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This study addresses automatic detection and localization of dental lesions in radiographic 

images. We systematically compare YOLO-family detectors (YOLOv5/YOLOv8) using 

the public Kaggle dataset “Teeth Segmentation on Dental X-ray Images” (panoramic & 

periapical X-rays; 598 images with pixel-level masks converted to axis-aligned bounding 

boxes) under a unified pipeline. Models are trained and evaluated with identical protocols; 

we analyze mean average precision (mAP@0.5/0.5:0.95), precision, recall, and inference 

efficiency (FPS/latency), revealing architecture-specific trade-offs between accuracy and 

throughput. The results provide practical guidance for model selection in AI-assisted dental 

diagnosis and establish a reproducible baseline for future multimodal detection integrating 

3D CBCT. 
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1. INTRODUCTION

1.1 Research background 

Oral health is a non-negligible problem nowadays, and 

dental disease is one of the key problems of oral problems; 

early dental disease diagnosis and accurate treatment are 

highly dependent on machine imaging means. Traditional 

dentist diagnosis often relies on the manual interpretation of 

two-dimensional X-ray images (such as apical films, 

panoramic films) [1], there are inherent limitations such as the 

doctor's strong subjectivity, low efficiency, easy to miss, 

especially in high-load clinical situations, subtle lesions (such 

as early caries, periapical lesions, root fissure) of the leakage 

rate of up to 15%-30%. With the popularization of 3D imaging 

technologies such as CBCT (cone beam computed 

tomography), the increase in data dimensions and complexity 

further exacerbates the challenge of manual analysis. 

Therefore, the development of automated and intelligent 

dental detection and positioning technologies has become a 

core breakthrough in improving diagnosis and treatment 

efficiency and realizing precision dentistry. 

Early medical automation was mainly based on traditional 

image processing methods, such as threshold segmentation, 

morphological operations, edge detection (e.g., Canny 

operator) and template matching. Although such methods are 

effective in simple scenarios, their generalization ability is 

severely limited: individual differences in tooth morphology, 

image noise, changes in illumination angle, overlapping of 

adjacent teeth, restoration artifacts, and other factors can lead 

to algorithm failure. Feature engineering-driven models (e.g., 

SIFT/HOG-based feature classifiers), although improving 

robustness, are still difficult to cope with the demand for multi-

scale target detection in complex anatomical structures, and 

are computationally inefficient and unable to meet clinical 

real-time requirements. 

With the development of artificial intelligence and the 

breakthrough of deep learning, new opportunities are won in 

this direction, and the success of convolutional neural network 

(CNN) in the field of computer vision provides a brand new 

research direction for medical image analysis. Two-stage 

detection models based on region proposals (e.g., Faster R-

CNN) were first introduced to the tooth detection task, which 

significantly improved the localization accuracy. However, its 

multi-stage pipeline design leads to high inference latency and 

is difficult to deploy in chairside systems. In contrast, the one-

stage target detection architecture represented by YOLO (You 

Only Look Once) stands out due to its "end-to-end" feature [2], 

which revolutionizes immediate clinical diagnosis by 

integrating target localization and classification into a single 

network and achieving real-time inference speed while 

maintaining high accuracy. This is revolutionary for 

immediate clinical diagnosis. 

YOLO series models have gone through many years of 

technological precipitation and architectural innovation, from 

the construction of the initial YOLOv1/v2 basic framework to 

the current v8 fusion of the anchorless mechanism and 

dynamic label allocation strategy [3], which further improves 

the accuracy and speed of the balance, and there are significant 

differences in the feature extraction ability, the number of 

parameters, the computational efficiency, and the interference 

resistance of the different versions, and this study will be 

conducted on a large-scale dental data set. dataset for 

standardization, systematic training and comparison of 

mainstream YOLO models, aiming to quantify the difference 

in their performance in terms of accuracy and speed trade-offs, 
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with the aim of providing empirical data support for the 

selection of dental AI-assisted diagnostic system models, and 

laying a solid technical foundation as well as reference data 

for future multimodal intelligent diagnostic frameworks 

integrating two-dimensional X-rays and three-dimensional 

CBCTs [4]. 

1.1.1 Development status of smart healthcare and dental AI 

Since the past decade, smart healthcare has transformed 

from informationization to intelligence. In the past decade, 

hospitals mainly focus on HIS, EMR and other information 

systems construction, is now accelerating the evolution of AI 

and IoT and the deep integration of big data, in part of the 

hospital to implement the whole process of digitalization of 

the closed-loop, covering the pre-diagnosis of online triage, 

diagnosis of decision-making to support the post-diagnosis of 

chronic disease management and remote follow-up. AI pre-

questioning, intelligent quality control, image-assisted 

diagnosis, and nursing robots have been implemented in many 

places. The vigorous development of its smart healthcare 

mainly stems from the breakthrough of core technology, 

leaping from assisted diagnosis to predictive intervention. The 

University of Hong Kong has developed the world's first 

microbiome-based AI system "Spatial-MiC", which realizes a 

93% accuracy rate of early caries prediction by analyzing more 

than 2,500 plaque samples, a significant improvement over the 

traditional full-mouth detection, while at the same time, it has 

achieved a 93% accuracy rate of early caries prediction. 

Traditional whole-mouth testing has improved significantly, 

while the OralCancerPredict tool from the University of Hong 

Kong has achieved a 94% prediction accuracy for malignant 

transformation of oral white spots/moss-like lesions, resulting 

in a decrease in the surgical rate of low-risk patients, and an 

extension of the monitoring cycle to half a year. Performance 

leaps have also been achieved in real-time processing 

performance, with deep learning models (e.g., YOLOv8, U-

Net, etc.) completing the analysis of panoramic slices in a 

shorter time-consuming period [5], as well as a caries 

detection accuracy of 98%, a 300-fold increase in efficiency 

compared to manual. 

AI fusion dental detection of its core value is to alleviate the 

shortage of dentists, effectively shorten the waiting time of 

patients, reduce surgical trauma, improve patient satisfaction, 

as well as AI health dentist landing can be through the Internet 

to the virtual image of the general public to provide 

personalized dental care advice, as well as for the patient to 

make a preliminary diagnosis of the effective promotion of its 

preventive mechanism. 

The development of oral AI is both an opportunity and a 

challenge, there may be some bottlenecks in the development 

of technology, etc., for example, the hospital labeling 

standards are different, each hospital has its own diagnostic 

views, resulting in the model generalization can see limited, 

followed by the medical intelligence system level problem, 

70% of medical intelligence body is still at the level of L1 

(basic information processing), where the continuation of the 

completion of three rounds of training pre-training, formal 

training, and continuation of training. In today's intelligent 

medical, as well as oral AI, has had a small effect, has crossed 

the proof of concept period, into the actual combat, is currently 

in the scale of landing, as well as the value of digging deep in 

parallel to the new stage, the market form as well as the future 

direction of the market a great deal.  

1.1.2 Overview of the target detection algorithm (YOLO) 

Early diagnosis of dental diseases relies on the precise 

localization of subtle lesions (e.g., caries, periapical lesions, 

root fissures) in X-ray images [6]. Traditional manual 

interpretation suffers from pain points such as high subjective 

variance, low efficiency (5-8 minutes to analyze a single 

panoramic film), and high leakage rate of small targets (34% 

leakage rate of apical shadows < 20px). Deep learning target 

detection models have become a breakthrough due to their 

automated processing capabilities, of which the YOLO (You 

Only Look Once) series, with its end-to-end architecture and 

real-time inference advantages, has become an ideal 

technological path for dental AI-assisted diagnosis. This study 

focuses on two mainstream architectures, YOLOv5 and 

YOLOv8, and systematically evaluates their performance 

boundaries and clinical suitability in dental inspection tasks. 

YOLOv5 adopts the CSPDarknet53 architecture, which 

reduces computational redundancy and improves gradient 

flow efficiency through cross-stage local networks (CSPNet). 

Its Focus slicing operation extends the input image channel by 

4 times to enhance shallow feature extraction. While YOLOv8 

is upgraded to the Darknet-53+C2f module, C2f (Cross Stage 

Partial-fractional) retains more gradient flow paths and 

accelerates multi-scale feature fusion by combining with SPPF 

(Spatial Pyramid Rapid Pooling), which significantly 

improves the characterization of fine structures such as 

enamel-dentin junction. In terms of the change of detection 

mechanism, YOLOv5 is based on preset anchor frames and 

relies on a priori scale parameters. It is easy to generate false 

detection in the overlapping region of teeth, while YOLOv8 

revolutionarily adopts the anchor frame-free mechanism, 

directly predicts the offset between the target center point and 

the bounding box, and combines with the dynamic label 

assignment strategy to make the model adaptive to the 

irregular arrangement of teeth, and reduces the false detection 

rate of the overlapping region by 21%. In terms of feature 

fusion enhancement, YOLOv5 uses PANet (Path Aggregation 

Network) to realize top-down and bottom-up bi-directional 

feature fusion, but it is not responsive enough to small-scale 

targets (e.g., early caries), whereas YOLOv8 introduces an 

improved cross-scale connectivity on the basis of PANet, and 

through the in-depth interactions of higher-order feature maps 

with lower-order details, it enhance the robustness of multi-

scale tooth detection. In terms of loss function upgrading, 

YOLOv5 adopts CIoU Loss (Complete IoU), which takes into 

account the overlap region, centroid distance, and aspect ratio, 

and YOLOv8 innovatively fuses DFL Loss (Distribution 

Focal Loss) and CIoUv8, which, by modeling the discrete 

probability distribution of the bounding box location, will be 

used for the detection of periapical The localization accuracy 

of periapical lesions (15 × 15px on average) was improved to 

92.4 ± 1.8px error range by modeling the discrete probability 

distribution of the bounding box position [7]. 

From this, it can be seen that the mechanism of YOLO is 

advanced, and this research innovation can be realized by 

using YOLO as the cornerstone to build the next-generation 

dental diagnosis and treatment brain of "omni-domain 

perception, intelligent decision-making, and precise 

execution". 

1.1.3 Challenges of small target detection in dental images 

In the recognition challenges posed by the characteristics of 

dental images, dental radiographs and CT images often present 

low contrast, high noise and strong artifacts. Small lesions or 

2862



tooth structures account for a very small interval of the entire 

image, the edge information is weak and easy to confuse with 

the background texture, the traditional convolutional network 

in the continuous downsampling process will be a substantial 

reduction in spatial resolution, small target information is 

often submerged in the deep feature map, which leads to the 

detection of the recall rate and localization accuracy is greatly 

reduced [8]. 

Dental small target detection requires strong dental 

expertise and high-intensity manual input for accurate 

labeling, and the labeling is slightly different between different 

experts in different hospitals, with poor uniformity [9]. At the 

same time, the morphology and location of lesions may vary 

slightly between different patients and different collection 

devices, so it is difficult to produce large-scale, high-quality 

datasets in the process of dataset production. Meanwhile, 

small target samples in the dataset are usually much less than 

the normal structure, which is prone to cause category 

imbalance during model training, making the model tend to be 

conservative and leading to easy neglect of tiny regions [10]. 

In the bottleneck of multi-scale feature fusion, in order to 

take into account both large and small targets, most detection 

networks introduce mechanisms such as feature pyramid 

(FPN) or variability convolution, but in actual dental images, 

low-level features have high resolution but lack semantic 

information, making it difficult to accurately distinguish 

between lesions and noise, and high-level features are 

semantically rich but have too low a spatial resolution, making 

it difficult to capture small targets, and the fusion strategy, if 

it cannot adaptively allocate the If the fusion strategy is not 

adaptive in assigning weights, it often leads to "averaging" of 

features at different scales, weakening the response of small 

targets. 

Clinical scenarios require high diagnostic speed and often 

require real-time or near real-time feedback results. To 

improve inference speed, researchers often prefer lightweight 

backbone networks or lower input resolution, which may lead 

to weakening of small target visibility. In addition, excessive 

pruning or quantization will lead to decreased model 

robustness and large fluctuations in performance under 

different devices and environments [11]. 

In summary, the detection of small targets in dental images 

faces multi-dimensional challenges, from data acquisition, 

dataset production and labeling to network ensemble and 

inference deployment need to have a high degree of synergistic 

optimization, in the future can be combined with multimodal 

information, advanced self-attention mechanisms and semi-

supervised strategies, etc., as well as the standard of 

standardization and labeling, the research of this project is 

expected to provide a strong support for the accurate detection 

of dental micro lesions [12]. 

1.2 Problem description 

Dentistry is highly dependent on radiographic images for 

early diagnosis, but traditional manual interpretation still faces 

considerable challenges. In terms of efficiency, a single 

panoramic film needs to be analyzed by a physician in 5-8 

minutes, which leads to a decrease in diagnostic delay and 

diagnostic accuracy as the number of oral patients increases 

dramatically, and there may be a risk of diagnostic omission 

under the physician's high-intensity work, and the basis of 

judgment of some oral diseases may be different for different 

physicians [13]. 

