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The integration of Shape-Oriented Convolutional Auto-Encoder (SOCAE) with two well-
known deep learning architectures—U-Net and ResNet269—for kidney segmentation is
compared in this research. SOCAE is used to increase anatomical consistency and include
form priors into both designs. We assess their performance in terms of shape retention and
segmentation accuracy using the KiTS challenge dataset. According to our tests,
ResNet269+SOCAE performs somewhat better than U-Net+SOCAE, which gets a Dice
score of 0.950 and shape confidence of 0.910, with a Dice score of 0.952 and shape
confidence of 0.946. While U-Net+SOCAE continues to be more computationally efficient
and stable during training, ResNet269+SOCAE performs exceptionally well in boundary

preservation and shape consistency. These results set new standards for kidney
segmentation and highlight the trade-off between efficiency and accuracy in shape-aware
segmentation, providing useful advice for choosing architectures in clinical and research

applications.

1. INTRODUCTION

The accurate segmentation of kidneys from medical
imaging plays a crucial role in diagnosis, treatment planning,
and clinical decision-making. While deep learning approaches
have demonstrated remarkable success in medical image
segmentation, maintaining anatomical consistency while
achieving precise segmentation remains a significant
challenge. Traditional segmentation approaches often struggle
with variations in kidney shape, size, and appearance, leading
to inconsistent results that may not preserve critical anatomical
features. The integration of shape priors into deep learning
architectures has emerged as a promising direction for
addressing these challenges.

Shape-Oriented Convolutional Auto-Encoder (SOCAE)
integration represents a significant advancement in
incorporating shape awareness into deep learning architectures.
This study focuses on comparing two distinct approaches to
SOCAE integration U-Net+SOCAE and
ResNet269d+SOCAE. The U-Net architecture, with its
symmetric encoder-decoder design and skip connections,
provides a robust foundation for maintaining spatial
information, while ResNet269d, with its deep residual
learning framework, offers sophisticated feature hierarchies
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for complex pattern recognition. The integration of SOCAE
with these architectures presents unique opportunities and
challenges in achieving shape-aware segmentation.

Our research investigates several critical aspects of these
architectures: their ability to maintain anatomical consistency,
computational efficiency, and clinical applicability. U-
Net+SOCAE leverages direct skip connections and symmetric
design to preserve spatial information while incorporating
shape priors, offering a balanced approach to segmentation. In
contrast, ResNet269+SOCAE utilizes deep residual
connections and extensive feature hierarchies, potentially
providing more sophisticated shape feature extraction but at a
higher computational cost. This comparison provides valuable
insights into the trade-offs between architectural complexity
and segmentation performance.

Through extensive experimentation on the KiTS challenge
dataset, we demonstrate that while both architectures achieve
high segmentation accuracy, they exhibit distinct
characteristics in shape preservation and computational
requirements. Our findings provide practical guidelines for
choosing between these architectures based on specific clinical
needs and computational constraints. Furthermore, we
establish new benchmarks for shape-aware kidney
segmentation and provide insights into the effective
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integration of shape priors in deep learning architectures.

2. LITERATURE SURVEY

The evolution of deep learning in medical image
segmentation has seen significant advancements in shape-
aware approaches. Traditional segmentation methods relied
primarily on statistical shape models and atlas-based
approaches, establishing the foundation for incorporating
shape information in automated analysis. These early methods,
while limited in their ability to handle complex variations,
highlighted the importance of anatomical consistency in
medical image segmentation.

Ronneberger et al. [1] propped the u-net for CNN for
biomedical image segmentation. He et al. [2] proposed deep
residual learning for image recognition. Nnu-net: a self-
configuring method for deep learning-based biomedical image
segmentation propsed by Isensee et al. [3]. Milletari et al. [4]
proposed v-net: fully convolutional neural networks for
volumetric medical image segmentation. Cicek et al. [5]
proposed 3D U-Net learning Volumetric Segmentationfrom
sparse annotation.

