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Robusta coffee productivity in Pagar Alam City has declined by nearly 50% compared to
the previous year. Typically, a coffee tree produces 1-5 kg of cherries per tree, but in 2024
production dropped to only 100-300 grams. This decline is mainly due to difficulties in
accurately identifying leaf diseases, leading to inappropriate pesticide use and reduced
yields. Hence, an accurate image-based disease detection system is urgently required to
support precision agriculture. This study optimizes the Convolutional Neural Network
(CNN) architecture for classifying Robusta coffee leaf diseases using MobileNetV3 and
DenseNet169 with transfer learning. The dataset consists of healthy and diseased coffee leaf
images (rust, leaf spot, sooty mold). Data preprocessing includes normalization,
augmentation, and resizing, with a 70:30 split for training and testing. Performance is
evaluated using accuracy, precision, recall, F1-score, and AUC metrics. The optimized
model achieved a precision of 0.98, recall of 98%, F1-score of 98%, and AUC of 0.98. It
reached the highest accuracy for leaf spot and rust (1.00) and sooty mold (0.93).
MobileNetV3 demonstrated superior accuracy and robustness, while DenseNet169
provided faster convergence and efficient feature propagation, yielding a model that
balances accuracy and speed. This approach enables farmers to make timely, data-driven
decisions in managing coffee plant diseases, supporting sustainable coffee production in
Pagar Alam City. Future studies should expand datasets and develop mobile-based real-

time detection systems.

1. INTRODUCTION

Coffee is one of Indonesia’s most strategic plantation
commodities, holding substantial economic and social
importance. The country is recognized as one of the world’s
largest coffee producers, cultivating two main varieties—
Arabica and Robusta. One of the leading Robusta-producing
regions is Pagar Alam City, located at the foot of Mount
Dempo in South Sumatra Province. The geographical
conditions and cool climate of this highland area provide an
ideal environment for growing Robusta coffee, known for its
distinctive flavor and aroma. For the local community, coffee
cultivation serves not only as a cultural heritage but also as the
primary economic backbone, with most residents depending
on the agricultural sector, especially coffee farming [1].

Despite its strong potential, Pagar Alam’s coffee industry
faces serious challenges, particularly in disease detection and
management. Several leaf diseases—such as coffee leaf rust.

(Hemileia vastatrix), sooty mold (Capnodium spp.), and leaf
spot (Cercospora coffeicola)—pose significant threats to
coffee productivity. These diseases cause leaf discoloration,
defoliation, and impaired photosynthesis, leading to
substantial yield reductions [2].

The main problem farmers encounter is not merely the
spread of these diseases, but rather the inaccuracy in
identifying and classifying them. Most farmers in Pagar Alam
still rely on manual observation, assessing symptoms visually
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without technological assistance. This traditional approach
depends heavily on individual experience and is often
inaccurate because different diseases can exhibit similar visual
symptoms. For instance, leaf spots caused by Cercospora may
be mistaken for early symptoms of Hemileia vastatrix. As a
result, farmers often apply inappropriate pesticides or
treatments, which can further damage the plants instead of
curing them [3].

This issue is further compounded by limited access to expert
knowledge and diagnostic technology. Farmers lack a rapid
and accurate system for disease identification, making timely
decision-making difficult. In plant disease management, speed
and accuracy in classification are critical to determining
effective control measures. Therefore, it is essential to develop
a technology-based solution that enables farmers to recognize
leaf diseases quickly and accurately, even in resource-limited
field conditions. With rapid advancements in information
technology, the agricultural sector has entered a new era of
smart farming, where Artificial Intelligence (Al) is used to
address traditional agricultural challenges. One of the most
promising Al techniques for image-based disease
identification is the Convolutional Neural Network (CNN), a
deep learning architecture specialized in visual pattern
recognition [4].

CNNs mimic the way the human brain processes visual
information, automatically learning hierarchical features such
as texture, color, and shape from images. Unlike traditional
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machine learning methods that require manual feature
extraction, CNNs can autonomously identify complex visual
patterns directly from raw data. This makes them highly
effective for image-based tasks such as leaf disease
classification. In the context of coffee leaves, CNNs can
classify images into multiple categories—such as healthy
leaves, leaf rust, leaf spot, or sooty mold—based on visual
patterns. However, conventional CNN models like AlexNet,
VGG16, and ResNet often require substantial computational
resources and long training times, making them unsuitable for
mobile or real-time applications in the field. To overcome
these limitations, recent research has focused on developing
lightweight CNN architectures that retain high accuracy while
reducing computational costs. Among the most promising are
MobileNetV3 and DenseNet169, which offer complementary
advantages in terms of computational efficiency, speed, and
model stability [5].

MobileNetV3, developed by Google, is designed for low-
resource environments where computational efficiency and
speed are crucial. It utilizes depthwise separable convolutions,
inverted residual blocks, and squeeze-and-excitation (SE)
modules to reduce the number of parameters significantly. As
a result, MobileNetV3 achieves high inference speed and
compact model size without compromising accuracy—
making it ideal for on-field applications such as smartphone-
based disease detection systems or smart agricultural cameras.

