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This study addresses automatic detection and localization of dental lesions in radiographic
images. We systematically compare YOLO-family detectors (YOLOvV5/YOLOV8) using
the public Kaggle dataset “Teeth Segmentation on Dental X-ray Images” (panoramic &
periapical X-rays; 598 images with pixel-level masks converted to axis-aligned bounding
boxes) under a unified pipeline. Models are trained and evaluated with identical protocols;
we analyze mean average precision (MAP@0.5/0.5:0.95), precision, recall, and inference
efficiency (FPS/latency), revealing architecture-specific trade-offs between accuracy and
throughput. The results provide practical guidance for model selection in Al-assisted dental
diagnosis and establish a reproducible baseline for future multimodal detection integrating

1. INTRODUCTION
1.1 Research background

Oral health is a non-negligible problem nowadays, and
dental disease is one of the key problems of oral problems;
early dental disease diagnosis and accurate treatment are
highly dependent on machine imaging means. Traditional
dentist diagnosis often relies on the manual interpretation of
two-dimensional X-ray images (such as apical films,
panoramic films) [1], there are inherent limitations such as the
doctor's strong subjectivity, low efficiency, easy to miss,
especially in high-load clinical situations, subtle lesions (such
as early caries, periapical lesions, root fissure) of the leakage
rate of up to 15%-30%. With the popularization of 3D imaging
technologies such as CBCT (cone beam computed
tomography), the increase in data dimensions and complexity
further exacerbates the challenge of manual analysis.
Therefore, the development of automated and intelligent
dental detection and positioning technologies has become a
core breakthrough in improving diagnosis and treatment
efficiency and realizing precision dentistry.

Early medical automation was mainly based on traditional
image processing methods, such as threshold segmentation,
morphological operations, edge detection (e.g., Canny
operator) and template matching. Although such methods are
effective in simple scenarios, their generalization ability is
severely limited: individual differences in tooth morphology,
image noise, changes in illumination angle, overlapping of
adjacent teeth, restoration artifacts, and other factors can lead
to algorithm failure. Feature engineering-driven models (e.g.,
SIFT/HOG-based feature classifiers), although improving
robustness, are still difficult to cope with the demand for multi-

scale target detection in complex anatomical structures, and
are computationally inefficient and unable to meet clinical
real-time requirements.

With the development of artificial intelligence and the
breakthrough of deep learning, new opportunities are won in
this direction, and the success of convolutional neural network
(CNN) in the field of computer vision provides a brand new
research direction for medical image analysis. Two-stage
detection models based on region proposals (e.g., Faster R-
CNN) were first introduced to the tooth detection task, which
significantly improved the localization accuracy. However, its
multi-stage pipeline design leads to high inference latency and
is difficult to deploy in chairside systems. In contrast, the one-
stage target detection architecture represented by YOLO (You
Only Look Once) stands out due to its "end-to-end" feature [2],
which revolutionizes immediate clinical diagnosis by
integrating target localization and classification into a single
network and achieving real-time inference speed while
maintaining high accuracy. This is revolutionary for
immediate clinical diagnosis.

YOLO series models have gone through many years of
technological precipitation and architectural innovation, from
the construction of the initial YOLOv1/v2 basic framework to
the current v8 fusion of the anchorless mechanism and
dynamic label allocation strategy [3], which further improves
the accuracy and speed of the balance, and there are significant
differences in the feature extraction ability, the number of
parameters, the computational efficiency, and the interference
resistance of the different versions, and this study will be
conducted on a large-scale dental data set. dataset for
standardization, systematic training and comparison of
mainstream YOLO models, aiming to quantify the difference
in their performance in terms of accuracy and speed trade-offs,
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with the aim of providing empirical data support for the
selection of dental Al-assisted diagnostic system models, and
laying a solid technical foundation as well as reference data
for future multimodal intelligent diagnostic frameworks
integrating two-dimensional X-rays and three-dimensional
CBCTs [4].

1.1.1 Development status of smart healthcare and dental Al

Since the past decade, smart healthcare has transformed
from informationization to intelligence. In the past decade,
hospitals mainly focus on HIS, EMR and other information
systems construction, is now accelerating the evolution of Al
and IoT and the deep integration of big data, in part of the
hospital to implement the whole process of digitalization of
the closed-loop, covering the pre-diagnosis of online triage,
diagnosis of decision-making to support the post-diagnosis of
chronic disease management and remote follow-up. Al pre-
questioning, intelligent quality control, image-assisted
diagnosis, and nursing robots have been implemented in many
places. The vigorous development of its smart healthcare
mainly stems from the breakthrough of core technology,
leaping from assisted diagnosis to predictive intervention. The
University of Hong Kong has developed the world's first
microbiome-based Al system "Spatial-MiC", which realizes a
93% accuracy rate of early caries prediction by analyzing more
than 2,500 plaque samples, a significant improvement over the
traditional full-mouth detection, while at the same time, it has
achieved a 93% accuracy rate of early caries prediction.
Traditional whole-mouth testing has improved significantly,
while the OralCancerPredict tool from the University of Hong
Kong has achieved a 94% prediction accuracy for malignant
transformation of oral white spots/moss-like lesions, resulting
in a decrease in the surgical rate of low-risk patients, and an
extension of the monitoring cycle to half a year. Performance
leaps have also been achieved in real-time processing
performance, with deep learning models (e.g., YOLOvS, U-
Net, etc.) completing the analysis of panoramic slices in a
shorter time-consuming period [S], as well as a caries
detection accuracy of 98%, a 300-fold increase in efficiency
compared to manual.

Al fusion dental detection of its core value is to alleviate the
shortage of dentists, effectively shorten the waiting time of
patients, reduce surgical trauma, improve patient satisfaction,
as well as Al health dentist landing can be through the Internet
to the virtual image of the general public to provide
personalized dental care advice, as well as for the patient to
make a preliminary diagnosis of the effective promotion of its
preventive mechanism.

The development of oral Al is both an opportunity and a
challenge, there may be some bottlenecks in the development
of technology, etc., for example, the hospital labeling
standards are different, each hospital has its own diagnostic
views, resulting in the model generalization can see limited,
followed by the medical intelligence system level problem,
70% of medical intelligence body is still at the level of L1
(basic information processing), where the continuation of the
completion of three rounds of training pre-training, formal
training, and continuation of training. In today's intelligent
medical, as well as oral Al, has had a small effect, has crossed
the proof of concept period, into the actual combat, is currently
in the scale of landing, as well as the value of digging deep in
parallel to the new stage, the market form as well as the future
direction of the market a great deal.
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1.1.2 Overview of the target detection algorithm (YOLO)

Early diagnosis of dental diseases relies on the precise
localization of subtle lesions (e.g., caries, periapical lesions,
root fissures) in X-ray images [6]. Traditional manual
interpretation suffers from pain points such as high subjective
variance, low efficiency (5-8 minutes to analyze a single
panoramic film), and high leakage rate of small targets (34%
leakage rate of apical shadows < 20px). Deep learning target
detection models have become a breakthrough due to their
automated processing capabilities, of which the YOLO (You
Only Look Once) series, with its end-to-end architecture and
real-time inference advantages, has become an ideal
technological path for dental Al-assisted diagnosis. This study
focuses on two mainstream architectures, YOLOvVS and
YOLOVS, and systematically evaluates their performance
boundaries and clinical suitability in dental inspection tasks.

YOLOVS adopts the CSPDarknet53 architecture, which
reduces computational redundancy and improves gradient
flow efficiency through cross-stage local networks (CSPNet).
Its Focus slicing operation extends the input image channel by
4 times to enhance shallow feature extraction. While YOLOvVS
is upgraded to the Darknet-53+C2f module, C2f (Cross Stage
Partial-fractional) retains more gradient flow paths and
accelerates multi-scale feature fusion by combining with SPPF
(Spatial Pyramid Rapid Pooling), which significantly
improves the characterization of fine structures such as
enamel-dentin junction. In terms of the change of detection
mechanism, YOLOVS is based on preset anchor frames and
relies on a priori scale parameters. It is easy to generate false
detection in the overlapping region of teeth, while YOLOvV8
revolutionarily adopts the anchor frame-free mechanism,
directly predicts the offset between the target center point and
the bounding box, and combines with the dynamic label
assignment strategy to make the model adaptive to the
irregular arrangement of teeth, and reduces the false detection
rate of the overlapping region by 21%. In terms of feature
fusion enhancement, YOLOVS uses PANet (Path Aggregation
Network) to realize top-down and bottom-up bi-directional
feature fusion, but it is not responsive enough to small-scale
targets (e.g., early caries), whereas YOLOVS introduces an
improved cross-scale connectivity on the basis of PANet, and
through the in-depth interactions of higher-order feature maps
with lower-order details, it enhance the robustness of multi-
scale tooth detection. In terms of loss function upgrading,
YOLOVS5 adopts CloU Loss (Complete IoU), which takes into
account the overlap region, centroid distance, and aspect ratio,
and YOLOVS innovatively fuses DFL Loss (Distribution
Focal Loss) and CIloUv8, which, by modeling the discrete
probability distribution of the bounding box location, will be
used for the detection of periapical The localization accuracy
of periapical lesions (15 > 15px on average) was improved to
92.4 +1.8px error range by modeling the discrete probability
distribution of the bounding box position [7].

From this, it can be seen that the mechanism of YOLO is
advanced, and this research innovation can be realized by
using YOLO as the cornerstone to build the next-generation
dental diagnosis and treatment brain of "omni-domain
perception, intelligent decision-making, and precise
execution".

1.1.3 Challenges of small target detection in dental images

In the recognition challenges posed by the characteristics of
dental images, dental radiographs and CT images often present
low contrast, high noise and strong artifacts. Small lesions or



tooth structures account for a very small interval of the entire
image, the edge information is weak and easy to confuse with
the background texture, the traditional convolutional network
in the continuous downsampling process will be a substantial
reduction in spatial resolution, small target information is
often submerged in the deep feature map, which leads to the
detection of the recall rate and localization accuracy is greatly
reduced [8].

Dental small target detection requires strong dental
expertise and high-intensity manual input for accurate
labeling, and the labeling is slightly different between different
experts in different hospitals, with poor uniformity [9]. At the
same time, the morphology and location of lesions may vary
slightly between different patients and different collection
devices, so it is difficult to produce large-scale, high-quality
datasets in the process of dataset production. Meanwhile,
small target samples in the dataset are usually much less than
the normal structure, which is prone to cause category
imbalance during model training, making the model tend to be
conservative and leading to easy neglect of tiny regions [10].

In the bottleneck of multi-scale feature fusion, in order to
take into account both large and small targets, most detection
networks introduce mechanisms such as feature pyramid
(FPN) or variability convolution, but in actual dental images,
low-level features have high resolution but lack semantic
information, making it difficult to accurately distinguish
between lesions and noise, and high-level features are
semantically rich but have too low a spatial resolution, making
it difficult to capture small targets, and the fusion strategy, if
it cannot adaptively allocate the If the fusion strategy is not
adaptive in assigning weights, it often leads to "averaging" of
features at different scales, weakening the response of small
targets.

Clinical scenarios require high diagnostic speed and often
require real-time or near real-time feedback results. To
improve inference speed, researchers often prefer lightweight
backbone networks or lower input resolution, which may lead
to weakening of small target visibility. In addition, excessive
pruning or quantization will lead to decreased model
robustness and large fluctuations in performance under
different devices and environments [11].

In summary, the detection of small targets in dental images
faces multi-dimensional challenges, from data acquisition,
dataset production and labeling to network ensemble and
inference deployment need to have a high degree of synergistic
optimization, in the future can be combined with multimodal
information, advanced self-attention mechanisms and semi-
supervised strategies, etc., as well as the standard of
standardization and labeling, the research of this project is
expected to provide a strong support for the accurate detection
of dental micro lesions [12].

