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Robusta coffee productivity in Pagar Alam City has declined by nearly 50% compared to 

the previous year. Typically, a coffee tree produces 1–5 kg of cherries per tree, but in 2024 

production dropped to only 100–300 grams. This decline is mainly due to difficulties in 

accurately identifying leaf diseases, leading to inappropriate pesticide use and reduced 

yields. Hence, an accurate image-based disease detection system is urgently required to 

support precision agriculture. This study optimizes the Convolutional Neural Network 

(CNN) architecture for classifying Robusta coffee leaf diseases using MobileNetV3 and 

DenseNet169 with transfer learning. The dataset consists of healthy and diseased coffee leaf 

images (rust, leaf spot, sooty mold). Data preprocessing includes normalization, 

augmentation, and resizing, with a 70:30 split for training and testing. Performance is 

evaluated using accuracy, precision, recall, F1-score, and AUC metrics. The optimized 

model achieved a precision of 0.98, recall of 98%, F1-score of 98%, and AUC of 0.98. It 

reached the highest accuracy for leaf spot and rust (1.00) and sooty mold (0.93). 

MobileNetV3 demonstrated superior accuracy and robustness, while DenseNet169 

provided faster convergence and efficient feature propagation, yielding a model that 

balances accuracy and speed. This approach enables farmers to make timely, data-driven 

decisions in managing coffee plant diseases, supporting sustainable coffee production in 

Pagar Alam City. Future studies should expand datasets and develop mobile-based real-

time detection systems. 
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1. INTRODUCTION

Coffee is one of Indonesia’s most strategic plantation 

commodities, holding substantial economic and social 

importance. The country is recognized as one of the world’s 

largest coffee producers, cultivating two main varieties—

Arabica and Robusta. One of the leading Robusta-producing 

regions is Pagar Alam City, located at the foot of Mount 

Dempo in South Sumatra Province. The geographical 

conditions and cool climate of this highland area provide an 

ideal environment for growing Robusta coffee, known for its 

distinctive flavor and aroma. For the local community, coffee 

cultivation serves not only as a cultural heritage but also as the 

primary economic backbone, with most residents depending 

on the agricultural sector, especially coffee farming [1]. 

Despite its strong potential, Pagar Alam’s coffee industry 

faces serious challenges, particularly in disease detection and 

management. Several leaf diseases—such as coffee leaf rust. 

(Hemileia vastatrix), sooty mold (Capnodium spp.), and leaf 

spot (Cercospora coffeicola)—pose significant threats to 

coffee productivity. These diseases cause leaf discoloration, 

defoliation, and impaired photosynthesis, leading to 

substantial yield reductions [2]. 

The main problem farmers encounter is not merely the 

spread of these diseases, but rather the inaccuracy in 

identifying and classifying them. Most farmers in Pagar Alam 

still rely on manual observation, assessing symptoms visually 

without technological assistance. This traditional approach 

depends heavily on individual experience and is often 

inaccurate because different diseases can exhibit similar visual 

symptoms. For instance, leaf spots caused by Cercospora may 

be mistaken for early symptoms of Hemileia vastatrix. As a 

result, farmers often apply inappropriate pesticides or 

treatments, which can further damage the plants instead of 

curing them [3]. 

This issue is further compounded by limited access to expert 

knowledge and diagnostic technology. Farmers lack a rapid 

and accurate system for disease identification, making timely 

decision-making difficult. In plant disease management, speed 

and accuracy in classification are critical to determining 

effective control measures. Therefore, it is essential to develop 

a technology-based solution that enables farmers to recognize 

leaf diseases quickly and accurately, even in resource-limited 

field conditions. With rapid advancements in information 

technology, the agricultural sector has entered a new era of 

smart farming, where Artificial Intelligence (AI) is used to 

address traditional agricultural challenges. One of the most 

promising AI techniques for image-based disease 

identification is the Convolutional Neural Network (CNN), a 

deep learning architecture specialized in visual pattern 

recognition [4]. 

CNNs mimic the way the human brain processes visual 

information, automatically learning hierarchical features such 

as texture, color, and shape from images. Unlike traditional 
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machine learning methods that require manual feature 

extraction, CNNs can autonomously identify complex visual 

patterns directly from raw data. This makes them highly 

effective for image-based tasks such as leaf disease 

classification. In the context of coffee leaves, CNNs can 

classify images into multiple categories—such as healthy 

leaves, leaf rust, leaf spot, or sooty mold—based on visual 

patterns. However, conventional CNN models like AlexNet, 

VGG16, and ResNet often require substantial computational 

resources and long training times, making them unsuitable for 

mobile or real-time applications in the field. To overcome 

these limitations, recent research has focused on developing 

lightweight CNN architectures that retain high accuracy while 

reducing computational costs. Among the most promising are 

MobileNetV3 and DenseNet169, which offer complementary 

advantages in terms of computational efficiency, speed, and 

model stability [5]. 

MobileNetV3, developed by Google, is designed for low-

resource environments where computational efficiency and 

speed are crucial. It utilizes depthwise separable convolutions, 

inverted residual blocks, and squeeze-and-excitation (SE) 

modules to reduce the number of parameters significantly. As 

a result, MobileNetV3 achieves high inference speed and 

compact model size without compromising accuracy—

making it ideal for on-field applications such as smartphone-

based disease detection systems or smart agricultural cameras. 

In contrast, DenseNet169 (Densely Connected 

Convolutional Network) introduces a unique approach where 

each layer is connected directly to every other layer in a feed-

forward fashion. This dense connectivity allows the model to 

reuse previously learned features, ensuring efficient gradient 

propagation, faster convergence, and reduced overfitting. 