In contrast, DenseNetl69  (Densely  Connected
Convolutional Network) introduces a unique approach where
each layer is connected directly to every other layer in a feed-
forward fashion. This dense connectivity allows the model to
reuse previously learned features, ensuring efficient gradient
propagation, faster convergence, and reduced overfitting.
Despite its depth (169 layers), DenseNet is parameter-efficient
and provides high classification accuracy with less redundant
computation [6].

When combined, MobileNetV3’s accuracy and lightweight
design complement DenseNet169’s speed and feature reuse,
producing an optimized model for image classification that
balances accuracy, efficiency, and scalability. By leveraging
transfer  learning—using  pre-trained  weights  from
ImageNet—this hybrid model can adapt quickly to coffee leaf
datasets while minimizing training time and computational
cost. From the above discussion, it can be identified that the
core problem in Pagar Alam’s coffee production is not merely
declining yield, but rather the inefficient and inaccurate
classification of coffee leaf diseases [7-24]. Misidentification
leads to the inappropriate use of pesticides, delayed response,
and overall management inefficiency.

Based on this, the key research problems formulated are:

I. How can a CNN-based classification model be
designed to accurately identify various coffee leaf diseases?

2. How can CNN architecture be optimized to achieve
high-speed classification with computational efficiency?

3. How can the strengths of MobileNetV3 and
DenseNet169 be integrated into a hybrid model that provides
both accuracy and processing speed?

4. How can this optimized model assist farmers in
making rapid and precise decisions regarding disease
management?

These questions form the foundation of this study, which
aims to provide a technological solution that is both
scientifically robust and practically applicable for smallholder
coffee farmers.

The main objective of this research is to develop and
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optimize a CNN model based on MobileNetV3 and
DenseNet169 to enhance the accuracy and speed of Robusta
coffee leaf disease classification. The specific objectives are:

1. To implement transfer learning techniques using
MobileNetV3 and DenseNetl169 architectures on coffee leaf
image datasets.

2. To evaluate model performance using metrics such as
accuracy, precision, recall, F1-score, and AUC (Area Under
Curve).

3. To analyze the effect of combining both architectures
on training speed and computational efficiency.

4. To produce a lightweight, high-speed model suitable
for mobile or field-based plant disease detection systems.

Numerous studies have applied CNNs in plant disease
classification with promising results. For instance, Mohanty et
al. [25] employed AlexNet and GoogleNet to classify diseases
in 14 plant species, achieving an accuracy of 99.35%.
Ferentinos [26] demonstrated the capability of CNNs to
identify plant diseases with over 98% accuracy using large
image datasets. However, these models typically require
powerful hardware and long processing times, which limit
their real-world usability.

Recent research has shifted toward lightweight deep
learning architectures for agricultural applications. For
example, applied MobileNet for rice disease classification and
achieved 97% accuracy with faster training compared to
heavier models like ResNet. Meanwhile, DenseNet has been
shown to improve gradient flow and reduce overfitting,
particularly for smaller datasets.

Despite  these advancements, studies combining
MobileNetV3 and DenseNet169 for coffee leaf disease
classification remain scarce. This research seeks to fill that gap
by developing a hybrid architecture that combines
MobileNet’s efficiency and DenseNet’s accuracy, offering a
novel contribution to precision agriculture [8].

Theoretically, this study contributes to the development of
CNN optimization techniques through the integration of two
distinct architectures: MobileNetV3, known for lightweight
efficiency, and DenseNet169, recognized for deep feature
reuse and fast convergence. The hybridization of these two
models is expected to yield a system that is both accurate and
computationally efficient [9].

Practically, this research provides a real-world
technological solution for farmers and agricultural
practitioners. The proposed system can help farmers quickly
diagnose coffee leaf diseases using images captured from
smartphones or field cameras. This eliminates the need for
expert consultation, allowing farmers to independently and
efficiently manage disease control. Moreover, the outcomes of
this study can support the development of mobile-based and
IoT-integrated applications for real-time field monitoring [10].
By collecting and analyzing plant disease data continuously,
such systems could transform traditional coffee farming into
data-driven, intelligent agriculture. Thus, this research
contributes not only to the academic field of machine learning
but also to the digital transformation of agriculture toward
sustainability and resilience.

This research offers benefits in two major dimensions:

1. Scientific Benefit: It provides a reference for
developing hybrid CNN architectures that enhance the balance
between accuracy, efficiency, and scalability in plant disease
classification.

2. Practical Benefit: It serves as a foundation for
creating image-based coffee disease detection applications



that are fast, user-friendly, and accurate—empowering
farmers to make informed decisions in real time.

High accuracy with a relatively small number of
parameters, compared to other architectures of similar depth,
such as ResNet. DenseNet169 is commonly used for tasks
such as image classification, object detection, and
segmentation, and is quite popular in the medical field due to
its ability to recognize important features in images well, even
with relatively small datasets [11]. Overall, DenseNet169 is a
deep network architecture, yet efficiently designed, with a
focus on maximizing the use of information between layers to
produce accurate and stable models during training. The flow
can be seen in Figure 1.
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Figure 1. The process flow produces fast classification with
high accuracy
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Additionally, this study may inspire further research on
similar methods for other crops such as tea, cocoa, or rice,
advancing broader applications of Al in agriculture.

In summary, the main challenge in Robusta coffee
cultivation in Pagar Alam is no longer limited to production
decline but rather lies in the inefficiency of disease
classification and identification systems that hinder timely and
appropriate management actions [12].

