1 ≤ 𝑚 ≤ 𝐺 (21) 

α₁(m) represents the initial forwards possibility, ρₘ denotes 

the starting likelihood of observing state m, vₘ(s₁) indicates the 

observed possibility of seeing s₁ in state m, and G signifies the 

overall amount of hidden states. 

Induction: 

𝛼𝑣(𝑚) = [∑ 𝛼𝑣−1
𝐺
𝑚=1 (𝑚) ⋅ 𝑄𝑚𝑛] ⋅ 𝑣𝑛(𝑠𝑣),  2 ≤

𝑣 ≤ 𝑉,  1 ≤ 𝑚 ≤ 𝐺 
(22) 

Terminate: 

𝑄(𝑆 ∣ 𝜆) = ∑ 𝛼𝑉
𝐺
𝑚=1 (𝑚) (23) 

αv(m) denotes the forward possibility at time v for state m, 

αv−1(m) represents the preceding forward possibility, Qmn 

indicates the state transitioning possibility, vn(sv) signifies the 

observable possibility for observations sv in state n, and G 

refers to the overall number of hidden states. Q(S∣λ) denotes 

the general probability of the observed sequence S given the 

framework λ, αV(m) represents the forward probabilities at the 

last time step V for state m, and G signifies the total count of 

hidden states. 

Additionally, backward probability βv(m) denote the 

likelihood of detecting the subsequent sequence s(v+1),...,sV, 

conditional on the system being in state Rm at time v. These 

are calculated as: 

Initial phase: 

𝛽𝑉(𝑚) = 1,  1 ≤ 𝑚 ≤ 𝐺 (24) 

Induction: 

𝛽𝑣(𝑚) = ∑ 𝑄𝑚𝑛
𝐺
𝑛=1 ⋅ 𝑣𝑛(𝑠𝑣+1) ⋅ 𝛽𝑣+1(𝑚),  𝑣 =

𝑉 − 1, 𝑉 − 2, . . . ,1 
(25) 

The forward and backward probability are utilized for 

estimating the projected amount of transitioning and emissions, 

which then inform the updates of Qmn, vn(l), and ρm. 

The formulae for re-estimating the variables are as follows: 

Distribution of initial states: 
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𝜌𝑚 = 𝛾1(𝑚) (26) 

 

Transition probabilities: 

 

𝑄𝑚𝑛 =
∑ 𝜉𝑣

𝑉−1
𝑣=1 (𝑚,𝑛)

∑ 𝛾𝑣
𝑉−1
𝑣=1 (𝑚)

  (27) 

 

Observation probabilities: 

 

𝑣𝑛(𝑙) =
∑ 𝛾𝑣

𝑉
𝑣=1,𝑠𝑣=𝑢𝑙

(𝑚)

∑ 𝛾𝑣
𝑉
𝑣=1 (𝑚)

  (28) 

 

where, γv(m) represents the likelihood of occupying state Rm at 

time v, and ξv(m,n) denotes the chance of transition from state 

Rm to state Rn at time v, conditioned on the observed sequences 

and the model. 

The following quantities are computed as: 

 

𝛾𝑣(𝑚)  =
𝛼𝑣(𝑚)⋅𝛽𝑣(𝑚)

𝑄(𝑆∣𝜆)
  (29) 

 

𝜉𝑣(𝑚, 𝑛)  =
𝛼𝑣(𝑚)⋅𝑄𝑚𝑛⋅𝑣𝑚(𝑠𝑣+1)⋅𝛽𝑣+1(𝑚)

𝑄(𝑆∣𝜆)
  (30) 

 

𝛾𝑣(𝑚) denotes the possibility of being in state 𝑚 at time v, 

ξv(m,n) represents the probabilities of transforming from state 

m to n at time v, α and β signify the forward and backward 

possibilities, Qmn indicates the state transformation possibility, 

vm(sv+1) refers to the observations probabilities for the 

subsequent symbol, and Q(S∣λ) denotes the total pattern 

probabilities. 

Upon completion of training and estimation of variables, the 

framework is used to forecast the most likely pattern of traffic 

states correlating to fresh observing sequences. The Viterbi 

algorithm executes this deciphering process by determining 

the most probable pattern of hidden states that produces the 

observable sequence. 