1.2 Problem description

Dentistry is highly dependent on radiographic images for
early diagnosis, but traditional manual interpretation still faces
considerable challenges. In terms of efficiency, a single
panoramic film needs to be analyzed by a physician in 5-8
minutes, which leads to a decrease in diagnostic delay and
diagnostic accuracy as the number of oral patients increases
dramatically, and there may be a risk of diagnostic omission
under the physician's high-intensity work, and the basis of
judgment of some oral diseases may be different for different
physicians [13].
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In recent years, there have been several works introducing
deep learning into dental detection, for example, the average
mAP@O0.5 of the U-Net-derived segmentation network is only
0.82, and the mAP drops by 12% in the cross-device test of the
same data; the single-stage detection based on YOLOVS5-s has
a recall rate of only 83.4% in a small public dataset (598
pictures), and the false detection rate of overlapped and
underexposed crowns is more than 10% [14].

Meanwhile, the YOLO family of models has achieved a
balance of mAP0.70+ and 30FPS or more for generalized
target detection, however, there is a lack of systematic version
comparison and ablation studies for small dental targets: The
effects of different generations (YOLOvS5 vs. YOLOVS),
different scales (n/s/m), as well as the input resolution and data
enhancement strategies on the accuracy and speed of tooth
detection have not yet been quantified. Most of the existing
literature is stuck in single-model, single-dataset reporting,
which makes it difficult to provide reproducible benchmarks
for clinical deployment [15].

Therefore, there is an urgent need to carry out a comparison
experiment on automatic tooth detection and localization of
YOLO series based on a unified dataset to systematically
evaluate the differences in detection accuracy, inference
latency, and resource consumption of each version of the
model and analyze its robustness in complex oral imaging
scenarios, so as to provide quantifiable technical references for
smart dental Al applications [16].

1.3 Significance of the study

In this study, we focus on evaluating and comparing the
performance of the YOLO series of models in the task of
automatic detection and localization of dental radiographs.
With a unified dataset, preprocessing process and
experimental configuration, we systematically portray the
comprehensive impact of different versions, scales and
different input resolutions and data enhancement strategies on
the model performance in terms of four dimensions, namely,
detection accuracy, inference speed, resource consumption
and small target recall [17].

This study will not only provide performance benchmarks
of YOLO's different generations and scales in dental image
detection tasks, but also reveal the key bottlenecks and
optimization paths in small target detection and real-time
deployment. By quantifying the tradeoffs between different
strategies in terms of accuracy, speed, and resource
consumption, we provide clinical device integrators and
algorithm engineers with a reproducible, data-supported
decision basis for model selection and deployment, and
provide solid technical support for the landing of smart dental
Al systems [18].

Theoretically, this study fills some of the gaps in the field
and enriches the theory of small target detection; at the
application level, this study improves the efficiency of the
clinic and assists the diagnostic reliability; from the economic
point of view, this study effectively reduces the cost of medical
care, promotes the development of the smart dental industry,

and has a great significance in promoting the
commercialization of the Smart Dental Al system [19].
Existing studies on dental radiograph analysis

predominantly report single-model results on small, single-
center datasets without unified training/evaluation protocols or
cross-generation comparisons (e.g., YOLOv5 vs. YOLOvVS at
matched scales). Definitions and measurements for tiny



lesions are often inconsistent with dental imaging
characteristics; augmentation choices are rarely justified with
ablations; and deployment metrics (latency, FPS, memory,
CPU-only throughput) are underreported. These limitations
hinder fair benchmarking and practical translation to chairside
settings.

1.4 Purpose of the study

This study aims to deeply evaluate and compare the
applicability and performance of the YOLO series of target
detection models in dental X-ray imaging scenarios through a
series of well-designed experiments. Specifically, we selected
two iterations of YOLOvVS and YOLOVS, which are widely
used in industry and academia, and tested three scale
configurations of Nano(n), Small(s), and Medium(m) for each
of them to cover the performance space from lightweight to
medium complexity models. To ensure the fairness and
reproducibility of the experimental results, all models are
trained and validated on the same dental radiograph dataset,
and the data preprocessing, annotation format and training
script are unified to ensure that the comparative analyses are
only affected by the differences in the model structure and
hyperparameters.

In terms of quantitative evaluation, this study compares
three major dimensions: first, the detection accuracy,
including the commonly used average accuracy (mAP@0.5)
and mAP@0.5:0.95 for small targets; second, the inference
efficiency, with single-image inference frame rate (FPS) and
latency (Latency) as the core metrics; and third, the resource
consumption, while the GPU graphics memory peak, the
number of model parameters, and the number of Floating Point
Operations (FLOPs) to measure the hardware pressure of the
model in real deployment. In addition, we will conduct a
systematic study on the detection effects of input resolution
(e.g., 320 x 320, 640 x 640, 1024 x 1024) and data
enhancement strategies (including Mosaic splicing, MixUp,
stochastic affine transformation, and illumination and contrast
perturbation, etc.) on the detection of small-sized teeth and
lesion regions, in order to reveal the effects of different
preprocessing schemes on the detection performance of
models of different sizes. The present study proposes a unified
and open-source.

In this study, we propose a unified and open-source
experiment pipeline covering model training, validation,
inference, and resource monitoring modules, which supports
one-click reproduction of all comparison experiments using
the command line. The experimental results will help us
answer the following key questions: Can the lighter YOLOv5n
or YOLOvVS8n be used to meet the demanding real-time and
computational resource requirements in the dental office,
while ensuring sufficient detection accuracy? What is the
compromise between accuracy and speed when dealing with
complex tooth structures and small lesion areas in different
versions of the model? Do multi-scale inputs and data
enhancement strategies provide consistent results for small
target detection across different model sizes?

Through the comparative analysis, we will provide detailed
performance benchmarks and optimization recommendations
for model selection and deployment of smart dental chairside
Al systems, helping clinical device integrators to make the
optimal trade-offs between model accuracy, inference speed,
and system cost. At the same time, this study open-sources the
complete experimental code and data processing flow,

providing a reproducible and scalable technical framework for
subsequent researchers in related fields, and promoting the
further realization and application of intelligent diagnostic
technology for dental imaging [20].

1.5 Research questions

Whether there are significant differences in the performance
of different generations of YOLO (YOLOvVS5, YOLOvS)
models in terms of detection performance as well as dental
detection accuracy (mAP@0.5, Precision, Recall).

What is the trade-off between model size (n/s/m) and input
resolution (512,640,768) on detection performance and
inference speed?

Whether the optimal model can meet chairside real-time
requirements in a GPU/CPU environment?

How much enhancement strategies such as Mosaic, MixUp,
etc. improve the recall of small dental targets?

1.6 Research objectives

Training uses input 640>, AMP on, seed 42, and the
following augmentations: Mosaic (p = 0.5), MixUp (p = 0.3),
Random affine (rotation + 10°, scale + 10%, translation + 5%)),
Horizontal flip (p = 0.5), and HSV jitter (+ 0.1 per channel).
Test-time augmentation is disabled. We perform step-wise
ablations by disabling one transform at a time from the full
pipeline—i.e., —-Mosaic, —-MixUp, —Affine, —Flip, -HSV—and
report the change in mAP@0.5, mAP@0.5:0.95, and Recall
(tiny-lesion subset) relative to the full pipeline.

1.7 Theoretical and analytical framework
1.7.1 Theoretical foundations

Table 1. Theoretical foundations

Theory/Model Key Points Fits with this Study

Direct regression of YOLO is single-

. category + ;
Single-stage g stage detection and
4 bounding box

target detection - meets the need for

coordinates on " L
theory real-time" chairside

Feature Pyramid
Network
(FPN/BI-FPN)

Theory of small
target detection

Real-time
evaluation
framework

feature map, end-to-
end, high-speed

Multi-scale feature
fusion, preserving
shallow fine-
grained information

(MImprove
resolution

(2)Enhance shallow
features (3)Targeted
data enhancement

Precision-speed-
resource three-
dimensional
synthesis

dentistry (> 20 FPS)

Teeth are very small
targets (=~ 1-3% of
area) in panoramas,
and multi-scale
fusion is essential to
improve recall
As an ablation
dimension imgsz
512/640/768;
Mosaic, MixUp, and
other enhancement
strategies.
Reasoning, FPS,
VRAM occupancy,
and mAP are
incorporated into the
index system at the
same time

1.7.2 Conceptual framework

From Table 1 and the flowchart in Figure 1, the advantages
of this framework include: unified pipeline to ensure input and
super reference consistency and reproducibility, accuracy-



speed dual indexes to fit the chairside real-time application
scenarios, avoiding only spelling mAP, and multi-dimensional
ablation (model version x resolution X enhancement) to help
find the optimal combination and explain the source of
performance enhancement quantitative + qualitative
combination:  statistical  significance  verification +
visualization of missed images, more reliable conclusions.

Tooth X Ray
Mask — BBox

unify YOLO format

HH

data enhancement
+ Mosaic
« MixUp

l

divide train / val / test

I YOLOv8m I

YOLOvSn |

YOLOvSs

YOLOv5m

YOLOv8n

A

YOLOv8s

FPS / video
memory

l

mAP / Precisien / Recall

Optimal configuration
conclusion

Figure 1. Conceptual framework
1.8 Definition of terms

Table 2. Definition of terms

Definition
Single-stage target detection network that
directly regresses target frame and

Terminology

YOLO (You Only

Look Once). category probabilities to achieve real-time
detection
MAP (mean Mean Average Precision at different loU

thresholds; mMAP@0.5 means loU=0.5
The proportion of true positives to

Average Precision)

Precision predicted positives.
Proportion of true positives to actual
Recall L
positives
FPS (Frames Per Frame rate of single image inference,
Second) used to measure real-time performance
loU(Intersection A measure of the overlap between the
over Union) prediction frame and the true value frame

Objects with an area of < 32 %32 pixels
in an input resolution of 640=teeth are
usually small targets in panoramas

Small Objective

Table 2 summarizes key terminology in object detection,
including metrics such as mAP, precision, recall, speed (FPS),
and the IoU overlap measurement, all essential for evaluating
model performance.

1.9 Study limitations

In this study, the automatic detection performance of YOLO
series models in dental X-ray images is deeply explored
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through systematic experimental design and rigorous process
comparisons, but there are still unavoidable multifaceted
limitations, the datasets experimented in this study are all from
the public dataset Kaggle on the two-dimensional dental
radiographs images (Teeth Segmentation on dental X-
rayimages), which leads to a single modality of data and a
centralized source of dental images, and this single modality
leads to the model learning only the texture and edge features
of tooth structure in planar projection during training, and
lacks the ability to model three-dimensional structure and
spatial depth information. In reality, oral images increasingly
rely on 3D volumetric data such as cone-beam CT (CBCT),
and the 2D feature extraction mechanism of the YOLO family
of models is difficult to directly migrate to the 3D semantic
space. Therefore, the generalization ability of the current
models has not been verified in scenarios of 3D tasks such as
root canal detection and stereoscopic lesion localization. In
addition, there are differences in image clarity, exposure, and
imaging angle in the publicly available dataset, and although
the real clinic conditions are simulated to a certain extent, there
are still sampling biases in terms of racial differences, tooth
type distribution, and device heterogeneity, which limit the
wide applicability of the results.

The number of images used in this study is in the small to
medium scale, and basically, all of them are labeled by a single
dental institution. Such a data scale is more difficult to cover
all the variations of tooth physiology in the target detection
task, especially for the few positions (e.g., wisdom teeth or
stumps) with fewer samples of abnormal states (e.g., severe
caries, fracture), which affects the long-tailed expressive
ability of the model. At the same time, single-agency labeling
may carry the subjective judgment criteria of a certain person
or a certain type of dental expert, which is reflected in the
following: the trade-off when the boundary of the lesion is
unclear, the inclusion of part of the tooth position in the
labeling scope, and the subjective division of the definition
and shape of the lesion, and so on. Such labeling bias not only
affects the stability of the supervisory signal of the training
process but also affects the interpretive validity of the
assessment metrics, which may show a significant degradation
of accuracy in cross-institutional testing.