By employing deep learning-based approaches, particularly
through the combination of MobileNetV3 and DenseNet169,
it is possible to develop an intelligent, high-performance
classification system capable of identifying coffee leaf
diseases with high accuracy and speed. MobileNetV3
contributes by offering lightweight precision and fast
inference, while DenseNet169 ensures rapid convergence and
feature propagation stability. The synergy between these
architectures forms a robust hybrid model that can assist
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farmers in detecting diseases promptly and taking proper
remedial measures such as pesticide application, pruning, or
isolation. Ultimately, this research lays the groundwork for
applying Al-based disease detection technologies to support
sustainable Robusta coffee production in Pagar Alam and
strengthen Indonesia’s position as a leading producer of high-
quality coffee in the global market [13].

The explanation is: MobileNetV3 is ideal for reducing
model size and accelerating inference, such as for mobile
devices, edge computing, or IoT applications, while
DenseNet169 focuses on feature utilization and parameter
efficiency. Despite having many layers, DenseNet avoids
parameter waste by connecting all layers directly. This results
in: Extreme feature reuse: enriching information without
having to constantly add parameters. Smoother gradient flow:
helping training become more stable, especially for deep
models. High training efficiency and accuracy, even on limited
datasets. DenseNet169 is suitable for optimization when the
model is used in systems with moderate computing capacity
but still requires high precision, for example for image-based
medical diagnosis or complex pattern recognition [14]. The
targeted schemes can be seen in Table 1.

Tabel 1. Aspect MobileNetV3 and DenseNet169

Aspects MobileNetV3 DenseNet169
o Speed & Accuracy & Feature
Objectives Efficiency Utilization
Model Size Small Medium
Inference Fast Slower than
Time MobileNetV3
Accuracy Fairly Good Higher in Most Cases
. Mobile, real-time, Complex Image
Suitable for IoT Classification
2. METHODOLOGY

This research proposes an optimized deep learning
framework for coffee leaf disease classification using a hybrid
architecture that combines MobileNetV3 and DenseNet169.
The integration of these two models aims to achieve high
accuracy, fast inference speed, and computational efficiency,
making the model suitable for real-time field applications in
smart agriculture [15].

The research process consists of several key stages: (1) data
acquisition and preprocessing, (2) model design and transfer
learning, (3) training and validation, and (4) model evaluation
and performance analysis.

The dataset used in this study consists of coffee leaf images
collected from various Robusta coffee plantations in Pagar
Alam City, South Sumatra, Indonesia. Images were taken
using digital cameras under natural light conditions, capturing
leaves from different angles and magnifications (40%, 100x,
400x).

The dataset includes four main classes:

1. Healthy leaves

2. Coffee leaf rust (Hemileia vastatrix)
3. Leaf spot (Cercospora coffeicola)
4. Sooty mold (Capnodium spp.)

Each image was resized to 224 x 224 x 3 pixels to match
the input dimension of both MobileNetV3 and DenseNet169.

Figure 2 illustrates the workflow of the proposed
Convolutional Neural Network (CNN) architecture based on
MobileNetV3 for automatic classification of coffee leaf



diseases. The model aims to identify and categorize different
disease types in Robusta coffee leaves through image-based
deep learning techniques. The process begins with an input
image of the coffee leaf, captured at multiple magnification
levels (40x, 100x%, 400x) to enhance detail visibility. Each
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image undergoes a preprocessing stage, including
normalization, augmentation, and resizing to a standardized
dimension of 224 x 224 x 3 pixels, ensuring compatibility with
the MobileNetV3 architecture.

Trainable Layers
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Figure 2. Schema CNN-MobileNetV3-DenseNet169

The model is composed of two main components:

l. Frozen Layers (Layers 1-150 MobileNetV3
Backbone):

These layers act as a feature extractor, pretrained on the
ImageNet dataset. They identify fundamental visual patterns
such as texture, color, and shape. During transfer learning,
these layers remain frozen to retain general image
representation capabilities.

2. Trainable Layers (Layers 151-268 — BatchNorm,
Dropout, Dense):

These layers are fine-tuned using the coffee leaf dataset.
Batch Normalization stabilizes learning, Dropout prevents
overfitting, and Dense Layers perform final classification into
specific disease categories.

The dataset was divided into training (70%), validation
(15%), and testing (15%) subsets using a stratified split to
maintain class balance. To prevent overfitting and improve
model generalization, data augmentation techniques were
applied, including rotation, horizontal/vertical flipping,
random cropping, brightness adjustment, and Gaussian noise
addition. CNN optimization with MobileNetV3 is more
focused on shrinking the model and speeding up processing,
while DenseNet169 is used to maximize feature learning
without sacrificing training stability. The choice between the
two depends on the application context: whether efficiency or
accuracy is more important [19, 20]. In some cases, the two
can be combined in different systems: MobileNetV3 on the
other hand. The client for speed, and DenseNet169 on the
server for in-depth analysis. Here's the flowchart. The stages
in this research are:

During training, transfer learning is applied by freezing the
early convolutional layers while fine-tuning the trainable
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dense layers. This allows the model to achieve high accuracy
while maintaining computational efficiency. Once training is
completed, the model receives new input images and predicts
their histologic subtype or disease class (e.g., healthy, leaf rust,
leaf spot, or sooty mold). This approach balances accuracy and
speed by combining MobileNetV3’s lightweight structure
with the adaptability of fine-tuned dense layers, making it
suitable for real-time and field-based disease detection
systems [21].