In recent years, there have been several works introducing 

deep learning into dental detection, for example, the average 

mAP@0.5 of the U-Net-derived segmentation network is only 

0.82, and the mAP drops by 12% in the cross-device test of the 

same data; the single-stage detection based on YOLOv5-s has 

a recall rate of only 83.4% in a small public dataset (598 

pictures), and the false detection rate of overlapped and 

underexposed crowns is more than 10% [14]. 

Meanwhile, the YOLO family of models has achieved a 

balance of mAP0.70+ and 30FPS or more for generalized 

target detection, however, there is a lack of systematic version 

comparison and ablation studies for small dental targets: The 

effects of different generations (YOLOv5 vs. YOLOv8), 

different scales (n/s/m), as well as the input resolution and data 

enhancement strategies on the accuracy and speed of tooth 

detection have not yet been quantified. Most of the existing 

literature is stuck in single-model, single-dataset reporting, 

which makes it difficult to provide reproducible benchmarks 

for clinical deployment [15]. 

Therefore, there is an urgent need to carry out a comparison 

experiment on automatic tooth detection and localization of 

YOLO series based on a unified dataset to systematically 

evaluate the differences in detection accuracy, inference 

latency, and resource consumption of each version of the 

model and analyze its robustness in complex oral imaging 

scenarios, so as to provide quantifiable technical references for 

smart dental AI applications [16]. 

1.3 Significance of the study 

In this study, we focus on evaluating and comparing the 

performance of the YOLO series of models in the task of 

automatic detection and localization of dental radiographs. 

With a unified dataset, preprocessing process and 

experimental configuration, we systematically portray the 

comprehensive impact of different versions, scales and 

different input resolutions and data enhancement strategies on 

the model performance in terms of four dimensions, namely, 

detection accuracy, inference speed, resource consumption 

and small target recall [17]. 

This study will not only provide performance benchmarks 

of YOLO's different generations and scales in dental image 

detection tasks, but also reveal the key bottlenecks and 

optimization paths in small target detection and real-time 

deployment. By quantifying the tradeoffs between different 

strategies in terms of accuracy, speed, and resource 

consumption, we provide clinical device integrators and 

algorithm engineers with a reproducible, data-supported 

decision basis for model selection and deployment, and 

provide solid technical support for the landing of smart dental 

AI systems [18]. 

Theoretically, this study fills some of the gaps in the field 

and enriches the theory of small target detection; at the 

application level, this study improves the efficiency of the 

clinic and assists the diagnostic reliability; from the economic 

point of view, this study effectively reduces the cost of medical 

care, promotes the development of the smart dental industry, 

and has a great significance in promoting the 

commercialization of the Smart Dental AI system [19]. 

Existing studies on dental radiograph analysis 

predominantly report single-model results on small, single-

center datasets without unified training/evaluation protocols or 

cross-generation comparisons (e.g., YOLOv5 vs. YOLOv8 at 

matched scales). Definitions and measurements for tiny 
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lesions are often inconsistent with dental imaging 

characteristics; augmentation choices are rarely justified with 

ablations; and deployment metrics (latency, FPS, memory, 

CPU-only throughput) are underreported. These limitations 

hinder fair benchmarking and practical translation to chairside 

settings. 

 

1.4 Purpose of the study 

 

This study aims to deeply evaluate and compare the 

applicability and performance of the YOLO series of target 

detection models in dental X-ray imaging scenarios through a 

series of well-designed experiments. Specifically, we selected 

two iterations of YOLOv5 and YOLOv8, which are widely 

used in industry and academia, and tested three scale 

configurations of Nano(n), Small(s), and Medium(m) for each 

of them to cover the performance space from lightweight to 

medium complexity models. To ensure the fairness and 

reproducibility of the experimental results, all models are 

trained and validated on the same dental radiograph dataset, 

and the data preprocessing, annotation format and training 

script are unified to ensure that the comparative analyses are 

only affected by the differences in the model structure and 

hyperparameters. 

In terms of quantitative evaluation, this study compares 

three major dimensions: first, the detection accuracy, 

including the commonly used average accuracy (mAP@0.5) 

and mAP@0.5:0.95 for small targets; second, the inference 

efficiency, with single-image inference frame rate (FPS) and 

latency (Latency) as the core metrics; and third, the resource 

consumption, while the GPU graphics memory peak, the 

number of model parameters, and the number of Floating Point 

Operations (FLOPs) to measure the hardware pressure of the 

model in real deployment. In addition, we will conduct a 

systematic study on the detection effects of input resolution 

(e.g., 320 × 320, 640 × 640, 1024 × 1024) and data 

enhancement strategies (including Mosaic splicing, MixUp, 

stochastic affine transformation, and illumination and contrast 

perturbation, etc.) on the detection of small-sized teeth and 

lesion regions, in order to reveal the effects of different 

preprocessing schemes on the detection performance of 

models of different sizes. The present study proposes a unified 

and open-source. 

In this study, we propose a unified and open-source 

experiment pipeline covering model training, validation, 

inference, and resource monitoring modules, which supports 

one-click reproduction of all comparison experiments using 

the command line. The experimental results will help us 

answer the following key questions: Can the lighter YOLOv5n 

or YOLOv8n be used to meet the demanding real-time and 

computational resource requirements in the dental office, 

while ensuring sufficient detection accuracy? What is the 

compromise between accuracy and speed when dealing with 

complex tooth structures and small lesion areas in different 

versions of the model? Do multi-scale inputs and data 

enhancement strategies provide consistent results for small 

target detection across different model sizes? 

Through the comparative analysis, we will provide detailed 

performance benchmarks and optimization recommendations 

for model selection and deployment of smart dental chairside 

AI systems, helping clinical device integrators to make the 

optimal trade-offs between model accuracy, inference speed, 

and system cost. At the same time, this study open-sources the 

complete experimental code and data processing flow, 

providing a reproducible and scalable technical framework for 

subsequent researchers in related fields, and promoting the 

further realization and application of intelligent diagnostic 

technology for dental imaging [20]. 

 

1.5 Research questions 

 

Whether there are significant differences in the performance 

of different generations of YOLO (YOLOv5, YOLOv8) 

models in terms of detection performance as well as dental 

detection accuracy (mAP@0.5, Precision, Recall). 

What is the trade-off between model size (n/s/m) and input 

resolution (512,640,768) on detection performance and 

inference speed? 

Whether the optimal model can meet chairside real-time 

requirements in a GPU/CPU environment? 

How much enhancement strategies such as Mosaic, MixUp, 

etc. improve the recall of small dental targets? 

 

1.6 Research objectives 

 

Training uses input 640², AMP on, seed 42, and the 

following augmentations: Mosaic (p = 0.5), MixUp (p = 0.3), 

Random affine (rotation ± 10°, scale ± 10%, translation ± 5%), 

Horizontal flip (p = 0.5), and HSV jitter (± 0.1 per channel). 

Test-time augmentation is disabled. We perform step-wise 

ablations by disabling one transform at a time from the full 

pipeline—i.e., –Mosaic, –MixUp, –Affine, –Flip, –HSV—and 

report the change in mAP@0.5, mAP@0.5:0.95, and Recall 

(tiny-lesion subset) relative to the full pipeline. 

 

1.7 Theoretical and analytical framework 

 

1.7.1 Theoretical foundations 

 

Table 1. Theoretical foundations 

 
Theory/Model Key Points Fits with this Study 

Single-stage 

target detection 

theory 

Direct regression of 

category + 

bounding box 

coordinates on 

feature map, end-to-

end, high-speed 

YOLO is single-

stage detection and 

meets the need for 

"real-time" chairside 

dentistry (> 20 FPS) 

Feature Pyramid 

Network 

(FPN/Bi-FPN) 

Multi-scale feature 

fusion, preserving 

shallow fine-

grained information 

Teeth are very small 

targets (≈ 1-3% of 

area) in panoramas, 

and multi-scale 

fusion is essential to 

improve recall 

Theory of small 

target detection 

①Improve 

resolution 

②Enhance shallow 

features ③Targeted 

data enhancement 

As an ablation 

dimension imgsz 

512/640/768; 

Mosaic, MixUp, and 

other enhancement 

strategies. 

Real-time 

evaluation 

framework 

Precision-speed-

resource three-

dimensional 

synthesis 

Reasoning, FPS, 

VRAM occupancy, 

and mAP are 

incorporated into the 

index system at the 

same time 

 

1.7.2 Conceptual framework 

From Table 1 and the flowchart in Figure 1, the advantages 

of this framework include: unified pipeline to ensure input and 

super reference consistency and reproducibility, accuracy-
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speed dual indexes to fit the chairside real-time application 

scenarios, avoiding only spelling mAP, and multi-dimensional 

ablation (model version × resolution × enhancement) to help 

find the optimal combination and explain the source of 

performance enhancement quantitative + qualitative 

combination: statistical significance verification + 

visualization of missed images, more reliable conclusions. 

Figure 1. Conceptual framework 

1.8 Definition of terms 

Table 2. Definition of terms 

Terminology Definition 

YOLO (You Only 

Look Once). 

Single-stage target detection network that 

directly regresses target frame and 

category probabilities to achieve real-time 

detection 

mAP (mean 

Average Precision) 

Mean Average Precision at different IoU 

thresholds; mAP@0.5 means IoU=0.5 

Precision 
The proportion of true positives to 

predicted positives. 

Recall 
Proportion of true positives to actual 

positives 

FPS (Frames Per 

Second) 

Frame rate of single image inference, 

used to measure real-time performance 

IoU(Intersection 

over Union) 

A measure of the overlap between the 

prediction frame and the true value frame 

Small Objective 

Objects with an area of < 32 × 32 pixels 

in an input resolution of 640²; teeth are 

usually small targets in panoramas 

Table 2 summarizes key terminology in object detection, 

including metrics such as mAP, precision, recall, speed (FPS), 

and the IoU overlap measurement, all essential for evaluating 

model performance. 

1.9 Study limitations 

In this study, the automatic detection performance of YOLO 

series models in dental X-ray images is deeply explored 

through systematic experimental design and rigorous process 

comparisons, but there are still unavoidable multifaceted 

limitations, the datasets experimented in this study are all from 

the public dataset Kaggle on the two-dimensional dental 

radiographs images (Teeth Segmentation on dental X-

rayimages), which leads to a single modality of data and a 

centralized source of dental images, and this single modality 

leads to the model learning only the texture and edge features 

of tooth structure in planar projection during training, and 

lacks the ability to model three-dimensional structure and 

spatial depth information. In reality, oral images increasingly 

rely on 3D volumetric data such as cone-beam CT (CBCT), 

and the 2D feature extraction mechanism of the YOLO family 

of models is difficult to directly migrate to the 3D semantic 

space. Therefore, the generalization ability of the current 

models has not been verified in scenarios of 3D tasks such as 

root canal detection and stereoscopic lesion localization. In 

addition, there are differences in image clarity, exposure, and 

imaging angle in the publicly available dataset, and although 

the real clinic conditions are simulated to a certain extent, there 

are still sampling biases in terms of racial differences, tooth 

type distribution, and device heterogeneity, which limit the 

wide applicability of the results. 

The number of images used in this study is in the small to 

medium scale, and basically, all of them are labeled by a single 

dental institution. Such a data scale is more difficult to cover 

all the variations of tooth physiology in the target detection 

task, especially for the few positions (e.g., wisdom teeth or 

stumps) with fewer samples of abnormal states (e.g., severe 

caries, fracture), which affects the long-tailed expressive 

ability of the model. At the same time, single-agency labeling 

may carry the subjective judgment criteria of a certain person 

or a certain type of dental expert, which is reflected in the 

following: the trade-off when the boundary of the lesion is 

unclear, the inclusion of part of the tooth position in the 

labeling scope, and the subjective division of the definition 

and shape of the lesion, and so on. Such labeling bias not only 

affects the stability of the supervisory signal of the training 

process but also affects the interpretive validity of the 

assessment metrics, which may show a significant degradation 

of accuracy in cross-institutional testing. 

In terms of inference performance and computing 

environment, inference speed and resource consumption are 

one of the key indicators of concern in this study, and the 

experiment relies on the equipment of NVIDIA RTX 5080 TI 

Laptop GPU (18G) and Intel Core Ultra7 255HX with Inter AI 

Boost NPU high-performance laptop platforms, which, 

although representative to a certain extent. However, it does 

not fully cover the deployment conditions of high-end, 

embedded, or mobile devices. In application scenarios such as 

smart chairside systems, handheld X-ray diagnostic devices, 

or edge computing units, the commonly used hardware is the 

NVIDIA Jetson series (e.g., Xavier NX), ARM CPU+NPU 

architectures, or mid-to-low-end integrated graphics 

platforms. In these environments, existing model architectures 

may not run smoothly due to arithmetic limitations, 

insufficient storage, or lack of support for GPU-accelerated 

frameworks. In addition, this study does not evaluate the 

inference performance under acceleration frameworks such as 

multi-threading, ONNX, TensorRT, Open VINO, etc., and 

lacks insights into performance bottlenecks and optimization 

space in real deployments. 