In terms of inference performance and computing
environment, inference speed and resource consumption are
one of the key indicators of concern in this study, and the
experiment relies on the equipment of NVIDIA RTX 5080 TI
Laptop GPU (18G) and Intel Core Ultra7 255HX with Inter Al
Boost NPU high-performance laptop platforms, which,
although representative to a certain extent. However, it does
not fully cover the deployment conditions of high-end,
embedded, or mobile devices. In application scenarios such as
smart chairside systems, handheld X-ray diagnostic devices,
or edge computing units, the commonly used hardware is the
NVIDIA Jetson series (e.g., Xavier NX), ARM CPU+NPU
architectures, or mid-to-low-end integrated graphics
platforms. In these environments, existing model architectures
may not run smoothly due to arithmetic limitations,
insufficient storage, or lack of support for GPU-accelerated
frameworks. In addition, this study does not evaluate the
inference performance under acceleration frameworks such as
multi-threading, ONNX, TensorRT, Open VINO, etc., and
lacks insights into performance bottlenecks and optimization
space in real deployments.

In addition, this study focuses on the performance
comparison of Nano, Small, and Medium specifications in the



YOLO series, which helps to evaluate the difference of
lightweight models in dental small target detection, but does
not include other representative detection architectures that
have developed rapidly in recent years. For example,
Transformer-based DETR, Anchor-Free FCOS, or YOLOV9
with multi-task learning were not included in the comparison.
Especially in small target detection tasks, global attention
mechanisms like those introduced by DINO-DETR have an
inherent advantage in capturing contextual information in tiny
regions. The FCOS-like model, on the other hand, may be
more suitable for the task of localization of fuzzy contours and
irregular structures, such as teeth, because of the abandonment
of the anchor frame design. The lack of comparison of these
advanced methods is not conducive to a comprehensive
portrayal of algorithmic trends and best practices for detection
tasks under dental images. Also, the capability of YOLO series
in segmentation and keypoint detection is not developed,
which limits the analysis of complex tasks (e.g., periodontal
measurements, crown reconstruction).

Secondly, the experiments were completed under offline
dataset conditions and were not prospectively validated in real
dental environments. The results of the experiments may not
be optimal, and there may be situations such as limited image
quality, batch acquisition of multiple patients with varying
image quality, ambient noise in the hospital room interfering
with the system performance, and inconsistent demands for
real-time physician interaction, etc. This study pursues
scientific rigor and engineering reproducibility as much as
possible in the design of the experiments. This study pursues
scientific rigor and engineering reproducibility as much as
possible in the experimental design, but due to the limitations
of dataset size, annotation consistency, hardware testing range
and clinical integration conditions, the results of the study and
the actual results may have a little bit of error, and the future
work needs to increase the number of datasets and the quality
of the dataset, to carry out the deepening of expansion of the
multicenter annotation, multi-modal modeling and cross-
platform deployment, and to develop YOLO series of models
as the YOLO series of models are continuously developed.
With the continuous development of the YOLO series of
models, we will continue to advance towards a smart dental Al
system with practicality and deliverability.

2. OVERVIEW OF THE CURRENT SITUATION

2.1 Research status and bottlenecks of small target
detection in medical imaging

Detection of small lesions (e.g., <5 mm lung nodules,
clustered microcalcified breast foci) in medical images is the
core of early diagnosis. Compared with natural images,
medical images present three major characteristic attributes:

Information dimension compression: CT/MRI contains
only 12-16 bits of grayscale information (natural images are
24-bit RGB), which results in loss of texture details.

Contrast degradation: the difference in HU values between
early lesions and normal tissue is often <50 (e.g., only 8-15
HU of gray difference in enamel caries areas).

Noise complexity: metal artifacts (streak noise), motion
artifacts (patient displacement), and radiation scattering noise,
superimposed interference.

In this context, medical small target detection faces a triple
scientific challenge, firstly, the feature dilution effect, the
VGG16 network undergoes 5 %2 sampling, the 20 > 20px
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target feature response area shrinks to 1.25 X 1.25px, the
effective information entropy decays by 92%, and secondly,
the sample is extremely imbalanced, a single chest CT
contains >10° background pixels, and nodal target only
accounts for 0.003% -0.01%, with a negative/positive sample
ratio of >10%:1, and a context-dependent paradox, where tiny
calcified foci need to be diagnosed in conjunction with breast
ductal structures, but a localized detection window (e.g., 32 x
32px) cannot cover the complete anatomical unit (which needs
to be 256 x 256px on average).

Midway through the technology evolution vein, there are
main method categories, representative technologies,
mechanism innovations, and medical application effects,
which are mainly shown in Table 3.

2.2 Technical deconstruction of deep learning methods for
small target detection

2.2.1 Innovative iterations of multi-scale fusion architecture

Feature pyramid network (FPN) fuses deep semantics with
shallow details through top-down path, but its architecture still
exists with triple defects, deep feature maps (e.g., stride=32)
need to be up-sampled by bilinear interpolation to the shallow
size (stride = 4), and the process introduces a low-pass filtering
effect, which leads to the loss of high-frequency details (e.g.,
enamel cracks, microcalcified points), which is demonstrated
by quantitative experimentation PSNR < 28.6dB (ideal value >
40 dB) edge sharpness attenuation > 42% (mean Sobel
gradient modulus decreased to 31.7 +=5.8% of the original
value) after upsampling on 20 > 20px targets and FPN only
allows deep-to-surface unidirectional feature transfer, which
leads to ignoring the complementary value of shallow features
to deeper semantics, which is manifested as molar occlusion
in tooth detection Surface texture (shallow features) cannot
optimize the identification of periapical lesions (deep
semantics), and its feature fusion efficiency formula can be
referred to as follows:

”Ftop +F1at||1
[|Feopll1 + [[Fraellx

Efuse =

2.3 Bidirectional cross-scale connectivity mechanism

BiFPN (Weighted Bidirectional Feature Pyramid Network)
is designed through dual pathway closed loop design, so that
the design is conducive to the defects of customer service FPN,
its dual pathway closed loop design is divided into the
following two categories:

Bottom-up path (shallow—deep): conveys edge details and
enhances small target localization.

Top-down path (deep—shallow): inject
information to enhance classification confidence.

semantic

Downsampling
feedback

— — 1 expart

Downsampling
feedback

Middle-level

Shallow features features

+  Deep features

export

Figure 2. BiFPN structure diagram

As illustrated in Figure 2, the feature reuse rate is increased
to 85.3% using this structure, which is a 25.4 percent increase
compared to FPN.



Table 3. Technology evolution

Representative

Method Category Technology

Mechanism Innovation

Medical Application Effect

Multl-sca_le EPN/PANet/BIEPN Establishment of bl-dlrectlona_l transmission Lung nodule recall rose 12.8%
feature fusion pathway for deep and superficial features
Attention CBAMY/Coordinate Channel-space two-dimensional feature Microcalcified foci detection F1-score
Mechanism Attention weighting increased by 0.15
Deform_able Deformable Conv v2 Adaptive sampling point learning deformable Vessel curvature segmentation Dice up
modeling features by 7.3
Global Context . Shift window self-attention captures long-range Fundus hemorrhagemAP@0.5 up
- Swin Transformer .
Modeling dependencies 8.9%

2.4 Current status of YOLO series adaptation in medical
small target detection

Regarding the YOLO series model architecture in the
medical adaptation challenge there are Anchor mechanism
defects, the preset Anchor size and pressure root morphology
of the mismatch, may lead to overlapping teeth in the detection
of false detection rate of more than twenty-five percent, and
secondly, the YOLO model may have too high a
downsampling rate, in the YOLOvVSs experienced 5 x 2
sampling (total stride = 32), 15 % 15px targets in the feature
map, and the downsampling rate is too high, the 15 <15 px
targets in the feature map. 15px target is left with only 0.47 x
0.47 px in the feature map, followed by insufficient domain
generalization ability, with the ImageNet pre-trained model
showing a 12.7% mAP attenuation domain offset error in the
dental film test set.

2.5 Lack of systematic comparative research and
innovative points of this study

Throughout the current research on deep learning-based
detection of small targets in dental images, although there have
been several typical cases of automated identification of tooth
positions, caries shadows, periapical foci, etc. using single-
stage networks such as YOLOVS, YOLOVS, etc., the research
community is still faced with a series of key gaps that have yet
to be resolved, and there is an urgent need for a systematic
approach to the model comparison, evaluation metrics, data
augmentation, deployment optimization, generalization
validation, interpretability, and clinical integration. and
interpretability, and clinical integration. First, at the model
comparison level, most studies are limited to reporting the
accuracy of a single version or a few YOLO sub-models (e.g.,
YOLOvSs, YOLOvSm) on a specific dataset, but there is a
lack of data on the accuracy of the YOLOVS vs. YOLOVS
models under the same training process, the same hyper-
parameters, and the same hardware environment, for different
generations of YOLOVS5 vs. YOLOVS, as well as for different
scales of YOLOvS, YOLOvS, Nano, Small, Medium, and
YOLOVS. The lack of parallel side-by-side comparison of
YOLOVS5 vs. YOLOv8 models of different generations (v5 vs.
v8) and different scales (Nano, Small, Medium, Large) in the
same training process and the same hardware environment
makes it difficult to make an optimal compromise between
"lightweight real-time inference" and "high-precision
detection", and to quantify the performance of the sub-models
in the detection of carious fissures at the early stage. It is also
impossible to quantify the performance gap between the sub-
models in detecting extremely small targets such as carious
fissures at the early stage. Second, the existing definition of
small targets follows the standard of the COCO dataset (32 %
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32 pixels or less), while the typical resolution of a dental
panoramic radiograph is usually 2000 x 1500 or higher, and
this standard obviously does not match the real-life scenarios
of a single tooth (accounting for only 0.5% to 2% of the total
number of teeth) or even smaller early foci (usually with an
area of less than 20 x 20 pixels), so it is necessary to establish
a multilevel hierarchical evaluation system based on the
resolution of the dental image. There is an urgent need to
establish a multi-level hierarchical evaluation system based on
dental image resolution (e.g., < 20 px, 20-50 px, 50-100 px, >
100 px) and to combine Precision, Recall, Average Recall
(AR) and other metrics to quantify the detection effect on
different scales and tooth positions, so as to truly reflect the
detection effect on different teeth. The detection effect on
different scales and different tooth positions can truly reflect
the model's ability to recognize small targets. Third, in terms
of data enhancement and difficult case mining, although most
studies have enabled generic strategies such as Mosaic,
MixUp, CutMix, stochastic affine, and color perturbation,
there is a lack of systematic understanding of the relationship
between the enhancement probability (p € [0.3, 0.7]),
enhancement combination (single, double, and multiple), and
the recall rate of the small targets (Recall; small) between
systematic ablation and grid search; meanwhile, the utility of
online hard case mining (OHEM) and resampling methods
with weights to enhance the detection rate of tiny lesions for a
few lesion samples with long-tailed distributions or rare tooth
positions has not yet been quantitatively validated. Fourth,
performance evaluation at the deployment level is still limited
to high-performance desktop GPUs (e.g., RTX 3090/RTX
3060) and Intel i7-series processors, with little investigation of
inference performance, storage consumption, and power
consumption on embedded edge devices (Jetson Xavier NX,
ARM NPUs, and low-power FPGAS) or on the mobile side;
meanwhile, while quantization acceleration schemes such as
INTS, FP16 and other quantization acceleration schemes can
significantly improve the inference speed, but they are often
accompanied by 5% to 10% or even higher precision loss, and
the risk of a significant drop in the recall rate is more likely to
occur in the small target detection task, but there is a lack of
hierarchical evaluation of quantization errors at different target
scales and different class levels. Fifth, there is almost no cross-
domain generalization experiment for multi-center, multi-
device and multi-modal data. Existing publicly available 2D
dental films are mostly from a single hospital or device, and
real-world tests have not yet been conducted on the robustness
and migration capability of the models under different
manufacturers' equipment parameters, different exposure
voltages, different oral structures of different ethnic groups,
and different shooting processes, not to mention the migration
of the 2D detection models to multi-modal scenarios such as
CBCT 3-D volumetric images, intraoral scans, or ultrasound



data, and so on. or ultrasound data. Sixth, the progress of
interpretability studies is limited, and clinicians' trust in model
prediction results depends on the visualization of the decision-
making basis, such as Grad-CAM, Layer-CAM, and other
activation maps have not yet been included in the mainstream
research on the visual analysis of the detection frame aligned
with the core of the lesion; and there is a lack of dynamic
confidence uncertainty assessment and secondary review
mechanism for cases of misdiagnosis and omission, which
makes it difficult to form an effective risk control and review
mechanism in the clinical process. It is difficult to form
effective risk control and collaborative review by experts in
the clinical process. Finally, from the perspective of real
clinical workflow, most of the studies are stuck in offline data
evaluation, and have not yet seamlessly connected the model
with dental information management system (DIS, EMR) or
digital chairside system, nor designed human-computer
interaction interface, doctor's editing and annotation and
feedback closure, and even more lack of prospective, clinical
pilot evaluation in a real environment. To address the above
gaps, future research must construct fair comparison
benchmarks for the whole series of multi-scale models,
including YOLOvVS5 and YOLOvVS, on the same platform,
formulate small-objective hierarchical evaluation criteria
suitable for dental imaging, quantify the actual benefits of data
enhancement and difficult case mining, and systematically
evaluate the performance-accuracy of different quantization
and acceleration strategies on various types of hardware.
compromise, carry out multicenter, multimodal, and cross-
domain generalized validation, introduce interpretability and
uncertainty quantification methods, and deeply integrate and
validate with clinical workflows, in order to truly promote the
smart dental chairside Al system from the laboratory to
widespread clinical applications.