This research proposes an optimized deep learning
framework for coffee leaf disease classification using a hybrid
architecture that combines MobileNetV3 and DenseNet169.
The integration of these two models aims to achieve high
accuracy, fast inference speed, and computational efficiency,
making the model suitable for real-time field applications in
smart agriculture. The research process consists of several key
stages: (1) data acquisition and preprocessing, (2) model
design and transfer learning, (3) training and validation, and
(4) model evaluation and performance analysis.

The dataset used in this study consists of coffee leaf images
collected from various Robusta coffee plantations in Pagar
Alam City, South Sumatra, Indonesia. Images were taken
using digital cameras under natural light conditions, capturing
leaves from different angles and magnifications (40%, 100x,
400%).

The dataset includes four main classes:

1. Healthy leaves

2. Coffee leaf rust (Hemileia vastatrix)
3. Leaf spot (Cercospora coffeicola)

4. Sooty mold (Capnodium spp.)

Each image was resized to 224 x 224 x 3 pixels to match
the input dimension of both MobileNetV3 and DenseNet169.



To prevent overfitting and improve model generalization, data
augmentation techniques were applied, including rotation,
horizontal/vertical flipping, random cropping, brightness
adjustment, and Gaussian noise addition [22].

The dataset was divided into training (70%), validation
(15%), and testing (15%) subsets using a stratified split to
maintain class balance.

Preprocessing plays a crucial role in improving model
performance. The following steps were implemented before
feeding the images into the CNN architecture:

1. Normalization: All pixel values were scaled between
0 and 1 using min—max normalization.

2. Augmentation: Random transformations such as
rotation (£25°), horizontal/vertical flips, and zoom (0.8—1.2)
were applied to enhance robustness.

3. Noise Reduction: Gaussian filters were used to
reduce background noise and emphasize disease spots.

4. Resizing: Each image was resized to 224 x 224 pixels
to ensure uniform input size across the dataset.

These steps ensured that the model could recognize disease
features regardless of lighting, angle, or environmental
variation.

The proposed hybrid architecture integrates MobileNetV3
and DenseNet169 through a transfer learning approach. The
model is divided into three main components:

MobileNetV3 serves as the base model responsible for
extracting low- and mid-level visual features such as leaf
color, vein structure, and lesion patterns [23, 24].

Key components include:

1.  Depthwise Separable Convolution:  Reduces
computational cost by splitting spatial and channel-wise
operations.

2. Inverted Residual Blocks: Preserve important spatial
information while keeping the network lightweight.

3. Squeeze-and-Excitation (SE) Modules: Improve
feature recalibration by emphasizing relevant channels.

Layers 1-150 of MobileNetV3 were frozen during training
to retain the pretrained ImageNet weights, ensuring efficient
feature extraction and faster convergence. The output features
from MobileNetV3 are passed into DenseNetl169, which
enhances feature propagation and gradient flow [25].
DenseNet connects each layer to every other layer in a feed-
forward manner, allowing the network to reuse features and
improve learning efficiency.

Advantages of DenseNet169 include:

l. Fast Convergence: Gradient reuse accelerates
training.
2. Compact  Parameterization: =~ Requires  fewer

parameters due to dense connections.

3. High Stability: Minimizes overfitting in small
datasets.

The final stage consists of trainable layers that perform
disease classification. These include:

1. Batch Normalization: Stabilizes and accelerates
training.
2. Dropout Layer (0.5): Prevents overfitting by

randomly deactivating neurons.

3. Dense Layers: Map extracted features to disease
categories.
4, Softmax Activation: Produces final probability

scores for each disease class.

Transfer learning was employed to leverage pretrained
ImageNet weights from both base models. This approach
allows the model to start from a well-established feature
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representation rather than training from scratch, significantly
reducing training time and computational cost.

l. Optimizer: Adam optimizer with a learning rate of
0.0001.
2. Loss Function: Categorical Cross-Entropy, suitable

for multiclass classification.

3. Batch Size: 32 images per batch.

4. Epochs: 50 iterations with early stopping to prevent
overfitting.

5. Hardware: Model training was performed using an
NVIDIA RTX 3060 GPU with 12 GB VRAM.

During training, the frozen MobileNetV3 layers provided
stable feature extraction, while DenseNet169 and the
classification head were fine-tuned to adapt to specific coffee
leaf disease features [26]. The model’s performance was
assessed using multiple metrics to provide a comprehensive
evaluation:

1. Accuracy: Represents the percentage of images that
are classified correctly.

2. Precision: Reflects how accurate the model is when
predicting positive classes.

3. Recall (Sensitivity): Indicates the model’s capability
to detect all relevant instances.

4. F1-Score: The harmonic average of precision and
recall, providing a balance between false positives and false
negatives.

5. AUC - ROC Curve: Evaluates the discriminative
ability of the model for multiclass classification.

These metrics were computed for each disease class and
averaged to produce macro and weighted scores.

