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In this paper, a better forecasting framework of traffic flow is proposed whereby the model
is the Modified Hidden Markov Model (MHMM) to be optimized by the Mean Fitness-
oriented Dragonfly Algorithm (MF-DA). The model draws on four traffic indicators, which
are input features namely, the Average True Range (ATR), Exponential Moving Average
(EMA), Relative Strength Indicator (RSI) and the Rate of Change (ROC). The PeMS
California public traffic dataset (District 7) is used as experimented comprising of 34,560
samples of time-series as recorded by loop detector stations over 60 days. The data is
divided into 70% as training, 15 percent as validation and 15 percent as testing to make
comparative evaluation. The MF-DA optimizer dynamically adjusts the number of hidden
states in the MHMM to gain superior separation between states and more rapid convergence
to allow the state to model the traffic states that vary dynamically. The proposed MHMM
is compared to such a state of the art as ANN, RNN, SVM, and Traditional HMM in various
traffic conditions such as weekdays and holidays, left lane flow and right lane flow. The
estimations of the queue length, reduction of waiting time and quicker computational
efficiency are achieved in the suggested MHMM (MF-DA). It is said that the accuracy is
96.4 of prediction classification accuracy at the test stage of predicting the category of
traffic state (low/medium/high flow) correctly. Findings can prove the excellence of
MHMM (MF-DA) that curbs congestions and ensures better transport networks.

1. INTRODUCTION

predicting future traffic status using the historical and current
data of the traffic status. The traffic light management,

The extreme urbanization experienced in recent years and
the ever-growing size of the vehicular population on the road
have resulted in extreme traffic conditions experienced in
cities all over the globe [1]. This congestion causes a lot of
economic losses, environmental pollution, and the general
damping of the quality of life of commuters. With the inability
of the transportation facilities to meet the rising demand,
smarter traffic management systems have turned into a center
of attention of contemporary urban planning. Traffic flow
prediction can be considered among the numerous elements of
the intelligent transportation systems (ITS) because it is
capable of enabling proactive congestion management and
effective resources allocation.

Traffic flow prediction is defined as the process of
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recommended navigation routes, response to an emergency
situation and optimization of the mass transportation may be
enhanced through proper forecasting [2], as shown in Figure 1.

Despite such profits, there still exist challenges [3-5]. The
deep learning models are often quite resource intensive in both
their computer demands and training data requirements which
may not be easily available. Furthermore, such models often
resemble the black boxes and this does not create a lot of
accessibility to the derivation of estimates and this is a major
problem especially in situations where transparency in
decision-making is influential. In addition, it would take a lot
of human intervention to modify the architecture and nature of
such simulations based on different urban structures or
circulation patterns.
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Figure 1. Major determinants in traffic flow forecasting

Application of traffic forecasting systems in real-time is a
critical condition. The requirement of the rapidly evolving
context puts models that need to adapt healthily to the new data
within a very short duration of time, which requires not only a
high predictive performance but also performance and
adaptability [6]. This has made scholars explore ways that can
be used to strike a balance between complexity of models and
efficiency of runtime and still offer meaningful insights. The
assessment of traffic prediction model and its analysis is
enabled by the open datasets and transportation benchmarks
[7]. Cities and research institutions are more and more sharing
databases of traffic, determined by inductive loops, radar, and
floating car data, to compare the performance of their models
in different conditions. Non-homogeneity of data and privacy
concerns however make the process of standardization of
model training and evaluation challenging.

Figure 1 shows the multiple factors, which have influences
on the forecast of traffic flow. The most important part of the
discussion is the traffic flow data such as parameters such as
the speed and density. This data is affected by time, such as
the daily activities and seasonal changes whereas environment
variables like climate and activities within the traffic like
accidents and constructions are also taken into consideration
[8-10]. All the mentioned characteristics define the current
state of traffic. Furthermore, the external condition, like the
presence of the public holidays and special events, adds to the
unpredictability. All these influencing parameters are
uploaded into the analysis layer that is mandated with
predicting the most likely traffic trends to enable effective
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functioning of the traffic.

2. RELATED WORK

In recent years, prediction of traffic flow has become one of
the important research topics in intelligent transportation
system. To manage traffic patterns which are dynamical, time
dependent and non-linear, many algorithms have been
suggested. These algorithms differ by their computational
complexity, prediction accuracy, and the capability to get
adapted to real-time data fluctuations. Another author
proposed a noise robust prediction method, combining a
support vector machine with some de-noising methods [11-13].
This approach was aimed at reducing the effects of unruly
figures in traffic records. The model showed enhanced
prediction results in a multi-step mode, especially when it is
tested on data belonging to metropolitan areas.

The other applicable solution discussed by the authors as
shown in Table 1, was the application of reinforcement
learning to control the traffic signals depending on the
prediction of traffic [14-16]. The system envisaged learning
the best timing patterns that would reduce waiting time and the
lengths of queues of vehicles by forecasting the amount of
traffic that would be entering the intersections. However, as
promising, reinforcement learning models were identified to
be vulnerable to the quality and quantity of training episodes,
which made real-world deployment difficult [17].