Despite its depth (169 layers), DenseNet is parameter-efficient 

and provides high classification accuracy with less redundant 

computation [6]. 

When combined, MobileNetV3’s accuracy and lightweight 

design complement DenseNet169’s speed and feature reuse, 

producing an optimized model for image classification that 

balances accuracy, efficiency, and scalability. By leveraging 

transfer learning—using pre-trained weights from 

ImageNet—this hybrid model can adapt quickly to coffee leaf 

datasets while minimizing training time and computational 

cost. From the above discussion, it can be identified that the 

core problem in Pagar Alam’s coffee production is not merely 

declining yield, but rather the inefficient and inaccurate 

classification of coffee leaf diseases [7-24]. Misidentification 

leads to the inappropriate use of pesticides, delayed response, 

and overall management inefficiency. 

Based on this, the key research problems formulated are: 

1. How can a CNN-based classification model be

designed to accurately identify various coffee leaf diseases? 

2. How can CNN architecture be optimized to achieve

high-speed classification with computational efficiency? 

3. How can the strengths of MobileNetV3 and

DenseNet169 be integrated into a hybrid model that provides 

both accuracy and processing speed? 

4. How can this optimized model assist farmers in

making rapid and precise decisions regarding disease 

management? 

These questions form the foundation of this study, which 

aims to provide a technological solution that is both 

scientifically robust and practically applicable for smallholder 

coffee farmers. 

The main objective of this research is to develop and 

optimize a CNN model based on MobileNetV3 and 

DenseNet169 to enhance the accuracy and speed of Robusta 

coffee leaf disease classification. The specific objectives are: 

1. To implement transfer learning techniques using

MobileNetV3 and DenseNet169 architectures on coffee leaf 

image datasets. 

2. To evaluate model performance using metrics such as

accuracy, precision, recall, F1-score, and AUC (Area Under 

Curve). 

3. To analyze the effect of combining both architectures

on training speed and computational efficiency. 

4. To produce a lightweight, high-speed model suitable

for mobile or field-based plant disease detection systems. 

Numerous studies have applied CNNs in plant disease 

classification with promising results. For instance, Mohanty et 

al. [25] employed AlexNet and GoogLeNet to classify diseases 

in 14 plant species, achieving an accuracy of 99.35%. 

Ferentinos [26] demonstrated the capability of CNNs to 

identify plant diseases with over 98% accuracy using large 

image datasets. However, these models typically require 

powerful hardware and long processing times, which limit 

their real-world usability. 

Recent research has shifted toward lightweight deep 

learning architectures for agricultural applications. For 

example, applied MobileNet for rice disease classification and 

achieved 97% accuracy with faster training compared to 

heavier models like ResNet. Meanwhile, DenseNet has been 

shown to improve gradient flow and reduce overfitting, 

particularly for smaller datasets. 

Despite these advancements, studies combining 

MobileNetV3 and DenseNet169 for coffee leaf disease 

classification remain scarce. This research seeks to fill that gap 

by developing a hybrid architecture that combines 

MobileNet’s efficiency and DenseNet’s accuracy, offering a 

novel contribution to precision agriculture [8]. 

Theoretically, this study contributes to the development of 

CNN optimization techniques through the integration of two 

distinct architectures: MobileNetV3, known for lightweight 

efficiency, and DenseNet169, recognized for deep feature 

reuse and fast convergence. The hybridization of these two 

models is expected to yield a system that is both accurate and 

computationally efficient [9]. 

Practically, this research provides a real-world 

technological solution for farmers and agricultural 

practitioners. The proposed system can help farmers quickly 

diagnose coffee leaf diseases using images captured from 

smartphones or field cameras. This eliminates the need for 

expert consultation, allowing farmers to independently and 

efficiently manage disease control. Moreover, the outcomes of 

this study can support the development of mobile-based and 

IoT-integrated applications for real-time field monitoring [10]. 

By collecting and analyzing plant disease data continuously, 

such systems could transform traditional coffee farming into 

data-driven, intelligent agriculture. Thus, this research 

contributes not only to the academic field of machine learning 

but also to the digital transformation of agriculture toward 

sustainability and resilience. 

This research offers benefits in two major dimensions: 

1. Scientific Benefit: It provides a reference for

developing hybrid CNN architectures that enhance the balance 

between accuracy, efficiency, and scalability in plant disease 

classification. 

2. Practical Benefit: It serves as a foundation for

creating image-based coffee disease detection applications 
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that are fast, user-friendly, and accurate—empowering 

farmers to make informed decisions in real time. 

High accuracy with a relatively small number of 

parameters, compared to other architectures of similar depth, 

such as ResNet. DenseNet169 is commonly used for tasks 

such as image classification, object detection, and 

segmentation, and is quite popular in the medical field due to 

its ability to recognize important features in images well, even 

with relatively small datasets [11]. Overall, DenseNet169 is a 

deep network architecture, yet efficiently designed, with a 

focus on maximizing the use of information between layers to 

produce accurate and stable models during training. The flow 

can be seen in Figure 1. 

 

 
 

Figure 1. The process flow produces fast classification with 

high accuracy 

 

Additionally, this study may inspire further research on 

similar methods for other crops such as tea, cocoa, or rice, 

advancing broader applications of AI in agriculture. 

In summary, the main challenge in Robusta coffee 

cultivation in Pagar Alam is no longer limited to production 

decline but rather lies in the inefficiency of disease 

classification and identification systems that hinder timely and 

appropriate management actions [12]. 