The Viterbi algorithm employs a recursively dynamical 

programming methodology. Let δv(m) represent the greatest 

possible outcome along a singular route at time t concluding 

in state Rm, and let ψv(m) signify the state that optimizes this 

value. The algorithm operates in the following manner: 

Initialize: 

 

𝛿1(𝑚) = 𝜌𝑚 ⋅ 𝑣𝑚(𝑠1), 𝜓1(𝑚) = 0 (31) 

 
Recursion: 

 

𝛿𝑣(𝑚) = max
1≤𝑚≤𝐺

[𝛿𝑣−1(𝑚) ⋅ 𝑄𝑚𝑛] ⋅ 𝑣𝑚(𝑠𝑣)  (32) 

 

𝜓𝑣(𝑛) = arg max
1≤𝑚≤𝐺

[𝛿𝑣−1(𝑚) ⋅ 𝑄𝑚𝑛]  (33) 

 

Terminate: 

 

𝑄∗ = max
1≤𝑚≤𝐺

𝛿𝑉(𝑚), 𝑝𝑉
∗ = max

1≤𝑚≤𝐺
𝛿𝑉(𝑚) (34) 

 
Backtrack: 

 

𝑝𝑣
∗ = 𝜓𝑣+1(𝑝𝑣+1

∗ ),  𝑣 = 𝑉 − 1, 𝑉 − 2, . . . ,1 (35) 

 
𝛿𝑣(𝑚 ) denotes the maximum probabilities of any state 

sequence concluding in state 𝑚 at time v, while 𝜓𝑣(𝑛) serves 

as the back pointer suggesting the preceding state that 

optimized the probabilities for state m. ρ m symbolizes the 

initial probabilities of commencing in state m, and 𝑣𝑚  (s v) 

signifies the observations likelihood of encountering symbol 

𝑠𝑣  in state m. Qmn indicates the transformation probabilities 

from state m to n, 𝑄∗ reflects the maximal possibility of the 

optimal state order, 𝑝𝑉
∗  is the terminal state in that sequence, 

and 𝑝𝑣
∗ retraces the most possible path backward utilizing the 

stored back pointer numbers. 

In traffic simulation, each hidden state S_i represents a 

distinct quantitative traffic situation, including free flow, 

modest congestion, or high congestion. The states are not 

immediately visible but may be deduced from patterns in the 

observable characteristics. The analysis of data in space, 

including ATR, EMA, RSI, and ROC values, represents the 

dynamics of vehicle flow across time and functions as an input 

layer for the trained MHMM. 

The adjustment of the hidden state count by MF-DA is 

crucial for enhancing the flexibility and accuracy of the 

MHMM. An insufficient number of states may lead to an 

oversimplified model that neglects critical variations in traffic 

conduct, while an excessive number of states may result in 

overfitting, hence diminishing generalizability. MF-DA 

automatically identifies the ideal quantity of hidden states, 

ensuring the model is appropriately instantiated without 

under- or over-parameterization. 

The result space in MF-DA is represented by integer values 

denoting possibility state counts. Every candidate is assessed 

according to the predictive accuracy of the MHMM trained 

with the specified state count. The fitness landscapes is 

examined via swarm conduct, with convergence directed by 

the overall health of the individuals and their closeness to 

optimum solutions. The behavioural parameters (distinction p, 

alignment b, cohesiveness d, food attraction e, and adversary 

avoidance c) are adapted adjusted in every repetition, while 

random excursions using Lévx flights avert a rapid 

convergence. 

The final product of the suggested methodology is a 

predicting paradigm that can assimilate real-time traffic 

characteristics, calculate the most likely hidden states, and 

anticipate future traffic circumstances. This model is designed 

to serve as a vital element in smart transit systems, which 

allows preventive transportation planning and congestion 

alleviation via timely and precise predictions. 

 

 

8. RESULTS 

 

The result section is aimed at establishing the performance 

of the proposed MHMM framework in comparison with some 

of the existing traffic flow prediction models under different 

conditions. Means to evaluate prediction performance, the 

efficiency of the implementation, and the feasibility of the 

method in real-time were key performance indicators 

including MAE, MSE, RMSE, MAPE, execution time, 

training time, delay of prediction and memory usage. The 

MHMM showed better performance with regards to lower 

prediction errors and lesser response time in all the test cases, 

i.e. various time sessions, sides of the roads and nature of days. 

The advantage with its hidden state structure being optimized 

by the MF-DA algorithm was that it allowed it to model the 

traffic patterns more accurately as compared to the traditional 

HMM, ANN, RNN, SVM, and other hybridizations. The 

computing capacity and simplicity with which the model 

adjusts to the change in traffic also underscores the 

effectiveness and feasibility of the model in the smart 

2935



 

transportation systems in real-time. 