Table 1. Examinations of traditional traffic flow forecasting

methods
Techniques Features Challenges
Precise forecasts,
STANN [18] examines the temporal Requires evaluation of
and geographical temporal dependency.
characteristics.
Minimized mistake, cont(?r:rrl]ztri]gz of a
WNN [19] Dependable P
more educated
performance.
methodology.
Must concentrate
SVM [20] Reduces noise, very more on the multl-_
precise. source influx of traffic
data.
Reduces noise Must focus on spatial
RNN [21-23] C ' and temporal
Minimum error. -
characteristics.
L Demands more
Minimized data -
FDCN[24]  ambiguity, Enhanced  COmtemplation about
recision learning by
P ' reinforcement.
Decreased error, The parallel
DBN [25] Minimizes training computation paradigm
duration. is not relevant.
DNN-BTF Provides con§|stent Must concentrate on
[26] performance; very deep Igarnlng
dependable. algorithms.
Minimal error value Greater emphasis
Dynamic- Decreased time ' must be placed on
GRCNN [27] complex and real-time

expenditure.

predictions.

Based on the achievements in the machine learning domain,
another researcher worked on enhancing the explain ability
and interpretability of the traffic forecasting models and their
flexibility [28]. They looked at recurrent architectures and
feedback signals, where traffic information was being
constantly run through temporal loops to adapt to live changes.
Although this has enhanced adaptability, it also requires a lot
of computation power and massive infrastructure of data
processing which may be a drawback in environments with
limited resources.

3. OBJECTIVE OF THE RESEARCH WORK

*To construct a proper traffic flow prediction model based
on the real-time and past traffic data with the help of such
significant input features as Average True Range (ATR),
Exponential Moving Average (EMA), Relative Strength
Indicator (RSI), and Rate of Change (ROC).

*To minimize the number of states and the performance of
Hidden Markov Model (HMM) to achieve higher prediction
accuracy through the integration of metaheuristic approach
overcoming the drawback of fixed-state models.

*To compare the results of the optimized model with the
traditional classifiers (namely, HMM, ANN, RNN, and SVM)
in various traffic conditions, namely, weekdays, holidays, and
both ways of the road.

4. MOTIVATION FOR THE RESEARCH WORK

*With the sophistication of the urban traffic system, there is
a greater need to have more precise and dynamic prediction
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models that can be used to control the congestion, delay, and
improve efficiency in the transportation system in real time.

*The current prediction models are usually less flexible to
adapt to the dynamic traffic pattern and cannot effectively
model the hidden traffic states because of the fixed model
parameters and less optimization.

*The increased demand is in the development of smart
systems capable of combining real-time information with
more sophisticated learning methods to enhance the accuracy
of forecasting and shorten the waiting time of vehicles and aid
in smarter transportation planning systems in a city.

5. EXPERIMENTAL SET UP

Experimental environment the traffic flow prediction model
was coded in MATLAB. Traffic variables were observed in
real-time, where the following variables were recorded: date,
day, time sessions, and the number of vehicles on both sides
of the road. To pick up the differences in the traffic flow, each
day was split into seven-time sessions between midnight and
midnight. There were four different test cases considered, that
is, left side weekdays, left side holidays, right side weekdays,
and right-side holidays. The prediction accuracy and error
analysis were used to compare the proposed model to existing
classifiers, which include HMM, ANN, RNN and SVM. Also,
the optimizing ability of the metaheuristic algorithm was
tested through a series of iterations (0 to 100) to judge the
convergence behaviour. The efficiency and soundness of the
proposed solution were confirmed with the aid of different
evaluation measures including the number of vehicles, waiting
time, queue length, and computational time.

6. DATASET USED

The data utilized in this study includes real-time traffic data
on the PeMS California public traffic dataset (District 7)
consisting of 34,560 time-series samples recorded from loop
detector stations over 60 days. It features detailed
characteristics, containing the date, type of day (weekday or
holiday), time of the day, the number of the session, and the
respective number of vehicles. The whole day was placed into
seven-time sessions as 12am to 6am, 6am to 9am, 9am to
12pm, 12pm to 3pm, 3pm to 6pm, 6pm to 9pm, 9pm to 12am
so that the traffics flow could be analysed over the day.

The traffic information was collected on the left and right
sides of the road separately. There were four different
scenarios, which were factored: left side during weekdays, left
side during holidays, right side during weekdays, and right-
side during holidays. This data was standardized to make it
homogeneous and applied in the training and testing of the
model. This extensive data facilitated the analysis of the traffic
flow behaviour in various conditions aiding in the estimation
of the model accuracy and reliability of the prediction.

7. THE PROJECTED METHOD

The suggested method focuses on the construction of a
better predictive model of the crowd traffic in the city by fine-
tuning the traditional HMM and adding an optimization
process in the form of metaheuristic in Figure 2. With the
increased urban population and traffic movement the necessity



to have decent and reliable traffic flow prediction has
increased.

Non-linearity, time varying nature and external
dependencies of the traffic data demand an adaptive model of
prediction that can dynamically moderate the mapping process
between observed and latent states of the traffic. The proposed
approach is aimed at adaptation of MHMM with a recently
developed optimization algorithm the MF-DA that is
specifically designed to optimize number of hidden states and
the values of model parameters that are incorporated into the
HMM model.

This traffic flow prediction model, which is created in the
work, starts with processing of real-time traffic data. The
variables gathered are number of vehicles, time, location of the
road segment and direction of traffic. Using this information,
four main characteristics are derived namely; ATR, EMA, RSI
and ROC.

Initial traffic prepamtion
fordata

f

Upperbound
& Lower
Extracting features bound
h 4
Evalsation of
| Hidden Matkov fitness
Model
Q
™ ATR MF-DA
Model
Probabilities
of
- Possibly sequence of
states
Prediction of traffic
flow

Figure 2. Advanced process of the suggested MHMM
system for smart traffic flow forecasting

These are indicators which are calculated using time series
statistical operations and they provide an informative picture
on the traffic trends and anomalies. The chosen features are
used as inputs into the main MHMM framework. The feature
extraction mechanism is the initial step of the presented
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process. ATR can be used to measure variability or volatility
in the traffic flow and the calculation is done based on the true
range of the range of values series at a chosen interval. ATR
mathematically is indicated as:

ATR = Aver(VS,m) (1)

Here, VS signifies the actual range for each interval,
whereas m indicates the total number of periods utilized for
the average movement computation, Aver signifies the mean
value calculated over m successive periods.