Heller et al. [6] proposed the state of the art in kidney and
kidney tumor segmentation in contrast-enhanced ct imaging:
results of the kits19 challenge. Heller et al. [7] proposed the
kits19 challenge data: 300 kidney tumor cases with clinical
context, ct semantic segmentations, and surgical outcomes.
Sudre et al. [8] proposed deep learning loss functions for
hughly unbalanced segmentation. Oktay et al. [9] explained
the attention u-net: learning where to look for the pancreas.
Chen et al. [10] proposed transunet: transformers make strong
encoders for medical image segmentation.

You et al. [11] proposed the introduction of u-net
architecture marked a pivotal moment in medical image
segmentation, offering a symmetric encoder-decoder design
with skip connections that proved highly effective for
preserving spatial information. Bhalodia et al. [12] proposed
deepssm: a blueprint for image-to-shape deep learning models.
Szentimrey et al. [13] proposed semi-supervised learning
framework with shape encoding for neonatal ventricular
segmentation from 3D ultrasound.

Coots et al. [14] proposed Recent developments have
focused on enhancing U-Net with shape awareness, including
the integration of shape priors through various mechanisms.
Heimann and Meinzer [15] proposed Notable works have
demonstrated significant improvements in segmentation
accuracy and anatomical consistency through these
enhancements, particularly in kidney segmentation tasks.

Karanam et al. [16] ResNet architectures, particularly the
advanced ResNet269, have shown remarkable capabilities in
feature extraction and pattern recognition. Bhalodia et al. [17]
proposed the deep residual learning framework addresses the
vanishing gradient problem while enabling the network to
learn complex hierarchical features. Isensee et al. [18] showed
that recent studies have explored the integration of shape
awareness into ResNet architectures, demonstrating their
potential for maintaining anatomical consistency while
leveraging deep feature hierarchies.

Bui et al. [19] investigated the use of deep learning in the
analysis of kidney disease, bridging the clinical practice-
research innovation gap through the demonstration of the
efficacy of Al-based segmentation in diagnostic procedures.
Goncharov et al. [20] proposed deep multitask learning for
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Medical Image analysis. Cutler et al. [21] proposed a high-
precision morphology-independent solution for bacterial cell
segmentation. Razzak et al. [22] proposed challenges of deep
learning methods with regard to medical imaging and open
research issue. Chen et al. [23] proposed and introduces a
multi-scale feature fusion network with attention mechanisms
for improved kidney segmentation. Buriboev et al. [24]
proposed contrast enhancement preprocessing to improve
CNN-based kidney segmentation accuracy. Cao et al. [25]
proposed and presented a U-Net variant with multi-scale
perception and attention modules for accurate renal
segmentation.

The emergence of Shape-Oriented Convolutional Auto-
Encoders (SOCAE) represents a significant advancement in
shape-aware segmentation. SOCAE provides a mechanism for
explicitly incorporating shape priors into deep learning
architectures, offering improved boundary preservation and
anatomical consistency. Research has shown that SOCAE
integration can enhance segmentation performance across
different architectural frameworks, though the effectiveness
varies based on the base architecture's characteristics.

Recent comparative studies have investigated various
approaches to shape-aware segmentation, analysing the trade-
offs between architectural complexity and performance. While
both U-Net and ResNet-based approaches have demonstrated
success, their relative effectiveness in maintaining shape
consistency while achieving accurate segmentation remains an
active area of research. Understanding these trade-offs is
crucial for developing more effective shape-aware
segmentation solutions. SOCAE-integrated U-Net and
ResNet269 models, emphasizing the specific novelty and
contribution of our approach.

3. METHODOLOGY

3.1 Data Pre-processing
The KiTS19 dataset consists of a large number of annotated
CT scans, each containing both kidney and tumour regions. To
prepare the data for training and evaluation, we performed
several pre-processing steps to ensure consistency and
improve the quality of the input data.
1. Windowing:
Windowing is a technique used to enhance the
contrast of specific tissue types in medical images.
For kidney segmentation, we applied a window level
of [-200,400] [-200,400] Hounsfield Units (HU) to
normalize the intensity values. This window level is
chosen because it effectively highlights the soft
tissues, including the kidneys and surrounding
structures.
Voxel Spacing Normalization:
The voxel spacing in the raw CT scans varies across
different patients. To ensure consistent spatial
resolution, we resampled the volumes to a target
spacing of 1.0 x 1.0 x 1.01.0 x 1.0 x 1.0 mm. This
step involves interpolating the intensity values to
match the desired voxel dimensions.
Data Augmentation:
To increase the diversity of the training data and
prevent overfitting, we applied several augmentation
techniques:
e Horizontal Flipping: Randomly flip the
image and corresponding mask horizontally.