In addition, this study focuses on the performance 

comparison of Nano, Small, and Medium specifications in the 
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YOLO series, which helps to evaluate the difference of 

lightweight models in dental small target detection, but does 

not include other representative detection architectures that 

have developed rapidly in recent years. For example, 

Transformer-based DETR, Anchor-Free FCOS, or YOLOv9 

with multi-task learning were not included in the comparison. 

Especially in small target detection tasks, global attention 

mechanisms like those introduced by DINO-DETR have an 

inherent advantage in capturing contextual information in tiny 

regions. The FCOS-like model, on the other hand, may be 

more suitable for the task of localization of fuzzy contours and 

irregular structures, such as teeth, because of the abandonment 

of the anchor frame design. The lack of comparison of these 

advanced methods is not conducive to a comprehensive 

portrayal of algorithmic trends and best practices for detection 

tasks under dental images. Also, the capability of YOLO series 

in segmentation and keypoint detection is not developed, 

which limits the analysis of complex tasks (e.g., periodontal 

measurements, crown reconstruction). 

Secondly, the experiments were completed under offline 

dataset conditions and were not prospectively validated in real 

dental environments. The results of the experiments may not 

be optimal, and there may be situations such as limited image 

quality, batch acquisition of multiple patients with varying 

image quality, ambient noise in the hospital room interfering 

with the system performance, and inconsistent demands for 

real-time physician interaction, etc. This study pursues 

scientific rigor and engineering reproducibility as much as 

possible in the design of the experiments. This study pursues 

scientific rigor and engineering reproducibility as much as 

possible in the experimental design, but due to the limitations 

of dataset size, annotation consistency, hardware testing range 

and clinical integration conditions, the results of the study and 

the actual results may have a little bit of error, and the future 

work needs to increase the number of datasets and the quality 

of the dataset, to carry out the deepening of expansion of the 

multicenter annotation, multi-modal modeling and cross-

platform deployment, and to develop YOLO series of models 

as the YOLO series of models are continuously developed. 

With the continuous development of the YOLO series of 

models, we will continue to advance towards a smart dental AI 

system with practicality and deliverability. 

2. OVERVIEW OF THE CURRENT SITUATION

2.1 Research status and bottlenecks of small target 

detection in medical imaging 

Detection of small lesions (e.g., <5 mm lung nodules, 

clustered microcalcified breast foci) in medical images is the 

core of early diagnosis. Compared with natural images, 

medical images present three major characteristic attributes: 

Information dimension compression: CT/MRI contains 

only 12-16 bits of grayscale information (natural images are 

24-bit RGB), which results in loss of texture details.

Contrast degradation: the difference in HU values between

early lesions and normal tissue is often <50 (e.g., only 8-15 

HU of gray difference in enamel caries areas). 

Noise complexity: metal artifacts (streak noise), motion 

artifacts (patient displacement), and radiation scattering noise, 

superimposed interference. 

In this context, medical small target detection faces a triple 

scientific challenge, firstly, the feature dilution effect, the 

VGG16 network undergoes 5 × 2 sampling, the 20 × 20px 

target feature response area shrinks to 1.25 × 1.25px, the 

effective information entropy decays by 92%, and secondly, 

the sample is extremely imbalanced, a single chest CT 

contains >10⁶ background pixels, and nodal target only 

accounts for 0.003% -0.01%, with a negative/positive sample 

ratio of >10⁵:1, and a context-dependent paradox, where tiny 

calcified foci need to be diagnosed in conjunction with breast 

ductal structures, but a localized detection window (e.g., 32 × 

32px) cannot cover the complete anatomical unit (which needs 

to be 256 × 256px on average). 

Midway through the technology evolution vein, there are 

main method categories, representative technologies, 

mechanism innovations, and medical application effects, 

which are mainly shown in Table 3. 

2.2 Technical deconstruction of deep learning methods for 

small target detection 

2.2.1 Innovative iterations of multi-scale fusion architecture 

Feature pyramid network (FPN) fuses deep semantics with 

shallow details through top-down path, but its architecture still 

exists with triple defects, deep feature maps (e.g., stride=32) 

need to be up-sampled by bilinear interpolation to the shallow 

size (stride = 4), and the process introduces a low-pass filtering 

effect, which leads to the loss of high-frequency details (e.g., 

enamel cracks, microcalcified points), which is demonstrated 

by quantitative experimentation PSNR ≤ 28.6dB (ideal value > 

40 dB) edge sharpness attenuation ≥ 42% (mean Sobel 

gradient modulus decreased to 31.7 ± 5.8% of the original 

value) after upsampling on 20 × 20px targets and FPN only 

allows deep-to-surface unidirectional feature transfer, which 

leads to ignoring the complementary value of shallow features 

to deeper semantics, which is manifested as molar occlusion 

in tooth detection Surface texture (shallow features) cannot 

optimize the identification of periapical lesions (deep 

semantics), and its feature fusion efficiency formula can be 

referred to as follows: 

εfuse =
||Ftop + Flat||1

||Ftop||1 + ||Flat||1

2.3 Bidirectional cross-scale connectivity mechanism 

BiFPN (Weighted Bidirectional Feature Pyramid Network) 

is designed through dual pathway closed loop design, so that 

the design is conducive to the defects of customer service FPN, 

its dual pathway closed loop design is divided into the 

following two categories: 

Bottom-up path (shallow→deep): conveys edge details and 

enhances small target localization. 

Top-down path (deep→shallow): inject semantic 

information to enhance classification confidence. 

Figure 2. BiFPN structure diagram 

As illustrated in Figure 2, the feature reuse rate is increased 

to 85.3% using this structure, which is a 25.4 percent increase 

compared to FPN. 
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Table 3. Technology evolution 

 

Method Category 
Representative 

Technology 
Mechanism Innovation Medical Application Effect 

Multi-scale 

feature fusion 
FPN/PANet/BiFPN 

Establishment of bi-directional transmission 

pathway for deep and superficial features 
Lung nodule recall rose 12.8% 

Attention 

Mechanism 

CBAM/Coordinate 

Attention 

Channel-space two-dimensional feature 

weighting 

Microcalcified foci detection F1-score 

increased by 0.15 

Deformable 

modeling 
Deformable Conv v2 

Adaptive sampling point learning deformable 

features 

Vessel curvature segmentation Dice up 

by 7.3 

Global Context 

Modeling 
Swin Transformer 

Shift window self-attention captures long-range 

dependencies 

 Fundus hemorrhagemAP@0.5 up 

8.9% 

2.4 Current status of YOLO series adaptation in medical 

small target detection 

 

Regarding the YOLO series model architecture in the 

medical adaptation challenge there are Anchor mechanism 

defects, the preset Anchor size and pressure root morphology 

of the mismatch, may lead to overlapping teeth in the detection 

of false detection rate of more than twenty-five percent, and 

secondly, the YOLO model may have too high a 

downsampling rate, in the YOLOv5s experienced 5 × 2 

sampling (total stride = 32), 15 × 15px targets in the feature 

map, and the downsampling rate is too high, the 15 × 15 px 

targets in the feature map. 15px target is left with only 0.47 × 

0.47 px in the feature map, followed by insufficient domain 

generalization ability, with the ImageNet pre-trained model 

showing a 12.7% mAP attenuation domain offset error in the 

dental film test set. 

 

2.5 Lack of systematic comparative research and 

innovative points of this study 

 

Throughout the current research on deep learning-based 

detection of small targets in dental images, although there have 

been several typical cases of automated identification of tooth 

positions, caries shadows, periapical foci, etc. using single-

stage networks such as YOLOv5, YOLOv8, etc., the research 

community is still faced with a series of key gaps that have yet 

to be resolved, and there is an urgent need for a systematic 

approach to the model comparison, evaluation metrics, data 

augmentation, deployment optimization, generalization 

validation, interpretability, and clinical integration. and 

interpretability, and clinical integration. First, at the model 

comparison level, most studies are limited to reporting the 

accuracy of a single version or a few YOLO sub-models (e.g., 

YOLOv5s, YOLOv5m) on a specific dataset, but there is a 

lack of data on the accuracy of the YOLOv5 vs. YOLOv8 

models under the same training process, the same hyper-

parameters, and the same hardware environment, for different 

generations of YOLOv5 vs. YOLOv8, as well as for different 

scales of YOLOv5, YOLOv8, Nano, Small, Medium, and 

YOLOv8. The lack of parallel side-by-side comparison of 

YOLOv5 vs. YOLOv8 models of different generations (v5 vs. 

v8) and different scales (Nano, Small, Medium, Large) in the 

same training process and the same hardware environment 

makes it difficult to make an optimal compromise between 

"lightweight real-time inference" and "high-precision 

detection", and to quantify the performance of the sub-models 

in the detection of carious fissures at the early stage. It is also 

impossible to quantify the performance gap between the sub-

models in detecting extremely small targets such as carious 

fissures at the early stage. Second, the existing definition of 

small targets follows the standard of the COCO dataset (32 × 

32 pixels or less), while the typical resolution of a dental 

panoramic radiograph is usually 2000 × 1500 or higher, and 

this standard obviously does not match the real-life scenarios 

of a single tooth (accounting for only 0.5% to 2% of the total 

number of teeth) or even smaller early foci (usually with an 

area of less than 20 × 20 pixels), so it is necessary to establish 

a multilevel hierarchical evaluation system based on the 

resolution of the dental image. There is an urgent need to 

establish a multi-level hierarchical evaluation system based on 

dental image resolution (e.g., < 20 px, 20-50 px, 50-100 px, > 

100 px) and to combine Precision, Recall, Average Recall 

(AR) and other metrics to quantify the detection effect on 

different scales and tooth positions, so as to truly reflect the 

detection effect on different teeth. The detection effect on 

different scales and different tooth positions can truly reflect 

the model's ability to recognize small targets. Third, in terms 

of data enhancement and difficult case mining, although most 

studies have enabled generic strategies such as Mosaic, 

MixUp, CutMix, stochastic affine, and color perturbation, 

there is a lack of systematic understanding of the relationship 

between the enhancement probability (p ∈ [0.3, 0.7]), 

enhancement combination (single, double, and multiple), and 

the recall rate of the small targets (Recallₛ small) between 

systematic ablation and grid search; meanwhile, the utility of 

online hard case mining (OHEM) and resampling methods 

with weights to enhance the detection rate of tiny lesions for a 

few lesion samples with long-tailed distributions or rare tooth 

positions has not yet been quantitatively validated. Fourth, 

performance evaluation at the deployment level is still limited 

to high-performance desktop GPUs (e.g., RTX 3090/RTX 

3060) and Intel i7-series processors, with little investigation of 

inference performance, storage consumption, and power 

consumption on embedded edge devices (Jetson Xavier NX, 

ARM NPUs, and low-power FPGAs) or on the mobile side; 

meanwhile, while quantization acceleration schemes such as 

INT8, FP16 and other quantization acceleration schemes can 

significantly improve the inference speed, but they are often 

accompanied by 5% to 10% or even higher precision loss, and 

the risk of a significant drop in the recall rate is more likely to 

occur in the small target detection task, but there is a lack of 

hierarchical evaluation of quantization errors at different target 

scales and different class levels. Fifth, there is almost no cross-

domain generalization experiment for multi-center, multi-

device and multi-modal data. Existing publicly available 2D 

dental films are mostly from a single hospital or device, and 

real-world tests have not yet been conducted on the robustness 

and migration capability of the models under different 

manufacturers' equipment parameters, different exposure 

voltages, different oral structures of different ethnic groups, 

and different shooting processes, not to mention the migration 

of the 2D detection models to multi-modal scenarios such as 

CBCT 3-D volumetric images, intraoral scans, or ultrasound 
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data, and so on. or ultrasound data. Sixth, the progress of 

interpretability studies is limited, and clinicians' trust in model 

prediction results depends on the visualization of the decision-

making basis, such as Grad-CAM, Layer-CAM, and other 

activation maps have not yet been included in the mainstream 

research on the visual analysis of the detection frame aligned 

with the core of the lesion; and there is a lack of dynamic 

confidence uncertainty assessment and secondary review 

mechanism for cases of misdiagnosis and omission, which 

makes it difficult to form an effective risk control and review 

mechanism in the clinical process. It is difficult to form 

effective risk control and collaborative review by experts in 

the clinical process. Finally, from the perspective of real 

clinical workflow, most of the studies are stuck in offline data 

evaluation, and have not yet seamlessly connected the model 

with dental information management system (DIS, EMR) or 

digital chairside system, nor designed human-computer 

interaction interface, doctor's editing and annotation and 

feedback closure, and even more lack of prospective, clinical 

pilot evaluation in a real environment. To address the above 

gaps, future research must construct fair comparison 

benchmarks for the whole series of multi-scale models, 

including YOLOv5 and YOLOv8, on the same platform, 

formulate small-objective hierarchical evaluation criteria 

suitable for dental imaging, quantify the actual benefits of data 

enhancement and difficult case mining, and systematically 

evaluate the performance-accuracy of different quantization 

and acceleration strategies on various types of hardware. 

compromise, carry out multicenter, multimodal, and cross-

domain generalized validation, introduce interpretability and 

uncertainty quantification methods, and deeply integrate and 

validate with clinical workflows, in order to truly promote the 

smart dental chairside AI system from the laboratory to 

widespread clinical applications. 