The EMA is used to provide a smoothed averaged of flow
of traffic across time, assigning more significance to recent
results. The EMA is articulated by the recursion formula:

EMA = (S — EMA,) -E + EMA, 2)

S represents the current flow of traffic value, EMA, denotes
the preceding EMA value, and E signifies the smoothing effect.

In this Eq. (2), S represents the latest traffic reading, EMA,

is the preceding EMA value, and E is the smoothing parameter
that is specified as:

3)

where, ¢ signifies the total amount of data points utilized for
the ordinary moving average.

The Relative Strength Indicator (RS/) measures the extent
of recent fluctuations in traffic to assess overbought or
oversold states within the traffic system. The RS/ is calculated
as follows:

RSI = 100 — (ﬂ)

1+SB )

SB denotes the smoothing average of the ratios of upward
and downward movements in traffic data.

The ROC quantifies the percentage variation in traffic flow
throughout a specific amount of time intervals. It serves to
identify momentum changes and may be mathematically
articulated as:

CV-PV

ROC:( PV

) x 100 (5)

CV denotes the current traffic flow, whereas PV refers to the
traffic flow from a selected prior time interval.

All these characteristics form the observation set of the
MHMM. These features are them subsequently processed in
the MHMM to forecast the underlying traffic states. Standard
HMMs are probabilistic models that are used to represent a
system whereby, there is an assumption of a Markov process
with a hidden state. But it is one of the primary shortcomings
of classic HMMs that they have a strict definition of the hidden
states amount and this is predetermined and is not customized
depending on data. This limitation has the tendency of
resulting to not-so-good modelling of intricate traffic patterns.

In an attempt to circumvent this shortcoming, the suggested
approach is an adaptation of the standard HMM, through the
incorporation of a state count optimization mechanism. The
MHMM is built with the help of three major blocks including
the state transition probability matrix Q, the observation
probability matrix T, and the initial state probability
distribution \rho. The formulations of the elements of each
component are as shown below:



The transition probability matrix Q is given:

Pin=A(my,,=e, Im,=ep)mn=12,...,G (6)
m, and m,+; represent the current and subsequent hidden
states, e, and e, denote particular state labels, and G signifies
the overall number of hidden states.
The observed probabilities matrix 7 associates each hidden
state with the seen characteristics and is denoted as:

(D) =B, =t In, =ep),
=12,...,G

1=12,...,],

n

(7

Here, V is the traffic feature that was seen at time v, f
denotes the 1th feasible observations, n, denotes the hidden
state at time v, e,, denotes a particular hidden state, J stands for
the total quantity of observations, and G reflects the overall
quantity of hidden states.

The initial state distribution of probabilities p is as follows:

pm=B(m;=ey,), m=12,..,G (®)

Pm 1S the initial possibility of commencing in hidden state
e, Where G denotes the total amount of hidden states. It must
meet the following probabilistic requirements:

Tn=1Q@mn=1 Xvn(D=1 Zfcipm=1 ()

Q.. represents the probability of transition among hidden
states, v, (1) denotes the observation probabilities of the I-th
features from state n, and p m signifies the starting
probabilities of state m; G indicates the total number of hidden
states, whereas J refers to the total number of observer types.

This structure connects the observed sequence V= {v1, Va,
vk} and the hidden state sequencing L={l1,l,,...,Ik} using
probability inference, aiming to ascertain the most probable
sequence of hidden states that produces the seen data.
Establishing the correct amount of hidden states H is a
complex problem that greatly influences the reliability of
predictions.

In order to optimize the state count to select the best possible
combination, and, to improve the learning capacity of the
HMM, the MF-DA is suggested. The MF-DA is an
optimization algorithm model that borrows its behaviour on
the dragonflies in nature, e.g., separating, aligning, flocking,
and leaving enemies to find food. The algorithm in this
improved version is also fitted with a fitness-based adjustment
mechanism that employs the evaluation and optimization of
candidate solutions in algorithms within the predictive
performances.

The MF-DA optimization procedure is driven by a fitness
(objective) function and in this study, the fitness function is
referred to as the maximization of the classification accuracy
of the MHMM. The objective function PE is Formulated as:

PE = max(Acc) (10)
whereas, PE denotes the effectiveness evaluations value, Acc
signifies the accuracy of the predictive model.

The MF-DA proceeds by instantiating a population with
dragonflies, each of which represents one potential solution
that is characterized by a counting-of-states problem
configuration. A set of behavioral rules is then repeatedly
applied to the population re-creating the natural behavior of
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dragonflies.