e Vertical Flipping: Randomly flip the image
and corresponding mask vertically.

e Brightness Adjustment: Randomly adjust
the brightness of the image within a
specified range (e.g., £10%=£10%).
These augmentations are applied randomly
during training to simulate variations in the
input data.

First, we will introduce a dedicated subsection describing
the SOCAE module, including its encoder—decoder structure,
loss formulation, and role in enforcing shape priors. Next, we
will explicitly illustrate how SOCAE is integrated into both
backbones, clarifying whether it is connected to the encoder,
decoder, or bottleneck, and how its outputs are fused with the
segmentation network (e.g., via auxiliary loss or feature
fusion). Additionally, we will add a detailed description of the
ResNet269 architecture, including its depth, block
configuration, and how it is adapted for 3D medical image
segmentation. An architectural diagram comparing U-
Net+SOCAE and ResNet269+SOCAE will also be included to
visually highlight structural differences. These revisions will
help readers clearly understand the proposed integration
strategy and the innovation contributed by SOCAE.

4. MODEL ARCHITECTURE

Our framework implements three distinct architectural
variants of the UNet family, each designed to address specific
challenges in kidney tumor segmentation. The base
architecture follows the encoder-decoder paradigm, with
specialized modifications for each variant to enhance
segmentation performance.

Base UNet Architecture: The foundation of our
implementation is a modified UNet with an encoding path for
feature extraction and a symmetric decoding path for precise
localization. The network consists of five levels, with the
initial level employing 32 base channels to optimize memory
usage while maintaining feature representation capacity. Each
encoder block implements two 3 X 3 convolutional layers
followed by batch normalization and ReLU activation. The
network incorporates skip connections between corresponding
encoder and decoder levels to preserve fine-grained spatial
information, crucial for accurate tumor boundary delineation.
Attention-Enhanced UNet: To improve feature selection and
spatial sensitivity, we augment the base architecture with an
attention mechanism. The attention module is defined as:

AF_1LF g)=o(y(ReLUO x(F_1)+6_g(F_g))))

where, F | represents local features, F g denotes gated
features, © x and 6 _g are 1 x 1 convolutional operations, and
o is the sigmoid activation. This mechanism enables the
network to focus on relevant regions while suppressing noise
and irrelevant features. The attention gates are strategically
placed at each decoder level, facilitating adaptive feature
refinement based on both local and global context.

Residual UNet Integration: Our residual implementation
introduces identity mappings within each convolutional block:

H(x) = F(x) + x

where, F(x) represents the residual mapping and x is the input.
Each residual block consists of:
e Two 3 x 3 convolutional layers with batch
normalization
e ReLU activation between layers
e A skip connection adding the input to the block's
output
The residual connections serve dual purposes:
1. Mitigating the vanishing gradient problem during
training
2. Enabling deeper network architectures while
maintaining stable optimization
Loss Function Design: We implement a hybrid loss function
combining binary cross-entropy (BCE) and Dice loss:

L total=a*L BCE + (1 - a) * L Dice

where, a is empirically set to 0.3. The Dice loss component
specifically addresses class imbalance issues common in
medical image segmentation:

L Dice=1-(2[X N Y|+ e)/(|X|+ Y] +¢)

Figure 1 represents Model Architecture Diagram. We
briefly summarized what is shown (e.g., sample segmentation
outputs, error maps, or training curves) and explain how each
supports our claims on shape preservation, boundary accuracy,
or robustness. We will also clearly state in the caption and
main text that Figure 1 (Model Architecture Diagram)
corresponds to the U-Net+SOCAE (and ResNet269+SOCAE,
if combined), highlighting where the SOCAE module is
integrated.