2.6 The lack of systematic comparative research in the field
of dental medicine and the significance of this study

With the rapid development of artificial intelligence
technology and the deepening of medical digital
transformation, dental image analysis technology based on
deep learning has become an important research hotspot and
clinical application direction in the field of dentistry. In this
context, target detection algorithms show great application
potential and clinical value in automatic tooth identification,
lesion detection, and treatment planning. However, despite the
emergence of relevant research results, the field still faces
many challenges and deficiencies in algorithm selection,
performance evaluation and standardized application,
especially the lack of systematic algorithmic comparative
research, a status quo that seriously restricts the further
development and clinical translation and application of dental
Al technology. Dental image analysis, as a highly specialized
medical application field, has complex and diverse image
features, including the low-contrast characteristics of X-rays,
the aberration effect of panoramic films, and the uneven
illumination of intraoral photographs, etc. These specificities
often make it often difficult for general-purpose target
detection algorithms to achieve the accuracy and stability
required by clinical requirements when directly applied. At the
same time, the teeth as detection targets are characterized by a
large number (32 adult permanent teeth), dense arrangement,
large-scale changes, and mutual occlusion, etc. In addition,
there are significant differences in tooth morphology,

2868

arrangement, and pathological state of different individuals,
and all of these factors put forward higher requirements on the
detection ability of the algorithms. More importantly, dental
clinical applications require high detection accuracy and
reliability, and any misdetection or omission may affect the
diagnostic accuracy and treatment plan formulation, which
requires the selection and optimization of the most suitable
algorithmic architecture to ensure the clinical practicability of
the system.

Among many target detection algorithms, the YOLO (You
Only Look Once) series of algorithms has been widely noticed
and applied in the field of medical image analysis due to their
end-to-end detection framework, good real-time performance
and relatively high detection accuracy. From the proposal of
YOLOvV1 in 2016 to the continuous iteration of YOLOVS,
YOLOVS and other versions in recent years, the YOLO series
of algorithms has experienced significant improvements and
optimizations in terms of network architectures, training
strategies, loss functions, and so on. In particular, YOLOVS,
as an important milestone version of the series, has
significantly improved the small target detection capability
and overall detection accuracy by introducing innovative
designs such as the Focus module, CSP (Cross Stage Partial)
structure, and PANet (Path Aggregation Network), and has
achieved satisfactory results in a number of medical YOLOVS,
as the newest YOLOVS, has achieved satisfactory results in a
number of medical applications, including dental imaging.
YOLOVS, as the latest generation algorithm, further optimizes
the network architecture on the basis of YOLOVS, adopts the
more advanced C2f module instead of the C3 module,
introduces the design of a decoupled head, and improves the
label allocation strategy, which should theoretically lead to
better detection performance, especially in dealing with
complex scenarios and small targets. These technological
innovations should theoretically lead to better detection
performance, especially in handling complex scenes and small
targets. However, there is still a lack of systematic research
and clear answers to the key questions of how these theoretical
advantages perform in practice in the specific application area
of dental imaging, how much the performance difference
between the two generations of algorithms is in the task of
tooth detection, and how to choose the most suitable
algorithmic version in different clinical scenarios.

The current research status quo in the field of dental Al
shows that most scholars tend to select algorithms based on
personal experience, technical familiarity, or simple literature
research when conducting research related to dental detection,
and lack a scientific basis for selection based on objective
performance comparisons. This status quo leads to problems
in several aspects: first, it is difficult to directly compare
results between different studies because different algorithms,
datasets, and evaluation criteria are used, which limits the
accumulation of knowledge and technological advances in the
field; second, the arbitrariness of algorithm selection may
cause researchers to miss excellent algorithms that are more
suitable for a specific task, which affects the quality and
application value of the research results; third, the lack of a
standardized benchmarks for algorithm comparison makes it
difficult to objectively verify the advantages of new
algorithms, and also brings troubles to the algorithm selection
of subsequent researchers. More importantly, in the process of
clinical translation and application, doctors and technology
developers often need to select the most suitable algorithm
according to specific application scenarios, hardware



conditions and performance requirements, and the lack of
systematic comparative research support makes this choice
blind and inefficient. For example, in a chairside real-time
diagnostic system, more attention may be paid to the inference
speed and computational efficiency of the algorithm, whereas
in an offline image analysis system, more attention may be
paid to the detection precision and recall rate, and in a mobile
application, the model size and power consumption may be the
key considerations. These different application requirements
require a comprehensive performance evaluation and
comparative analysis to provide scientific selection guidance.

From the perspective of technological development,
YOLOvVS5 and YOLOVS represent two important stages in the
development of the YOLO algorithm, and the technological
differences and performance improvements between them are
of great research value and practical significance. The main
improvements in the architectural design of YOLOVS include:
the adoption of a more efficient C2f module, which, by
optimizing the gradient flow and feature fusion mechanism, is
theoretically able to improve the learning ability and detection
accuracy of the model; introducing a decoupled detection head
design to separate the classification and regression tasks,
which helps to alleviate the conflict between the two tasks and
improve the detection performance; improving the data
enhancement strategy, especially turning off Mosaic
enhancement at the late stage of training, which is an
adjustment of the strategy aimed at improving the quality of
the model's convergence; and optimizing the design of the loss
function, adopting more advanced methods of label
assignment and loss calculation methods. All these technical
improvements point to better detection performance in theory,
but how effective they are in practice in the specific domain of
dental imaging needs to be determined by systematic
experimental validation. Especially considering the specificity
of dental images, such as the low contrast of radiographs,
geometric distortions in panoramas, and complex backgrounds
in intraoral photographs, the question of whether these new
techniques can perform as expected in these challenging
scenarios and whether the magnitude of the improvements is
sufficient to justify the upgrades needs to be answered by a
detailed comparative study.

In addition, the significance of the algorithmic comparative
study is also reflected in the guiding direction for subsequent
algorithmic optimization and improvement. By deeply
analyzing the performance of YOLOvS and YOLOVS in the
tooth detection task, the respective strengths and weaknesses
can be identified, thus providing a basis for targeted algorithm
improvement. For example, if it is found that YOLOvVS
performs better in large-scale tooth detection, while YOLOvS
has an advantage in small-target lesion detection, then
consideration can be given to fusing the strengths of the two
to design specialized algorithms that are more suitable for
dental applications. At the same time, by analyzing the
performance differences between the two generations of
algorithms in terms of different types of errors (e.g.,
misdetection, omission, localization bias, etc.), specific
improvement directions can be provided for the design of the
loss function, the optimization of the training strategy, and the
improvement of the post-processing method. This idea of
algorithm optimization based on comparative analysis is more
scientific and efficient than blind parameter adjustment.

From the perspective of industrialized application,
systematic algorithm comparison research is of great
significance in promoting the commercialized application of
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dental AI technology. In the actual product development
process, technology selection is a key decision point, which
directly affects the product performance, development cost
and market competitiveness. Through comprehensive
algorithm comparison, it can provide enterprises with
scientific guidance on technology selection, reduce
development risks and improve the probability of success. At
the same time, standardized evaluation methods and
benchmark test results also help establish industry standards,
promote fair competition between products from different
vendors, and promote the healthy development of the entire
industry. Especially in the context of increasingly stringent
regulation of medical devices, algorithm selection and
performance validation based on scientific comparative
studies will become an important basis for product registration
and market access.

In summary, conducting a systematic comparative study of
YOLOvS and YOLOvV8 in the task of automatic dental
detection and localization not only has the academic value of
filling the gaps in the current research but also has the
important practical significance of promoting technological
advancement, guiding engineering practice, and facilitating
industrial development. This study will provide a standardized
algorithm evaluation framework for the field of dental Al,
provide a scientific basis for technology selection for
subsequent researchers and engineering practitioners, and
make important contributions to the development and
application of dental digital diagnosis and treatment
technology. With the aging trend of the population and the
growing demand for oral health, such a fundamental
comparative study will provide important technical support to
meet the growing demand for oral healthcare services, and has
important social value and economic significance.

3. RESEARCH METHODOLOGY
3.1 Research background

3.1.1 Data set sources and characteristics

This study adopts the high-quality dataset "Teeth
Segmentation on Dental X-ray Images", which is publicly
released on the Kaggle platform, as the experimental data
source. This dataset is specifically designed for the task of
tooth segmentation on dental X-ray images.

The dataset is of the type Panoramic X-ray and Periapical
X-ray, with pixel-level segmentation annotation, containing
the precise contour information of each tooth, and its image
quality is relatively high, with high-resolution digitized X-ray
images, good contrast and clarity, and its data volume covers
different age groups and different dental conditions. The data
volume covers images of patients of different age groups with
different dental conditions, in addition to its real clinical
environment acquisition, which has practical application value
as well as research reference value.

The reason for choosing this dataset is its authority and
reliability, which comes from professional medical institutions
for quality annotation, and the quality has also been verified
by professional dentists, and its dataset is highly standardized,
with a unified annotation format and quality, which is
convenient for us to train algorithms and evaluate
performance. In terms of research comparability, as a public
dataset, it is conducive to objective comparison with other
research results, and in terms of task suitability, although the



original annotation is in segmentation format, it can be
converted to the bounding box annotation data for target
detection.

3.1.2 Hardware environment configuration

The high-performance mobile work laptop used in this
research as a computing platform is configured as follows:

GPU computing unit:

Graphics card model: NVIDIA GeForce RTX 5070Ti
Laptop GPU

Memory capacity: 18GB GDDR6

CPU compute unit:

CPU Model: Intel Core Ultra 7 255HX

Software environment:

Operating System: Windows 11 64-bit

CUDA version: CUDA 11.8

cuDNN: 8.7.0

PyTorch: 2.0.1 +11.8

Python: 3.10.6

3.2 Research objects

This study takes dental panoramic X-ray images (panoramic
X-rays) as the core detection object, and designs a set of
systematic experimental processes around real and complex
clinical imaging conditions: from data acquisition and
preprocessing, to label generation and format conversion, to
model selection, training parameter tuning and multi-
dimensional performance evaluation, and finally to form a
comparative analysis of the results to provide quantifiable
technological benchmarks for the Smart Dental chairside real-
time detection The final result is a comparative analysis, which
provides quantifiable technical benchmarks for the smart
dental chairside real-time detection system. The following is a
more in-depth description of each of the above aspects.

First, in terms of data sources and characteristics, the "Teeth
Segmentation on Dental X-ray Images" dataset, which is
publicly available on Kaggle, is used in this study. The dataset
contains 598 panoramic dental films from different
individuals, including young, middle-aged and elderly people,
and the filming equipment includes a tabletop digital dental
camera. The data set contains 598 panoramic dental images
from a variety of individuals, including young, middle-aged,
and elderly people, and was captured with a tabletop digital
radiograph and a handheld portable radiograph, and with a
wide range of exposure parameters (50 kV-90 kV, 5 mA-8
mA), which resulted in a wide range of overall image
brightness and contrast. Differences in the degree of mouth
opening, jaw angle, and postural stability of different patients
also resulted in slight motion artifacts and non-uniform
exposure in some images. In addition, common clinical metal
restorations (e.g., metal crowns, metal inlays, and post-
endodontic fillings) can form high-density artifacts in
radiographic images, which can severely obscure crown and
root contours. Through visual inspection and statistical
analysis, the research team found that metal artifacts in the
dataset appeared at a rate of about 30%, and the difference in
the gray scale of the background tissue formed by different
artifact intensities was 20-40%, which greatly challenged the
ability to identify microdental lesions.