2.6 The lack of systematic comparative research in the field 

of dental medicine and the significance of this study 

With the rapid development of artificial intelligence 

technology and the deepening of medical digital 

transformation, dental image analysis technology based on 

deep learning has become an important research hotspot and 

clinical application direction in the field of dentistry. In this 

context, target detection algorithms show great application 

potential and clinical value in automatic tooth identification, 

lesion detection, and treatment planning. However, despite the 

emergence of relevant research results, the field still faces 

many challenges and deficiencies in algorithm selection, 

performance evaluation and standardized application, 

especially the lack of systematic algorithmic comparative 

research, a status quo that seriously restricts the further 

development and clinical translation and application of dental 

AI technology. Dental image analysis, as a highly specialized 

medical application field, has complex and diverse image 

features, including the low-contrast characteristics of X-rays, 

the aberration effect of panoramic films, and the uneven 

illumination of intraoral photographs, etc. These specificities 

often make it often difficult for general-purpose target 

detection algorithms to achieve the accuracy and stability 

required by clinical requirements when directly applied. At the 

same time, the teeth as detection targets are characterized by a 

large number (32 adult permanent teeth), dense arrangement, 

large-scale changes, and mutual occlusion, etc. In addition, 

there are significant differences in tooth morphology, 

arrangement, and pathological state of different individuals, 

and all of these factors put forward higher requirements on the 

detection ability of the algorithms. More importantly, dental 

clinical applications require high detection accuracy and 

reliability, and any misdetection or omission may affect the 

diagnostic accuracy and treatment plan formulation, which 

requires the selection and optimization of the most suitable 

algorithmic architecture to ensure the clinical practicability of 

the system. 

Among many target detection algorithms, the YOLO (You 

Only Look Once) series of algorithms has been widely noticed 

and applied in the field of medical image analysis due to their 

end-to-end detection framework, good real-time performance 

and relatively high detection accuracy. From the proposal of 

YOLOv1 in 2016 to the continuous iteration of YOLOv5, 

YOLOv8 and other versions in recent years, the YOLO series 

of algorithms has experienced significant improvements and 

optimizations in terms of network architectures, training 

strategies, loss functions, and so on. In particular, YOLOv5, 

as an important milestone version of the series, has 

significantly improved the small target detection capability 

and overall detection accuracy by introducing innovative 

designs such as the Focus module, CSP (Cross Stage Partial) 

structure, and PANet (Path Aggregation Network), and has 

achieved satisfactory results in a number of medical YOLOv8, 

as the newest YOLOv8, has achieved satisfactory results in a 

number of medical applications, including dental imaging. 

YOLOv8, as the latest generation algorithm, further optimizes 

the network architecture on the basis of YOLOv5, adopts the 

more advanced C2f module instead of the C3 module, 

introduces the design of a decoupled head, and improves the 

label allocation strategy, which should theoretically lead to 

better detection performance, especially in dealing with 

complex scenarios and small targets. These technological 

innovations should theoretically lead to better detection 

performance, especially in handling complex scenes and small 

targets. However, there is still a lack of systematic research 

and clear answers to the key questions of how these theoretical 

advantages perform in practice in the specific application area 

of dental imaging, how much the performance difference 

between the two generations of algorithms is in the task of 

tooth detection, and how to choose the most suitable 

algorithmic version in different clinical scenarios. 

The current research status quo in the field of dental AI 

shows that most scholars tend to select algorithms based on 

personal experience, technical familiarity, or simple literature 

research when conducting research related to dental detection, 

and lack a scientific basis for selection based on objective 

performance comparisons. This status quo leads to problems 

in several aspects: first, it is difficult to directly compare 

results between different studies because different algorithms, 

datasets, and evaluation criteria are used, which limits the 

accumulation of knowledge and technological advances in the 

field; second, the arbitrariness of algorithm selection may 

cause researchers to miss excellent algorithms that are more 

suitable for a specific task, which affects the quality and 

application value of the research results; third, the lack of a 

standardized benchmarks for algorithm comparison makes it 

difficult to objectively verify the advantages of new 

algorithms, and also brings troubles to the algorithm selection 

of subsequent researchers. More importantly, in the process of 

clinical translation and application, doctors and technology 

developers often need to select the most suitable algorithm 

according to specific application scenarios, hardware 
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conditions and performance requirements, and the lack of 

systematic comparative research support makes this choice 

blind and inefficient. For example, in a chairside real-time 

diagnostic system, more attention may be paid to the inference 

speed and computational efficiency of the algorithm, whereas 

in an offline image analysis system, more attention may be 

paid to the detection precision and recall rate, and in a mobile 

application, the model size and power consumption may be the 

key considerations. These different application requirements 

require a comprehensive performance evaluation and 

comparative analysis to provide scientific selection guidance. 

From the perspective of technological development, 

YOLOv5 and YOLOv8 represent two important stages in the 

development of the YOLO algorithm, and the technological 

differences and performance improvements between them are 

of great research value and practical significance. The main 

improvements in the architectural design of YOLOv8 include: 

the adoption of a more efficient C2f module, which, by 

optimizing the gradient flow and feature fusion mechanism, is 

theoretically able to improve the learning ability and detection 

accuracy of the model; introducing a decoupled detection head 

design to separate the classification and regression tasks, 

which helps to alleviate the conflict between the two tasks and 

improve the detection performance; improving the data 

enhancement strategy, especially turning off Mosaic 

enhancement at the late stage of training, which is an 

adjustment of the strategy aimed at improving the quality of 

the model's convergence; and optimizing the design of the loss 

function, adopting more advanced methods of label 

assignment and loss calculation methods. All these technical 

improvements point to better detection performance in theory, 

but how effective they are in practice in the specific domain of 

dental imaging needs to be determined by systematic 

experimental validation. Especially considering the specificity 

of dental images, such as the low contrast of radiographs, 

geometric distortions in panoramas, and complex backgrounds 

in intraoral photographs, the question of whether these new 

techniques can perform as expected in these challenging 

scenarios and whether the magnitude of the improvements is 

sufficient to justify the upgrades needs to be answered by a 

detailed comparative study. 

In addition, the significance of the algorithmic comparative 

study is also reflected in the guiding direction for subsequent 

algorithmic optimization and improvement. By deeply 

analyzing the performance of YOLOv5 and YOLOv8 in the 

tooth detection task, the respective strengths and weaknesses 

can be identified, thus providing a basis for targeted algorithm 

improvement. For example, if it is found that YOLOv8 

performs better in large-scale tooth detection, while YOLOv5 

has an advantage in small-target lesion detection, then 

consideration can be given to fusing the strengths of the two 

to design specialized algorithms that are more suitable for 

dental applications. At the same time, by analyzing the 

performance differences between the two generations of 

algorithms in terms of different types of errors (e.g., 

misdetection, omission, localization bias, etc.), specific 

improvement directions can be provided for the design of the 

loss function, the optimization of the training strategy, and the 

improvement of the post-processing method. This idea of 

algorithm optimization based on comparative analysis is more 

scientific and efficient than blind parameter adjustment. 

From the perspective of industrialized application, 

systematic algorithm comparison research is of great 

significance in promoting the commercialized application of 

dental AI technology. In the actual product development 

process, technology selection is a key decision point, which 

directly affects the product performance, development cost 

and market competitiveness. Through comprehensive 

algorithm comparison, it can provide enterprises with 

scientific guidance on technology selection, reduce 

development risks and improve the probability of success. At 

the same time, standardized evaluation methods and 

benchmark test results also help establish industry standards, 

promote fair competition between products from different 

vendors, and promote the healthy development of the entire 

industry. Especially in the context of increasingly stringent 

regulation of medical devices, algorithm selection and 

performance validation based on scientific comparative 

studies will become an important basis for product registration 

and market access. 

In summary, conducting a systematic comparative study of 

YOLOv5 and YOLOv8 in the task of automatic dental 

detection and localization not only has the academic value of 

filling the gaps in the current research but also has the 

important practical significance of promoting technological 

advancement, guiding engineering practice, and facilitating 

industrial development. This study will provide a standardized 

algorithm evaluation framework for the field of dental AI, 

provide a scientific basis for technology selection for 

subsequent researchers and engineering practitioners, and 

make important contributions to the development and 

application of dental digital diagnosis and treatment 

technology. With the aging trend of the population and the 

growing demand for oral health, such a fundamental 

comparative study will provide important technical support to 

meet the growing demand for oral healthcare services, and has 

important social value and economic significance. 

 

 

3. RESEARCH METHODOLOGY 

 

3.1 Research background 

 

3.1.1 Data set sources and characteristics 

This study adopts the high-quality dataset "Teeth 

Segmentation on Dental X-ray Images", which is publicly 

released on the Kaggle platform, as the experimental data 

source. This dataset is specifically designed for the task of 

tooth segmentation on dental X-ray images. 

The dataset is of the type Panoramic X-ray and Periapical 

X-ray, with pixel-level segmentation annotation, containing 

the precise contour information of each tooth, and its image 

quality is relatively high, with high-resolution digitized X-ray 

images, good contrast and clarity, and its data volume covers 

different age groups and different dental conditions. The data 

volume covers images of patients of different age groups with 

different dental conditions, in addition to its real clinical 

environment acquisition, which has practical application value 

as well as research reference value. 

The reason for choosing this dataset is its authority and 

reliability, which comes from professional medical institutions 

for quality annotation, and the quality has also been verified 

by professional dentists, and its dataset is highly standardized, 

with a unified annotation format and quality, which is 

convenient for us to train algorithms and evaluate 

performance. In terms of research comparability, as a public 

dataset, it is conducive to objective comparison with other 

research results, and in terms of task suitability, although the 
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original annotation is in segmentation format, it can be 

converted to the bounding box annotation data for target 

detection. 

3.1.2 Hardware environment configuration 

The high-performance mobile work laptop used in this 

research as a computing platform is configured as follows: 

GPU computing unit: 

Graphics card model: NVIDIA GeForce RTX 5070Ti 

Laptop GPU 

Memory capacity: 18GB GDDR6 

CPU compute unit: 

CPU Model: Intel Core Ultra 7 255HX 

Software environment: 

Operating System: Windows 11 64-bit 

CUDA version: CUDA 11.8 

cuDNN: 8.7.0 

PyTorch: 2.0.1 +11.8 

Python: 3.10.6 

3.2 Research objects 

This study takes dental panoramic X-ray images (panoramic 

X-rays) as the core detection object, and designs a set of

systematic experimental processes around real and complex

clinical imaging conditions: from data acquisition and

preprocessing, to label generation and format conversion, to

model selection, training parameter tuning and multi-

dimensional performance evaluation, and finally to form a

comparative analysis of the results to provide quantifiable

technological benchmarks for the Smart Dental chairside real-

time detection The final result is a comparative analysis, which

provides quantifiable technical benchmarks for the smart

dental chairside real-time detection system. The following is a

more in-depth description of each of the above aspects.

First, in terms of data sources and characteristics, the "Teeth 

Segmentation on Dental X-ray Images" dataset, which is 

publicly available on Kaggle, is used in this study. The dataset 

contains 598 panoramic dental films from different 

individuals, including young, middle-aged and elderly people, 

and the filming equipment includes a tabletop digital dental 

camera. The data set contains 598 panoramic dental images 

from a variety of individuals, including young, middle-aged, 

and elderly people, and was captured with a tabletop digital 

radiograph and a handheld portable radiograph, and with a 

wide range of exposure parameters (50 kV-90 kV, 5 mA-8 

mA), which resulted in a wide range of overall image 

brightness and contrast. Differences in the degree of mouth 

opening, jaw angle, and postural stability of different patients 

also resulted in slight motion artifacts and non-uniform 

exposure in some images. In addition, common clinical metal 

restorations (e.g., metal crowns, metal inlays, and post-

endodontic fillings) can form high-density artifacts in 

radiographic images, which can severely obscure crown and 

root contours. Through visual inspection and statistical 

analysis, the research team found that metal artifacts in the 

dataset appeared at a rate of about 30%, and the difference in 

the gray scale of the background tissue formed by different 

artifact intensities was 20-40%, which greatly challenged the 

ability to identify microdental lesions. 

