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The integration of Shape-Oriented Convolutional Auto-Encoder (SOCAE) with two well-

known deep learning architectures—U-Net and ResNet269—for kidney segmentation is 

compared in this research. SOCAE is used to increase anatomical consistency and include 

form priors into both designs. We assess their performance in terms of shape retention and 

segmentation accuracy using the KiTS challenge dataset. According to our tests, 

ResNet269+SOCAE performs somewhat better than U-Net+SOCAE, which gets a Dice 

score of 0.950 and shape confidence of 0.910, with a Dice score of 0.952 and shape 

confidence of 0.946. While U-Net+SOCAE continues to be more computationally efficient 

and stable during training, ResNet269+SOCAE performs exceptionally well in boundary 

preservation and shape consistency. These results set new standards for kidney 

segmentation and highlight the trade-off between efficiency and accuracy in shape-aware 

segmentation, providing useful advice for choosing architectures in clinical and research 

applications. 
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1. INTRODUCTION

The accurate segmentation of kidneys from medical 

imaging plays a crucial role in diagnosis, treatment planning, 

and clinical decision-making. While deep learning approaches 

have demonstrated remarkable success in medical image 

segmentation, maintaining anatomical consistency while 

achieving precise segmentation remains a significant 

challenge. Traditional segmentation approaches often struggle 

with variations in kidney shape, size, and appearance, leading 

to inconsistent results that may not preserve critical anatomical 

features. The integration of shape priors into deep learning 

architectures has emerged as a promising direction for 

addressing these challenges. 

Shape-Oriented Convolutional Auto-Encoder (SOCAE) 

integration represents a significant advancement in 

incorporating shape awareness into deep learning architectures. 

This study focuses on comparing two distinct approaches to 

SOCAE integration U-Net+SOCAE and 

ResNet269d+SOCAE. The U-Net architecture, with its 

symmetric encoder-decoder design and skip connections, 

provides a robust foundation for maintaining spatial 

information, while ResNet269d, with its deep residual 

learning framework, offers sophisticated feature hierarchies 

for complex pattern recognition. The integration of SOCAE 

with these architectures presents unique opportunities and 

challenges in achieving shape-aware segmentation. 

Our research investigates several critical aspects of these 

architectures: their ability to maintain anatomical consistency, 

computational efficiency, and clinical applicability. U-

Net+SOCAE leverages direct skip connections and symmetric 

design to preserve spatial information while incorporating 

shape priors, offering a balanced approach to segmentation. In 

contrast, ResNet269+SOCAE utilizes deep residual 

connections and extensive feature hierarchies, potentially 

providing more sophisticated shape feature extraction but at a 

higher computational cost. This comparison provides valuable 

insights into the trade-offs between architectural complexity 

and segmentation performance. 

Through extensive experimentation on the KiTS challenge 

dataset, we demonstrate that while both architectures achieve 

high segmentation accuracy, they exhibit distinct 

characteristics in shape preservation and computational 

requirements. Our findings provide practical guidelines for 

choosing between these architectures based on specific clinical 

needs and computational constraints. Furthermore, we 

establish new benchmarks for shape-aware kidney 

segmentation and provide insights into the effective 
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integration of shape priors in deep learning architectures. 

2. LITERATURE SURVEY

The evolution of deep learning in medical image 

segmentation has seen significant advancements in shape-

aware approaches. Traditional segmentation methods relied 

primarily on statistical shape models and atlas-based 

approaches, establishing the foundation for incorporating 

shape information in automated analysis. These early methods, 

while limited in their ability to handle complex variations, 

highlighted the importance of anatomical consistency in 

medical image segmentation. 

Ronneberger et al. [1] propped the u-net for CNN for 

biomedical image segmentation. He et al. [2] proposed deep 

residual learning for image recognition. Nnu-net: a self-

configuring method for deep learning-based biomedical image 

segmentation propsed by Isensee et al. [3]. Milletari et al. [4] 

proposed v-net: fully convolutional neural networks for 

volumetric medical image segmentation. Çiçek et al. [5] 

proposed 3D U-Net learning Volumetric Segmentationfrom 

sparse annotation. 