By employing deep learning-based approaches, particularly 

through the combination of MobileNetV3 and DenseNet169, 

it is possible to develop an intelligent, high-performance 

classification system capable of identifying coffee leaf 

diseases with high accuracy and speed. MobileNetV3 

contributes by offering lightweight precision and fast 

inference, while DenseNet169 ensures rapid convergence and 

feature propagation stability. The synergy between these 

architectures forms a robust hybrid model that can assist 

farmers in detecting diseases promptly and taking proper 

remedial measures such as pesticide application, pruning, or 

isolation. Ultimately, this research lays the groundwork for 

applying AI-based disease detection technologies to support 

sustainable Robusta coffee production in Pagar Alam and 

strengthen Indonesia’s position as a leading producer of high-

quality coffee in the global market [13]. 

The explanation is: MobileNetV3 is ideal for reducing 

model size and accelerating inference, such as for mobile 

devices, edge computing, or IoT applications, while 

DenseNet169 focuses on feature utilization and parameter 

efficiency. Despite having many layers, DenseNet avoids 

parameter waste by connecting all layers directly. This results 

in: Extreme feature reuse: enriching information without 

having to constantly add parameters. Smoother gradient flow: 

helping training become more stable, especially for deep 

models. High training efficiency and accuracy, even on limited 

datasets. DenseNet169 is suitable for optimization when the 

model is used in systems with moderate computing capacity 

but still requires high precision, for example for image-based 

medical diagnosis or complex pattern recognition [14]. The 

targeted schemes can be seen in Table 1. 

 

Tabel 1. Aspect MobileNetV3 and DenseNet169 

 
Aspects MobileNetV3 DenseNet169 

Objectives 
Speed & 

Efficiency 

Accuracy & Feature 

Utilization 

Model Size Small Medium 

Inference 

Time 
Fast 

Slower than 

MobileNetV3 

Accuracy Fairly Good Higher in Most Cases 

Suitable for 
Mobile, real-time, 

IoT 

Complex Image 

Classification 

 

 

2. METHODOLOGY 
 

This research proposes an optimized deep learning 

framework for coffee leaf disease classification using a hybrid 

architecture that combines MobileNetV3 and DenseNet169. 

The integration of these two models aims to achieve high 

accuracy, fast inference speed, and computational efficiency, 

making the model suitable for real-time field applications in 

smart agriculture [15]. 

The research process consists of several key stages: (1) data 

acquisition and preprocessing, (2) model design and transfer 

learning, (3) training and validation, and (4) model evaluation 

and performance analysis. 

The dataset used in this study consists of coffee leaf images 

collected from various Robusta coffee plantations in Pagar 

Alam City, South Sumatra, Indonesia. Images were taken 

using digital cameras under natural light conditions, capturing 

leaves from different angles and magnifications (40×, 100×, 

400×). 

The dataset includes four main classes: 

1. Healthy leaves 

2. Coffee leaf rust (Hemileia vastatrix) 

3. Leaf spot (Cercospora coffeicola) 

4. Sooty mold (Capnodium spp.) 

Each image was resized to 224 × 224 × 3 pixels to match 

the input dimension of both MobileNetV3 and DenseNet169. 

Figure 2 illustrates the workflow of the proposed 

Convolutional Neural Network (CNN) architecture based on 

MobileNetV3 for automatic classification of coffee leaf 
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diseases. The model aims to identify and categorize different 

disease types in Robusta coffee leaves through image-based 

deep learning techniques. The process begins with an input 

image of the coffee leaf, captured at multiple magnification 

levels (40×, 100×, 400×) to enhance detail visibility. Each 

image undergoes a preprocessing stage, including 

normalization, augmentation, and resizing to a standardized 

dimension of 224 × 224 × 3 pixels, ensuring compatibility with 

the MobileNetV3 architecture. 

Figure 2. Schema CNN-MobileNetV3-DenseNet169 

The model is composed of two main components: 

1. Frozen Layers (Layers 1–150 – MobileNetV3

Backbone): 

These layers act as a feature extractor, pretrained on the 

ImageNet dataset. They identify fundamental visual patterns 

such as texture, color, and shape. During transfer learning, 

these layers remain frozen to retain general image 

representation capabilities. 

2. Trainable Layers (Layers 151–268 – BatchNorm,

Dropout, Dense): 

These layers are fine-tuned using the coffee leaf dataset. 

Batch Normalization stabilizes learning, Dropout prevents 

overfitting, and Dense Layers perform final classification into 

specific disease categories. 

The dataset was divided into training (70%), validation 

(15%), and testing (15%) subsets using a stratified split to 

maintain class balance. To prevent overfitting and improve 

model generalization, data augmentation techniques were 

applied, including rotation, horizontal/vertical flipping, 

random cropping, brightness adjustment, and Gaussian noise 

addition. CNN optimization with MobileNetV3 is more 

focused on shrinking the model and speeding up processing, 

while DenseNet169 is used to maximize feature learning 

without sacrificing training stability. The choice between the 

two depends on the application context: whether efficiency or 

accuracy is more important [19, 20]. In some cases, the two 

can be combined in different systems: MobileNetV3 on the 

other hand. The client for speed, and DenseNet169 on the 

server for in-depth analysis. Here's the flowchart. The stages 

in this research are: 

During training, transfer learning is applied by freezing the 

early convolutional layers while fine-tuning the trainable 

dense layers. This allows the model to achieve high accuracy 

while maintaining computational efficiency. Once training is 

completed, the model receives new input images and predicts 

their histologic subtype or disease class (e.g., healthy, leaf rust, 

leaf spot, or sooty mold). This approach balances accuracy and 

speed by combining MobileNetV3’s lightweight structure 

with the adaptability of fine-tuned dense layers, making it 

suitable for real-time and field-based disease detection 

systems [21]. 