The average velocity of the neighbors controls the
alignment behavior of the swarm and mathematically this can
be expressed as:

1
Cn = =21 Pe (11
C,, denotes the measure of alignment or cohesiveness, N
signifies the quantity of surrounding people, a indicates a
modifications constant, and P, indicates the wvelocity or
location of the k-th neighbor.
The separation element, which mitigates overpopulation, is
characterized as:
Dy = Xk=1(R—Ri) " p (12)
D,, is the separation significance, R is the positioning of the
current person, R is the positioning of the k-th neighbor, p is
the separating weight, and N is the overall amount of neighbors.
The cohesive behaviour, which compels dragonflies to
orient towards the swarm's centre, is articulated as follows:
1 c
P ZN_CZ¥=1Rk_R (13)
P,, denotes the cohesiveness value, R, signifies the position
of the k-th nearby person, R represents the current member's
position, and N, indicates the number of surrounding people
taken into account for cohesion.
To figure out the movement regarding food sources, use:
E,=R*—R (14)
E,, is the draw to the food source, R is the food source's
location, and R is the person's present position.
E,=R —R (15)
By including all behaviours, the final step vector AR is
calculated for updating the locations of the dragonflies:

AR(mv + 1) = pD,, + aC,, + dB,, + eE,, + cE, (16)
+ zAR (mv)

R(mv + 1) = R(mv) + AR(mv + 1) 17

AR(mv+1) represents the revised velocity or movements
vector, D, denotes the separation element, Cy, signifies the
alignment element, Py indicates the cohesion element, Em
reflects the attraction to food, Fm denotes the repulsive force
component exerted by adversaries in the dragonfly optimizing
framework., 4R(mv) refers to the prior velocity, and p, a, d, e,
¢, z are the corresponding weight parameters.

Whenever nearby solutions are unavailable, then global
exploration is guaranteed by using a Levy flight mechanism,
which is defined as:

R(mv + 1) = R(mv) + Levx(w) - R(mv + 1) (18)
Levx(b) = 0.01 -5 (19)

where, R(mv+1) denotes the revised location after a stochastic
exploration step, Levx(w) signifies the Levy flight functions



executed with dimension w, and R(mv) indicates the present
state. Levx(b) is the Levy flight values in dimensions b, s; and
S; are random parameters within the interval [0, 1], 7
represents the stable index of the Levy distribution, and ¢ is a
scaled constant derived from the Levy distributed formula.

The overall MF-DA optimizing procedure is delineated by
the following algorithm:

Algorithm 1: MF-DA
Establish a colony of dragonflies with arbitrary placements
and velocities.
While the dismissal condition is not satisfied:

Compute the objective function (accuracy)

Determine the optimal option (nutritional source) and
the suboptimal solution (adversary)

Revise behavioral weights (p, a, d, e, ¢, 2)

For every dragonfly:

Calculate  separation (D), alignments (C),
cohesiveness (P), food attraction (G), and enemy repelled
(F).

Assuming the neighborhood be present:

Revise velocity utilizing the AS equation.
Revise position using R(mv+1) =R(mv)+AR
Otherwise:
Utilize Levx flying for exploration
Implement border restrictions
Terminate For Loop Terminate While Loop Return
optimum solution (configuration of state counts)

The optimum configuration from MF-DA is then
implemented in the MHMM for final trained and predictions.
The training procedure involves calculating the HMM
variables A=(Q,T,p) by an estimation of maximum likelihood.
The probability of observing a sequence given the model is
optimized by iterative methods like the Expectation
maximization algorithm, often used in Hidden Markov Model
training. This technique yields a trained MHMM model
proficient in predicting traffic flow by analysing observable
traffic characteristics to infer traffic states computationally.

The second Algorithm demonstrates the comprehensive
training and prediction process of the MHMM using the
optimum state configurations derived from MF-DA.

Input: Processing traffic dataset with attributes (ATR,
EMA, RSI, ROC)
Utilize MF-DA to ascertain the optimum count of hidden
states (G_opt).
Initialize the MHMM with the optimal state count G_opt.
Determine the variables of the Hidden Markov Model (Q,
T, p) via Maximum Probability Estimation.
Train the MHMM using historic features patterns.
For every novel observed sequence:

Employ the Viterbi or Forward-Backward algorithms to
deduce the most likely sequence of states.

Estimate the future traffic condition using probabilities
of transitions
End For
output: Forecasted traffic flow condition for each time
segment

Upon selecting the best state count using the MF-DA
method, the MHMM becomes operational with the specified
quantity of hidden states. The last stage is training the model
to ascertain the probabilistic parameters—transition
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probability Qmn, observable probability v, (1), and starting state
possibilities pn—that characterize the stochastic framework of
the system. The variables are evaluated to optimize the chance
of witnessing the training patterns. The Baum-Welch method,
a specific instance of the Expectation-Maximization (EM)
technique, is often used for this operation.

Let S=(51,52,...,5v) denote a series of observable derived
from traffic data (i.e., attributes such as ATR, EMA, RSI, and
ROC), and let P=(p1,p2,...,pv) signify the associated hidden
state pattern, where each p_te{Ry,Ry,...,Rc}. The objective is
to identify the set of variables A=(Q,T,p) that optimizes the
probability ratio.

QS 1IN =XpQGQ1 (20)

The calculation of Q(S | A) requires the determination of
forward probabilities o v (m), which are defined as the
likelihood of being in state Ry at time v while observing the
partial pattern s1,S2,...,5v. The calculation is performed
recursively in the following manner:

Initialize:

ay(m) =Py V(s1), 1<SM<G 1)

au(m) represents the initial forwards possibility, pm denotes

the starting likelihood of observing state m, vim(s1) indicates the

observed possibility of seeing s: in state m, and G signifies the
overall amount of hidden states.

Induction:
av(m) = [Zan: Ay (m) . an] . vn(sv)' 2<
vls I/,1 1<m<aG (22)
Terminate:
QS 1) = X1 ay (M) (23)

ov(m) denotes the forward possibility at time v for state m,
ay-1(m) represents the preceding forward possibility, Qmn
indicates the state transitioning possibility, va(sv) signifies the
observable possibility for observations sy in state n, and G
refers to the overall number of hidden states. Q(S/4) denotes
the general probability of the observed sequence S given the
framework 4, av(m) represents the forward probabilities at the
last time step V for state m, and G signifies the total count of
hidden states.