Heller et al. [6] proposed the state of the art in kidney and 

kidney tumor segmentation in contrast-enhanced ct imaging: 

results of the kits19 challenge. Heller et al. [7] proposed the 

kits19 challenge data: 300 kidney tumor cases with clinical 

context, ct semantic segmentations, and surgical outcomes. 

Sudre et al. [8] proposed deep learning loss functions for 

hughly unbalanced segmentation. Oktay et al. [9] explained 

the attention u-net: learning where to look for the pancreas. 

Chen et al. [10] proposed transunet: transformers make strong 

encoders for medical image segmentation. 

You et al. [11] proposed the introduction of u-net 

architecture marked a pivotal moment in medical image 

segmentation, offering a symmetric encoder-decoder design 

with skip connections that proved highly effective for 

preserving spatial information. Bhalodia et al. [12] proposed 

deepssm: a blueprint for image-to-shape deep learning models. 

Szentimrey et al. [13] proposed semi-supervised learning 

framework with shape encoding for neonatal ventricular 

segmentation from 3D ultrasound. 

Coots et al. [14] proposed Recent developments have 

focused on enhancing U-Net with shape awareness, including 

the integration of shape priors through various mechanisms. 

Heimann and Meinzer [15] proposed Notable works have 

demonstrated significant improvements in segmentation 

accuracy and anatomical consistency through these 

enhancements, particularly in kidney segmentation tasks. 

Karanam et al. [16] ResNet architectures, particularly the 

advanced ResNet269, have shown remarkable capabilities in 

feature extraction and pattern recognition. Bhalodia et al. [17] 

proposed the deep residual learning framework addresses the 

vanishing gradient problem while enabling the network to 

learn complex hierarchical features. Isensee et al. [18] showed 

that recent studies have explored the integration of shape 

awareness into ResNet architectures, demonstrating their 

potential for maintaining anatomical consistency while 

leveraging deep feature hierarchies. 

Bui et al. [19] investigated the use of deep learning in the 

analysis of kidney disease, bridging the clinical practice-

research innovation gap through the demonstration of the 

efficacy of AI-based segmentation in diagnostic procedures. 

Goncharov et al. [20] proposed deep multitask learning for 

Medical Image analysis. Cutler et al. [21] proposed a high-

precision morphology-independent solution for bacterial cell 

segmentation. Razzak et al. [22] proposed challenges of deep 

learning methods with regard to medical imaging and open 

research issue. Chen et al. [23] proposed and introduces a 

multi-scale feature fusion network with attention mechanisms 

for improved kidney segmentation. Buriboev et al. [24] 

proposed contrast enhancement preprocessing to improve 

CNN-based kidney segmentation accuracy. Cao et al. [25] 

proposed and presented a U-Net variant with multi-scale 

perception and attention modules for accurate renal 

segmentation. 

The emergence of Shape-Oriented Convolutional Auto-

Encoders (SOCAE) represents a significant advancement in 

shape-aware segmentation. SOCAE provides a mechanism for 

explicitly incorporating shape priors into deep learning 

architectures, offering improved boundary preservation and 

anatomical consistency. Research has shown that SOCAE 

integration can enhance segmentation performance across 

different architectural frameworks, though the effectiveness 

varies based on the base architecture's characteristics. 

Recent comparative studies have investigated various 

approaches to shape-aware segmentation, analysing the trade-

offs between architectural complexity and performance. While 

both U-Net and ResNet-based approaches have demonstrated 

success, their relative effectiveness in maintaining shape 

consistency while achieving accurate segmentation remains an 

active area of research. Understanding these trade-offs is 

crucial for developing more effective shape-aware 

segmentation solutions. SOCAE-integrated U-Net and 

ResNet269 models, emphasizing the specific novelty and 

contribution of our approach. 