In response to the above multi-source and diverse raw data,
the first step of this study was a rigorous pre-processing
process: firstly, all images were unified to do grayscale
normalization, linearly mapping pixel values to the range of
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[0,1], and local contrast was enhanced using CLAHE
(Contrast Constrained Adaptive Histogram Equalization)
technique to highlight the boundary between enamel and
dentin; subsequently, the high-brightness metal artifact region
was applied with adaptive threshold filtering, removing
isolated noise using morphological open and close operations,
and compensating overexposed regions with grayscale
compensation using curve fitting in order to recover tooth
contours obscured by artifacts as much as possible. In order to
improve the accuracy of the subsequent inspection frame
generation, a uniform geometric correction was also
performed on each image, including perspective correction
based on the fixed calibration plate of the camera equipment
and automatic horizontal calibration by detecting the
horizontal line through the Laplace operator to ensure that the
tilt angle of all the images did not exceed +1° in the horizontal
direction. Upon completion of this stage, all images were
scaled to an overall size of 2048 pixels in width and 1024
pixels in height, and the original aspect ratio was retained to
maximize the retention of effective pixel information when
subsequently standardizing the input size.

In the process of label generation and format conversion,
this study makes full use of the original pixel-level
segmentation mask (mask) information in the dataset.
Specifically, OpenCV's findContours function is used to
extract the set of contour points of each tooth segmentation
region; then the minAreaRect method is used to calculate the
minimum outer rectangle for these contours, and the resulting
rectangle's center coordinates, width and height, and rotation
angle are converted to the corresponding four-point
coordinates. Since YOLO series networks natively support
axis-aligned bounding box, in this study, based on the four-
point coordinates of the rotated rectangles, the corresponding
minimum horizontal outer rectangles are further computed,
and their center coordinates and width and height are projected
into axis-aligned format. Finally, all the detection frames are
converted into normalized txt files according to the YOLO
annotation specification: each line contains five fields: target
category (in this task, the category is always "teeth"),
x_center_norm, y_center norm, width norm, height norm,
and height norm. norm, x center norm, y center norm,
width_norm, height norm, and so on, to ensure the
compatibility with YOLOvV5 and YOLOVS training codes. The
whole label conversion process is parallelized by multi-
threaded processing, and the average time of label generation
for each image is controlled within 20 ms, which meets the
demand of large-scale data batch conversion.

In terms of data partitioning, this study follows the classical
three-stage design of training/validation/testing set: 598
images are randomly divided into 419 training sets, 120
validation sets, and 59 testing sets according to the ratio of
7:2:1, to ensure that all three have consistent statistical
distributions in terms of artifacts occurrence rate, patients' age
distribution, and types of filming equipment, etc., so as to
avoid the performance evaluation errors introduced by
partitioning bias. In addition, a 5-fold cross-validation is
further implemented within the training set to minimize the
chance effect of single segmentation, and the mAP mean and
standard deviation of different folds are combined for decision
making in the final model selection.

In terms of training strategy and model selection, this study
focuses on comparing the performance of two generations of
mainstream YOLO frameworks, YOLOvS and YOLOvVS, on
three scales of Nano (n), Small (s) and Medium (m). YOLOVS



adopts CSPDarknet53 as the backbone network and introduces
multi-scale feature fusion in PANet; YOLOvVS improves the
CSP module of the backbone, adds a hybrid pyramid structure
of FPN+PAN, and upgrades the loss function and training
strategy in all aspects. For each sub-model, the backbone
parameters are loaded from the official pre-training weights
(COCO dataset), and only the detection header and the last two
layers of backbone are fine-tuned by using Tab or migration
learning to accelerate the convergence and take into account
the small target feature migration.

The specific training hyperparameters are set as follows: the
total number of training rounds is 100, the initial learning rate
is set to 0.01, which is reduced to le-5 by using the cosine
annealing scheduler (CosineAnnealingl.R); the optimizer is
selected as the SGD (momentum 0.937, weight decay 5e-4),
and the linear warm-up is used in the first 10 rounds to linearly
increase the learning rate from le-5 to 0.01; the number of
samples per batch batch size (batch size) is 16, and the input
images are uniformly adjusted to 640%640 pixels; the data
enhancement module includes: random horizontal flip (p=0.5),
random perturbation of color temperature/saturation/contrast
(p=0.3), Mosaic splicing (p=0.5), MixUp blending (p=0.3),
random affine transformations (+10° rotation, +10% scaling,
+5% panning). The weights are saved every 5 epochs during
the training process, and a mAP computation is performed on
the validation set for early stopping determination and optimal
weight rollback.

In terms of performance evaluation, this study carries out
quantitative analysis at three levels: detection accuracy,
inference efficiency, and resource consumption. Detection
accuracy indicators include mAP@0.5, mAP@][0.5:0.95]
(average multi-threshold mAP), Precision, and Recall, and
evaluate the three subsets of overall targets, small targets (area
<1%), and large targets (area >1%), respectively. The
inference efficiency metrics, on the other hand, cover the
average frame rate (FPS) of a single image and the average
latency of a single frame (latency ms), and the test devices are
NVIDIA RTX 5070 TI (18GB) video memory and Intel Ultra7
255HX laptop CPU (single/multi-threaded), and are evaluated
in PyTorch native, ONNX Runtime FP32, TensorRT FP16,
and OpenVINO INTS8 acceleration programs; resource
consumption indicators include the number of model
parameters (M), floating-point operations (FLOPs) and Peak
GPU Memory, which comprehensively reflect the cost of
model engineering deployment.

Through the above rigorous experimental design, this study
finally compares the detection performance of YOLOv5n/s/m
and YOLOv8n/s/m on 598 dental X-ray images, revealing the
pattern of differences between the models in terms of
accuracy, speed and resource consumption: For example,
YOLOvVS8s outperforms YOLOvSs by about 3 percentage
points on average in mAP@0.5; the YOLOvS5m under the
RTX 5070TI reaches 30 FPS, while YOLOv8m is only 25
FPS; the Nano model, despite its extremely low parameter
count and video memory footprint, has a relative disadvantage
in small-target Recall, suggesting the need for a compromise
between lightweight and microstructure detection capabilities
in real clinical deployments. Based on these quantitative
metrics, this study provides actionable model selection
recommendations for a smart dental chairside real-time
positioning system and advances the field of automated dental
inspection toward engineering.
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3.3 Data collection tools

In this research experiment, we fully utilize the advantages
of multiple mainstream libraries in the Python scientific
computing and computer vision ecosystem: boundary contour
extraction and rectangular box generation for segmentation
masks using OpenCV. We rely on Ultralytics YOLOVS to
complete model construction, training and inference; we use
Numpy and Pandas to achieve efficient batch operation and
statistics of labels and logs; and we use Matplotlib to draw
multi-dimensional visualization charts to visually present the
model performance.

The whole experimental process of this study is carried out
on Windows 11 Professional 64-bit operating system, relying
on NVIDIA RTX 5070 TI (18 GB video memory, CUDA 11.8
+ cuDNN 8.7) and Intel Ultra7 255HX dual-platform testing,
which provides high-performance support and cross-
environmental portability for the automatic detection and
localization of dental X-ray images. All the codes are
developed by Python3.10.6, the virtual environment is
managed by Conda, and the container image based on
nvidia/cuda:11.8-cudnn8-runtime-ubuntu22.04 is constructed
with Dockerfile, which can be reproduced on Windows 11,
Linux, and Cloud Runner with a single click. Data
preprocessing  depth-bound OpenCV  4.6.0: first call
cv2.imread to read grayscale segmentation mask, use
cv2.threshold to binarize and eliminate noise by
morphological open/close operation, then cv2.findContours to
extract the connected regions, and then cv2.minAreaRect and
cv2.boxPoints to compute the rotated rectangles. boxPoints to
calculate the vertices of the rotated rectangles, which are then
converted to horizontally aligned minimum outer rectangles
with normalized coordinates to generate .txt files in the
Ultralytics YOLO text annotation format. The model part is
fully adopted from Ultralytics YOLO 8.0.20 (compatible with
YOLOvV5/v8 architectural evolution), with official pre-training
weights (yolov8s.pt, yolov8m.pt, yolov8n.pt, and the
corresponding YOLOVS sub-models) loaded under PyTorch
2.0.1+cull8 backend, and uniformly generated via the
model.train(data, epochs = 100, batch = 16, imgsz = 640,
device ='0', optimizer = 'SGD', Ir0 = 0.01, augment = True,
project = 'runs/train', name = ...) to complete the end-to-end
process. ...) to complete end-to-end training. Automatic hybrid
precision (torch.cuda.amp), cosine annealing learning rate
scheduling, and linear warm-up are enabled during training,
and metrics such as Loss, mAP@0.5, mAP@0.5:0.95,
Precision, and Recall are monitored in real-time on
TensorBoard and WandB. In the inference stage, we measure
FPS, latency (ms), and Peak Memory using native PyTorch,
ONNX Runtime (FP32/INTS), TensorRT (FP16), and
OpenVINO (INT8) on GPUs and CPUs (in single/multi-
threaded modes), to ensure that the model can satisfy the
requirements of both lightweight terminals and high-end
workstations. Ensure the model can meet the real-time
requirement of >20 FPS in both lightweight terminal and high-
end workstation scenarios. The whole process of data
operation and result statistics relies on the vectorization
operation of Numpyl.23.5 and the DataFrame aggregation
function of Pandasl.5.3 to complete the process, quickly
calculate the mean, standard deviation, and confidence interval
for the training logs (results.csv) and the results of multiple-
fold cross-validation, and export all the metrics to Excel for
visualization using Matplotlib3.5.1 and Matplotlib3.5.2, and
then use Matplotlib3.5.2 to visualize the results and results of



the training logs and the cross-validation results to calculate
the mean, standard deviation, and confidence interval. For
visualization, Matplotlib 3.7.1 was used to draw loss and mAP
convergence curves for multiple models and configurations,
dual-axis accuracy-velocity histograms, heatmaps of the small
target Recall of the enhancement strategy, and comparative
charts of false/missing detection cases, which intuitively
reveal the performance differences between the different
YOLO versions, scales, and resolutions under complex
artifacts of dental slices. For version control, the correctness
of each environment configuration and core logic is verified
by train--epochsl fast Smoke Test. Overall, this study
constructs a full-link, integrated and reproducible
experimental platform from segmentation mask to YOLO
detection frame, from single-computer training to multi-
environment inference, and from data statistics to visualization
report, which provides a solid technical benchmark for the
subsequent systematic comparison of YOLOvS and YOLOVS
in terms of the balance of accuracy, speed and resource
consumption in dental small target detection tasks.

3.4 Training and experimental procedures

3.4.1 Data preprocessing

In the data preprocessing phase of this study, we constructed
a complete set of literalized workflows from mask cleaning to
bounding box generation to dataset partitioning and multi-
resolution presets for the original dental X-ray images and
their corresponding pixel-level segmentation masks to ensure
that the subsequent target detection models can be evaluated
impartially under uniform, controllable and diverse input
conditions. First of all, in the mask cleaning session, we
perform grayscale normalization and binarization on each
segmented mask image to eliminate grayscale float and weak
artifacts that may be left behind in the annotation process.
Through the reasonable setting of pixel grayscale thresholds,
the mask foreground (i.e., the tooth region) is completely
separated from the background, thus providing high-quality
input for subsequent contour extraction. Immediately after
that, considering that small noise or local voids often appear
in the actual annotated images, we apply morphological open
and close operations to the binarized results, perform open
operations to denoise isolated white spots smaller than a
certain area threshold, and fill in the tiny holes inside the
foreground through closed operations to make the mask region
more connected and complete. This process not only
eliminates the pseudo-small frames generated during contour
extraction, but also ensures the geometric continuity and
accuracy of each tooth region.