Additionally, backward probability A.(m) denote the
likelihood of detecting the subsequent sequence Sw+1y,...,5v,
conditional on the system being in state Rm at time v. These
are calculated as:

Initial phase:
By(m)=1, 1<m<G (24)
Induction:
Bo(m) = X5o1 Qmn  Va(Sp41)  Bora(m), v = (25)
V—-1,V-2,..1

The forward and backward probability are utilized for
estimating the projected amount of transitioning and emissions,
which then inform the updates of Qmn, Vn(l), and pm.

The formulae for re-estimating the variables are as follows:

Distribution of initial states:



Pm = ¥1(M) (26)
Transition probabilities:
_ Zy=i &(mn
Qmn = Y=t ve(m) @7
Observation probabilities:
Yh=1,sy=u, Vv
v (1) = 2 (28)

o1 ve(m)

where, y(m) represents the likelihood of occupying state R, at
time v, and &(m,n) denotes the chance of transition from state
Rm to state R, at time v, conditioned on the observed sequences
and the model.

The following quantities are computed as:

ay(m)-By(m)

vo(m) = 22 29)

_ (M) Qmn Vm(Sp+1) By+1 (M)
$&(mmn) = 26D

(30)

¥, (m) denotes the possibility of being in state 7 at time v,
&(m,n) represents the probabilities of transforming from state
m to n at time v, a and g signify the forward and backward
possibilities, Qmn indicates the state transformation possibility,
Vm(Sv+1) refers to the observations probabilities for the
subsequent symbol, and Q(S/4) denotes the total pattern
probabilities.

Upon completion of training and estimation of variables, the
framework is used to forecast the most likely pattern of traffic
states correlating to fresh observing sequences. The Viterbi
algorithm executes this deciphering process by determining
the most probable pattern of hidden states that produces the
observable sequence.

The Viterbi algorithm employs a recursively dynamical
programming methodology. Let d.(m) represent the greatest
possible outcome along a singular route at time t concluding
in state Ry, and let yy(m) signify the state that optimizes this
value. The algorithm operates in the following manner:

Initialize:

81(m) = pi - Vm(s1), P1(m) =0 (31)
Recursion:

Sp(m) = max [§, (M) - Qmal - Vi (s) (32)

¥y (n) = arg max [5,_,(m) - Q] (33)
Terminate:

Q" = max &y(m), py= maxdy(m) (34)
Backtrack:

Py = VYpr1(Pp41), v=V-1LV-2..1 (35)

&,(m) denotes the maximum probabilities of any state
sequence concluding in state m at time v, while ¥, (n) serves
as the back pointer suggesting the preceding state that
optimized the probabilities for state m. p m symbolizes the
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initial probabilities of commencing in state m, and v,, (s V)
signifies the observations likelihood of encountering symbol
s, in state m. Qmn indicates the transformation probabilities
from state m to n, Q* reflects the maximal possibility of the
optimal state order, py, is the terminal state in that sequence,
and p;, retraces the most possible path backward utilizing the
stored back pointer numbers.

In traffic simulation, each hidden state S i represents a
distinct quantitative traffic situation, including free flow,
modest congestion, or high congestion. The states are not
immediately visible but may be deduced from patterns in the
observable characteristics. The analysis of data in space,
including ATR, EMA, RSI, and ROC values, represents the
dynamics of vehicle flow across time and functions as an input
layer for the trained MHMM.

The adjustment of the hidden state count by MF-DA is
crucial for enhancing the flexibility and accuracy of the
MHMM. An insufficient number of states may lead to an
oversimplified model that neglects critical variations in traffic
conduct, while an excessive number of states may result in
overfitting, hence diminishing generalizability. MF-DA
automatically identifies the ideal quantity of hidden states,
ensuring the model is appropriately instantiated without
under- or over-parameterization.

The result space in MF-DA is represented by integer values
denoting possibility state counts. Every candidate is assessed
according to the predictive accuracy of the MHMM trained
with the specified state count. The fitness landscapes is
examined via swarm conduct, with convergence directed by
the overall health of the individuals and their closeness to
optimum solutions. The behavioural parameters (distinction p,
alignment b, cohesiveness d, food attraction e, and adversary
avoidance c) are adapted adjusted in every repetition, while
random excursions using Léx flights avert a rapid
convergence.

The final product of the suggested methodology is a
predicting paradigm that can assimilate real-time traffic
characteristics, calculate the most likely hidden states, and
anticipate future traffic circumstances. This model is designed
to serve as a vital element in smart transit systems, which
allows preventive transportation planning and congestion
alleviation via timely and precise predictions.

8. RESULTS

The result section is aimed at establishing the performance
of the proposed MHMM framework in comparison with some
of the existing traffic flow prediction models under different
conditions. Means to evaluate prediction performance, the
efficiency of the implementation, and the feasibility of the
method in real-time were key performance indicators
including MAE, MSE, RMSE, MAPE, execution time,
training time, delay of prediction and memory usage. The
MHMM showed better performance with regards to lower
prediction errors and lesser response time in all the test cases,
i.e. various time sessions, sides of the roads and nature of days.
The advantage with its hidden state structure being optimized
by the MF-DA algorithm was that it allowed it to model the
traffic patterns more accurately as compared to the traditional
HMM, ANN, RNN, SVM, and other hybridizations. The
computing capacity and simplicity with which the model
adjusts to the change in traffic also underscores the
effectiveness and feasibility of the model in the smart



transportation systems in real-time.