3. METHODOLOGY

3.1 Data Pre-processing 

The KiTS19 dataset consists of a large number of annotated 

CT scans, each containing both kidney and tumour regions. To 

prepare the data for training and evaluation, we performed 

several pre-processing steps to ensure consistency and 

improve the quality of the input data. 

1. Windowing:

Windowing is a technique used to enhance the

contrast of specific tissue types in medical images.

For kidney segmentation, we applied a window level

of [−200,400] [−200,400] Hounsfield Units (HU) to

normalize the intensity values. This window level is

chosen because it effectively highlights the soft

tissues, including the kidneys and surrounding

structures.

2. Voxel Spacing Normalization:

The voxel spacing in the raw CT scans varies across

different patients. To ensure consistent spatial

resolution, we resampled the volumes to a target

spacing of 1.0 × 1.0 × 1.01.0 × 1.0 × 1.0 mm. This

step involves interpolating the intensity values to

match the desired voxel dimensions.

3. Data Augmentation:

To increase the diversity of the training data and

prevent overfitting, we applied several augmentation

techniques:

• Horizontal Flipping: Randomly flip the

image and corresponding mask horizontally.
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• Vertical Flipping: Randomly flip the image

and corresponding mask vertically.

• Brightness Adjustment: Randomly adjust

the brightness of the image within a

specified range (e.g., ±10%±10%).

These augmentations are applied randomly

during training to simulate variations in the

input data.

First, we will introduce a dedicated subsection describing 

the SOCAE module, including its encoder–decoder structure, 

loss formulation, and role in enforcing shape priors. Next, we 

will explicitly illustrate how SOCAE is integrated into both 

backbones, clarifying whether it is connected to the encoder, 

decoder, or bottleneck, and how its outputs are fused with the 

segmentation network (e.g., via auxiliary loss or feature 

fusion). Additionally, we will add a detailed description of the 

ResNet269 architecture, including its depth, block 

configuration, and how it is adapted for 3D medical image 

segmentation. An architectural diagram comparing U-

Net+SOCAE and ResNet269+SOCAE will also be included to 

visually highlight structural differences. These revisions will 

help readers clearly understand the proposed integration 

strategy and the innovation contributed by SOCAE. 

4. MODEL ARCHITECTURE

Our framework implements three distinct architectural 

variants of the UNet family, each designed to address specific 

challenges in kidney tumor segmentation. The base 

architecture follows the encoder-decoder paradigm, with 

specialized modifications for each variant to enhance 

segmentation performance. 

Base UNet Architecture: The foundation of our 

implementation is a modified UNet with an encoding path for 

feature extraction and a symmetric decoding path for precise 

localization. The network consists of five levels, with the 

initial level employing 32 base channels to optimize memory 

usage while maintaining feature representation capacity. Each 

encoder block implements two 3 × 3 convolutional layers 

followed by batch normalization and ReLU activation. The 

network incorporates skip connections between corresponding 

encoder and decoder levels to preserve fine-grained spatial 

information, crucial for accurate tumor boundary delineation. 

Attention-Enhanced UNet: To improve feature selection and 

spatial sensitivity, we augment the base architecture with an 

attention mechanism. The attention module is defined as: 

A(F_l, F_g) = σ(ψ(ReLU(θ_x(F_l) + θ_g(F_g)))) 

where, F_l represents local features, F_g denotes gated 

features, θ_x and θ_g are 1 × 1 convolutional operations, and 

σ is the sigmoid activation. This mechanism enables the 

network to focus on relevant regions while suppressing noise 

and irrelevant features. The attention gates are strategically 

placed at each decoder level, facilitating adaptive feature 

refinement based on both local and global context. 