This research proposes an optimized deep learning 

framework for coffee leaf disease classification using a hybrid 

architecture that combines MobileNetV3 and DenseNet169. 

The integration of these two models aims to achieve high 

accuracy, fast inference speed, and computational efficiency, 

making the model suitable for real-time field applications in 

smart agriculture. The research process consists of several key 

stages: (1) data acquisition and preprocessing, (2) model 

design and transfer learning, (3) training and validation, and 

(4) model evaluation and performance analysis.

The dataset used in this study consists of coffee leaf images

collected from various Robusta coffee plantations in Pagar 

Alam City, South Sumatra, Indonesia. Images were taken 

using digital cameras under natural light conditions, capturing 

leaves from different angles and magnifications (40×, 100×, 

400×). 

The dataset includes four main classes: 

1. Healthy leaves

2. Coffee leaf rust (Hemileia vastatrix)

3. Leaf spot (Cercospora coffeicola)

4. Sooty mold (Capnodium spp.)

Each image was resized to 224 × 224 × 3 pixels to match

the input dimension of both MobileNetV3 and DenseNet169. 
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To prevent overfitting and improve model generalization, data 

augmentation techniques were applied, including rotation, 

horizontal/vertical flipping, random cropping, brightness 

adjustment, and Gaussian noise addition [22]. 

The dataset was divided into training (70%), validation 

(15%), and testing (15%) subsets using a stratified split to 

maintain class balance. 

Preprocessing plays a crucial role in improving model 

performance. The following steps were implemented before 

feeding the images into the CNN architecture: 

1. Normalization: All pixel values were scaled between

0 and 1 using min–max normalization. 

2. Augmentation: Random transformations such as

rotation (±25°), horizontal/vertical flips, and zoom (0.8–1.2) 

were applied to enhance robustness. 

3. Noise Reduction: Gaussian filters were used to

reduce background noise and emphasize disease spots. 

4. Resizing: Each image was resized to 224 × 224 pixels

to ensure uniform input size across the dataset. 

These steps ensured that the model could recognize disease 

features regardless of lighting, angle, or environmental 

variation. 

The proposed hybrid architecture integrates MobileNetV3 

and DenseNet169 through a transfer learning approach. The 

model is divided into three main components: 

MobileNetV3 serves as the base model responsible for 

extracting low- and mid-level visual features such as leaf 

color, vein structure, and lesion patterns [23, 24]. 

Key components include: 

1. Depthwise Separable Convolution: Reduces 

computational cost by splitting spatial and channel-wise 

operations. 

2. Inverted Residual Blocks: Preserve important spatial

information while keeping the network lightweight. 

3. Squeeze-and-Excitation (SE) Modules: Improve

feature recalibration by emphasizing relevant channels. 

Layers 1–150 of MobileNetV3 were frozen during training 

to retain the pretrained ImageNet weights, ensuring efficient 

feature extraction and faster convergence. The output features 

from MobileNetV3 are passed into DenseNet169, which 

enhances feature propagation and gradient flow [25]. 

DenseNet connects each layer to every other layer in a feed-

forward manner, allowing the network to reuse features and 

improve learning efficiency. 

Advantages of DenseNet169 include: 

1. Fast Convergence: Gradient reuse accelerates

training. 

2. Compact Parameterization: Requires fewer 

parameters due to dense connections. 

3. High Stability: Minimizes overfitting in small

datasets. 

The final stage consists of trainable layers that perform 

disease classification. These include: 

1. Batch Normalization: Stabilizes and accelerates

training. 

2. Dropout Layer (0.5): Prevents overfitting by

randomly deactivating neurons. 

3. Dense Layers: Map extracted features to disease

categories. 

4. Softmax Activation: Produces final probability

scores for each disease class. 

Transfer learning was employed to leverage pretrained 

ImageNet weights from both base models. This approach 

allows the model to start from a well-established feature 

representation rather than training from scratch, significantly 

reducing training time and computational cost. 

1. Optimizer: Adam optimizer with a learning rate of

0.0001. 

2. Loss Function: Categorical Cross-Entropy, suitable

for multiclass classification. 

3. Batch Size: 32 images per batch.

4. Epochs: 50 iterations with early stopping to prevent

overfitting. 

5. Hardware: Model training was performed using an

NVIDIA RTX 3060 GPU with 12 GB VRAM. 

During training, the frozen MobileNetV3 layers provided 

stable feature extraction, while DenseNet169 and the 

classification head were fine-tuned to adapt to specific coffee 

leaf disease features [26]. The model’s performance was 

assessed using multiple metrics to provide a comprehensive 

evaluation: 

1. Accuracy: Represents the percentage of images that

are classified correctly. 

2. Precision: Reflects how accurate the model is when

predicting positive classes. 

3. Recall (Sensitivity): Indicates the model’s capability

to detect all relevant instances. 

4. F1-Score: The harmonic average of precision and

recall, providing a balance between false positives and false 

negatives. 

5. AUC – ROC Curve: Evaluates the discriminative

ability of the model for multiclass classification. 

These metrics were computed for each disease class and 

averaged to produce macro and weighted scores. 