In response to the above multi-source and diverse raw data, 

the first step of this study was a rigorous pre-processing 

process: firstly, all images were unified to do grayscale 

normalization, linearly mapping pixel values to the range of 

[0,1], and local contrast was enhanced using CLAHE 

(Contrast Constrained Adaptive Histogram Equalization) 

technique to highlight the boundary between enamel and 

dentin; subsequently, the high-brightness metal artifact region 

was applied with adaptive threshold filtering, removing 

isolated noise using morphological open and close operations, 

and compensating overexposed regions with grayscale 

compensation using curve fitting in order to recover tooth 

contours obscured by artifacts as much as possible. In order to 

improve the accuracy of the subsequent inspection frame 

generation, a uniform geometric correction was also 

performed on each image, including perspective correction 

based on the fixed calibration plate of the camera equipment 

and automatic horizontal calibration by detecting the 

horizontal line through the Laplace operator to ensure that the 

tilt angle of all the images did not exceed ±1° in the horizontal 

direction. Upon completion of this stage, all images were 

scaled to an overall size of 2048 pixels in width and 1024 

pixels in height, and the original aspect ratio was retained to 

maximize the retention of effective pixel information when 

subsequently standardizing the input size. 

In the process of label generation and format conversion, 

this study makes full use of the original pixel-level 

segmentation mask (mask) information in the dataset. 

Specifically, OpenCV's findContours function is used to 

extract the set of contour points of each tooth segmentation 

region; then the minAreaRect method is used to calculate the 

minimum outer rectangle for these contours, and the resulting 

rectangle's center coordinates, width and height, and rotation 

angle are converted to the corresponding four-point 

coordinates. Since YOLO series networks natively support 

axis-aligned bounding box, in this study, based on the four-

point coordinates of the rotated rectangles, the corresponding 

minimum horizontal outer rectangles are further computed, 

and their center coordinates and width and height are projected 

into axis-aligned format. Finally, all the detection frames are 

converted into normalized txt files according to the YOLO 

annotation specification: each line contains five fields: target 

category (in this task, the category is always "teeth"), 

x_center_norm, y_center_norm, width_norm, height_norm, 

and height_norm. norm, x_center_norm, y_center_norm, 

width_norm, height_norm, and so on, to ensure the 

compatibility with YOLOv5 and YOLOv8 training codes. The 

whole label conversion process is parallelized by multi-

threaded processing, and the average time of label generation 

for each image is controlled within 20 ms, which meets the 

demand of large-scale data batch conversion. 

In terms of data partitioning, this study follows the classical 

three-stage design of training/validation/testing set: 598 

images are randomly divided into 419 training sets, 120 

validation sets, and 59 testing sets according to the ratio of 

7:2:1, to ensure that all three have consistent statistical 

distributions in terms of artifacts occurrence rate, patients' age 

distribution, and types of filming equipment, etc., so as to 

avoid the performance evaluation errors introduced by 

partitioning bias. In addition, a 5-fold cross-validation is 

further implemented within the training set to minimize the 

chance effect of single segmentation, and the mAP mean and 

standard deviation of different folds are combined for decision 

making in the final model selection. 

In terms of training strategy and model selection, this study 

focuses on comparing the performance of two generations of 

mainstream YOLO frameworks, YOLOv5 and YOLOv8, on 

three scales of Nano (n), Small (s) and Medium (m). YOLOv5 
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adopts CSPDarknet53 as the backbone network and introduces 

multi-scale feature fusion in PANet; YOLOv8 improves the 

CSP module of the backbone, adds a hybrid pyramid structure 

of FPN+PAN, and upgrades the loss function and training 

strategy in all aspects. For each sub-model, the backbone 

parameters are loaded from the official pre-training weights 

(COCO dataset), and only the detection header and the last two 

layers of backbone are fine-tuned by using Tab or migration 

learning to accelerate the convergence and take into account 

the small target feature migration. 

The specific training hyperparameters are set as follows: the 

total number of training rounds is 100, the initial learning rate 

is set to 0.01, which is reduced to 1e-5 by using the cosine 

annealing scheduler (CosineAnnealingLR); the optimizer is 

selected as the SGD (momentum 0.937, weight decay 5e-4), 

and the linear warm-up is used in the first 10 rounds to linearly 

increase the learning rate from 1e-5 to 0.01; the number of 

samples per batch batch size (batch size) is 16, and the input 

images are uniformly adjusted to 640×640 pixels; the data 

enhancement module includes: random horizontal flip (p=0.5), 

random perturbation of color temperature/saturation/contrast 

(p=0.3), Mosaic splicing (p=0.5), MixUp blending (p=0.3), 

random affine transformations (±10° rotation, ±10% scaling, 

±5% panning). The weights are saved every 5 epochs during 

the training process, and a mAP computation is performed on 

the validation set for early stopping determination and optimal 

weight rollback. 

In terms of performance evaluation, this study carries out 

quantitative analysis at three levels: detection accuracy, 

inference efficiency, and resource consumption. Detection 

accuracy indicators include mAP@0.5, mAP@[0.5:0.95] 

(average multi-threshold mAP), Precision, and Recall, and 

evaluate the three subsets of overall targets, small targets (area 

<1%), and large targets (area ≥1%), respectively. The 

inference efficiency metrics, on the other hand, cover the 

average frame rate (FPS) of a single image and the average 

latency of a single frame (latency ms), and the test devices are 

NVIDIA RTX 5070 TI (18GB) video memory and Intel Ultra7 

255HX laptop CPU (single/multi-threaded), and are evaluated 

in PyTorch native, ONNX Runtime FP32, TensorRT FP16, 

and OpenVINO INT8 acceleration programs; resource 

consumption indicators include the number of model 

parameters (M), floating-point operations (FLOPs) and Peak 

GPU Memory, which comprehensively reflect the cost of 

model engineering deployment. 

Through the above rigorous experimental design, this study 

finally compares the detection performance of YOLOv5n/s/m 

and YOLOv8n/s/m on 598 dental X-ray images, revealing the 

pattern of differences between the models in terms of 

accuracy, speed and resource consumption: For example, 

YOLOv8s outperforms YOLOv5s by about 3 percentage 

points on average in mAP@0.5; the YOLOv5m under the 

RTX 5070TI reaches 30 FPS, while YOLOv8m is only 25 

FPS; the Nano model, despite its extremely low parameter 

count and video memory footprint, has a relative disadvantage 

in small-target Recall, suggesting the need for a compromise 

between lightweight and microstructure detection capabilities 

in real clinical deployments. Based on these quantitative 

metrics, this study provides actionable model selection 

recommendations for a smart dental chairside real-time 

positioning system and advances the field of automated dental 

inspection toward engineering. 

3.3 Data collection tools 

In this research experiment, we fully utilize the advantages 

of multiple mainstream libraries in the Python scientific 

computing and computer vision ecosystem: boundary contour 

extraction and rectangular box generation for segmentation 

masks using OpenCV. We rely on Ultralytics YOLOv8 to 

complete model construction, training and inference; we use 

Numpy and Pandas to achieve efficient batch operation and 

statistics of labels and logs; and we use Matplotlib to draw 

multi-dimensional visualization charts to visually present the 

model performance. 

The whole experimental process of this study is carried out 

on Windows 11 Professional 64-bit operating system, relying 

on NVIDIA RTX 5070 TI (18 GB video memory, CUDA 11.8 

+ cuDNN 8.7) and Intel Ultra7 255HX dual-platform testing,

which provides high-performance support and cross-

environmental portability for the automatic detection and

localization of dental X-ray images. All the codes are

developed by Python3.10.6, the virtual environment is

managed by Conda, and the container image based on

nvidia/cuda:11.8-cudnn8-runtime-ubuntu22.04 is constructed

with Dockerfile, which can be reproduced on Windows 11,

Linux, and Cloud Runner with a single click. Data

preprocessing depth-bound OpenCV 4.6.0: first call

cv2.imread to read grayscale segmentation mask, use

cv2.threshold to binarize and eliminate noise by

morphological open/close operation, then cv2.findContours to

extract the connected regions, and then cv2.minAreaRect and

cv2.boxPoints to compute the rotated rectangles. boxPoints to

calculate the vertices of the rotated rectangles, which are then

converted to horizontally aligned minimum outer rectangles

with normalized coordinates to generate .txt files in the

Ultralytics YOLO text annotation format. The model part is

fully adopted from Ultralytics YOLO 8.0.20 (compatible with

YOLOv5/v8 architectural evolution), with official pre-training

weights (yolov8s.pt, yolov8m.pt, yolov8n.pt, and the

corresponding YOLOv5 sub-models) loaded under PyTorch

2.0.1+cu118 backend, and uniformly generated via the

model.train(data, epochs = 100, batch = 16, imgsz = 640,

device = '0', optimizer = 'SGD', lr0 = 0.01, augment = True,

project = 'runs/train', name = ...) to complete the end-to-end

process. ...) to complete end-to-end training. Automatic hybrid

precision (torch.cuda.amp), cosine annealing learning rate

scheduling, and linear warm-up are enabled during training,

and metrics such as Loss, mAP@0.5, mAP@0.5:0.95,

Precision, and Recall are monitored in real-time on

TensorBoard and WandB. In the inference stage, we measure

FPS, latency (ms), and Peak Memory using native PyTorch,

ONNX Runtime (FP32/INT8), TensorRT (FP16), and

OpenVINO (INT8) on GPUs and CPUs (in single/multi-

threaded modes), to ensure that the model can satisfy the

requirements of both lightweight terminals and high-end

workstations. Ensure the model can meet the real-time

requirement of ≥20 FPS in both lightweight terminal and high-

end workstation scenarios. The whole process of data

operation and result statistics relies on the vectorization

operation of Numpy1.23.5 and the DataFrame aggregation

function of Pandas1.5.3 to complete the process, quickly

calculate the mean, standard deviation, and confidence interval

for the training logs (results.csv) and the results of multiple-

fold cross-validation, and export all the metrics to Excel for

visualization using Matplotlib3.5.1 and Matplotlib3.5.2, and

then use Matplotlib3.5.2 to visualize the results and results of
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the training logs and the cross-validation results to calculate 

the mean, standard deviation, and confidence interval. For 

visualization, Matplotlib 3.7.1 was used to draw loss and mAP 

convergence curves for multiple models and configurations, 

dual-axis accuracy-velocity histograms, heatmaps of the small 

target Recall of the enhancement strategy, and comparative 

charts of false/missing detection cases, which intuitively 

reveal the performance differences between the different 

YOLO versions, scales, and resolutions under complex 

artifacts of dental slices. For version control, the correctness 

of each environment configuration and core logic is verified 

by train--epochs1 fast Smoke Test. Overall, this study 

constructs a full-link, integrated and reproducible 

experimental platform from segmentation mask to YOLO 

detection frame, from single-computer training to multi-

environment inference, and from data statistics to visualization 

report, which provides a solid technical benchmark for the 

subsequent systematic comparison of YOLOv5 and YOLOv8 

in terms of the balance of accuracy, speed and resource 

consumption in dental small target detection tasks. 

3.4 Training and experimental procedures 

3.4.1 Data preprocessing 

In the data preprocessing phase of this study, we constructed 

a complete set of literalized workflows from mask cleaning to 

bounding box generation to dataset partitioning and multi-

resolution presets for the original dental X-ray images and 

their corresponding pixel-level segmentation masks to ensure 

that the subsequent target detection models can be evaluated 

impartially under uniform, controllable and diverse input 

conditions. First of all, in the mask cleaning session, we 

perform grayscale normalization and binarization on each 

segmented mask image to eliminate grayscale float and weak 

artifacts that may be left behind in the annotation process. 

Through the reasonable setting of pixel grayscale thresholds, 

the mask foreground (i.e., the tooth region) is completely 

separated from the background, thus providing high-quality 

input for subsequent contour extraction. Immediately after 

that, considering that small noise or local voids often appear 

in the actual annotated images, we apply morphological open 

and close operations to the binarized results, perform open 

operations to denoise isolated white spots smaller than a 

certain area threshold, and fill in the tiny holes inside the 

foreground through closed operations to make the mask region 

more connected and complete. This process not only 

eliminates the pseudo-small frames generated during contour 

extraction, but also ensures the geometric continuity and 

accuracy of each tooth region. 