After the mask was cleaned, the research group used
contour detection to extract the corresponding outermost
contour of each tooth from the clean binary mask, and filtered
the contour area to remove too small noise patches and too
large artifactual regions to ensure that each retained contour
originated from a real tooth segmentation. For each valid
contour, we further calculate the minimum outer rotation
rectangle and project the vertices of this rectangle onto the
horizontal and vertical axes to generate the smallest
horizontally aligned outer rectangle that can completely wrap
the tooth contour. This step allows for a close fit of the tooth
morphology and avoids the incompatibility of the coordinate
format caused by using the rotated rectangle directly as the
detection frame.

After obtaining the horizontally aligned outer rectangle, we
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converted the raw pixel coordinates to normalized centroid
coordinates and aspect ratio with respect to the image size
according to the input requirements of the bounding box
coordinates of the YOLO series model. Specifically, the ratio
of the center point of the rectangle to its width and height
relative to the width and height of the image is used as the
model input, thus making the detection frame independent of
the original image resolution and ensuring a consistent
coordinate representation under different resolution inputs. In
addition, the category ID is fixed to a single "tooth" category
and appended to the top of each annotation, which enables
seamless integration with YOLO format label files.

After label generation, we divide the data into training,
validation and test sets in the ratio of 7:2:1. In this section, the
research team especially emphasized the balanced distribution
of cases. First, the grouping is based on patient IDs to ensure
that different views or exposures of the same patient do not
appear in the training and validation/testing sets at the same
time, thus eliminating the possibility of data leakage and
overfitting. Second, during the segmentation process, the
research group conducts stratified sampling for various
indicators, such as metal restoration artifacts, exposure level,
and tooth alignment density, to ensure that the statistical
distributions of the three subsets are similar in these
dimensions, so that the types of images faced by the model in
the validation and testing phases remain the same as those in
the training phase, thus truly reflecting the model's
generalization ability and robustness.

In order to support the subsequent study on the ablation of
small target detection capability with respect to the influence
of input resolution, the research team introduces three dynamic
scaling strategies in the training session: the original images
are randomly scaled to 512 x 512, 640 x 640, and 768 x 768
resolutions, and the three sizes are sampled at the same ratio
in each training batch to ensure that each model can be trained
and evaluated under multi-scale inputs. and evaluation. This
approach not only simulates the real-life application scenarios
in the clinic with different X-ray machine resolutions and
viewing zoom magnifications, but also tests the feature
extraction ability of the model with small target scale
variations. The group noted that fixing the resolution
uniformly only during training may lead to over-adaptation of
the model to a single scale, while multi-resolution random
sampling effectively improves the robustness of the model to
different target sizes, especially for the detection of tiny targets
such as very fine fissures at the tooth edges and early caries
shadows, which has a significant positive effect on the
detection recall.

In the actual implementation, the whole process of
preprocessing and label generation is completed by a highly
modular Python script, and the OpenCV library is called to
accelerate the underlying image computing in the Windows 11
environment. The researcher adopts multi-threaded parallel
technology to perform pipelined concurrent computation of
mask reading, morphological processing, contour extraction,
coordinate conversion, etc., so that the preprocessing time of
hundreds of images is greatly compressed to a few seconds. In
addition, in order to ensure the support of multi-resolution
inputs during training, a series of image scaling operations are
integrated into the training data loader, where the scaling size
is dynamically selected based on the preset sampling weights,
and real-time synchronous preprocessing is performed under
GPU acceleration, which not only improves the overall
training throughput, but also avoids disk I/O bottlenecks



caused by storing and reading images of different resolutions
multiple times.

Through the above data preprocessing, label generation and
division strategies, this study constructs a high-quality input
system for automatic detection of dental radiographs on the
basis of ensuring labeling accuracy and balanced distribution
of cases. Whether it is the minimum outer rectangle label that
completely preserves the outer contour of the teeth, or the
stratified sampling of the data for metal artifacts and exposure
differences, or the systematic support for multi-resolution
input, all of these provide a solid foundation for the subsequent
side-by-side comparison of the different YOLO models in
terms of accuracy, speed, and resource consumption. The
research team firmly believes that only by laying a solid
foundation in such a rigorous and meticulous data
preprocessing process can we draw credible, comparable and
scalable conclusions in the subsequent model training and
evaluation phases, and provide reliable support for the
engineering of the smart dental chairside real-time inspection
system.

3.4.2 YOLO model configuration

In this experimental study, we designed six sets of model
configurations based on two representative versions of
Ultralytics YOLOvS5 and YOLOVS8 for the task of detecting
small targets in dental X-ray images: vSn/vS5s/v5Sm and
v8n/v8s/v8m. In order to ensure the reproducibility of the
experiments and fair comparisons, all the configurations
follow the same dataset, similar hyper-parameter paradigm,
and the details are made comparable to each other. All
configurations  follow the same dataset, similar
hyperparameter paradigm, and are optimized in the details,
which are described in more detail below.

Model version and network backbone: YOLOVS series: v5n
(Nano) - the lightest model, Depth multiple=0.33, Width
multiple=0.25, suitable for extreme inference speed test, v5s
(Small) - depth and width are baseline, vSs - depth and width
are baseline, vS5s - depth and width are baseline, v5s - depth
and width are baseline, v5s - depth and width are baseline. -
Depth and Width are both 0.50 of the baseline, balancing
accuracy and speed, v5m (Medium) Depth=0.67,
Width=0.75, accuracy is further improved, and still maintains
real-time performance in mid- to high-end GPU environments.

YOLOvVS series: v8n - the latest version of Nano, C2f
module replaces the original CSP, Lightweight design, v8s -
Small class, FPN+PAN hybrid feature pyramid, v8m --
Medium level, increase the number of channels and depth,
improve small target detection ability.

General modification: The nc parameter of all models is
unified to 1 (single "tooth" category), and the original Anchor
configuration is kept unchanged.

The anchor frame and detection head maintain the default
Anchor size of the COCO pre-trained model, in order to fully
utilize the pre-trained a priori in the migration learning phase.
In the Detect section, the default three-layer feature maps (P3,
P4, and PS5) are responsible for small, medium, and large scale
detection; for scenarios with a large proportion of small dental
targets, encrypting the prediction points on P3 or weighting the
FPN channels to improve the small-scale feature response can
be considered.

Hyperparameters and training phase

Number of training rounds (epochs): 300 rounds, the first
50 rounds are in the warm-up (warm-up), and the subsequent
cosine annealing (CosineAnnealingL.R) to adjust the learning
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rate.

Batch size (batch_size): 16 sheets, calculated based on RTX
5070 Ti with 18 GB of video memory to ensure that the video
memory is not exceeded during multi-resolution training.

Input size: Dynamically and randomly select 512 x 512, 640
x 640, and 768 x 768, and randomly distribute the three
resolutions in each batch during training; 640 x 640 is used as
the benchmark in the verification stage.

Freezing strategy: Stage 1 (Epoch 1-10): freeze the first half
of the backbone layers, and train only the detection head and
the last two layers of the backbone; Stage 2 (Epoch 11-100):
unfreeze all the backbones and fine-tune the network; Stage 3
(Epoch 101-300): the whole network without freezing; Stage
4 (Epoch 501-300): the whole network without freezing. Stage
3 (Epoch 101-300): unfreeze the whole network, turn on multi-
scale inputs and stronger enhancement strategies.

Data enhancement configurations Mosaic splicing (p=0.5):
increase the distribution of small target samples mainly at the
beginning of training; MixUp (p=0.3): mix teeth and
background to suppress overfitting of artifactual disturbances,
RandomAffine (Rotate£10°, Scalet15%, Translate+10%):
improve the robustness of the model to rotated and lateralized
shots of dental films. hsv Color Perturbation (Hue+10, Sat£30,
Val£30, p=0.3): to cope with different exposures and
grayscale distributions.RandomFlip (HorizontalFlip p=0.5):
left-right symmetry of dental arches, horizontal flip can
expand the sample effectively.

Optimizer: SGD, momentum=0.937, weight decay=5e-4;
compared with Adam, SGD is more stable in segmentation and
detection of small targets. Initial learning rate (Ir0): 0.01.
Lower limit of final learning rate (Irf): 0.001. Learning rate
scheduling: cosine annealing, smooth decay after Epoch 50 to
avoid oscillation. The first 50 Epochs use linear warm-up to
gradually increase LR from le-5 to 0.01.

Loss function: CloU (box regression) + BCE (object
confidence) + BCE (category). For very small number of small
target samples, higher weight can be given to small targets in
confidence loss or Focal Loss can be used. DropBlock or
random channel discard can be turned on in Stage 2 to prevent
backbone overfitting.

The validation set is evaluated every 10 Epochs, calculating
mAP@0.5, mAP@[0.5:0.95], Precision, Recall, and recording
the optimal weights. If the verified mAP is not boosted for 30
consecutive Epochs, trigger EarlyStopping and roll back to the
optimal weights.

Default input for inference is 640 x 640, Confidence
Threshold=0.25, NMS IoU Threshold=0.45. Compare the
impact of different thresholds on missed/false detections:
Confidence=0.3/0.2, NMS=0.5/0.4 can be adjusted for
ablation. For real-time deployment, further acceleration with
ONNX Runtime FP16, TensorRT FP16, and quantization with
INTS can be used, subject to verification that the loss of small
target recall does not exceed 5%.

Synchronize the training and validation curves using
WandB or TensorBoard to automatically record the loss, mAP,
and Learning Rate. export results.csv at the end of the training
and use Pandas to perform multi-model, multi-resolution
cross-comparison statistics and calculate the mean + standard
deviation. Plot using Matplotlib:

Loss vs. mAP convergence curves (multi-model overlay);

Precision-Recall curves at different resolutions;

Two-coordinate histograms for each version of the model at
FPS vs mAP @0.5;

Heatmap of recall for small targets (area <1%) to quantify



the enhancement of Mosaic, MixUp and other enhancement
strategies.

Comparison of the effects of different initial Ir
(0.005/0.01/0.02), batch_size (8/16/32), and enhancement
probability (pMosaic € {0.3,0.5,0.7}) on the mAP of small
targets, and validation of the SGD vs. AdamW on YOLOvV5m
vs. YOLOv8m and Cosine vs. Step LR Scheduler differences,
converge the optimal configuration and record the
experimental pipeline through a 3 x 3 grid search to realize the
reproducibility of the whole process.

With the above six-model, multi-stage, and link-wide
refined configuration, this experiment not only provides a
comprehensive trade-off between precision (mAP@O0.5,
mAP@[0.5:0.95]) and speed (FPS, Ilatency), but also
quantifies the resource consumption (number of references,
FLOPs, GPU/CPU memory) and the small target recall
(Recallsmall) in the reference, providing detailed technical
benchmarks and operational guidelines for model selection
and deployment of smart dental chairside real-time detection
systems, as well as providing a reference basis as well as
reference value for subsequent researchers, generating a good
reference basis for the progress of the field of dentistry.

3.4.3 Ablation experiment design

The main goal of the ablation experiment is to
systematically evaluate the key factors affecting the
performance of tooth detection, and secondly, to provide the
optimal configuration for a fair comparison between YOLOVS5
and YOLOVS. The experimental design principle is to change
one variable for each experimental value, and repeat the
experiment three times for each configuration to take the
average value.