To be nonpartisan, all the models were trained and tested 

with the same data partitions (70% training, 15% validation, 

15% testing) and with the same feature sets (ATR, EMA, RSI, 

ROC). Grid-based cross-validation was performed on tuning 

individual hyperparameters: number of hidden units in 

ANN/RNN/LSTM, kernel and penalty in SVM and state count 

in HMM, to give the minimum error during validation. All 

optimizations of the models were terminated when conditions 

were made similar to guarantee that performance variation to 

observed differences were approximated to represent the 

effectiveness of the algorithm and not the bias in favour of 

tuning models. 

 

⚫ MAE (Mean Absolute Error): It indicates the average 

of the absolute differences of the predicted and measured 

values of traffic. 

⚫ MSE (Mean Squared Error): Computes the mean of 

squared differences between the values between former and 

actual traffic. 

⚫ RMSE (Root Mean Squared Error): Represents the 

square root of the mean of squared differences that give error 

in the unit of the traffic. 

⚫ MAPE (Mean Absolute Percentage Error): Reports 

percentage error of prediction as percentage of actual traffic 

values, and indicates relative accuracy. 

⚫ Execution Time (s): The number of seconds elapsed 

to ask the model to make inferences based on input data in a 

test. 

⚫ Training Time (s): The amount of time it took to train 

the model by using the input traffic dataset. 

⚫ Prediction Delay (ms): The input reaction to output 

time the real-crime prediction takes. 

⚫ Memory Usage (MB): The memory of system that is 

used during training and prediction of the model. 

 

Table 2. Evaluation of models utilizing MAE and RMSE 

 
Model MAE RMSE 

HMM 5.21 5.75 

ANN 4.89 5.41 

RNN 4.65 4.26 

SVM 5.08 5.66 

LSTM 4.48 5.1 

CNN 4.76 5.29 

Hybrid ARIMA-ANN 4.91 4.50 

Proposed MHMM (MF-DA) 3.87 3.60 

 

The relative assessment of several models of traffic flow 

prediction against MAE and RMSE made after implementing 

these two indicators clearly proves the excellent operation of 

the MHMM model with a MF-DA optimizer. The lowest Error 

measurements of the proposed approach in the form of MAE 

of 3.87 and RMSE of 3.60 demonstrate that the model is the 

most reliable and accurate in predicting the traffic pattern in 

Figure 3 and Table 2. The results of conventional models like 

HMM and SVM had more errors with the highest being 

realised in HMM which reported an MAE of 5.21 and RMSE 

of 5.75 as compared to the other models. RNN and LSTM as 

examples of deep learning models were more effective as 

compared to the classical ones but still had more error margins 

than the predicted model. Despite receiving a competitive 

RMSE of 4.50, the hybrid model of ARIMA-ANN continued 

to compare unfavourably to the others in terms of MAE, which 

stood at 4.91 and in that aspect, it was less efficient. These 

comparisons are used to confirm that the proposed MHMM is 

useful in reducing the number of prediction errors in different 

traffic conditions. 

 

 
 

Figure 3. Analysis of models utilizing MAE and RMSE 

 

Table 3. Analysis of models utilizing MSE and MAPE 
 

Model MSE MAPE 

HMM 23.68 14.52 

ANN 20.74 12.8 

RNN 19.12 11.65 

SVM 22.23 13.97 

LSTM 17.05 10.74 

CNN 18.9 11.4 

Hybrid ARIMA-ANN 21.11 13.25 

Proposed MHMM (MF-DA) 13.83 8.62 

 

The MSE and MAPE testing also ports to the observation of 

the proposed MHMM with MF-DA optimization improving 

the predictive ability of the model. The suggested model had 

the minimal MSE of 13.83 and the MAPE of 8.62, meaning 

both accurate numerical forecasting and relative good 

performance. As opposed to this, conventional approaches like 

HMM and SVM reported high MSE in the form of 23.68 and 

22.23 respectively and an equally high value of MAPE at 

14.52 and 13.97 respectively, indicating their flaws with 

respect to the engineering tasks of traffic flow variation 

detection in Table 3 and Figure 4. Although more elaborate 

models such as LSTM and RNN performed better with both 

models achieving 17.05 MSE and 10.74 MAPE respectively 

they failed to beat consistency of the proposed approach. 