3. RESULT AND DISCUSSION

Coffee leaf images are images or visual representations of
coffee plant leaves, which can be captured using a standard
camera, a mobile phone camera, or a specialized sensor, as
shown in Figure 3. These images are used to analyze plant:
health based on the color, texture, shape, and patterns on the
leaves. The collected dataset comprises 845 leaf images of
various types and forms of disease. Some common diseases
affecting coffee leaves can be identified by their characteristic
symptoms, as shown in Table 2.

Table 2. Symptoms on leaves

Disease Symptoms on Leaves
Leaf F_eu:st Yellow or orange spots on the underside of
(Hemileia b
: leaves, similar to rust powder.
vastatrix)
Leaf Spot Large dark brown to black patches, often
P surrounded by chlorotic (yellowish) areas.
Sooty Dew Leaves appear black and sooty, caused by a

fungus that grows on honeydew.
Green and smooth leaves that show no
visible signs of disease in the image of the
coffee leaves.

Healthy Leaves

The dataset above needs to be evaluated against the Coffee
Leaf Imagery because it has various image capacities and
pixels. Images that are too high will have their file capacity
reduced so they don't take up a lot of RAM and data, then
images with small capacities and pixels will be increased to
achieve a uniform image capacity and sharpness that can be
properly analyzed by CNN [27]. The mapping of the Class



Index is Spot: 0, Healthy Leaf: 1, Soot_Dew: 2 and Leaf Rust.
3.1 Augmentation

Data augmentation aims to increase the dataset size by
modifying existing images to make the CNN model more
general and prevent overfitting. The augmentation, called
dBrightness/contrast adjustment, can be seen in the image
below:

A review of several randomly selected samples from the
dataset showed that the images were high-quality and
appropriate for training. Each image in the Coffee Leaf Image
dataset had a resolution of 800 %550 pixels and was stored in
PNG format. Since MobileNetV3 requires square images with

Augmented

Augmented

J.

Augmented

three RGB channels, the dataset images [28] were resized to
match these specifications. The crop_to_aspect_ratio
parameter was kept at its default value, allowing flexible
compression and preventing the software from unintentionally
cropping important parts of the images. Here are the zoom
results Robusta Coffee features available for training, as
shown in Table 3 [29].

In addition, the results of this Zoom augmentation can be
seen in Figure 4. Image a is the image not zoomed, image b
with 40xzoom, image ¢ 100xzoom, image ¢ 400> zoom and
image d 400x zoom so that the image details appear with the
aim of increasing accuracy with increasingly detailed color
images. The zoom results are shown in Table 3.

Augmented Augmented

Figure 3. Coffee leaf image

Figure 4. Example from the Coffee Leaf dataset, seen at magnification: (a) 40> (b) 100, (c) 200, (d) 400>

Table 3. Coffee leaf images at different zoom scales

Dat Zoom
ata 40%  100x _ 400x Total
Leaf Rust 240 240 240 720
Phoma Leaf Spot 240 240 240 720
Sooty Mold 240 240 240 720
Fresh 240 240 240 720
Dataset After Zoom 2880

Lower magnifications reveal the architectural details of the
coffee leaf in clearer images, while at higher magnifications,
the disease details are more visible. If overfitting occurs, it is
not entirely detrimental to generate A model can be trained
using class weights that match the true distribution of the
dataset. Even so, applying data augmentation to all images
remains a widely used method for addressing class imbalance.

In this study, augmentation was carried out by applying

random horizontal flips (mirror reflections), which effectively
doubled the number of available samples. Additional
distortions, such as shearing, were intentionally avoided.
Other augmentation methods—Iike rotation—were considered
unsuitable for Robusta coffee leaf images, and changes in
magnification would introduce unnecessary zoom variations.
The influence of these augmentation strategies on the training
and validation accuracy curves will be discussed in the study
[30].

3.2 Segmentation

The goal of image segmentation is to divide an image into
meaningful parts, or regions, for easier analysis by a computer
system. Segmentation helps the system "understand" what's in
the image. This involves extracting features (shape, size, and
texture) to produce a relevant image. The segmentation results
are shown in Figure 5.

Figure 5. Coffee leaf image segmentation
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3.3 Model selection resources and a large version designed for higher performance

[31].

MobileNetV3 expands upon the enhancements introduced The large MobileNetVV3 architecture delivers superior
in  MobileNetV2 by integrating a squeeze-and-excite accuracy compared to the small variant. Although ImageNet-
mechanism alongside each residual block, utilizing Neural based pretrained embeddings are enabled by default, it remains
Architecture Search to boost accuracy, and replacing several uncertain whether weights learned from highly diverse internet
sigmoid activations with the more efficient hard-swish images are beneficial for classifying Robusta coffee leaf
function—an important advantage for mobile applications. images. The primary hyperparameter in this model is the
These improvements make it possible to reduce certain layers learning rate, which governs how rapidly the model
in the final stages of the network without diminishing parameters converge toward a local minimum of the
accuracy. MobileNetV3 is available in two variants: a small categorical cross-entropy loss function—used to evaluate
version optimized for devices with limited computational classification performance at the end of each training epoch.