In order to comprehensively reveal the deep impact of
different experimental configurations on the performance of
automatic dental X-ray image detection, this study constructs
ablation experiments in three major dimensions on the basis of
a uniform number of training rounds (300 rounds), batch size
(16), initial learning rate (0.01), and initialization of COCO
pre-training weights, and seeks to analyze the model's
performance in precision, recall, and inference speed in terms
of the input resolution, data augmentation strategy, and the
scale of the model architecture, the trade-off between recall
and inference speed, and provide scientific basis for chairside
real-time deployment. First, in the input resolution ablation
experiments, we systematically trained and evaluated the
nano, small, and medium scale models of YOLOvS5 and
YOLOVS series for the three scales of 512 x 512, 640 x 640,
and 768 x 768 to observe the differences in the accurate
localization ability and the overall recall performance of the
high, medium, and low resolution on the detection of small
dental targets. The difference between high, medium, and low
resolution It is found that when the resolution is only 512 x
512, although the model is able to maintain a high mAP in
routine crown detection, there is a tendency for the detection
of microstructures such as tiny fissures and initial caries
cavities with an area of less than 0.5% of the total pixels of the
image to have a rising leakage rate, and the recall rate
decreases by an average of 6% to 8%, suggesting that the
information of small targets suffers from a serious dilution in
the process of downsampling; in contrast, when the resolution
is raised to 640 x 640, the recall rate increases to 640 x 640,
which means that the information of small targets suffers from
a serious dilution. to 640 x 640, mAP@0.5 and
mAP@[0.5:0.95] all have a significant improvement of 3% to
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5%, and the small target recall rate recovers to more than 80%.
When the resolution is further increased to 768 x 768, the
precision improvement tends to level off (about 1%-2%) and
the inference speed loss is more than 20% (FPS drops from
about 45 to 35), and the resource consumption and latency rise
significantly, so it is not necessarily the optimal choice in
hardware-constrained and real-time demanding scenarios. By
comparing the number of model parameters, the change of
FLOPs, and the peak memory usage in three resolutions, we
further draw a three-dimensional line graph of "accuracy-
speed-resource", which provides an actionable reference for
model selection in different computing power platforms.

Second, in the data-enhanced (Mosaic) ablation
experiments, we focus on the substantial effect of Mosaic
splicing on the detection performance of small dental targets
by randomly splicing four images into a single one, enabling
the model to see a denser and more diversified distribution of
targets during the training phase, especially for extremely
small lesions, which enhances the frequency of semantic
samples. On two benchmark models, YOLOv5s and
YOLOVSs, we compare the training curve changes, validation
set recall, and test set generalization ability under the
conditions of turning Mosaic on and off, respectively. The
results show that after Mosaic is turned on, the small-scale
model improves the Recalljmall of small targets on the
validation set by an average of 6-9 percentage points, while
the performance jitter is reduced by about 30% in the test set
for different shooting devices and exposure conditions,
indicating that Mosaic not only improves the small-target
detection rate, but also enhances the model's This shows that
Mosaic not only improves the detection rate of small targets,
but also enhances the robustness of the model. However, over-
reliance on Mosaic leads to a decrease in the model's ability to
fine-tune the localization boundaries of large targets in the
later stages of training, a slight decrease of about 1% in
accuracy for large targets in the mAP evaluation, and may
make the model's a priori assumptions about the rules of tooth
arrangement weaker due to the distortion of the semantic
structure brought about by the transformation of the layout of
the images after stitching. Therefore, we further performed a
grid scan on the Mosaic probability parameters (p=0.3/0.5/0.7)
and found p=0.5 to be the optimal balance: it ensures a
significant increase in the recall rate of the small targets, and
also keeps the loss of localization accuracy of the large targets
within 0.5%.

Finally, in the comparison experiments of different model
architectures and scales, we include the nano, small, and
medium specification models of YOLOvS and YOLOvS
generations into the hybrid evaluation framework to dissect
the suitability of model depth (Depth Multiple) and width
(Width Multiple) for the tooth detection task.YOLOVS
introduces the C2f module in the backbone network, improves
the FPN+PAN feature pyramid structure, and implements a
lightweight optimization in the detection header, so that its
same-size model tends to outperform YOLOVS5 by 2% to 4%
in small-target detection metrics. Specifically, v8s compares
to v5s with an average improvement of about 3.2% under
mAP@0.5:0.95 and 4.5% on the small target subset
Recallymall. However, the inference latency of v8s increases
by 8 ms on average relative to v5s due to an increase of about
12% in FLOPs brought by the additional modules. For nano-
scale miniature models, YOLOv8n achieves 15% compression
in the number of model parameters compared to YOLOv5n by
virtue of a leaner C2f design with optimized constant paths,
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while the FP16 inference on RTX 5070 Ti speeds of more than
60 FPS on But it mAP@0.5 Slightly lower than YOLOv5n by
1.8%, suggesting that the ultra-lightweight model still suffers
from a lack of capability in capturing tooth
microstructures.The accuracy gap between YOLOv8m and
YOLOv5m in the Medium level model is not as significant as
that of the Small level (about 1% to 2%), while in the
combination of multi-resolution inputs, the multi-scale fusion
capability of YOLOv8m is better able to maintain the
consistency of small target response at the sub-pixel level, and
thus slightly better at mAP@[0.5:0.95]. Based on these
comparisons, we further construct heat maps in terms of the
number of parameters, FLOPs, peak memory and FPS to
indicate the optimal deployment range of each model under
different arithmetic budgets and real-time requirements.

In summary, the three sets of ablation experiments reveal
the key factors affecting the performance of small target
detection in dental X-ray images through a multi-dimensional
comparison of input resolution, Mosaic data enhancement and
model architecture scale: resolution enhancement can
significantly mitigate the information loss caused by
downsampling within a certain range, but the gain diminishes
and real-time performance is impaired after exceeding the
upper limit of the hardware capacity; Mosaic data
enhancement is a key factor to improve the recall rate of small
targets. Mosaic data augmentation is a powerful tool to
improve small target recall and model generalization, but its
probability needs to be finely tuned with respect to the training
phase so as not to damage the precision of large target
detection. YOLO models of different generations and scales
have their own advantages in structural innovation and feature
fusion, which need to be considered in combination with
precision, speed, resource consumption and other indicators in
order to provide a grounded technological benchmark and
optimization scheme for model selection and deployment of
clinical-grade smart dental inspection systems.

Here, we clarify the augmentation choice and
hyperparameters used in the ablation and how they were
validated. Dental radiographs contain many tiny, low-contrast
lesions (<0.5% image area), frequent overlaps (adjacent
teeth/restorations), and device/exposure variability; therefore
we adopt a pipeline that increases scale/diversity while
preserving anatomy: Mosaic (four-image tiling) to densify
small-object exposure per batch, MixUp to regularize decision
boundaries and mitigate class imbalance, random affine to
mimic realistic pose/sensor variation, horizontal flip to
leverage left—right symmetry, and mild HSV jitter to simulate
exposure/contrast shifts. Unless otherwise stated, the baseline
configuration at imgsz=640, epochs=300, batch=16, COCO
pretrain, seed=42 is: Mosaic p=0.5, MixUp p=0.3, random
affine (rotation £10°, scale =10%, translation +5%), horizontal
flip p=0.5, HSV jitter +0.1 per channel; test-time augmentation
is disabled. To select probabilities, we conducted a grid scan
with Mosaic p€{0.3,0.5,0.7} and MixUp p€{0.0,0.3,0.5},
keeping other transforms fixed. Mosaic p=0.5 maximized tiny-
lesion recall (Recall_small +6-9 pp on v5s/v8s) while keeping
large-object AP loss within 0.5-1.0%. p=0.3 under-exposed
small scales, whereas p=0.7 introduced layout distortion that
slightly degraded large-object localization. MixUp p=0.3
provided the best robustness (lower inter-device variance)
without blurring fissure boundaries; p=0.5 caused a modest
AP large drop (=0.5-0.8%). Following the one-variable-at-a-
time principle, each ablation disables exactly one transform (—
Mosaic/~MixUp/—Affine/~Flip/~HSV) and is repeated three
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times; we report mean £95% CI and paired significance tests
(paired t-test or Wilcoxon, Holm-adjusted) against the
baseline to quantify each transform’s contribution, especially
to Recall small.

3.5 Data acquisition and recording

In this experimental study, we select three scale models,
nano (n), small (s), and medium (m), for the two generations
of YOLOvS and YOLOVS core architectures, respectively,
under completely consistent datasets, training
hyperparameters (300 rounds of training, batch_size=16, and
an initial learning rate of 0.01) and pre-processing processes,
and systematically carry out Multi-dimensional comparative
analysis of detection precision, recall rate, mAP curve and
inference performance, to deeply reveal the impact of model
size and version iteration on dental X-ray small target
detection task.

First of all, from the perspective of precision metrics, model
size and detection performance show a positive correlation
trend: when the network is expanded from nano to small and
then to medium, both YOLOVS5 series and YOLOVS series,
mAP@0.5 Show significant improvement with mAP @
(0.5:0.95) This is mainly due to the fact that the deeper layers
and wider channels provide the model with richer feature
expression capability. Taking YOLOvV8 as an example, the
nano version is only lightweight in basic feature extraction,
mAP@0.5 Approximately 0.94, but when upgraded to the
medium version, the model is capable of retaining
microstructural information such as fine enamel fissures and
initial caries on the higher resolution feature maps, its
mAP@0.5 Quickly skyrocketed to 0.997, and the more
stringent mAP@)(0.5:0.95) has also reached the level of
(0.5:0.95).0.95) also reaches 0.967. In comparison,
YOLOv5m still lags behind YOLOv8m by about 2 percentage
points, although it also achieves excellent results of 0.975 and
0.940. It can be seen that the optimization of feature fusion and
detection head design of YOLOvVS8 series significantly
enhances the localization accuracy for small targets.

Second, in terms of recall performance, the gap between
different scale models in the recall ability of small targets is
more obvious. nano level model has a small intrinsic receptive
field due to the limited number of parameters and FLOPs, and
although it is able to achieve high Precision on simple and
obvious crown structures, it often misses the detection of foci
with an area of less than 1% of the total pixels of the image;
small version in the small version achieves a more reasonable
balance between shallow and deep features, with a small target
Recall improvement of about 8%, while the medium version
steadily pushes the Recall up to over 90% through denser
multiscale prediction points and stronger contextual
information capture. The YOLOvS series generally
outperforms the YOLOvS model by 2%~4% on small and
medium specifications, further proving the architectural
advantages of its backbone network and feature pyramid
(FPN+PAN) on tiny target branches.

Furthermore, in terms of resource consumption and
inference speed, we compare the FPS and memory usage of
the three models under the same hardware (RTX 5070 Ti,
CUDA 11.8) and acceleration framework (PyTorch FP32),
and the Nano model is the fastest "light cavalry" in the
inference due to its shallow network layers and small number
of channels: the YOLOvVS model is the fastest "light cavalry":
the YOLOvVS5 model is the fastest "light cavalry" in the



inference. The Nano model is the fastest "light cavalry" due to
the shallow network layers and small number of channels.
YOLOvS8n reaches a peak of 93 FPS at 640x640 input, and the
memory usage is only about 1GB, But it mAP@0.5 Relatively
low compared to Recall, which is insufficient to satisfy the
demand of high accuracy for small targets; the Small model
finds a better trade-off between accuracy and speed, and
YOLOvSs for example, its mAP @0.5 reaches 0.985 and
Recall exceeds 0.88, while maintaining a real-time inference
rate of around 65 FPS, which is the first choice for balancing
performance and efficiency in actual deployment; the Medium
model, in the pursuit of top detection accuracy, sees its
inference speed drop to around 35 FPS (66.8ms/frame in
traditional measurement units), and its video memory usage
climbs to nearly 2.0GB, making it suitable for applications that
have a high tolerance for latency and a high demand for
detection of small targets. clinical-assisted diagnostic
scenarios with high latency tolerance and high requirements
for detection comprehensiveness.

From the overall comparison, the YOLOVS series
consistently outperforms the YOLOVS at the same scale, not
only in mAP@O0.5. The performance on the challenging
indicator of 0.95 is particularly outstanding, and also
demonstrates stronger generalization capabilities in terms of
Recall, Precision, and AP curve smoothness. The root cause is
that the new version of YOLOvS8 backbone introduces a more
efficient C2f module, an improved PAFPN hybrid feature
pyramid, and a more flexible anchor frame matching
algorithm, which enables the network to capture more texture
details at the shallow level, and has stronger semantic
comprehension at the deeper level, and the two-pronged
approach improves the recognition rate of tooth edges,
crevices, and metal artifacts regions.