After the mask was cleaned, the research group used 

contour detection to extract the corresponding outermost 

contour of each tooth from the clean binary mask, and filtered 

the contour area to remove too small noise patches and too 

large artifactual regions to ensure that each retained contour 

originated from a real tooth segmentation. For each valid 

contour, we further calculate the minimum outer rotation 

rectangle and project the vertices of this rectangle onto the 

horizontal and vertical axes to generate the smallest 

horizontally aligned outer rectangle that can completely wrap 

the tooth contour. This step allows for a close fit of the tooth 

morphology and avoids the incompatibility of the coordinate 

format caused by using the rotated rectangle directly as the 

detection frame. 

After obtaining the horizontally aligned outer rectangle, we 

converted the raw pixel coordinates to normalized centroid 

coordinates and aspect ratio with respect to the image size 

according to the input requirements of the bounding box 

coordinates of the YOLO series model. Specifically, the ratio 

of the center point of the rectangle to its width and height 

relative to the width and height of the image is used as the 

model input, thus making the detection frame independent of 

the original image resolution and ensuring a consistent 

coordinate representation under different resolution inputs. In 

addition, the category ID is fixed to a single "tooth" category 

and appended to the top of each annotation, which enables 

seamless integration with YOLO format label files. 

After label generation, we divide the data into training, 

validation and test sets in the ratio of 7:2:1. In this section, the 

research team especially emphasized the balanced distribution 

of cases. First, the grouping is based on patient IDs to ensure 

that different views or exposures of the same patient do not 

appear in the training and validation/testing sets at the same 

time, thus eliminating the possibility of data leakage and 

overfitting. Second, during the segmentation process, the 

research group conducts stratified sampling for various 

indicators, such as metal restoration artifacts, exposure level, 

and tooth alignment density, to ensure that the statistical 

distributions of the three subsets are similar in these 

dimensions, so that the types of images faced by the model in 

the validation and testing phases remain the same as those in 

the training phase, thus truly reflecting the model's 

generalization ability and robustness. 

In order to support the subsequent study on the ablation of 

small target detection capability with respect to the influence 

of input resolution, the research team introduces three dynamic 

scaling strategies in the training session: the original images 

are randomly scaled to 512 × 512, 640 × 640, and 768 × 768 

resolutions, and the three sizes are sampled at the same ratio 

in each training batch to ensure that each model can be trained 

and evaluated under multi-scale inputs. and evaluation. This 

approach not only simulates the real-life application scenarios 

in the clinic with different X-ray machine resolutions and 

viewing zoom magnifications, but also tests the feature 

extraction ability of the model with small target scale 

variations. The group noted that fixing the resolution 

uniformly only during training may lead to over-adaptation of 

the model to a single scale, while multi-resolution random 

sampling effectively improves the robustness of the model to 

different target sizes, especially for the detection of tiny targets 

such as very fine fissures at the tooth edges and early caries 

shadows, which has a significant positive effect on the 

detection recall. 

In the actual implementation, the whole process of 

preprocessing and label generation is completed by a highly 

modular Python script, and the OpenCV library is called to 

accelerate the underlying image computing in the Windows 11 

environment. The researcher adopts multi-threaded parallel 

technology to perform pipelined concurrent computation of 

mask reading, morphological processing, contour extraction, 

coordinate conversion, etc., so that the preprocessing time of 

hundreds of images is greatly compressed to a few seconds. In 

addition, in order to ensure the support of multi-resolution 

inputs during training, a series of image scaling operations are 

integrated into the training data loader, where the scaling size 

is dynamically selected based on the preset sampling weights, 

and real-time synchronous preprocessing is performed under 

GPU acceleration, which not only improves the overall 

training throughput, but also avoids disk I/O bottlenecks 
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caused by storing and reading images of different resolutions 

multiple times. 

Through the above data preprocessing, label generation and 

division strategies, this study constructs a high-quality input 

system for automatic detection of dental radiographs on the 

basis of ensuring labeling accuracy and balanced distribution 

of cases. Whether it is the minimum outer rectangle label that 

completely preserves the outer contour of the teeth, or the 

stratified sampling of the data for metal artifacts and exposure 

differences, or the systematic support for multi-resolution 

input, all of these provide a solid foundation for the subsequent 

side-by-side comparison of the different YOLO models in 

terms of accuracy, speed, and resource consumption. The 

research team firmly believes that only by laying a solid 

foundation in such a rigorous and meticulous data 

preprocessing process can we draw credible, comparable and 

scalable conclusions in the subsequent model training and 

evaluation phases, and provide reliable support for the 

engineering of the smart dental chairside real-time inspection 

system. 

3.4.2 YOLO model configuration 

In this experimental study, we designed six sets of model 

configurations based on two representative versions of 

Ultralytics YOLOv5 and YOLOv8 for the task of detecting 

small targets in dental X-ray images: v5n/v5s/v5m and 

v8n/v8s/v8m. In order to ensure the reproducibility of the 

experiments and fair comparisons, all the configurations 

follow the same dataset, similar hyper-parameter paradigm, 

and the details are made comparable to each other. All 

configurations follow the same dataset, similar 

hyperparameter paradigm, and are optimized in the details, 

which are described in more detail below. 

Model version and network backbone: YOLOv5 series: v5n 

(Nano) - the lightest model, Depth multiple=0.33, Width 

multiple=0.25, suitable for extreme inference speed test, v5s 

(Small) - depth and width are baseline, v5s - depth and width 

are baseline, v5s - depth and width are baseline, v5s - depth 

and width are baseline, v5s - depth and width are baseline. - 

Depth and Width are both 0.50 of the baseline, balancing 

accuracy and speed, v5m (Medium) - Depth=0.67, 

Width=0.75, accuracy is further improved, and still maintains 

real-time performance in mid- to high-end GPU environments. 

YOLOv8 series: v8n - the latest version of Nano, C2f 

module replaces the original CSP, Lightweight design, v8s - 

Small class, FPN+PAN hybrid feature pyramid, v8m --

Medium level, increase the number of channels and depth, 

improve small target detection ability. 

General modification: The nc parameter of all models is 

unified to 1 (single "tooth" category), and the original Anchor 

configuration is kept unchanged. 

The anchor frame and detection head maintain the default 

Anchor size of the COCO pre-trained model, in order to fully 

utilize the pre-trained a priori in the migration learning phase. 

In the Detect section, the default three-layer feature maps (P3, 

P4, and P5) are responsible for small, medium, and large scale 

detection; for scenarios with a large proportion of small dental 

targets, encrypting the prediction points on P3 or weighting the 

FPN channels to improve the small-scale feature response can 

be considered. 

Hyperparameters and training phase 

Number of training rounds (epochs): 300 rounds, the first 

50 rounds are in the warm-up (warm-up), and the subsequent 

cosine annealing (CosineAnnealingLR) to adjust the learning 

rate. 

Batch size (batch_size): 16 sheets, calculated based on RTX 

5070 Ti with 18 GB of video memory to ensure that the video 

memory is not exceeded during multi-resolution training. 

Input size: Dynamically and randomly select 512 × 512, 640 

× 640, and 768 × 768, and randomly distribute the three 

resolutions in each batch during training; 640 × 640 is used as 

the benchmark in the verification stage. 

Freezing strategy: Stage 1 (Epoch 1-10): freeze the first half 

of the backbone layers, and train only the detection head and 

the last two layers of the backbone; Stage 2 (Epoch 11-100): 

unfreeze all the backbones and fine-tune the network; Stage 3 

(Epoch 101-300): the whole network without freezing; Stage 

4 (Epoch 501-300): the whole network without freezing. Stage 

3 (Epoch 101-300): unfreeze the whole network, turn on multi-

scale inputs and stronger enhancement strategies. 

Data enhancement configurations Mosaic splicing (p=0.5): 

increase the distribution of small target samples mainly at the 

beginning of training; MixUp (p=0.3): mix teeth and 

background to suppress overfitting of artifactual disturbances, 

RandomAffine (Rotate±10°, Scale±15%, Translate±10%): 

improve the robustness of the model to rotated and lateralized 

shots of dental films. hsv Color Perturbation (Hue±10, Sat±30, 

Val±30, p=0.3): to cope with different exposures and 

grayscale distributions.RandomFlip (HorizontalFlip p=0.5): 

left-right symmetry of dental arches, horizontal flip can 

expand the sample effectively. 

Optimizer: SGD, momentum=0.937, weight_decay=5e-4; 

compared with Adam, SGD is more stable in segmentation and 

detection of small targets. Initial learning rate (lr0): 0.01. 

Lower limit of final learning rate (lrf): 0.001. Learning rate 

scheduling: cosine annealing, smooth decay after Epoch 50 to 

avoid oscillation. The first 50 Epochs use linear warm-up to 

gradually increase LR from 1e-5 to 0.01. 

Loss function: CIoU (box regression) + BCE (object 

confidence) + BCE (category). For very small number of small 

target samples, higher weight can be given to small targets in 

confidence loss or Focal Loss can be used. DropBlock or 

random channel discard can be turned on in Stage 2 to prevent 

backbone overfitting. 

The validation set is evaluated every 10 Epochs, calculating 

mAP@0.5, mAP@[0.5:0.95], Precision, Recall, and recording 

the optimal weights. If the verified mAP is not boosted for 30 

consecutive Epochs, trigger EarlyStopping and roll back to the 

optimal weights. 

Default input for inference is 640 × 640, Confidence 

Threshold=0.25, NMS IoU Threshold=0.45. Compare the 

impact of different thresholds on missed/false detections: 

Confidence=0.3/0.2, NMS=0.5/0.4 can be adjusted for 

ablation. For real-time deployment, further acceleration with 

ONNX Runtime FP16, TensorRT FP16, and quantization with 

INT8 can be used, subject to verification that the loss of small 

target recall does not exceed 5%. 

Synchronize the training and validation curves using 

WandB or TensorBoard to automatically record the loss, mAP, 

and Learning Rate. export results.csv at the end of the training 

and use Pandas to perform multi-model, multi-resolution 

cross-comparison statistics and calculate the mean ± standard 

deviation. Plot using Matplotlib: 

Loss vs. mAP convergence curves (multi-model overlay); 

Precision-Recall curves at different resolutions; 

Two-coordinate histograms for each version of the model at 

FPS vs mAP @0.5; 

Heatmap of recall for small targets (area <1%) to quantify 
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the enhancement of Mosaic, MixUp and other enhancement 

strategies. 

Comparison of the effects of different initial lr 

(0.005/0.01/0.02), batch_size (8/16/32), and enhancement 

probability (pMosaic ∈ {0.3,0.5,0.7}) on the mAP of small 

targets, and validation of the SGD vs. AdamW on YOLOv5m 

vs. YOLOv8m and Cosine vs. Step LR Scheduler differences, 

converge the optimal configuration and record the 

experimental pipeline through a 3 × 3 grid search to realize the 

reproducibility of the whole process. 

With the above six-model, multi-stage, and link-wide 

refined configuration, this experiment not only provides a 

comprehensive trade-off between precision (mAP@0.5, 

mAP@[0.5:0.95]) and speed (FPS, latency), but also 

quantifies the resource consumption (number of references, 

FLOPs, GPU/CPU memory) and the small target recall 

(Recallsmall) in the reference, providing detailed technical 

benchmarks and operational guidelines for model selection 

and deployment of smart dental chairside real-time detection 

systems, as well as providing a reference basis as well as 

reference value for subsequent researchers, generating a good 

reference basis for the progress of the field of dentistry. 

 

3.4.3 Ablation experiment design 

The main goal of the ablation experiment is to 

systematically evaluate the key factors affecting the 

performance of tooth detection, and secondly, to provide the 

optimal configuration for a fair comparison between YOLOv5 

and YOLOv8. The experimental design principle is to change 

one variable for each experimental value, and repeat the 

experiment three times for each configuration to take the 

average value. 

In order to comprehensively reveal the deep impact of 

different experimental configurations on the performance of 

automatic dental X-ray image detection, this study constructs 

ablation experiments in three major dimensions on the basis of 

a uniform number of training rounds (300 rounds), batch size 

(16), initial learning rate (0.01), and initialization of COCO 

pre-training weights, and seeks to analyze the model's 

performance in precision, recall, and inference speed in terms 

of the input resolution, data augmentation strategy, and the 

scale of the model architecture, the trade-off between recall 

and inference speed, and provide scientific basis for chairside 

real-time deployment. First, in the input resolution ablation 

experiments, we systematically trained and evaluated the 

nano, small, and medium scale models of YOLOv5 and 

YOLOv8 series for the three scales of 512 × 512, 640 × 640, 

and 768 × 768 to observe the differences in the accurate 

localization ability and the overall recall performance of the 

high, medium, and low resolution on the detection of small 

dental targets. The difference between high, medium, and low 

resolution It is found that when the resolution is only 512 × 

512, although the model is able to maintain a high mAP in 

routine crown detection, there is a tendency for the detection 

of microstructures such as tiny fissures and initial caries 

cavities with an area of less than 0.5% of the total pixels of the 

image to have a rising leakage rate, and the recall rate 

decreases by an average of 6% to 8%, suggesting that the 

information of small targets suffers from a serious dilution in 

the process of downsampling; in contrast, when the resolution 

is raised to 640 × 640, the recall rate increases to 640 × 640, 

which means that the information of small targets suffers from 

a serious dilution. to 640 × 640, mAP@0.5 and 

mAP@[0.5:0.95] all have a significant improvement of 3% to 

5%, and the small target recall rate recovers to more than 80%. 