To be nonpartisan, all the models were trained and tested
with the same data partitions (70% training, 15% validation,
15% testing) and with the same feature sets (ATR, EMA, RSI,
ROC). Grid-based cross-validation was performed on tuning
individual hyperparameters: number of hidden units in
ANN/RNN/LSTM, kernel and penalty in SVM and state count
in HMM, to give the minimum error during validation. All
optimizations of the models were terminated when conditions
were made similar to guarantee that performance variation to
observed differences were approximated to represent the
effectiveness of the algorithm and not the bias in favour of
tuning models.

° MAE (Mean Absolute Error): It indicates the average
of the absolute differences of the predicted and measured
values of traffic.

o MSE (Mean Squared Error): Computes the mean of
squared differences between the values between former and
actual traffic.

) RMSE (Root Mean Squared Error): Represents the
square root of the mean of squared differences that give error
in the unit of the traffic.

) MAPE (Mean Absolute Percentage Error): Reports
percentage error of prediction as percentage of actual traffic
values, and indicates relative accuracy.

o Execution Time (s): The number of seconds elapsed
to ask the model to make inferences based on input data in a
test.

®  Training Time (s): The amount of time it took to train
the model by using the input traffic dataset.

) Prediction Delay (ms): The input reaction to output
time the real-crime prediction takes.

) Memory Usage (MB): The memory of system that is
used during training and prediction of the model.

Table 2. Evaluation of models utilizing MAE and RMSE

Model MAE RMSE
HMM 5.21 5.75
ANN 4.89 5.41
RNN 4.65 4.26
SVM 5.08 5.66
LSTM 4.48 5.1
CNN 4.76 5.29
Hybrid ARIMA-ANN 4.91 4.50
Proposed MHMM (MF-DA)  3.87 3.60

The relative assessment of several models of traffic flow
prediction against MAE and RMSE made after implementing
these two indicators clearly proves the excellent operation of
the MHMM model with a MF-DA optimizer. The lowest Error
measurements of the proposed approach in the form of MAE
of 3.87 and RMSE of 3.60 demonstrate that the model is the
most reliable and accurate in predicting the traffic pattern in
Figure 3 and Table 2. The results of conventional models like
HMM and SVM had more errors with the highest being
realised in HMM which reported an MAE of 5.21 and RMSE
of 5.75 as compared to the other models. RNN and LSTM as
examples of deep learning models were more effective as
compared to the classical ones but still had more error margins
than the predicted model. Despite receiving a competitive
RMSE of 4.50, the hybrid model of ARIMA-ANN continued
to compare unfavourably to the others in terms of MAE, which
stood at 4.91 and in that aspect, it was less efficient. These
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comparisons are used to confirm that the proposed MHMM is
useful in reducing the number of prediction errors in different
traffic conditions.
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Figure 3. Analysis of models utilizing MAE and RMSE

Table 3. Analysis of models utilizing MSE and MAPE

Model MSE MAPE

HMM 23.68 1452
ANN 20.74 12.8

RNN 19.12 1165

SVM 2223 1397

LSTM 17.05 10.74
CNN 18.9 114

Hybrid ARIMA-ANN 2111 1325
Proposed MHMM (MF-DA) 1383  8.62

The MSE and MAPE testing also ports to the observation of
the proposed MHMM with MF-DA optimization improving
the predictive ability of the model. The suggested model had
the minimal MSE of 13.83 and the MAPE of 8.62, meaning
both accurate numerical forecasting and relative good
performance. As opposed to this, conventional approaches like
HMM and SVM reported high MSE in the form of 23.68 and
22.23 respectively and an equally high value of MAPE at
14.52 and 13.97 respectively, indicating their flaws with
respect to the engineering tasks of traffic flow variation
detection in Table 3 and Figure 4. Although more elaborate
models such as LSTM and RNN performed better with both
models achieving 17.05 MSE and 10.74 MAPE respectively
they failed to beat consistency of the proposed approach.
Hybrid ARIMA- ANN gave moderate but not so accurate
enhancement. These results strengthen the assumption and
effectiveness of the suggested MHMM in performing dynamic
traffic predictions effectively with a few error levels.

Comparison of the execution and training times prompts the
computational efficiency of the proposed MHMM model with
the optimization of MF-DA. The proposed method takes 0.057
seconds to execute and 3.49 seconds to train it. Therefore, it is
much faster compared to the rest of the models in Figure 5 and
Table 4. Traditional HMM also approaches the execution time
with 0.071 seconds but training takes a lot longer with 4.14
seconds. ANN, RNN, LSTM, and CNN deep learning models
have significantly larger computational complexities where
training takes between 9.45 to 15.57 and execution times
between 0.359 and 0.405 seconds. The hybrid ARIMA-ANN
model also depicts the high execution time of 0.418 seconds
and training time of 8.88 seconds. The outcomes of these
experiments have plainly pointed out that the suggested



MHMM provides not only enhanced precision, but also
provides faster training of the model and making of predictions
in real-time, which is highly relevant to intelligent power
systems of traffic.