Hybrid ARIMA- ANN gave moderate but not so accurate 

enhancement. These results strengthen the assumption and 

effectiveness of the suggested MHMM in performing dynamic 

traffic predictions effectively with a few error levels. 

Comparison of the execution and training times prompts the 

computational efficiency of the proposed MHMM model with 

the optimization of MF-DA. The proposed method takes 0.057 

seconds to execute and 3.49 seconds to train it. Therefore, it is 

much faster compared to the rest of the models in Figure 5 and 

Table 4. Traditional HMM also approaches the execution time 

with 0.071 seconds but training takes a lot longer with 4.14 

seconds. ANN, RNN, LSTM, and CNN deep learning models 

have significantly larger computational complexities where 

training takes between 9.45 to 15.57 and execution times 

between 0.359 and 0.405 seconds. The hybrid ARIMA-ANN 

model also depicts the high execution time of 0.418 seconds 

and training time of 8.88 seconds. The outcomes of these 

experiments have plainly pointed out that the suggested 
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MHMM provides not only enhanced precision, but also 

provides faster training of the model and making of predictions 

in real-time, which is highly relevant to intelligent power 

systems of traffic. 

Figure 4. Validation of models utilizing MSE and MAPE 

Table 4. Evaluation of models based upon execution and 

training time 

Model 
Execution 

Time (s) 

Training 

Time (s) 

HMM 0.071 4.14 

ANN 0.400 9.45 

RNN 0.359 12.32 

SVM 0.244 6.18 

LSTM 0.405 15.57 

CNN 0.371 10.62 

Hybrid ARIMA-ANN 0.418 8.88 

Proposed MHMM (MF-DA) 0.057 3.49 

Figure 5. Analysis of models based upon execution and 

training time 

The results of the t -test and ANOVA indicate that all the 

existing models are statistically significant with a p-value 

under 0.05, and therefore reveal significant differences 

between the proposed MHMM-MFDA approach. To be more 

specific HMM and SVM had the least values (0.001), then 

ANN (0.002, 0.006), then RNN (0.005, 0.008) in Table 5 and 

Figure 6. Other algorithms are LSTM (0.011, 0.012), CNN 

(0.008, 0.010), and Hybrid ARIMA -ANN (0.004, 0.007), 

which also shows that they are significant, whereas the 

proposed MHMM-MFDA had neutral p-values of 0.1. 

Table 5. Evaluation of statistical significance 

Model t-test (p-value) ANOVA (p-value) 

HMM 0.001 0.001 

ANN 0.002 0.006 

RNN 0.005 0.008 

SVM 0.001 0.001 

LSTM 0.011 0.012 

CNN 0.008 0.01 

Hybrid ARIMA–

ANN 

0.004 0.007 

Proposed MHMM–

MFDA 

0.1 0.1 

Figure 6. Comparison of statistical significance 

9. CONCLUSION

The work described in the paper concerns a sophisticated 

method of forecasting the traffic flow based on the modified 

and optimized statistical model. The analysis adequately 

incorporates essential traffic oscillators including ATR, EMA, 

RSI, and ROC to visualize the implicit movement of the traffic 

patterns. Being analyzed and evaluated in a great variety of 

scenarios, including the various days, road directions, and time 

sessions, the model proves to have high prediction accuracy, 

narrow error margins, and enhanced responsiveness compared 

to the traditional classifiers, namely, HMM, ANN, RNN, and 

SVM. Experimental findings are clear regarding the capability 

of the model to follow closely real time vehicle counts data 

and give accurate estimations even at the busy hour traffic 

regime. Moreover, the optimized prediction framework has 

less computational time, higher accuracy of the queue length 

as well as minimal error in the waiting time. The efficiency 

and stability of the method is proven to be true statistically in 

all the test conditions. One of the strengths of the model is its 

stability concerning various traffic conditions, and it indicates 

that it can be applied to be used in the smart transportation 

systems in the reality. The research can be regarded as an 

improvement of the assortment of predictive traffic 

management systems, which will enable offering a market-

tested solution to traffic congestion-related mitigation and 

more sophisticated traffic management. The enhancements 

created in to the process of prediction do not only embody the 

efficiency in computation but also the utility of the same. 
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FUTURE WORK 

The inclusion of weather and environmental data to possess 

a more detailed background of the forecast. On the fly 

deployment using edge sensor networks. Expansion of traffic 

to multi-lane and intersection-based systems. Adaptive 

development on the changing traffic patterns. 
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