Table 4. Data params

Layer Type Output Params Connected to
Input Layer (None, 224, 244, 3) 0 -
Zero_padding2d (None, 230, 230, 3) 0 Input_layer3[0]
Bn (Batch Normalization)  (None, 7, 7, 1664) 6,656 Conv5_block32_conv
Relu (Activation) (None, 7, 7, 1664) 0 Bn[0][0]
Global AveragePooling (None, 7, 7, 1664) 0 Relu[0][0]
Dense_6 (None, 1664) 1,704,960 Global_average_Pooling
Dense_7 (None, 4) 4,100 Dense_6[0][0]
Total Params 42,739,022 (163.04 MB)
Trainable Params 14,139,540 (54.14 MB)
Non-trainable Params 158,400 (618.75 KB)
Optimizer Params 28,387,082 (108.29 MB)

As shown in Table 4, the process begins with the Input The following Dense_7 layer acts as the output layer with
Layer, which accepts images of size 224 x< 244 pixels with four neurons, each representing one of the four target classes.
three color channels (RGB). This layer serves as the entry The final prediction corresponds to the histologic subtype
point of the model, ensuring the input conforms to the determined by the model. In total, the architecture comprises
expected dimensions. Following this, the Zero Padding layer 42,739,022 parameters (approximately 163.04 MB), including
adds extra borders around the image to preserve spatial 14,139,540 trainable parameters (54.14 MB) that are updated
dimensions during convolution operations, preventing feature during training, and 158,400 non-trainable parameters (618.75
loss at the image edges. Next, the data passes through a Batch KB), which are frozen from the pre-trained MobileNetV3
Normalization (BN) layer, which standardizes the activations backbone. Additionally, there are 28,387,082 optimizer
to stabilize the training process and accelerate convergence. parameters (108.29 MB) used by optimization algorithms such
After normalization, the output is processed by a RelLU as Adam or SGD to fine-tune the model weights efficiently.
(Rectified Linear Unit) activation function, which introduces This model integrates transfer learning principles by
non-linearity, allowing the network to learn complex patterns leveraging pre-trained MobileNetV3 layers as a feature
and relationships within the data. extractor while fine-tuning the upper dense layers for specific

The output from this stage is fed into a Global Average classification tasks. The frozen base layers retain generalized
Pooling layer, which computes the average of each feature visual knowledge from large-scale image datasets, while the
map. This operation effectively reduces the spatial dimensions trainable top layers adapt to the characteristics of the new
of the data, converting the extracted features into a compact dataset. This approach enhances the model’s accuracy and
vector representation while retaining the essential information efficiency in recognizing and classifying distinct histologic
required for classification. Subsequently, the network includes subtypes from the given input images. The visual architecture
a fully connected Dense_6 layer with 1,704,960 parameters. diagram (such as the flow from layer to layer) can be seen in
This layer combines the extracted features into a higher-level Figure 6.

representation suitable for decision-making.
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Figure 6. Architecture diagram (such as the flow from layer to layer)
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Visual Data CNN (Overfitting)
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Figure 7. Comparative analysis of training and validation performance with and without data augmentation

The Coffee Leaf Image dataset was split into training,
validation, and testing sets using a 0.75/0.15/0.10 ratio. The
output from MobileNetV3 was processed through a
Global Average Pooling2D layer, flattened, and then passed
into four Dense layers with ReLU activation, followed by a
final Dense layer with softmax activation producing eight
class outputs. Dropout and Batch Normalization were
incorporated to minimize overfitting during training. As
illustrated in Figure 4, the final model contained roughly 3.0
million parameters, with about 98% attributed to
MobileNetV3-Large.

Hyperparameters—including learning rate, epoch decay,
and layer-freezing configurations—were organized in a
spreadsheet and used to automatically train the model for 50
epochs. The workflow is presented in the corresponding
Figure 7. Hyperparameter optimization targeted three key

Confusion Matrix MobileNetV3 pada Data Validasi
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components: data augmentation, selection of trainable layers,
and tuning of the learning rate. The Robusta coffee leaf images
were preprocessed, converted into vectors, augmented, and
then supplied to both the MobileNetV3 and DenseNet169
models, each trained for 50 epochs.

Figure 8 presents two graphs illustrating the performance of
a Convolutional Neural Network (CNN) model during training
and validation phases over 40 epochs. The left graph shows
the relationship between training accuracy and validation
accuracy, while the right graph compares training loss and
validation loss. This graph displays how the accuracy of the
CNN model improves over the course of training. The blue
line represents training accuracy, and the orange line indicates
validation accuracy. Initially, both accuracies increase rapidly,
showing that the model is learning meaningful patterns from
the dataset.
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Figure 8. Confusion matrix measure performance
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However, after approximately 15-20 epochs, the validation
accuracy starts to fluctuate while the training accuracy
continues to rise steadily. This indicates that the model begins
to overfit, meaning it performs well on the training data but
less consistently on unseen validation data. The small
oscillations in the validation curve suggest that the model
struggles to generalize beyond the training samples. The
second graph depicts the loss curves for both training and
validation. The blue curve represents training loss, and the
orange curve corresponds to validation loss.