Skip Connections

Encoder

Input CT Scan

Attention
32 channels Gate

Decoder

32 channels

Qutput

Segmentation

_____

Residual Connections

Figure 1. Model architecture diagram



Our framework implements a comprehensive architecture
combining elements from state-of-the-art segmentation
networks. Here's a detailed breakdown of each component:

1. Input Processing Layer:
Accepts 512 x 512 CT scan slices
Normalizes input values to [0,1] range
Implements initial feature extraction with 32
base channels
Applies data augmentation techniques during
training:
o

Random horizontal flipping
o Contrast adjustment (0.8-1.2 range)
o Gamma correction (0.8-1.2 range)
Encoder Pathway:
e Four sequential encoding blocks
Each block contains:
o Double 3 x 3 convolution layers
o Batch normalization after
convolution
ReLU activation functions
Max pooling (2 x 2) for spatial
dimension reduction
Channel progression: 32 — 64 — 128 — 256
channels
Feature map sizes: 512 — 256 — 128 — 64
pixels
Attention Mechanism:
Implemented at each decoder level
Composed of three main components:
o Query transformation (1
convolution)
Key transformation (1 x 1 convolution)
Value transformation (1 x 1
convolution)
e Attention formula:
Attention(Q,K,V) = softmax(QK"T)V
Generates attention maps highlighting
relevant features
Decoder Pathway:
e  Four up sampling blocks
Each block includes:
o Transposed
sampling
Concatenation with skip connections
Double 3 x 3 convolution layers
Batch normalization and ReLU
activation
Progressive channel reduction: 256 — 128 — 64
— 32
Residual Integration:
e Residual connections
decoder
Output Layer:
e 1 x 1 convolution to map to final classes
Three output channels (background, kidney,
tumour)
Softmax activation for class probabilities
Additional confidence score generation
The architecture incorporates both long and short skip
connections:
e Long skip connections: Between encoder and
decoder (feature preservation)
Short skip connections: Within residual blocks

each

O
©]

x 1

O
©]

convolution  for

up
o
o

O

in both encoder and
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(gradient flow)

Training and Validation

Our training methodology was carefully designed to
evaluate the performance of U-Net+SOCAE and
ResNet269d+SOCAE architectures. The dataset comprised
CT scan sequences from the KiTS challenge, ensuring
diversity in kidney morphologies and pathological conditions.
Pre-processing steps included intensity normalization, spatial
standardization to 512 x 512 pixels, and careful validation of
mask values to ensure consistency in shape representation.

The implementation of SOCAE integration differed
between the architectures. In U-Net+SOCAE, shape-aware
components were integrated at each decoder level, with skip
connections modified to preserve shape information. For
ResNet269d+SOCAE, shape awareness was incorporated
through modified residual blocks and an enhanced feature
pyramid, enabling multi-scale shape feature extraction.

In this work we will introduce a Evaluation Metrics part to
formally define Shape Confidence and Boundary Score. For
Shape Confidence, we will describe its formulation (e.g.,
overlap between predicted and ground-truth signed distance
maps or shape descriptors) and provide the exact equations and
normalization scheme. For Boundary Score, we will detail
how boundary pixels are extracted (e.g., morphological
gradient), how boundary precision/recall or distance-based
measures are computed, and how the final score is aggregated.
These additions will ensure transparency, validity, and
reproducibility.

Training utilized an optimizer configuration tailored to each
architecture's characteristics. Both models employed the
AdamW optimizer with an initial learning rate of le-3 and
weight decay of le-5. The learning rate was dynamically
adjusted using a plateau-based scheduler monitoring
validation Dice scores. The loss function combined binary
cross-entropy (weight: 0.3) and Dice loss (weight: 0.7)
components, with additional shape consistency penalties.

Data augmentation strategies were carefully designed to
maintain anatomical validity while enhancing model
robustness. Augmentations included random horizontal
flipping (50% probability), contrast adjustment (range: 0.8-
1.2), and gamma corrections (range: 0.8-1.2). All
transformations were implemented to preserve anatomical
proportions and shape characteristics.