3. RESULT AND DISCUSSION

Coffee leaf images are images or visual representations of 

coffee plant leaves, which can be captured using a standard 

camera, a mobile phone camera, or a specialized sensor, as 

shown in Figure 3. These images are used to analyze plant: 

health based on the color, texture, shape, and patterns on the 

leaves. The collected dataset comprises 845 leaf images of 

various types and forms of disease. Some common diseases 

affecting coffee leaves can be identified by their characteristic 

symptoms, as shown in Table 2. 

Table 2. Symptoms on leaves 

Disease Symptoms on Leaves 

Leaf Rust 

(Hemileia 

vastatrix) 

Yellow or orange spots on the underside of 

leaves, similar to rust powder. 

Leaf Spot 
Large dark brown to black patches, often 

surrounded by chlorotic (yellowish) areas. 

Sooty Dew 
Leaves appear black and sooty, caused by a 

fungus that grows on honeydew. 

Healthy Leaves 

Green and smooth leaves that show no 

visible signs of disease in the image of the 

coffee leaves. 

The dataset above needs to be evaluated against the Coffee 

Leaf Imagery because it has various image capacities and 

pixels. Images that are too high will have their file capacity 

reduced so they don't take up a lot of RAM and data, then 

images with small capacities and pixels will be increased to 

achieve a uniform image capacity and sharpness that can be 

properly analyzed by CNN [27]. The mapping of the Class 
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Index is Spot: 0, Healthy_Leaf: 1, Soot_Dew: 2 and Leaf Rust. 

 

3.1 Augmentation 

 

Data augmentation aims to increase the dataset size by 

modifying existing images to make the CNN model more 

general and prevent overfitting. The augmentation, called 

dBrightness/contrast adjustment, can be seen in the image 

below: 

A review of several randomly selected samples from the 

dataset showed that the images were high-quality and 

appropriate for training. Each image in the Coffee Leaf Image 

dataset had a resolution of 800 × 550 pixels and was stored in 

PNG format. Since MobileNetV3 requires square images with 

three RGB channels, the dataset images [28] were resized to 

match these specifications. The crop_to_aspect_ratio 

parameter was kept at its default value, allowing flexible 

compression and preventing the software from unintentionally 

cropping important parts of the images. Here are the zoom 

results Robusta Coffee features available for training, as 

shown in Table 3 [29]. 

In addition, the results of this Zoom augmentation can be 

seen in Figure 4. Image a is the image not zoomed, image b 

with 40× zoom, image c 100× zoom, image c 400× zoom and 

image d 400× zoom so that the image details appear with the 

aim of increasing accuracy with increasingly detailed color 

images. The zoom results are shown in Table 3.  

 

 
 

Figure 3. Coffee leaf image 

 

 
 

Figure 4. Example from the Coffee Leaf dataset, seen at magnification: (a) 40×, (b) 100×, (c) 200×, (d) 400× 

 

Table 3. Coffee leaf images at different zoom scales 

 

Data 
Zoom 

40× 100× 400× Total 

Leaf Rust  240 240 240 720 

Phoma Leaf Spot 240 240 240 720 

Sooty Mold 240 240 240 720 

Fresh  240 240 240 720 

Dataset After Zoom 2880 

 

Lower magnifications reveal the architectural details of the 

coffee leaf in clearer images, while at higher magnifications, 

the disease details are more visible. If overfitting occurs, it is 

not entirely detrimental to generate A model can be trained 

using class weights that match the true distribution of the 

dataset. Even so, applying data augmentation to all images 

remains a widely used method for addressing class imbalance. 

In this study, augmentation was carried out by applying 

random horizontal flips (mirror reflections), which effectively 

doubled the number of available samples. Additional 

distortions, such as shearing, were intentionally avoided. 

Other augmentation methods—like rotation—were considered 

unsuitable for Robusta coffee leaf images, and changes in 

magnification would introduce unnecessary zoom variations. 

The influence of these augmentation strategies on the training 

and validation accuracy curves will be discussed in the study 

[30]. 

 

3.2 Segmentation 

 

The goal of image segmentation is to divide an image into 

meaningful parts, or regions, for easier analysis by a computer 

system. Segmentation helps the system "understand" what's in 

the image. This involves extracting features (shape, size, and 

texture) to produce a relevant image. The segmentation results 

are shown in Figure 5.

 

 
 

Figure 5. Coffee leaf image segmentation 
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3.3 Model selection 

MobileNetV3 expands upon the enhancements introduced 

in MobileNetV2 by integrating a squeeze-and-excite 

mechanism alongside each residual block, utilizing Neural 

Architecture Search to boost accuracy, and replacing several 

sigmoid activations with the more efficient hard-swish 

function—an important advantage for mobile applications. 

These improvements make it possible to reduce certain layers 

in the final stages of the network without diminishing 

accuracy. MobileNetV3 is available in two variants: a small 

version optimized for devices with limited computational 

resources and a large version designed for higher performance 

[31]. 

The large MobileNetV3 architecture delivers superior 

accuracy compared to the small variant. Although ImageNet-

based pretrained embeddings are enabled by default, it remains 

uncertain whether weights learned from highly diverse internet 

images are beneficial for classifying Robusta coffee leaf 

images. The primary hyperparameter in this model is the 

learning rate, which governs how rapidly the model 

parameters converge toward a local minimum of the 

categorical cross-entropy loss function—used to evaluate 

classification performance at the end of each training epoch.