The trained models are fed images from the validation set,
which are then used to make predictions by selecting one of
eight available labels. The output is then displayed. At the
beginning of training, both losses decrease sharply, which
indicates that the model is effectively minimizing error

However, after several epochs, the validation loss begins to
fluctuate and does not decrease as smoothly as the training
loss. This pattern further confirms overfitting, as the model
continues to optimize for the training set while its performance
on the validation data stops improving and becomes unstable.
Overall, the figure clearly demonstrates a case of overfitting in
the CNN model. The increasing gap between training and
validation performance suggests that the model memorizes
specific features in the training data rather than learning
general patterns. To mitigate overfitting, techniques such as
dropout regularization, data augmentation, early stopping, or
reducing model complexity could be applied.

Overall, data augmentation reduces overfitting, resulting in
closer validation results to training results. Training was
performed with an initial learning rate of 0.001, an epoch an
epoch decay rate of 0.95, and an initial fine-tuning layer
ofl150. After obtaining a low loss, a confusion matrix test is
then carried out to obtain classification accuracy.

The next step is to test four confusion matrices to measure
the performance of the leaf image classification model on the
validation data. Each confusion matrix represents the test
results of a different deep learning architecture: MobileNetV3,
standard CNN, CNN + ResNet50, and CNN + DenseNet169.

MobileNetV3 Confusion Matrix (Top Left)

The MobileNetV3 model demonstrates strong classification
performance for most categories, particularly Leaf Spot and
Healthy Leaf, achieving almost perfect predictions. However,
there is slight misclassification between Sooty Dew and Leaf
Rust, where some diseased leaves are incorrectly identified as
other categories. Despite this, the overall accuracy remains
high, confirming the model’s efficiency and adaptability for
mobile-based or real-time detection due to its lightweight
architecture.

Standard CNN Confusion Matrix (Top Right)

The standard CNN model performs consistently well across
all categories, showing balanced accuracy. Most samples are
classified correctly with minimal confusion between classes.
For instance, Leaf Rust and Healthy Leaf achieve strong
diagonal values (high true positives). However, there are still
a few misclassified samples in the Sooty Dew category,
indicating the need for deeper feature extraction or additional
regularization to improve robustness.

CNN + ResNet50 Confusion Matrix (Bottom Left)

The hybrid CNN + ResNet50 model exhibits moderate
performance with visible misclassifications, particularly
between Healthy Leaf and Leaf Rust, as well as between Leaf
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Spot and Sooty Dew. Although ResNet50 enhances feature
extraction through residual connections, its deeper network
structure may lead to overfitting when applied to smaller
datasets. This results in reduced generalization capability
compared to lighter architectures like MobileNetV3.

CNN + DenseNet169 Confusion Matrix (Bottom Right)

The CNN + DenseNetl69 model achieves perfect
classification across all categories, as indicated by the strong
diagonal dominance (all values along the diagonal are
maximal while off-diagonal elements are zero). This
demonstrates that DenseNetl69 effectively captures
hierarchical feature representations and efficiently propagates
information across layers. The dense connections between
layers minimize gradient vanishing and maximize feature
reuse, leading to superior accuracy and stability.

Comparing the four models, DenseNet169 achieves the
highest accuracy and the most stable predictions, followed
closely by MobileNetV3 which offers the best trade-off
between speed and accuracy.

The standard CNN performs acceptably but with minor
inconsistencies, while the DenseNet50 model suffers from
some confusion between similar disease classes. The results
confirm that fine-tuning at layer 150 (out of 268 total layers)
and training for 50 epochs significantly improve feature
extraction performance. Consequently, DenseNet169 is most
suitable  for  high-accuracy classification,  whereas
MobileNetV3 is optimal for real-time applications requiring
faster inference with minimal resource consumption.

3.4 Classification accuracy

The trained model was subsequently applied to the test set,
where it achieved a recall of 0.97, a precision of 0.98, and an
F1-score of 0.98 for distinguishing between Healthy and
Diseased coffee leaves. The 95% confidence interval further
shows that the model performed most effectively in
identifying similar coffee diseases, namely leaf spot and sooty
mold, which are difficult to distinguish, with an accuracy of
0.9, so Coffee Leaf was identified accurately in 90% of cases.
The classification accuracy for Leaf Rust was 0.94, and for
Leaf Spot was 0.56. The Fllscore, precision, and recall were
calculated for the classification into healthy and diseased
leaves. The highest model performance was shown in the
classification of leaf rust, likely due to the larger number of
training samples. The lowest performance was shown in
Coffee Leaf sooty mold, which had the fewest samples in the
dataset. The ROC curve confirmed the relative classification
performance.

To gain insight into how the model misclassified some
coffee disease images, we identified misclassified images by
comparing the predicted labels with the ground truth labels. Of
these images presented, the misclassified image contains
mostly tissue stroma or possible tissue necrosis, with very few
identifiable cells. The image misclassified as Coffee Leaf
phyllodes is of fairly good quality; however, in this particular
image, it may be difficult even for an agricultural expert to
distinguish between leaf spot and leaf rust.

The image in Figure 9, also misclassified as Coffee Leaf
sooty mold, is at very high magnification and consists of sheets
of leaf image with scattered chromatin and indistinct cellular
boundaries, and is likely of multiple origins. The final image
misclassified as a healthy leaf consists mostly of green streaks
and likely represents areas of fresh leaf tissue, with little



identifiable dark green material. Therefore, it is not
unreasonable for these images to be misclassified, as this
would pose a challenge even for expert human evaluation
(optimal Bayes error rate).