Validation was performed using a comprehensive protocol
focusing on both segmentation accuracy and shape
preservation. Key metrics included Dice scores, shape
confidence measurements, and boundary accuracy
assessments. The validation process also included qualitative
assessment of shape preservation and boundary consistency,
ensuring thorough evaluation of each architecture's
performance in maintaining anatomical plausibility.

5. RESULT ANALYSIS

In this work we expand the discussion to more thoroughly
interpret the observed performance differences. Specifically,
we will relate ResNet269+SOCAE’s slight advantage in Dice
and shape confidence to its deeper architecture and residual
connections, which facilitate better gradient flow and richer
hierarchical feature representations for capturing complex
anatomical shapes. We will also analyse cases where U-
Net+SOCAE performs competitively, linking them to its



strong localization capability and simpler decoder.
Additionally, we will conduct statistical significance tests (e.g.,
paired t-tests with p-values) to rigorously support the claim
that ResNet269+SOCAE performs better.
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Figures 4 and 5 represent the Segmentation results.
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Key Findings
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3. Computational Considerations
o U-Net+SOCAE offers faster processing
time
o Lower memory requirements in U-
Net+SOCAE
o Trade-off between performance and
computational efficiency
4. Clinical Applicability
o Both architectures suitable for clinical
deployment
o ResNet269+SOCAE preferred for complex
cases
o U-Net+SOCAE advantageous for resource-

constrained settings
Quantitative Performance Evaluation

Our comprehensive evaluation reveals distinct performance
characteristics between U-Net+SOCAE and
ResNet269+SOCAEarchitectures.The  ResNet269+SOCAE
architecture demonstrated superior overall performance,
achieving a Dice score of 0.952 compared to U-Net+SOCAE's
0.950. This marginal improvement in segmentation accuracy
is complemented by a more substantial advantage in shape
preservation metrics, with ResNet269+SOCAE achieving a
shape confidence score of 0.946 versus U-Net+SOCAE's
0.910.

The boundary delineation capabilities show particularly
interesting  patterns.  ResNet269+SOCAE  exhibited
exceptional performance in boundary preservation, with a
boundary score of 0.940, surpassing U-Net+SOCAE's 0.927.
This improvement is especially notable in cases with complex
kidney morphologies, where the deeper architecture of
ResNet269 appears to better capture intricate boundary
features. The pixel-wise analysis further supports this
observation, with ResNet269+SOCAE achieving closer
correspondence to ground truth kidney pixels (2173 predicted
vs 2166 ground truth) compared to U-Net+SOCAE (2210
predicted vs 2166 ground truth).

Computational efficiency metrics reveal important trade-
offs between the architectures. U-Net+SOCAE demonstrates
faster processing times at 45ms per case, compared to
ResNet269+SOCAE's 58ms. Memory requirements show
similar patterns, with U-Net+SOCAE requiring 4.2GB of
GPU memory versus ResNet269+SOCAE's 5.2GB. These
efficiency differences become particularly relevant in
resource-constrained clinical settings or when real-time
processing is required.

Qualitative Analysis and Visual Results

Visual inspection of segmentation results across diverse
cases reveals the strengths and characteristics of each
architecture. In Case 00000, featuring a small unilateral kidney,
both architectures maintained high accuracy, but
ResNet269+SOCAE showed superior confidence mapping in
boundary regions. The shape preservation is particularly
evident in Case 00001, where bilateral kidneys present a more
complex segmentation challenge. Here, ResNet269+SOCAE's
enhanced shape awareness resulted in more anatomically
consistent segmentation, especially in regions with unclear
boundaries.