Residual UNet Integration: Our residual implementation 

introduces identity mappings within each convolutional block: 

H(x) = F(x) + x 

where, F(x) represents the residual mapping and x is the input. 

Each residual block consists of: 

• Two 3 × 3 convolutional layers with batch

normalization

• ReLU activation between layers

• A skip connection adding the input to the block's

output

The residual connections serve dual purposes: 

1. Mitigating the vanishing gradient problem during

training

2. Enabling deeper network architectures while

maintaining stable optimization

Loss Function Design: We implement a hybrid loss function 

combining binary cross-entropy (BCE) and Dice loss: 

L_total = α * L_BCE + (1 - α) * L_Dice 

where, α is empirically set to 0.3. The Dice loss component 

specifically addresses class imbalance issues common in 

medical image segmentation: 

L_Dice = 1 - (2|X ∩ Y| + ε)/(|X| + |Y| + ε) 

Figure 1 represents Model Architecture Diagram. We 

briefly summarized what is shown (e.g., sample segmentation 

outputs, error maps, or training curves) and explain how each 

supports our claims on shape preservation, boundary accuracy, 

or robustness. We will also clearly state in the caption and 

main text that Figure 1 (Model Architecture Diagram) 

corresponds to the U-Net+SOCAE (and ResNet269+SOCAE, 

if combined), highlighting where the SOCAE module is 

integrated. 

Figure 1. Model architecture diagram 
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Our framework implements a comprehensive architecture 

combining elements from state-of-the-art segmentation 

networks. Here's a detailed breakdown of each component: 

1. Input Processing Layer: 

• Accepts 512 × 512 CT scan slices 

• Normalizes input values to [0,1] range 

• Implements initial feature extraction with 32 

base channels 

• Applies data augmentation techniques during 

training:  

o Random horizontal flipping 

o Contrast adjustment (0.8-1.2 range) 

o Gamma correction (0.8-1.2 range) 

2. Encoder Pathway: 

• Four sequential encoding blocks 

• Each block contains:  

o Double 3 × 3 convolution layers 

o Batch normalization after each 

convolution 

o ReLU activation functions 

o Max pooling (2 × 2) for spatial 

dimension reduction 

• Channel progression: 32 → 64 → 128 → 256 

channels 

• Feature map sizes: 512 → 256 → 128 → 64 

pixels 

3. Attention Mechanism: 

• Implemented at each decoder level 

• Composed of three main components:  

o Query transformation (1 × 1 

convolution) 

o Key transformation (1 × 1 convolution) 

o Value transformation (1 × 1 

convolution) 

• Attention formula:  

Attention(Q,K,V) = softmax(QK^T)V 

• Generates attention maps highlighting 

relevant features 

4. Decoder Pathway: 

• Four up sampling blocks 

• Each block includes:  

o Transposed convolution for up 

sampling 

o Concatenation with skip connections 

o Double 3 × 3 convolution layers 

o Batch normalization and ReLU 

activation 

• Progressive channel reduction: 256 → 128 → 64 

→ 32 

5. Residual Integration: 

• Residual connections in both encoder and 

decoder 

6. Output Layer: 

• 1 × 1 convolution to map to final classes 

• Three output channels (background, kidney, 

tumour) 

• Softmax activation for class probabilities 

• Additional confidence score generation 

The architecture incorporates both long and short skip 

connections: 

• Long skip connections: Between encoder and 

decoder (feature preservation) 

• Short skip connections: Within residual blocks 

(gradient flow) 

 

Training and Validation 

Our training methodology was carefully designed to 

evaluate the performance of U-Net+SOCAE and 

ResNet269d+SOCAE architectures. The dataset comprised 

CT scan sequences from the KiTS challenge, ensuring 

diversity in kidney morphologies and pathological conditions. 

Pre-processing steps included intensity normalization, spatial 

standardization to 512 × 512 pixels, and careful validation of 

mask values to ensure consistency in shape representation. 