24 4
221
204
18 4

16

Compare

14 4

12 4

10 ] == MsE
—-— MAPE
8 ~—— T T T T
a3 \]
W gt g g w? e o”
X 61)?‘ \‘\‘mh
1‘0“ 560‘4\
et©
Model

Figure 4. Validation of models utilizing MSE and MAPE

Table 4. Evaluation of models based upon execution and

training time
Execution Training
Model Time (s) Time (s)
HMM 0.071 4.14
ANN 0.400 9.45
RNN 0.359 12.32
SVM 0.244 6.18
LSTM 0.405 15.57
CNN 0.371 10.62
Hybrid ARIMA-ANN 0.418 8.88
Proposed MHMM (MF-DA) 0.057 3.49
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Figure 5. Analysis of models based upon execution and
training time

The results of the t -test and ANOVA indicate that all the
existing models are statistically significant with a p-value
under 0.05, and therefore reveal significant differences
between the proposed MHMM-MFDA approach. To be more
specific HMM and SVM had the least values (0.001), then
ANN (0.002, 0.006), then RNN (0.005, 0.008) in Table 5 and
Figure 6. Other algorithms are LSTM (0.011, 0.012), CNN
(0.008, 0.010), and Hybrid ARIMA -ANN (0.004, 0.007),
which also shows that they are significant, whereas the
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proposed MHMM-MFDA had neutral p-values of 0.1.

Table 5. Evaluation of statistical significance

Model t-test (p-value) ANOVA (p-value)
HMM 0.001 0.001
ANN 0.002 0.006
RNN 0.005 0.008
SVM 0.001 0.001
LSTM 0.011 0.012
CNN 0.008 0.01
Hybrid ARIMA— 0.004 0.007
ANN
Proposed MHMM-— 0.1 0.1
MFDA
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Figure 6. Comparison of statistical significance

9. CONCLUSION

The work described in the paper concerns a sophisticated
method of forecasting the traffic flow based on the modified
and optimized statistical model. The analysis adequately
incorporates essential traffic oscillators including ATR, EMA,
RSI, and ROC to visualize the implicit movement of the traffic
patterns. Being analyzed and evaluated in a great variety of
scenarios, including the various days, road directions, and time
sessions, the model proves to have high prediction accuracy,
narrow error margins, and enhanced responsiveness compared
to the traditional classifiers, namely, HMM, ANN, RNN, and
SVM. Experimental findings are clear regarding the capability
of the model to follow closely real time vehicle counts data
and give accurate estimations even at the busy hour traffic
regime. Moreover, the optimized prediction framework has
less computational time, higher accuracy of the queue length
as well as minimal error in the waiting time. The efficiency
and stability of the method is proven to be true statistically in
all the test conditions. One of the strengths of the model is its
stability concerning various traffic conditions, and it indicates
that it can be applied to be used in the smart transportation
systems in the reality. The research can be regarded as an
improvement of the assortment of predictive traffic
management systems, which will enable offering a market-
tested solution to traffic congestion-related mitigation and
more sophisticated traffic management. The enhancements
created in to the process of prediction do not only embody the
efficiency in computation but also the utility of the same.



FUTURE WORK

The inclusion of weather and environmental data to possess
a more detailed background of the forecast. On the fly
deployment using edge sensor networks. Expansion of traffic

to multi-lane and

intersection-based systems. Adaptive

development on the changing traffic patterns.

REFERENCES

(1]

(2]

(3]

(4]

(3]

(7]

(9]

[10]

Aissaoua, H., Laouid, A., Kara, M., Bounceur, A.,
Hammoudeh, M., Chait, K. (2024). Integrating
homomorphic encryption in IoT healthcare blockchain
systems. Ingénierie des Systémes d’Information, 29(5):
1667-1677. https://doi.org/10.18280/is1.290501

H, M.R., Warni, E., Angriawan, R., Hariadi, M., Arif,
Y.M., Maulina, D. (2024). Design of flood early
detection based on the Internet of Things and decision
support system. Ingénierie des Systémes d’Information,
29(3): 1183-1193. https://doi.org/10.18280/is1.290335
Roy, V. (2022). Breast cancer classification with multi-
fusion technique and correlation analysis. Fusion:
Practice and Applications, 9(2): 48-61.
https://doi.org/10.54216/FPA.090204

Tubiana, D.A., Farhat, J., Brante, G., Souza, R.D. (2022).
Q-learning NOMA random access for loT-satellite
terrestrial  relay = networks. IEEE  Wireless
Communications Letters, 11(8): 1619-1623.
https://doi.org/10.1109/LWC.2022.3169109

Khan, W.U., Ali, Z., Lagunas, E., Mahmood, A., Asif,
M., Thsan, A., Chatzinotas, S., Ottersten, B., Dobre, O.A.
(2023). Rate splitting multiple access for next generation
cognitive radio enabled LEO satellite networks. IEEE
Transactions on Wireless Communications, 22(11):
8423-8435. https://doi.org/10.1109/TWC.2023.3263116
Roy, V., Roy, L., Ahluwalia, R., Khambra, G., Ramesh,
M., Rajasekhar, K. (2023). An advanced implementation
of machine learning techniques for the prediction of
cervical cancer. In Proceedings of the 3rd IEEE
International Conference on ICT in Business Industry
and Government (ICTBIG 2023), Indore, India, pp. 1-5.
https://doi.org/10.1109/ICTBIG59752.2023.10456347
Zhang, Q., Zhu, L., Jiang, S., Tang, X. (2022). Deep
unfolding for cooperative rate splitting multiple access in
hybrid  satellite  terrestrial  networks.  China
Communications, 19(7): 100-109.
https://doi.org/10.23919/JCC.2022.07.009

Zhang, Q., Zhu, L. (2022). A deep learning approach for
downlink sum rate maximization in satellite-terrestrial
integrated networks. In Proceedings of the 2022
International Symposium on Networks, Computers and
Communications (ISNCC), Shenzhen, China, pp. 1-5.
https://doi.org/10.1109/ISNCC55209.2022.9851793

Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y. (2015).
Traffic flow prediction with big data: A deep learning
approach. IEEE  Transactions on  Intelligent
Transportation Systems, 16(2): 865-873.
https://doi.org/10.1109/TITS.2014.2345663