The handling of challenging anatomical variations in Case
00002 demonstrated ResNet269+SOCAE's superior capability
in maintaining shape consistency while adapting to unusual
morphologies. The architecture's deeper feature hierarchy
appears to better capture complex anatomical patterns,
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resulting in more reliable segmentation in challenging cases.
U-Net+SOCAE, while still performing admirably, showed
slightly less confidence in these complex scenarios, though it
maintained good overall accuracy.
Performance Analysis Across Different Scenarios

The analysis of performance across varying kidney sizes
and morphologies reveals interesting patterns. For standard
kidney sizes (between 2000 and 3000 pixels in area), both
architectures maintain comparable performance levels.
However, in cases of extremely small (<1500 pixels) or large
(>4000 pixels) kidneys, ResNet269+SOCAE demonstrates
more robust performance, maintaining higher shape
confidence scores and more consistent boundary preservation.
Training Dynamics and Convergence Patterns

Training dynamics revealed distinct characteristics between
the architectures. U-Net+SOCAE showed faster initial
convergence, reaching a Dice score of 0.90 within 10 epochs.
However, ResNet269+SOCAE, while slower in initial
convergence, achieved higher final performance metrics and
showed better stability in later epochs. The learning rate
adjustments through the ReduceLROnNPlateau scheduler
proved more critical for ResNet269+SOCAE, with clear
performance jumps following learning rate reductions.
Clinical Relevance and Practical Implications

From a clinical perspective, both architectures demonstrate
performance levels suitable for practical application.
ResNet269+SOCAE's superior shape preservation makes it
particularly valuable in cases where anatomical consistency is
crucial for diagnostic or surgical planning purposes. The
higher confidence scores also provide more reliable
uncertainty estimates, which can be valuable for clinical
decision-making. However, U-Net+SOCAE's computational
efficiency makes it an attractive option for routine cases or
settings where processing speed is prioritized.
Comparison with State-of-the-Art Approaches

When compared to existing shape-aware segmentation
approaches in the literature, both architectures demonstrate
competitive performance. The shape confidence scores
achieved by ResNet269d+SOCAE (0.946) represent a notable
improvement over previously reported results in kidney
segmentation tasks. The boundary preservation metrics also
exceed those reported in recent literature, suggesting that the
SOCAE integration effectively enhances shape awareness in
both architectures.
Edge Cases and Limitation Analysis

Analysis of edge cases revealed specific limitations in both
architectures. U-Net+SOCAE occasionally showed reduced
confidence in cases with significant anatomical variations,
though maintaining acceptable segmentation accuracy.
ResNet269+SOCAE, while more robust in handling
anatomical variations, showed increased computational
overhead in processing complex cases. These limitations,
while not severely impacting overall performance, provide
important considerations for practical deployment.
Cross-Validation and Robustness

Five-fold cross-validation results confirm the consistency
of performance metrics across different data splits.
ResNet269+SOCAE maintained more stable performance
across folds, with a standard deviation of 0.012 in Dice scores
compared to U-Net+SOCAE's 0.015. This stability extends to
shape confidence metrics, where ResNet269+SOCAE showed
more consistent performance across varying anatomical
presentations.



6. CONCLUSION

Our comprehensive comparison of U-Net+SOCAE and
ResNet269d+SOCAE architectures for kidney segmentation
reveals  distinct advantages in  each  approach.
ResNet269+SOCAE demonstrates superior performance in
shape preservation and boundary accuracy, achieving higher
shape confidence scores (0.946 vs 0.910) and better boundary
preservation (0.940 vs 0.927). However, this comes at the cost
of increased computational requirements and longer
processing times.

U-Net+SOCAE offers a more balanced approach with
efficient computation (45 ms vs 58 ms processing time) and
lower memory requirements (4.2 GB vs 5.2 GB), while still
maintaining high segmentation accuracy (Dice score 0.950).
This makes it particularly suitable for applications where
computational resources are limited or processing speed is
crucial.

The choice between these architectures should be guided by
specific use-case requirements:

e For applications requiring maximum accuracy and
shape consistency: ResNet269+SOCAE
For resource-constrained environments or real-time
applications: U-Net+SOCAE

The comparative summary of U-Net+SOCAE and
ResNet269+SOCAE, and further strengthen the outlook on
future work. Specifically, we will discuss designing hybrid
architectures that combine the strong boundary preservation
and shape consistency of deep ResNet backbones with the
computational efficiency and stable training behavior of U-
Net-style decoders. Additionally, we will emphasize exploring
the generalization capability of the SOCAE module to other
organs, modalities, and related tasks such as tumour or lesion
segmentation, multi-organ delineation, and cross-dataset
domain adaptation to validate its robustness and broader
applicability.
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