The implementation of SOCAE integration differed 

between the architectures. In U-Net+SOCAE, shape-aware 

components were integrated at each decoder level, with skip 

connections modified to preserve shape information. For 

ResNet269d+SOCAE, shape awareness was incorporated 

through modified residual blocks and an enhanced feature 

pyramid, enabling multi-scale shape feature extraction. 

In this work we will introduce a Evaluation Metrics part to 

formally define Shape Confidence and Boundary Score. For 

Shape Confidence, we will describe its formulation (e.g., 

overlap between predicted and ground-truth signed distance 

maps or shape descriptors) and provide the exact equations and 

normalization scheme. For Boundary Score, we will detail 

how boundary pixels are extracted (e.g., morphological 

gradient), how boundary precision/recall or distance-based 

measures are computed, and how the final score is aggregated. 

These additions will ensure transparency, validity, and 

reproducibility. 

Training utilized an optimizer configuration tailored to each 

architecture's characteristics. Both models employed the 

AdamW optimizer with an initial learning rate of 1e-3 and 

weight decay of 1e-5. The learning rate was dynamically 

adjusted using a plateau-based scheduler monitoring 

validation Dice scores. The loss function combined binary 

cross-entropy (weight: 0.3) and Dice loss (weight: 0.7) 

components, with additional shape consistency penalties. 

Data augmentation strategies were carefully designed to 

maintain anatomical validity while enhancing model 

robustness. Augmentations included random horizontal 

flipping (50% probability), contrast adjustment (range: 0.8-

1.2), and gamma corrections (range: 0.8-1.2). All 

transformations were implemented to preserve anatomical 

proportions and shape characteristics. 

Validation was performed using a comprehensive protocol 

focusing on both segmentation accuracy and shape 

preservation. Key metrics included Dice scores, shape 

confidence measurements, and boundary accuracy 

assessments. The validation process also included qualitative 

assessment of shape preservation and boundary consistency, 

ensuring thorough evaluation of each architecture's 

performance in maintaining anatomical plausibility. 

 

 

5. RESULT ANALYSIS 

 

In this work we expand the discussion to more thoroughly 

interpret the observed performance differences. Specifically, 

we will relate ResNet269+SOCAE’s slight advantage in Dice 

and shape confidence to its deeper architecture and residual 

connections, which facilitate better gradient flow and richer 

hierarchical feature representations for capturing complex 

anatomical shapes. We will also analyse cases where U-

Net+SOCAE performs competitively, linking them to its 
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strong localization capability and simpler decoder. 

Additionally, we will conduct statistical significance tests (e.g., 

paired t-tests with p-values) to rigorously support the claim 

that ResNet269+SOCAE performs better. 

 

Table 1. Comparative performance metrics of U-

Net+SOCAE and ResNet269+SOCAE 

 
Metric U-Net+SOCAE ResNet269+SOCAE 

Kidney Dice Score 0.950 0.952 

Shape Confidence 0.910 0.946 

Boundary Score 0.927 0.940 

GT Kidney Pixels 2166 2166 

Pred Kidney Pixels 2210 2173 

Processing Time 45 58 

GPU Memory(GB) 4.2 5.2 

Parameters(M) 23.1 31.2 

 

Table 1 represents Comparative Performance Metrics of U-

Net+SOCAE and ResNet269+SOCAE. Figures 2 and 3 

represents Training Progress and Accuracy metrics 

Comparision. 

Figures 4 and 5 represent the Segmentation results. 