Figure 9 resents a comprehensive comparison between
several Convolutional Neural Network (CNN)-based

architectures — namely CNN, CNN + ResNet50, and CNN +
DenseNet169 — in the classification of coffee leaf diseases.
The comparison is displayed in three main sections: (1)
performance metrics table, (2) validation accuracy and loss
graphs, and (3) visual classification results.
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Figure 9. Accuracy testing CNN

Model Performance Metrics (Top Table)
Table 5 summarizes three key performance indicators:
Accuracy, Recall, and F1-Score.

Table 5. Algorithm testing report

Model Accuracy Recall F1-Score
CNN 96% 95% 95%
CNN + ResNet50 79% 78% 78%
CNN + DenseNet169 98% 98% 98%

The CNN + DenseNet169 model achieves the highest
accuracy, recall, and F1-score (98%), demonstrating superior
classification performance and robustness in identifying
coffee leaf diseases. The standard CNN model performs
relatively well (96% accuracy) but slightly less consistent.
Meanwhile, the CNN + ResNet50 model shows the lowest
performance (79%), likely due to overfitting or inadequate
feature generalization on the coffee leaf dataset.

Validation Accuracy and Loss Graphs (Middle Plots)

The middle section displays two performance graphs:

a. Left Graph (Validation Accuracy Comparison): The
DenseNet169 curve (red line) remains consistently high
across all epochs, indicating stable convergence and
superior learning capability. The CNN model (black
dashed line) also maintains good accuracy but shows
minor fluctuations. In contrast, ResNet50 (green line)
struggles to achieve stability, with accuracy increasing
slowly and inconsistently. MobileNetV3 (blue line)
achieves moderate accuracy with efficient convergence
speed, highlighting its suitability for lightweight, real-
time applications.

.Right  Graph (Validation Loss Comparison):
DenseNet169 again shows the lowest and most stable
loss values, confirming its ability to minimize
classification errors effectively. CNN follows with a
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relatively smooth loss reduction, while ResNet50
exhibits significant oscillations, reflecting unstable
learning. The vertical dashed line marks the fine-tuning
process initiated at epoch 20, after which model
performance, especially for DenseNet169, improves
markedly.

These graphs clearly demonstrate that DenseNet169 not
only achieves higher accuracy but also maintains better
generalization, avoiding overfitting while ensuring consistent
learning.

Visual Classification Results (Bottom Section)

The lower part of Figure 8 shows sample prediction outputs

for both the base CNN and DenseNet169 models.

a. Left (CNN Model Results): Several coffee leaf images
are correctly classified (indicated in green), but a few
misclassifications (highlighted in red) show that the
model occasionally confuses similar disease patterns
such as Leaf Spot and Leaf Rust. The average accuracy
achieved here is 90%.

. Right (DenseNet169 Model Results): All images are
correctly predicted, achieving 100% classification
accuracy. The model successfully differentiates between
disease types (e.g., Leaf Rust, Sooty Dew, Leaf Spot) and
healthy leaves with high precision. This demonstrates
DenseNet169’s strong feature extraction and its ability to
capture fine-grained visual details in leaf textures and
color variations.

. Figure 9 collectively demonstrates that DenseNet169
significantly outperforms other models in terms of
accuracy, stability, and reliability. Its dense connections
enable efficient feature reuse, faster convergence, and
improved gradient flow, resulting in minimal loss and
near-perfect classification results. While MobileNetV3
remains an ideal option for real-time field deployment
due to its lightweight and fast processing capability,
DenseNet169 provides the highest precision for detailed



disease analysis, making it highly suitable for research
and diagnostic applications.

4. CONCLUSION

This research successfully developed and evaluated a CNN-
based classification model optimized through the combination
of MobileNetV3 and DenseNet169 architectures for detecting
Robusta coffee leaf diseases. Experimental results confirmed
that CNN + DenseNetl69 achieved superior performance
(98% accuracy, recall, and F1-score), demonstrating its strong
capability in feature propagation, gradient flow, and precise
differentiation  between disease types. Meanwhile,
MobileNetV3 achieved faster inference with smaller model
parameters, making it highly applicable for real-time
implementation on mobile or IoT devices in agricultural
settings. Together, these architectures provide a balanced
framework between computational speed and classification
precision, suitable for precision agriculture and digital
plantation management.

The main contribution of this study lies in demonstrating
that CNN optimization through transfer learning and hybrid
architecture design can yield both high accuracy and
efficiency in agricultural image classification tasks. The
proposed model offers a foundation for mobile-based or IoT-
integrated early disease detection systems that enable farmers
to make rapid and accurate decisions for pest and disease
management. Future work should focus on expanding the
dataset to include diverse lighting and geographical
conditions, integrating ensemble learning techniques, and
testing real-time implementation in field conditions. Such
advancements will strengthen the application of artificial
intelligence in supporting sustainable coffee production and
smart agriculture initiatives in Indonesia. integrated early
disease detection systems that enable farmers to make rapid
and accurate decisions for pest and disease management. And
then next research on expanding the dataset to include diverse
lighting and geographical conditions, integrating ensemble
learning techniques, and testing real-time implementation in
field conditions. Such advancements will strengthen the
application of artificial intelligence in supporting sustainable
coffee production and smart agriculture initiatives in
Indonesia.
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