Table 4. Data params 

Layer Type Output Params Connected to 

Input Layer (None, 224, 244, 3) 0 - 

Zero_padding2d (None, 230, 230, 3) 0 Input_layer3[0] 

Bn (Batch Normalization) (None, 7, 7, 1664) 6,656 Conv5_block32_conv 

Relu (Activation) (None, 7, 7, 1664) 0 Bn[0][0] 

Global AveragePooling (None, 7, 7, 1664) 0 Relu[0][0] 

Dense_6 (None, 1664) 1,704,960 Global_average_Pooling 

Dense_7 (None, 4) 4,100 Dense_6[0][0] 

Total Params 42,739,022 (163.04 MB) 

Trainable Params 14,139,540 (54.14 MB) 

Non-trainable Params 158,400 (618.75 KB) 

Optimizer Params 28,387,082 (108.29 MB) 

As shown in Table 4, the process begins with the Input 

Layer, which accepts images of size 224 × 244 pixels with 

three color channels (RGB). This layer serves as the entry 

point of the model, ensuring the input conforms to the 

expected dimensions. Following this, the Zero Padding layer 

adds extra borders around the image to preserve spatial 

dimensions during convolution operations, preventing feature 

loss at the image edges. Next, the data passes through a Batch 

Normalization (BN) layer, which standardizes the activations 

to stabilize the training process and accelerate convergence. 

After normalization, the output is processed by a ReLU 

(Rectified Linear Unit) activation function, which introduces 

non-linearity, allowing the network to learn complex patterns 

and relationships within the data. 

The output from this stage is fed into a Global Average 

Pooling layer, which computes the average of each feature 

map. This operation effectively reduces the spatial dimensions 

of the data, converting the extracted features into a compact 

vector representation while retaining the essential information 

required for classification. Subsequently, the network includes 

a fully connected Dense_6 layer with 1,704,960 parameters. 

This layer combines the extracted features into a higher-level 

representation suitable for decision-making. 

The following Dense_7 layer acts as the output layer with 

four neurons, each representing one of the four target classes. 

The final prediction corresponds to the histologic subtype 

determined by the model. In total, the architecture comprises 

42,739,022 parameters (approximately 163.04 MB), including 

14,139,540 trainable parameters (54.14 MB) that are updated 

during training, and 158,400 non-trainable parameters (618.75 

KB), which are frozen from the pre-trained MobileNetV3 

backbone. Additionally, there are 28,387,082 optimizer 

parameters (108.29 MB) used by optimization algorithms such 

as Adam or SGD to fine-tune the model weights efficiently. 

This model integrates transfer learning principles by 

leveraging pre-trained MobileNetV3 layers as a feature 

extractor while fine-tuning the upper dense layers for specific 

classification tasks. The frozen base layers retain generalized 

visual knowledge from large-scale image datasets, while the 

trainable top layers adapt to the characteristics of the new 

dataset. This approach enhances the model’s accuracy and 

efficiency in recognizing and classifying distinct histologic 

subtypes from the given input images. The visual architecture 

diagram (such as the flow from layer to layer) can be seen in 

Figure 6.

Figure 6. Architecture diagram (such as the flow from layer to layer) 
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Figure 7. Comparative analysis of training and validation performance with and without data augmentation 

 

The Coffee Leaf Image dataset was split into training, 

validation, and testing sets using a 0.75/0.15/0.10 ratio. The 

output from MobileNetV3 was processed through a 

Global_Average_Pooling2D layer, flattened, and then passed 

into four Dense layers with ReLU activation, followed by a 

final Dense layer with softmax activation producing eight 

class outputs. Dropout and Batch Normalization were 

incorporated to minimize overfitting during training. As 

illustrated in Figure 4, the final model contained roughly 3.0 

million parameters, with about 98% attributed to 

MobileNetV3-Large. 

Hyperparameters—including learning rate, epoch decay, 

and layer-freezing configurations—were organized in a 

spreadsheet and used to automatically train the model for 50 

epochs. The workflow is presented in the corresponding 

Figure 7. Hyperparameter optimization targeted three key 

components: data augmentation, selection of trainable layers, 

and tuning of the learning rate. The Robusta coffee leaf images 

were preprocessed, converted into vectors, augmented, and 

then supplied to both the MobileNetV3 and DenseNet169 

models, each trained for 50 epochs. 

Figure 8 presents two graphs illustrating the performance of 

a Convolutional Neural Network (CNN) model during training 

and validation phases over 40 epochs. The left graph shows 

the relationship between training accuracy and validation 

accuracy, while the right graph compares training loss and 

validation loss. This graph displays how the accuracy of the 

CNN model improves over the course of training. The blue 

line represents training accuracy, and the orange line indicates 

validation accuracy. Initially, both accuracies increase rapidly, 

showing that the model is learning meaningful patterns from 

the dataset.

 

 
 

Figure 8. Confusion matrix measure performance 
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However, after approximately 15–20 epochs, the validation 

accuracy starts to fluctuate while the training accuracy 

continues to rise steadily. This indicates that the model begins 

to overfit, meaning it performs well on the training data but 

less consistently on unseen validation data. The small 

oscillations in the validation curve suggest that the model 

struggles to generalize beyond the training samples. The 

second graph depicts the loss curves for both training and 

validation. The blue curve represents training loss, and the 

orange curve corresponds to validation loss.  

The trained models are fed images from the validation set, 

which are then used to make predictions by selecting one of 

eight available labels. The output is then displayed. At the 

beginning of training, both losses decrease sharply, which 

indicates that the model is effectively minimizing error 

However, after several epochs, the validation loss begins to 

fluctuate and does not decrease as smoothly as the training 

loss. This pattern further confirms overfitting, as the model 

continues to optimize for the training set while its performance 

on the validation data stops improving and becomes unstable. 