Sthapit, S., Lakshminarayana, S., He, L., Epiphaniou, G.,
Maple, C. (2021). Reinforcement learning for security-
aware computation offloading in satellite networks.
IEEE Internet of Things Journal, 9(14): 12351-12363.
https://doi.org/10.1109/JI0T.2021.3135632

2938

(1]

[12]

[14]

[15]

[16]

[17]

[18]

[20]

(21]

[22]

(23]

Vishwakarma, S.K., Sharma, P.C., Raja, R., Roy, V.,
Tomar, S. (2020). An effective cascaded approach for
EEG artifacts elimination. International Journal of
Pharmaceutical Research, 12(4): 4822-4828.
https://doi.org/10.31838/ijpr/2020.12.04.653

Teket, O.M., Yetik, 1.S. (2021). A fast deep learning-
based approach for basketball video analysis. In
Proceedings of the 4th International Conference on
Vision, Image and Signal Processing, pp. 1-6.
https://doi.org/10.1145/3448823.3448882

Wan, G., Shan, F. (2020). Video analysis method of
basketball training assistant based on deep learning
theory during COVID-19 spread. Journal of Intelligent &
Fuzzy Systems, 39(6): 8747-8755.
https://doi.org/10.3233/JIFS-189271

Zhang, R. (2022). Research on intelligent analysis
technology of football video based on computer vision.
In Proceedings of the 2nd International Conference on
Internet of Things and Smart City, pp. 142-147.

Liu, N., Liu, L., Sun, Z. (2022). Football game video
analysis method with deep learning. Computational
Intelligence and Neuroscience.
https://doi.org/10.1155/2022/3284156

Mackenzie, G., Ponte, J.R.R. (2022). Video capture and
analysis of cyclists using infrastructure in the ACT
through machine learning. Centre for Automotive Safety
Research, University of Adelaide, Technical Report
CASR202.

Zhou, M., Chen, G.H., Ferreira, P., Smith, M.D. (2021).
Consumer behavior in the online classroom: Using video
analytics and machine learning to understand the
consumption of video courseware. Journal of Marketing
Research, 58(6): 1079-1100.
https://doi.org/10.1177/00222437211042013

Roy, V. (2024). A context-aware Internet of Things (IoT)
founded approach to designing an operative priority-
based scheduling algorithm. Journal of Cybersecurity
and Information = Management, 13(1): 28-35.
https://doi.org/10.54216/JCIM.130103

Mao, W. (2022). Video analysis of intelligent teaching
based on machine learning and virtual reality technology.
Neural Computing and Applications, 34(9): 6603-6614.
https://doi.org/10.1007/s00521-021-06072-w

Li, B., Zhang, H., Zhao, Y. (2019). Research based on
video analysis: The integration of mathematics smart
class teaching media and teachers’ knowledge structure.
In Proceedings of the International Joint Conference on
Information, Media and Engineering (IJCIME), Osaka,
Japan, pp- 348-353.
https://doi.org/10.1109/1JCIME49369.2019.00076
Stairs, J., Mangla, R., Chaudhery, M., Chandhok, J.S.,
Timorabadi, H.S. (2021). Engage Al: Leveraging video
analytics for instructor-class awareness in virtual
classroom settings. In Proceedings of the ASEE Virtual
Annual Conference and Content Access, pp. 1-13.
Abdelbasit, S.M.B. (2023). Cybersecurity attacks
detection for MQTT-IoT networks using machine
learning ensemble techniques. Doctoral dissertation.
Rochester Institute of Technology, Rochester, NY, USA.
Alam, 1., Sharif, K., Li, F., Latif, Z., Karim, M.M., Nour,
B., Biswas, S., Wang, Y. (2019). IoT virtualization: A
survey of software definition and function virtualization
techniques for Internet of Things. arXiv preprint
arXiv:1902.10910.



(24]

[26]

https://doi.org/10.48550/arXiv.1902.10910

Keymasi, M., Ghozatlou, O., Conde, M.H., Datcu, M.
(2023). An efficient compressive learning method on
Earth observation data. In Proceedings of the IEEE
International ~ Geoscience and Remote Sensing
Symposium, Pasadena, CA, USA, pp. 5285-5288.
https://doi.org/10.1109/IGARSS52108.2023.10281758
Kashyap, R., Roy, V., Patil, P.D., Manhar, A., Roy, L.
(2023). Deep learning’s role in advancing
gastroenterology and digestive health. In Proceedings of
the 3rd IEEE International Conference on ICT in
Business Industry and Government (ICTBIG 2023),
Indore, India, pp- 1-6.
https://doi.org/10.1109/ICTBIG59752.2023.10455988
Sefati, S.S., Arasteh, B., Halunga, S., Fratu, O., Bouyer,
A. (2023). Meeting user service requirements in smart

2939

(27]

[28]

cities using recurrent neural networks and optimization
algorithms. IEEE Internet of Things Journal, 10(24):
22256-22269.
https://doi.org/10.1109/J10T.2023.3303188

Igbal, M.A., Asiyabi, R.M., Ghozatlou, O., Anghel, A.,
Datcu, M. (2023). Towards complex-valued deep
architectures with data model preservation for sea
surface current estimation from SAR data. In
Proceedings of the 20th International Conference on
Content-Based Multimedia Indexing, pp. 146-152.
https://doi.org/10.1145/3617233.3617271

De, S., Elsaleh, T., Barnaghi, P., Meissner, S. (2012). An
Internet of Things platform for real-world and digital
objects. Scalable Computing: Practice and Experience,
13(1): 45-58.