 

Key Findings 

1. Segmentation Accuracy  

o ResNet269+SOCAE achieves marginally 

better Dice scores 

o Both architectures maintain high 

segmentation accuracy 

o ResNet269+SOCAE shows more consistent 

performance across cases 

2. Shape Preservation  

o ResNet269+SOCAE demonstrates superior 

shape confidence 

o Better boundary preservation in complex 

cases 

o More consistent anatomical feature 

preservation 

 

 

 
 

Figure 2. Training progress 

 

 
 

Figure 3. Accuracy metrics comparison 
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Figure 4. Segmentation results 

Figure 5. Segmentation results 
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3. Computational Considerations

o U-Net+SOCAE offers faster processing

time

o Lower memory requirements in U-

Net+SOCAE

o Trade-off between performance and 

computational efficiency

4. Clinical Applicability

o Both architectures suitable for clinical

deployment

o ResNet269+SOCAE preferred for complex

cases

o U-Net+SOCAE advantageous for resource-

constrained settings

Quantitative Performance Evaluation 

Our comprehensive evaluation reveals distinct performance 

characteristics between U-Net+SOCAE and 

ResNet269+SOCAEarchitectures.The ResNet269+SOCAE 

architecture demonstrated superior overall performance, 

achieving a Dice score of 0.952 compared to U-Net+SOCAE's 

0.950. This marginal improvement in segmentation accuracy 

is complemented by a more substantial advantage in shape 

preservation metrics, with ResNet269+SOCAE achieving a 

shape confidence score of 0.946 versus U-Net+SOCAE's 

0.910. 

The boundary delineation capabilities show particularly 

interesting patterns. ResNet269+SOCAE exhibited 

exceptional performance in boundary preservation, with a 

boundary score of 0.940, surpassing U-Net+SOCAE's 0.927. 

This improvement is especially notable in cases with complex 

kidney morphologies, where the deeper architecture of 

ResNet269 appears to better capture intricate boundary 

features. The pixel-wise analysis further supports this 

observation, with ResNet269+SOCAE achieving closer 

correspondence to ground truth kidney pixels (2173 predicted 

vs 2166 ground truth) compared to U-Net+SOCAE (2210 

predicted vs 2166 ground truth). 

Computational efficiency metrics reveal important trade-

offs between the architectures. U-Net+SOCAE demonstrates 

faster processing times at 45ms per case, compared to 

ResNet269+SOCAE's 58ms. Memory requirements show 

similar patterns, with U-Net+SOCAE requiring 4.2GB of 

GPU memory versus ResNet269+SOCAE's 5.2GB. These 

efficiency differences become particularly relevant in 

resource-constrained clinical settings or when real-time 

processing is required. 

Qualitative Analysis and Visual Results 

Visual inspection of segmentation results across diverse 

cases reveals the strengths and characteristics of each 

architecture. In Case 00000, featuring a small unilateral kidney, 

both architectures maintained high accuracy, but 

ResNet269+SOCAE showed superior confidence mapping in 

boundary regions. The shape preservation is particularly 

evident in Case 00001, where bilateral kidneys present a more 

complex segmentation challenge. Here, ResNet269+SOCAE's 

enhanced shape awareness resulted in more anatomically 

consistent segmentation, especially in regions with unclear 

boundaries. 

The handling of challenging anatomical variations in Case 

00002 demonstrated ResNet269+SOCAE's superior capability 

in maintaining shape consistency while adapting to unusual 

morphologies. The architecture's deeper feature hierarchy 

appears to better capture complex anatomical patterns, 

resulting in more reliable segmentation in challenging cases. 

U-Net+SOCAE, while still performing admirably, showed

slightly less confidence in these complex scenarios, though it

maintained good overall accuracy.

Performance Analysis Across Different Scenarios

The analysis of performance across varying kidney sizes 

and morphologies reveals interesting patterns. For standard 

kidney sizes (between 2000 and 3000 pixels in area), both 

architectures maintain comparable performance levels. 

However, in cases of extremely small (<1500 pixels) or large 

(>4000 pixels) kidneys, ResNet269+SOCAE demonstrates 

more robust performance, maintaining higher shape 

confidence scores and more consistent boundary preservation. 

Training Dynamics and Convergence Patterns 

Training dynamics revealed distinct characteristics between 

the architectures. U-Net+SOCAE showed faster initial 

convergence, reaching a Dice score of 0.90 within 10 epochs. 