Overall, the figure clearly demonstrates a case of overfitting in 

the CNN model. The increasing gap between training and 

validation performance suggests that the model memorizes 

specific features in the training data rather than learning 

general patterns. To mitigate overfitting, techniques such as 

dropout regularization, data augmentation, early stopping, or 

reducing model complexity could be applied. 

Overall, data augmentation reduces overfitting, resulting in 

closer validation results to training results. Training was 

performed with an initial learning rate of 0.001, an epoch an 

epoch decay rate of 0.95, and an initial fine-tuning layer 

ofI150. After obtaining a low loss, a confusion matrix test is 

then carried out to obtain classification accuracy. 

The next step is to test four confusion matrices to measure 

the performance of the leaf image classification model on the 

validation data. Each confusion matrix represents the test 

results of a different deep learning architecture: MobileNetV3, 

standard CNN, CNN + ResNet50, and CNN + DenseNet169. 

MobileNetV3 Confusion Matrix (Top Left) 

The MobileNetV3 model demonstrates strong classification 

performance for most categories, particularly Leaf Spot and 

Healthy Leaf, achieving almost perfect predictions. However, 

there is slight misclassification between Sooty Dew and Leaf 

Rust, where some diseased leaves are incorrectly identified as 

other categories. Despite this, the overall accuracy remains 

high, confirming the model’s efficiency and adaptability for 

mobile-based or real-time detection due to its lightweight 

architecture. 

Standard CNN Confusion Matrix (Top Right) 

The standard CNN model performs consistently well across 

all categories, showing balanced accuracy. Most samples are 

classified correctly with minimal confusion between classes. 

For instance, Leaf Rust and Healthy Leaf achieve strong 

diagonal values (high true positives). However, there are still 

a few misclassified samples in the Sooty Dew category, 

indicating the need for deeper feature extraction or additional 

regularization to improve robustness. 

CNN + ResNet50 Confusion Matrix (Bottom Left) 

The hybrid CNN + ResNet50 model exhibits moderate 

performance with visible misclassifications, particularly 

between Healthy Leaf and Leaf Rust, as well as between Leaf 

Spot and Sooty Dew. Although ResNet50 enhances feature 

extraction through residual connections, its deeper network 

structure may lead to overfitting when applied to smaller 

datasets. This results in reduced generalization capability 

compared to lighter architectures like MobileNetV3. 

CNN + DenseNet169 Confusion Matrix (Bottom Right) 

The CNN + DenseNet169 model achieves perfect 

classification across all categories, as indicated by the strong 

diagonal dominance (all values along the diagonal are 

maximal while off-diagonal elements are zero). This 

demonstrates that DenseNet169 effectively captures 

hierarchical feature representations and efficiently propagates 

information across layers. The dense connections between 

layers minimize gradient vanishing and maximize feature 

reuse, leading to superior accuracy and stability. 

Comparing the four models, DenseNet169 achieves the 

highest accuracy and the most stable predictions, followed 

closely by MobileNetV3 which offers the best trade-off 

between speed and accuracy. 

The standard CNN performs acceptably but with minor 

inconsistencies, while the DenseNet50 model suffers from 

some confusion between similar disease classes. The results 

confirm that fine-tuning at layer 150 (out of 268 total layers) 

and training for 50 epochs significantly improve feature 

extraction performance. Consequently, DenseNet169 is most 

suitable for high-accuracy classification, whereas 

MobileNetV3 is optimal for real-time applications requiring 

faster inference with minimal resource consumption. 

3.4 Classification accuracy 

The trained model was subsequently applied to the test set, 

where it achieved a recall of 0.97, a precision of 0.98, and an 

F1-score of 0.98 for distinguishing between Healthy and 

Diseased coffee leaves. The 95% confidence interval further 

shows that the model performed most effectively in 

identifying similar coffee diseases, namely leaf spot and sooty 

mold, which are difficult to distinguish, with an accuracy of 

0.9, so Coffee Leaf was identified accurately in 90% of cases. 

The classification accuracy for Leaf Rust was 0.94, and for 

Leaf Spot was 0.56. The F1Iscore, precision, and recall were 

calculated for the classification into healthy and diseased 

leaves. The highest model performance was shown in the 

classification of leaf rust, likely due to the larger number of 

training samples. The lowest performance was shown in 

Coffee Leaf sooty mold, which had the fewest samples in the 

dataset. The ROC curve confirmed the relative classification 

performance.  

To gain insight into how the model misclassified some 

coffee disease images, we identified misclassified images by 

comparing the predicted labels with the ground truth labels. Of 

these images presented, the misclassified image contains 

mostly tissue stroma or possible tissue necrosis, with very few 

identifiable cells. The image misclassified as Coffee Leaf 

phyllodes is of fairly good quality; however, in this particular 

image, it may be difficult even for an agricultural expert to 

distinguish between leaf spot and leaf rust.  

The image in Figure 9, also misclassified as Coffee Leaf 

sooty mold, is at very high magnification and consists of sheets 

of leaf image with scattered chromatin and indistinct cellular 

boundaries, and is likely of multiple origins. The final image 

misclassified as a healthy leaf consists mostly of green streaks 

and likely represents areas of fresh leaf tissue, with little 
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identifiable dark green material. Therefore, it is not 

unreasonable for these images to be misclassified, as this 

would pose a challenge even for expert human evaluation 

(optimal Bayes error rate). 