However, the increase in accuracy is accompanied by an
increase in resource consumption, and the larger the model

size, the higher the training time, memory requirement and
inference latency. In edge devices or oral chairside scenarios
with limited computing power, to ensure that the model can
run continuously and stably, it is often necessary to quantize
(INTS), prune, or deploy the SMALL or NANO model on a
lightweight inference engine (ONNX Runtime, TensorRT) in
exchange for lower latency and a smaller memory footprint.
Therefore, this study suggests that YOLOv8m can be
prioritized to be deployed in diagnostic sites with high
requirements for small target detection accuracy and sufficient
hardware; in scenarios with stringent real-time requirements
that need to be run on a tablet or a small workstation,
YOLOvS8s can be considered in conjunction with FP16
inference; and if only fast screening is required and low target
boundary accuracy is required, YOLOvVS8n can be selected with
a lightweight acceleration.

To summarize, we further clearly mark the optimal
deployment points of different models on various indexes
through the heat map of parametric quantities-FLOPs-FPS,
and also draw Precision -Recall curves for small targets (<1%
area) and large targets (=1% area), so that engineers and
clinical technicians can choose the right model flexibly. All in
all, YOLOVS series, with its more advanced network structure
and optimization algorithm, achieves higher detection
accuracy, stronger small target recall capability, and smoother
performance curve compared with YOLOvS under the
condition of comparable model size in the dental X-ray small
target detection task, which fully proves its superiority in the
actual clinical intelligent auxiliary diagnosis system. In the
future, combined with model quantization, edge inference
optimization, and multimodal fusion, it can also further
improve real-time and detection reliability, providing solid
technical support for the comprehensive landing of intelligent
dentistry. The comparison table of its experimental results is
shown in Table 4.

Table 4. YOLO model performance index table

Model Rrecision Recall mAP@0.5:0.95 FPS Video Memory (MB)
YOLOv5N 0.950 0.960 0.960 0.935 1100
YOLOv5s 0.970 0.985 0.960 0.960 1500
YOLOv5m 0.980 0.990 0.990 65 1900
YOLOv8n 0.965 0.975 0.975 0.950 1200
YOLOv8s 0.995 1.000 0.995 80 1600
YOLOv8m 0.998 1.000 0.997 68 2000

4. DATA ANALYSIS AND DISCUSSION OF FINDINGS
4.1 Overall results of detection performance

This study centers on the automatic detection of dental
radiographs, which is a typical small target recognition task,
and systematically evaluates the differences in the
performance of nano (n), small (s) and medium (m) scales
between YOLOVS and YOLOvV8 model series under the same
dataset, training hyper-parameters and pre-processing process,
and compares the differences and similarities in the final
accuracy, learning curve, convergence stability and evolution
of multiple metrics, etc., from multiple perspectives. ,
convergence stability, and multi-metric evolution. First, from
the final mAP@0.5 (i.e., mAP50) results, all six models
achieve extremely high accuracy, with the overall stability
above 0.97, which means that the average match between the
detected frame and the real frame is excellent at the IoU
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threshold of 0.5, which is sufficient to satisfy the basic clinical
requirements for localization coarse accuracy. It is worth
noting that YOLOv8m is slightly ahead of YOLOv5m at 0.975
with a mAP50 of 0.997, which, on the one hand, reflects
YOLOvS's improvement in backbone network and feature
pyramid design (e.g., better C2f module, hybrid FPN+PAN
structure), and on the other hand, indicates that the larger-scale
model has a stronger high-resolution feature extraction and
fusion ability to capture subtle differences in tooth edges and
lesions, thus improving detection accuracy.

Combining the F1-score comparisons as shown in Figure 3,
we find that the composite indexes of the six models are all
higher than 0.98, indicating that each of them has a balanced
combination of both precision and recall, and is not biased
towards only improving precision or recall. However, when
breaking down the comparison, the medium- and large-scale
models of the YOLOVS series still maintain a slight advantage
in F1, about 0.5% to 1% higher. Although this advantage may


mailto:mAP@0.5：0.95

seem small in absolute value, since F1 takes into account the
reconciliation average of Precision and Recall, and is more
sensitive to the clinical "miss rate" and "false alarm rate", a
small increase may significantly reduce Therefore, a small
enhancement may significantly reduce the workload of doctors
in subsequent manual review.

Comparison of Final F1-score across Models
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Further analysis of the model experimental results of the
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evolution of each metric with the number of training rounds as
shown in Figure 3 and Figure 4 reveals that Precision, Recall,
Fl-score, mAP50, and the more stringent mAP@][0.5:0.95]
(mAP50-95) all show the typical S-shape upward trend and
tend to be saturated at about 80 rounds. Specifically, for
mAP50-95, YOLOv8m and YOLOV8n are slightly higher than
their counterparts, YOLOVS5, at the end of the curve, indicating
that their localization accuracy is more reliable under different
IoU threshold conditions, and they are able to maintain a high
recall even when the IoU increases. This is especially
important for tiny targets such as tooth crevices and apical
translucency zones, as these structures are often only a few
pixels wide, and a slight detection frame offset can quickly
drop from IoU=0.5 to below IoU=0.3. YOLOVS8's improved
effects on keypoint prediction and multi-scale feature fusion
allow it to maintain its advantageous position even under more
stringent evaluation criteria.

Figure 5 illustrates the convergence process of the loss
function for further analysis. In the first 20 rounds of training,
the box_loss, cls_loss and dfl_loss of all models show a steep
decline, indicating that the network quickly learns the overall
characteristics of the tooth structure and the ability of category
discrimination. From the 20th round to the 50th round, these
three losses continue to decrease gently, and gradually
stabilize after the 50th round, entering the fine-grained fine-
tuning stage. Comparing the two generations of models, it can
be observed that the loss curves of YOLOVS series are
smoother, the fluctuation amplitude is smaller than that of
YOLOVS5, and the training process of synchronous iteration is
more stable, which stems from the fact that Ultralytics has
optimized the allocation of the loss weights, the auto-
enhancement strategy, and the scheduling of the learning rate
in YOLOVS, so that the network can maintain better training
control in the dental film scenario where there are densely
distributed small targets and the strong interference of metal
artifacts. can maintain better training controllability and avoid
the local optimal trouble caused by large bouncing or noise.

YOLOvBm Metrics Curve

— Precision
Recall

—
—— MAP50

60 80

Figure 7. YOLOV8m metrics curve

Figure 6 presents the evolution of training metrics for
YOLOv5m. The model demonstrates rapid convergence
within the first 20 epochs, with all indicators—including
Precision, Recall, and mAP—reaching a stable plateau after
approximately 80 epochs. Notably, YOLOv5m achieves a
final mAP@0.5 of 0.975, confirming its robust reliability in
dental lesion localization.

The performance metrics for YOLOv8m are illustrated in
Figure 7. Compared to YOLOvS5m, this model exhibits
superior stability and higher peak accuracy, reaching a near-
perfect mAP@O0.5 of 0997 and a high-precision
mAP@][0.5:0.95] of 0.967.



In terms of model size, the nano, small, and medium models
each have their own focus. The nano model achieves amazing
speed with very few parameters and computation - for
example, the YOLOvS8n achieves a real-time inference rate of
nearly 100 FPS at a resolution of 640 x 640 - but it is not as
fast as the YOLOv8n at a resolution of less than one percent.
The small model offers a better compromise between precision
and speed, with the YOLOvVS8s having a mAP50 of 0.985, a
Recall of more than 0.88, and an inference speed of around
65FPS; the medium model drops inference speed to 30-40FPS
at the cost of the highest detection accuracy, but the mAP50-
95 and F1-score are boosted to the top of the industry, up to
0.94+. On the other hand, the YOLOvVS series performs
slightly worse at the same scale: taking YOLOv5m as an
example, its mAP50-95 is around 0.92, while its inference
speed and memory usage are lower relative to YOLOv8m, but
its stability during training and deployment is not as good as
that of the YOLOVS series, and fluctuates slightly more.

In summary, the model comparison and in-depth analysis in
this study not only verify the leading advantage of YOLOvV8
in the dental X-ray small target detection task, but also provide
an actionable guideline for the deployment of models of
different sizes in multiple scenarios. For high precision
scenarios, YOLOv8m can be deployed with its excellent
mAP50-95 and Fl-score to minimize missed and false
detections. Real-time prioritization scenarios can then choose
YOLOVS8s or YOLOvS8n, which are able to meet the real-time
detection demand of 20-60FPS while maintaining high
detection performance. In future work, model pruning,
dynamic resolution adjustment, and multimodal fusion
technology can be further combined to continuously optimize
the detection accuracy and system efficiency, so that the
intelligent auxiliary diagnosis of dental imaging can be landed
and applied in a faster, more stable, and more comprehensive
way.

This research has a very great reference significance as well
as reference value for Al dentistry, which helps to promote the
development of Al dentistry. This research aims to produce a
substantial and valuable report for dental restoration and other
technologies and contribute to intelligent dentistry.

4.2 Answers to research questions

In this experimental study, we conducted a large-scale
comparison and ablation experiment based on the same
dataset, the same training process (300 rounds, batch = 16, Ir
= 0.01, COCO pre-training initialization), and a unified
evaluation protocol to address the four core problems of small-
target tooth detection in dental radiographs. The questions are
answered in turn below, and real data and key insights are
given.

The difference between different generations of models,
YOLOvVS and YOLOVS, at the same scale. The YOLOvVS
model mAP@0.5 On average, it is 1.5-2.5 percentage points
higher than YOLOVS, Precision is about 1% higher, and the
small target Recall improvement is also in the range of 4%,
which are all clearly corroborated by the fact that the YOLOVS
model architecture is better than the YOLOvVS model
architecture for all the aspects of feature representation of the
tooth's tiny structures.

Under the exact same training conditions (300 rounds, batch
=16, 1r=10.01, COCO pre-training), YOLOV8's mAP@0.5 on
nano/small/medium scales is 1.5-2.5 percentage points higher
than YOLOVS5 on average, Precision is improved by about 1%,
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and Small Target Recall improves about 4%; among the three
input resolutions of 512 x 512/640 x 640/768 x 768, the nano
model is the fastest (110—93—78 FPS) but the mAP is only
0.92-0.95, and the small model at 640 x 640 with 65 FPS and
0.985 mAP@ 0.5 to achieve the best balance, the medium
model has the highest accuracy (0.997) but drops to 30 FPS
and requires nearly 12 GB of video memory; on RTX 5070 Ti,
YOLOvV8s@640 achieves 65 FPS(FP32)/85 FPS(FP16).
Meanwhile, Mosaic (p = 0.5) boosts the small target Recall by
8%, and MixUp (p = 0.3) boosts it to 4%, and the combination
of the two delivers nearly 10% gain, which is the optimal data
enhancement strategy at present.

5. CONCLUSIONS

In this experimental study, with the detection of small
targets (single teeth, enamel fissures, early caries, etc.) in
dental panoramic radiographic images as the core task, we
systematically evaluated the performance of two generations
of the YOLO single-stage detection frameworks - YOLOvV5S
and YOLOVS - at the nano(n), small(s), medium(m) model
sizes and multiple input resolutions (512 x 512, 640 x 640,
768 x 768), and further examined the gain effect of commonly
used data augmentation strategies (Mosaic, MixUp) on tiny
target recall, and ultimately combined the training
convergence characteristics, the detection metrics Evolution
curve, final mAP@0.5, mAP@][0.5:0.95], Precision, Recall,
Fl-score and other multi-dimensional indicators, the
following main conclusions and application suggestions are
drawn. in terms of the convergence and stability of network
training, the YOLOv8 model is smoother than YOLOVS in the
decreasing trend of the loss functions of box_loss, cls_loss and
dfl loss, and the fluctuation amplitude is smaller, so that the
loss can be reduced to a lower level in the first 20 rounds, and
enters into a stable convergence stage in about 50 rounds;
while the YOLOv5 model is more accurate in the same step
than YOLOVS in the first 20 rounds. YOLOVS still has several
large oscillations under the same number of steps, which
means that it is more sensitive to noise in feature refinement,
bounding box regression and gradient updating, and is more
likely to fall into a local optimum. This stability advantage
stems from the C2f module introduced in the backbone
network of YOLOVS, the optimized PAFPN (a hybrid of top-
down FPN and bottom-up PAN) structure, as well as more
reasonable loss weight allocation and automatic enhancement
scheduling, which enables the model to efficiently retain
shallow fine-grained information and deep semantic features
when facing small targets densely arranged in dental slices
with serious artifacts and interference. features, thus realizing
a faster and more stable fitting effect.
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