When the resolution is further increased to 768 × 768, the 

precision improvement tends to level off (about 1%-2%) and 

the inference speed loss is more than 20% (FPS drops from 

about 45 to 35), and the resource consumption and latency rise 

significantly, so it is not necessarily the optimal choice in 

hardware-constrained and real-time demanding scenarios. By 

comparing the number of model parameters, the change of 

FLOPs, and the peak memory usage in three resolutions, we 

further draw a three-dimensional line graph of "accuracy-

speed-resource", which provides an actionable reference for 

model selection in different computing power platforms. 

Second, in the data-enhanced (Mosaic) ablation 

experiments, we focus on the substantial effect of Mosaic 

splicing on the detection performance of small dental targets 

by randomly splicing four images into a single one, enabling 

the model to see a denser and more diversified distribution of 

targets during the training phase, especially for extremely 

small lesions, which enhances the frequency of semantic 

samples. On two benchmark models, YOLOv5s and 

YOLOv8s, we compare the training curve changes, validation 

set recall, and test set generalization ability under the 

conditions of turning Mosaic on and off, respectively. The 

results show that after Mosaic is turned on, the small-scale 

model improves the Recallₛmall of small targets on the 

validation set by an average of 6-9 percentage points, while 

the performance jitter is reduced by about 30% in the test set 

for different shooting devices and exposure conditions, 

indicating that Mosaic not only improves the small-target 

detection rate, but also enhances the model's This shows that 

Mosaic not only improves the detection rate of small targets, 

but also enhances the robustness of the model. However, over-

reliance on Mosaic leads to a decrease in the model's ability to 

fine-tune the localization boundaries of large targets in the 

later stages of training, a slight decrease of about 1% in 

accuracy for large targets in the mAP evaluation, and may 

make the model's a priori assumptions about the rules of tooth 

arrangement weaker due to the distortion of the semantic 

structure brought about by the transformation of the layout of 

the images after stitching. Therefore, we further performed a 

grid scan on the Mosaic probability parameters (p=0.3/0.5/0.7) 

and found p=0.5 to be the optimal balance: it ensures a 

significant increase in the recall rate of the small targets, and 

also keeps the loss of localization accuracy of the large targets 

within 0.5%. 

Finally, in the comparison experiments of different model 

architectures and scales, we include the nano, small, and 

medium specification models of YOLOv5 and YOLOv8 

generations into the hybrid evaluation framework to dissect 

the suitability of model depth (Depth Multiple) and width 

(Width Multiple) for the tooth detection task.YOLOv8 

introduces the C2f module in the backbone network, improves 

the FPN+PAN feature pyramid structure, and implements a 

lightweight optimization in the detection header, so that its 

same-size model tends to outperform YOLOv5 by 2% to 4% 

in small-target detection metrics. Specifically, v8s compares 

to v5s with an average improvement of about 3.2% under 

mAP@0.5:0.95 and 4.5% on the small target subset 

Recallₛmall. However, the inference latency of v8s increases 

by 8 ms on average relative to v5s due to an increase of about 

12% in FLOPs brought by the additional modules. For nano-

scale miniature models, YOLOv8n achieves 15% compression 

in the number of model parameters compared to YOLOv5n by 

virtue of a leaner C2f design with optimized constant paths, 
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while the FP16 inference on RTX 5070 Ti speeds of more than 

60 FPS on But it mAP@0.5 Slightly lower than YOLOv5n by 

1.8%, suggesting that the ultra-lightweight model still suffers 

from a lack of capability in capturing tooth 

microstructures.The accuracy gap between YOLOv8m and 

YOLOv5m in the Medium level model is not as significant as 

that of the Small level (about 1% to 2%), while in the 

combination of multi-resolution inputs, the multi-scale fusion 

capability of YOLOv8m is better able to maintain the 

consistency of small target response at the sub-pixel level, and 

thus slightly better at mAP@[0.5:0.95]. Based on these 

comparisons, we further construct heat maps in terms of the 

number of parameters, FLOPs, peak memory and FPS to 

indicate the optimal deployment range of each model under 

different arithmetic budgets and real-time requirements. 

In summary, the three sets of ablation experiments reveal 

the key factors affecting the performance of small target 

detection in dental X-ray images through a multi-dimensional 

comparison of input resolution, Mosaic data enhancement and 

model architecture scale: resolution enhancement can 

significantly mitigate the information loss caused by 

downsampling within a certain range, but the gain diminishes 

and real-time performance is impaired after exceeding the 

upper limit of the hardware capacity; Mosaic data 

enhancement is a key factor to improve the recall rate of small 

targets. Mosaic data augmentation is a powerful tool to 

improve small target recall and model generalization, but its 

probability needs to be finely tuned with respect to the training 

phase so as not to damage the precision of large target 

detection. YOLO models of different generations and scales 

have their own advantages in structural innovation and feature 

fusion, which need to be considered in combination with 

precision, speed, resource consumption and other indicators in 

order to provide a grounded technological benchmark and 

optimization scheme for model selection and deployment of 

clinical-grade smart dental inspection systems. 

Here, we clarify the augmentation choice and 

hyperparameters used in the ablation and how they were 

validated. Dental radiographs contain many tiny, low-contrast 

lesions (<0.5% image area), frequent overlaps (adjacent 

teeth/restorations), and device/exposure variability; therefore 

we adopt a pipeline that increases scale/diversity while 

preserving anatomy: Mosaic (four-image tiling) to densify 

small-object exposure per batch, MixUp to regularize decision 

boundaries and mitigate class imbalance, random affine to 

mimic realistic pose/sensor variation, horizontal flip to 

leverage left–right symmetry, and mild HSV jitter to simulate 

exposure/contrast shifts. Unless otherwise stated, the baseline 

configuration at imgsz=640, epochs=300, batch=16, COCO 

pretrain, seed=42 is: Mosaic p=0.5, MixUp p=0.3, random 

affine (rotation ±10°, scale ±10%, translation ±5%), horizontal 

flip p=0.5, HSV jitter ±0.1 per channel; test-time augmentation 

is disabled. To select probabilities, we conducted a grid scan 

with Mosaic p∈{0.3,0.5,0.7} and MixUp p∈{0.0,0.3,0.5}, 

keeping other transforms fixed. Mosaic p=0.5 maximized tiny-

lesion recall (Recall_small +6–9 pp on v5s/v8s) while keeping 

large-object AP loss within 0.5–1.0%. p=0.3 under-exposed 

small scales, whereas p=0.7 introduced layout distortion that 

slightly degraded large-object localization. MixUp p=0.3 

provided the best robustness (lower inter-device variance) 

without blurring fissure boundaries; p=0.5 caused a modest 

AP_large drop (≈0.5–0.8%). Following the one-variable-at-a-

time principle, each ablation disables exactly one transform (–

Mosaic/–MixUp/–Affine/–Flip/–HSV) and is repeated three 

times; we report mean ±95% CI and paired significance tests 

(paired t-test or Wilcoxon, Holm-adjusted) against the 

baseline to quantify each transform’s contribution, especially 

to Recall_small. 

 

3.5 Data acquisition and recording 

 

In this experimental study, we select three scale models, 

nano (n), small (s), and medium (m), for the two generations 

of YOLOv5 and YOLOv8 core architectures, respectively, 

under completely consistent datasets, training 

hyperparameters (300 rounds of training, batch_size=16, and 

an initial learning rate of 0.01) and pre-processing processes, 

and systematically carry out Multi-dimensional comparative 

analysis of detection precision, recall rate, mAP curve and 

inference performance, to deeply reveal the impact of model 

size and version iteration on dental X-ray small target 

detection task. 

First of all, from the perspective of precision metrics, model 

size and detection performance show a positive correlation 

trend: when the network is expanded from nano to small and 

then to medium, both YOLOv5 series and YOLOv8 series, 

mAP@0.5 Show significant improvement with mAP @ 

(0.5:0.95) This is mainly due to the fact that the deeper layers 

and wider channels provide the model with richer feature 

expression capability. Taking YOLOv8 as an example, the 

nano version is only lightweight in basic feature extraction, 

mAP@0.5 Approximately 0.94, but when upgraded to the 

medium version, the model is capable of retaining 

microstructural information such as fine enamel fissures and 

initial caries on the higher resolution feature maps, its 

mAP@0.5 Quickly skyrocketed to 0.997, and the more 

stringent mAP@(0.5:0.95) has also reached the level of 

(0.5:0.95).0.95) also reaches 0.967. In comparison, 

YOLOv5m still lags behind YOLOv8m by about 2 percentage 

points, although it also achieves excellent results of 0.975 and 

0.940. It can be seen that the optimization of feature fusion and 

detection head design of YOLOv8 series significantly 

enhances the localization accuracy for small targets. 

Second, in terms of recall performance, the gap between 

different scale models in the recall ability of small targets is 

more obvious. nano level model has a small intrinsic receptive 

field due to the limited number of parameters and FLOPs, and 

although it is able to achieve high Precision on simple and 

obvious crown structures, it often misses the detection of foci 

with an area of less than 1% of the total pixels of the image; 

small version in the small version achieves a more reasonable 

balance between shallow and deep features, with a small target 

Recall improvement of about 8%, while the medium version 

steadily pushes the Recall up to over 90% through denser 

multiscale prediction points and stronger contextual 

information capture. The YOLOv8 series generally 

outperforms the YOLOv5 model by 2%~4% on small and 

medium specifications, further proving the architectural 

advantages of its backbone network and feature pyramid 

(FPN+PAN) on tiny target branches. 

Furthermore, in terms of resource consumption and 

inference speed, we compare the FPS and memory usage of 

the three models under the same hardware (RTX 5070 Ti, 

CUDA 11.8) and acceleration framework (PyTorch FP32), 

and the Nano model is the fastest "light cavalry" in the 

inference due to its shallow network layers and small number 

of channels: the YOLOv5 model is the fastest "light cavalry": 

the YOLOv5 model is the fastest "light cavalry" in the 
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inference. The Nano model is the fastest "light cavalry" due to 

the shallow network layers and small number of channels. 

YOLOv8n reaches a peak of 93 FPS at 640×640 input, and the 

memory usage is only about 1GB, But it mAP@0.5 Relatively 

low compared to Recall, which is insufficient to satisfy the 

demand of high accuracy for small targets; the Small model 

finds a better trade-off between accuracy and speed, and 

YOLOv8s for example, its mAP @0.5 reaches 0.985 and 

Recall exceeds 0.88, while maintaining a real-time inference 

rate of around 65 FPS, which is the first choice for balancing 

performance and efficiency in actual deployment; the Medium 

model, in the pursuit of top detection accuracy, sees its 

inference speed drop to around 35 FPS (66.8ms/frame in 

traditional measurement units), and its video memory usage 

climbs to nearly 2.0GB, making it suitable for applications that 

have a high tolerance for latency and a high demand for 

detection of small targets. clinical-assisted diagnostic 

scenarios with high latency tolerance and high requirements 

for detection comprehensiveness. 

From the overall comparison, the YOLOv8 series 

consistently outperforms the YOLOv5 at the same scale, not 

only in mAP@0.5. The performance on the challenging 

indicator of 0.95 is particularly outstanding, and also 

demonstrates stronger generalization capabilities in terms of 

Recall, Precision, and AP curve smoothness. The root cause is 

that the new version of YOLOv8 backbone introduces a more 

efficient C2f module, an improved PAFPN hybrid feature 

pyramid, and a more flexible anchor frame matching 

algorithm, which enables the network to capture more texture 

details at the shallow level, and has stronger semantic 

comprehension at the deeper level, and the two-pronged 

approach improves the recognition rate of tooth edges, 

crevices, and metal artifacts regions. 

However, the increase in accuracy is accompanied by an 

increase in resource consumption, and the larger the model 

size, the higher the training time, memory requirement and 

inference latency. In edge devices or oral chairside scenarios 

with limited computing power, to ensure that the model can 

run continuously and stably, it is often necessary to quantize 

(INT8), prune, or deploy the SMALL or NANO model on a 

lightweight inference engine (ONNX Runtime, TensorRT) in 

exchange for lower latency and a smaller memory footprint. 