Figure 9 resents a comprehensive comparison between 

several Convolutional Neural Network (CNN)-based 

architectures — namely CNN, CNN + ResNet50, and CNN + 

DenseNet169 — in the classification of coffee leaf diseases. 

The comparison is displayed in three main sections: (1) 

performance metrics table, (2) validation accuracy and loss 

graphs, and (3) visual classification results. 

Figure 9. Accuracy testing CNN 

Model Performance Metrics (Top Table) 

Table 5 summarizes three key performance indicators: 

Accuracy, Recall, and F1-Score. 

Table 5. Algorithm testing report 

Model Accuracy Recall F1-Score 

CNN 96% 95% 95% 

CNN + ResNet50 79% 78% 78% 

CNN + DenseNet169 98% 98% 98% 

The CNN + DenseNet169 model achieves the highest 

accuracy, recall, and F1-score (98%), demonstrating superior 

classification performance and robustness in identifying 

coffee leaf diseases. The standard CNN model performs 

relatively well (96% accuracy) but slightly less consistent. 

Meanwhile, the CNN + ResNet50 model shows the lowest 

performance (79%), likely due to overfitting or inadequate 

feature generalization on the coffee leaf dataset. 

Validation Accuracy and Loss Graphs (Middle Plots) 

The middle section displays two performance graphs: 

a. Left Graph (Validation Accuracy Comparison): The

DenseNet169 curve (red line) remains consistently high

across all epochs, indicating stable convergence and

superior learning capability. The CNN model (black

dashed line) also maintains good accuracy but shows

minor fluctuations. In contrast, ResNet50 (green line)

struggles to achieve stability, with accuracy increasing

slowly and inconsistently. MobileNetV3 (blue line)

achieves moderate accuracy with efficient convergence

speed, highlighting its suitability for lightweight, real-

time applications.

b. Right Graph (Validation Loss Comparison):

DenseNet169 again shows the lowest and most stable

loss values, confirming its ability to minimize

classification errors effectively. CNN follows with a

relatively smooth loss reduction, while ResNet50 

exhibits significant oscillations, reflecting unstable 

learning. The vertical dashed line marks the fine-tuning 

process initiated at epoch 20, after which model 

performance, especially for DenseNet169, improves 

markedly. 

These graphs clearly demonstrate that DenseNet169 not 

only achieves higher accuracy but also maintains better 

generalization, avoiding overfitting while ensuring consistent 

learning. 

Visual Classification Results (Bottom Section) 

The lower part of Figure 8 shows sample prediction outputs 

for both the base CNN and DenseNet169 models. 

a. Left (CNN Model Results): Several coffee leaf images

are correctly classified (indicated in green), but a few

misclassifications (highlighted in red) show that the

model occasionally confuses similar disease patterns

such as Leaf Spot and Leaf Rust. The average accuracy

achieved here is 90%.

b. Right (DenseNet169 Model Results): All images are

correctly predicted, achieving 100% classification

accuracy. The model successfully differentiates between

disease types (e.g., Leaf Rust, Sooty Dew, Leaf Spot) and

healthy leaves with high precision. This demonstrates

DenseNet169’s strong feature extraction and its ability to

capture fine-grained visual details in leaf textures and

color variations.

c. Figure 9 collectively demonstrates that DenseNet169

significantly outperforms other models in terms of

accuracy, stability, and reliability. Its dense connections

enable efficient feature reuse, faster convergence, and

improved gradient flow, resulting in minimal loss and

near-perfect classification results. While MobileNetV3

remains an ideal option for real-time field deployment

due to its lightweight and fast processing capability,

DenseNet169 provides the highest precision for detailed

2926



disease analysis, making it highly suitable for research 

and diagnostic applications. 

4. CONCLUSION

This research successfully developed and evaluated a CNN-

based classification model optimized through the combination 

of MobileNetV3 and DenseNet169 architectures for detecting 

Robusta coffee leaf diseases. Experimental results confirmed 

that CNN + DenseNet169 achieved superior performance 

(98% accuracy, recall, and F1-score), demonstrating its strong 

capability in feature propagation, gradient flow, and precise 

differentiation between disease types. Meanwhile, 

MobileNetV3 achieved faster inference with smaller model 

parameters, making it highly applicable for real-time 

implementation on mobile or IoT devices in agricultural 

settings. Together, these architectures provide a balanced 

framework between computational speed and classification 

precision, suitable for precision agriculture and digital 

plantation management. 

The main contribution of this study lies in demonstrating 

that CNN optimization through transfer learning and hybrid 

architecture design can yield both high accuracy and 

efficiency in agricultural image classification tasks. The 

proposed model offers a foundation for mobile-based or IoT- 

integrated early disease detection systems that enable farmers 

to make rapid and accurate decisions for pest and disease 

management. Future work should focus on expanding the 

dataset to include diverse lighting and geographical 

conditions, integrating ensemble learning techniques, and 

testing real-time implementation in field conditions. Such 

advancements will strengthen the application of artificial 

intelligence in supporting sustainable coffee production and 

smart agriculture initiatives in Indonesia. integrated early 

disease detection systems that enable farmers to make rapid 

and accurate decisions for pest and disease management. And 

then next research on expanding the dataset to include diverse 

lighting and geographical conditions, integrating ensemble 

learning techniques, and testing real-time implementation in 

field conditions. Such advancements will strengthen the 

application of artificial intelligence in supporting sustainable 

coffee production and smart agriculture initiatives in 

Indonesia. 
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