However, ResNet269+SOCAE, while slower in initial 

convergence, achieved higher final performance metrics and 

showed better stability in later epochs. The learning rate 

adjustments through the ReduceLROnPlateau scheduler 

proved more critical for ResNet269+SOCAE, with clear 

performance jumps following learning rate reductions. 

Clinical Relevance and Practical Implications 

From a clinical perspective, both architectures demonstrate 

performance levels suitable for practical application. 

ResNet269+SOCAE's superior shape preservation makes it 

particularly valuable in cases where anatomical consistency is 

crucial for diagnostic or surgical planning purposes. The 

higher confidence scores also provide more reliable 

uncertainty estimates, which can be valuable for clinical 

decision-making. However, U-Net+SOCAE's computational 

efficiency makes it an attractive option for routine cases or 

settings where processing speed is prioritized. 

Comparison with State-of-the-Art Approaches 

When compared to existing shape-aware segmentation 

approaches in the literature, both architectures demonstrate 

competitive performance. The shape confidence scores 

achieved by ResNet269d+SOCAE (0.946) represent a notable 

improvement over previously reported results in kidney 

segmentation tasks. The boundary preservation metrics also 

exceed those reported in recent literature, suggesting that the 

SOCAE integration effectively enhances shape awareness in 

both architectures. 

Edge Cases and Limitation Analysis 

Analysis of edge cases revealed specific limitations in both 

architectures. U-Net+SOCAE occasionally showed reduced 

confidence in cases with significant anatomical variations, 

though maintaining acceptable segmentation accuracy. 

ResNet269+SOCAE, while more robust in handling 

anatomical variations, showed increased computational 

overhead in processing complex cases. These limitations, 

while not severely impacting overall performance, provide 

important considerations for practical deployment. 

Cross-Validation and Robustness 

Five-fold cross-validation results confirm the consistency 

of performance metrics across different data splits. 

ResNet269+SOCAE maintained more stable performance 

across folds, with a standard deviation of 0.012 in Dice scores 

compared to U-Net+SOCAE's 0.015. This stability extends to 

shape confidence metrics, where ResNet269+SOCAE showed 

more consistent performance across varying anatomical 

presentations.
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6. CONCLUSION

Our comprehensive comparison of U-Net+SOCAE and 

ResNet269d+SOCAE architectures for kidney segmentation 

reveals distinct advantages in each approach. 

ResNet269+SOCAE demonstrates superior performance in 

shape preservation and boundary accuracy, achieving higher 

shape confidence scores (0.946 vs 0.910) and better boundary 

preservation (0.940 vs 0.927). However, this comes at the cost 

of increased computational requirements and longer 

processing times. 

U-Net+SOCAE offers a more balanced approach with

efficient computation (45 ms vs 58 ms processing time) and 

lower memory requirements (4.2 GB vs 5.2 GB), while still 

maintaining high segmentation accuracy (Dice score 0.950). 

This makes it particularly suitable for applications where 

computational resources are limited or processing speed is 

crucial. 

The choice between these architectures should be guided by 

specific use-case requirements: 

• For applications requiring maximum accuracy and

shape consistency: ResNet269+SOCAE

• For resource-constrained environments or real-time

applications: U-Net+SOCAE

The comparative summary of U-Net+SOCAE and 

ResNet269+SOCAE, and further strengthen the outlook on 

future work. Specifically, we will discuss designing hybrid 

architectures that combine the strong boundary preservation 

and shape consistency of deep ResNet backbones with the 

computational efficiency and stable training behavior of U-

Net-style decoders. Additionally, we will emphasize exploring 

the generalization capability of the SOCAE module to other 

organs, modalities, and related tasks such as tumour or lesion 

segmentation, multi-organ delineation, and cross-dataset 

domain adaptation to validate its robustness and broader 

applicability. 
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