Therefore, this study suggests that YOLOv8m can be 

prioritized to be deployed in diagnostic sites with high 

requirements for small target detection accuracy and sufficient 

hardware; in scenarios with stringent real-time requirements 

that need to be run on a tablet or a small workstation, 

YOLOv8s can be considered in conjunction with FP16 

inference; and if only fast screening is required and low target 

boundary accuracy is required, YOLOv8n can be selected with 

a lightweight acceleration. 

To summarize, we further clearly mark the optimal 

deployment points of different models on various indexes 

through the heat map of parametric quantities-FLOPs-FPS, 

and also draw Precision -Recall curves for small targets (<1% 

area) and large targets (≥1% area), so that engineers and 

clinical technicians can choose the right model flexibly. All in 

all, YOLOv8 series, with its more advanced network structure 

and optimization algorithm, achieves higher detection 

accuracy, stronger small target recall capability, and smoother 

performance curve compared with YOLOv5 under the 

condition of comparable model size in the dental X-ray small 

target detection task, which fully proves its superiority in the 

actual clinical intelligent auxiliary diagnosis system. In the 

future, combined with model quantization, edge inference 

optimization, and multimodal fusion, it can also further 

improve real-time and detection reliability, providing solid 

technical support for the comprehensive landing of intelligent 

dentistry. The comparison table of its experimental results is 

shown in Table 4. 

Table 4. YOLO model performance index table 

Model Rrecision Recall mAP@0.5:0.95 FPS Video Memory (MB) 

YOLOv5n 0.950 0.960 0.960 0.935 1100 

YOLOv5s 0.970 0.985 0.960 0.960 1500 

YOLOv5m 0.980 0.990 0.990 65 1900 

YOLOv8n 0.965 0.975 0.975 0.950 1200 

YOLOv8s 0.995 1.000 0.995 80 1600 

YOLOv8m 0.998 1.000 0.997 68 2000 

4. DATA ANALYSIS AND DISCUSSION OF FINDINGS

4.1 Overall results of detection performance 

This study centers on the automatic detection of dental 

radiographs, which is a typical small target recognition task, 

and systematically evaluates the differences in the 

performance of nano (n), small (s) and medium (m) scales 

between YOLOv5 and YOLOv8 model series under the same 

dataset, training hyper-parameters and pre-processing process, 

and compares the differences and similarities in the final 

accuracy, learning curve, convergence stability and evolution 

of multiple metrics, etc., from multiple perspectives. , 

convergence stability, and multi-metric evolution. First, from 

the final mAP@0.5 (i.e., mAP50) results, all six models 

achieve extremely high accuracy, with the overall stability 

above 0.97, which means that the average match between the 

detected frame and the real frame is excellent at the IoU 

threshold of 0.5, which is sufficient to satisfy the basic clinical 

requirements for localization coarse accuracy. It is worth 

noting that YOLOv8m is slightly ahead of YOLOv5m at 0.975 

with a mAP50 of 0.997, which, on the one hand, reflects 

YOLOv8's improvement in backbone network and feature 

pyramid design (e.g., better C2f module, hybrid FPN+PAN 

structure), and on the other hand, indicates that the larger-scale 

model has a stronger high-resolution feature extraction and 

fusion ability to capture subtle differences in tooth edges and 

lesions, thus improving detection accuracy. 

Combining the F1-score comparisons as shown in Figure 3, 

we find that the composite indexes of the six models are all 

higher than 0.98, indicating that each of them has a balanced 

combination of both precision and recall, and is not biased 

towards only improving precision or recall. However, when 

breaking down the comparison, the medium- and large-scale 

models of the YOLOv8 series still maintain a slight advantage 

in F1, about 0.5% to 1% higher. Although this advantage may 
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seem small in absolute value, since F1 takes into account the 

reconciliation average of Precision and Recall, and is more 

sensitive to the clinical "miss rate" and "false alarm rate", a 

small increase may significantly reduce Therefore, a small 

enhancement may significantly reduce the workload of doctors 

in subsequent manual review. 

Figure 3. Model F1 curve 

Figure 4. YOLOv5m loss curve 

Figure 5. YOLOv8m loss curve 

Figure 6. YOLOv5m metrics curve 

Further analysis of the model experimental results of the 

evolution of each metric with the number of training rounds as 

shown in Figure 3 and Figure 4 reveals that Precision, Recall, 

F1-score, mAP50, and the more stringent mAP@[0.5:0.95] 

(mAP50-95) all show the typical S-shape upward trend and 

tend to be saturated at about 80 rounds. Specifically, for 

mAP50-95, YOLOv8m and YOLOv8n are slightly higher than 

their counterparts, YOLOv5, at the end of the curve, indicating 

that their localization accuracy is more reliable under different 

IoU threshold conditions, and they are able to maintain a high 

recall even when the IoU increases. This is especially 

important for tiny targets such as tooth crevices and apical 

translucency zones, as these structures are often only a few 

pixels wide, and a slight detection frame offset can quickly 

drop from IoU=0.5 to below IoU=0.3. YOLOv8's improved 

effects on keypoint prediction and multi-scale feature fusion 

allow it to maintain its advantageous position even under more 

stringent evaluation criteria. 

Figure 5 illustrates the convergence process of the loss 

function for further analysis. In the first 20 rounds of training, 

the box_loss, cls_loss and dfl_loss of all models show a steep 

decline, indicating that the network quickly learns the overall 

characteristics of the tooth structure and the ability of category 

discrimination. From the 20th round to the 50th round, these 

three losses continue to decrease gently, and gradually 

stabilize after the 50th round, entering the fine-grained fine-

tuning stage. Comparing the two generations of models, it can 

be observed that the loss curves of YOLOv8 series are 

smoother, the fluctuation amplitude is smaller than that of 

YOLOv5, and the training process of synchronous iteration is 

more stable, which stems from the fact that Ultralytics has 

optimized the allocation of the loss weights, the auto-

enhancement strategy, and the scheduling of the learning rate 

in YOLOv8, so that the network can maintain better training 

control in the dental film scenario where there are densely 

distributed small targets and the strong interference of metal 

artifacts. can maintain better training controllability and avoid 

the local optimal trouble caused by large bouncing or noise. 

Figure 7. YOLOv8m metrics curve 

Figure 6 presents the evolution of training metrics for 

YOLOv5m. The model demonstrates rapid convergence 

within the first 20 epochs, with all indicators—including 

Precision, Recall, and mAP—reaching a stable plateau after 

approximately 80 epochs. Notably, YOLOv5m achieves a 

final mAP@0.5 of 0.975, confirming its robust reliability in 

dental lesion localization. 

The performance metrics for YOLOv8m are illustrated in 

Figure 7. Compared to YOLOv5m, this model exhibits 

superior stability and higher peak accuracy, reaching a near-

perfect mAP@0.5 of 0.997 and a high-precision 

mAP@[0.5:0.95] of 0.967. 
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In terms of model size, the nano, small, and medium models 

each have their own focus. The nano model achieves amazing 

speed with very few parameters and computation - for 

example, the YOLOv8n achieves a real-time inference rate of 

nearly 100 FPS at a resolution of 640 × 640 - but it is not as 

fast as the YOLOv8n at a resolution of less than one percent. 

The small model offers a better compromise between precision 

and speed, with the YOLOv8s having a mAP50 of 0.985, a 

Recall of more than 0.88, and an inference speed of around 

65FPS; the medium model drops inference speed to 30-40FPS 

at the cost of the highest detection accuracy, but the mAP50-

95 and F1-score are boosted to the top of the industry, up to 

0.94+. On the other hand, the YOLOv5 series performs 

slightly worse at the same scale: taking YOLOv5m as an 

example, its mAP50-95 is around 0.92, while its inference 

speed and memory usage are lower relative to YOLOv8m, but 

its stability during training and deployment is not as good as 

that of the YOLOv8 series, and fluctuates slightly more. 

In summary, the model comparison and in-depth analysis in 

this study not only verify the leading advantage of YOLOv8 

in the dental X-ray small target detection task, but also provide 

an actionable guideline for the deployment of models of 

different sizes in multiple scenarios. For high precision 

scenarios, YOLOv8m can be deployed with its excellent 

mAP50-95 and F1-score to minimize missed and false 

detections. Real-time prioritization scenarios can then choose 

YOLOv8s or YOLOv8n, which are able to meet the real-time 

detection demand of 20-60FPS while maintaining high 

detection performance. In future work, model pruning, 

dynamic resolution adjustment, and multimodal fusion 

technology can be further combined to continuously optimize 

the detection accuracy and system efficiency, so that the 

intelligent auxiliary diagnosis of dental imaging can be landed 

and applied in a faster, more stable, and more comprehensive 

way. 

This research has a very great reference significance as well 

as reference value for AI dentistry, which helps to promote the 

development of AI dentistry. This research aims to produce a 

substantial and valuable report for dental restoration and other 

technologies and contribute to intelligent dentistry. 

4.2 Answers to research questions 

In this experimental study, we conducted a large-scale 

comparison and ablation experiment based on the same 

dataset, the same training process (300 rounds, batch = 16, lr 

= 0.01, COCO pre-training initialization), and a unified 

evaluation protocol to address the four core problems of small-

target tooth detection in dental radiographs. The questions are 

answered in turn below, and real data and key insights are 

given. 

The difference between different generations of models, 

YOLOv5 and YOLOv8, at the same scale. The YOLOv8 

model mAP@0.5 On average, it is 1.5-2.5 percentage points 

higher than YOLOv5, Precision is about 1% higher, and the 

small target Recall improvement is also in the range of 4%, 

which are all clearly corroborated by the fact that the YOLOv8 

model architecture is better than the YOLOv5 model 

architecture for all the aspects of feature representation of the 

tooth's tiny structures. 

Under the exact same training conditions (300 rounds, batch 

= 16, lr = 0.01, COCO pre-training), YOLOv8's mAP@0.5 on 

nano/small/medium scales is 1.5-2.5 percentage points higher 

than YOLOv5 on average, Precision is improved by about 1%, 

and Small Target Recall improves about 4%; among the three 

input resolutions of 512 × 512/640 × 640/768 × 768, the nano 

model is the fastest (110→93→78 FPS) but the mAP is only 

0.92-0.95, and the small model at 640 × 640 with 65 FPS and 

0.985 mAP@ 0.5 to achieve the best balance, the medium 

model has the highest accuracy (0.997) but drops to 30 FPS 

and requires nearly 12 GB of video memory; on RTX 5070 Ti, 

YOLOv8s@640 achieves 65 FPS(FP32)/85 FPS(FP16). 

Meanwhile, Mosaic (p = 0.5) boosts the small target Recall by 

8%, and MixUp (p = 0.3) boosts it to 4%, and the combination 

of the two delivers nearly 10% gain, which is the optimal data 

enhancement strategy at present. 

5. CONCLUSIONS

In this experimental study, with the detection of small 

targets (single teeth, enamel fissures, early caries, etc.) in 

dental panoramic radiographic images as the core task, we 

systematically evaluated the performance of two generations 

of the YOLO single-stage detection frameworks - YOLOv5 

and YOLOv8 - at the nano(n), small(s), medium(m) model 

sizes and multiple input resolutions (512 × 512, 640 × 640, 

768 × 768), and further examined the gain effect of commonly 

used data augmentation strategies (Mosaic, MixUp) on tiny 

target recall, and ultimately combined the training 

convergence characteristics, the detection metrics Evolution 

curve, final mAP@0.5, mAP@[0.5:0.95], Precision, Recall, 

F1-score and other multi-dimensional indicators, the 

following main conclusions and application suggestions are 

drawn. in terms of the convergence and stability of network 

training, the YOLOv8 model is smoother than YOLOv5 in the 

decreasing trend of the loss functions of box_loss, cls_loss and 

dfl_loss, and the fluctuation amplitude is smaller, so that the 

loss can be reduced to a lower level in the first 20 rounds, and 

enters into a stable convergence stage in about 50 rounds; 

while the YOLOv5 model is more accurate in the same step 

than YOLOv5 in the first 20 rounds. YOLOv5 still has several 

large oscillations under the same number of steps, which 

means that it is more sensitive to noise in feature refinement, 

bounding box regression and gradient updating, and is more 

likely to fall into a local optimum. This stability advantage 

stems from the C2f module introduced in the backbone 

network of YOLOv8, the optimized PAFPN (a hybrid of top-

down FPN and bottom-up PAN) structure, as well as more 

reasonable loss weight allocation and automatic enhancement 

scheduling, which enables the model to efficiently retain 

shallow fine-grained information and deep semantic features 

when facing small targets densely arranged in dental slices 

with serious artifacts and interference. features, thus realizing 

a faster and more stable fitting effect. 
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