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The timely and accurate classification of lung cancer subtypes, particularly Non-Small Cell 

Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC), is important in potentially 

improving treatment protocols and patient outcomes. This study proposed two hybrid deep 

learning architectures, CNN–BiLSTM and Attention-based Dense GRU (Att-DGRU), for 

the purpose of binary classification of lung cancer types through structured clinical 

covariates. The CNN–BiLSTM model consisted of convolutional layers to extract spatial 

features and BiLSTM layers to learn temporal dependencies, while the Att-DGRU model 

consisted of recurrent units with attention mechanisms to differentiate among relevant input 

features. Both models were evaluated on a set of standard metrics, and the CNN–BiLSTM 

model performed as the best classifier. Using the CNN–BiLSTM architecture improved 

classification accuracy, precision, and recall for lung cancer subtype classification 

compared to existing models, providing further evidence of robustness and reliability. This 

paper proposed a multi-layered deep learning architecture, Att-DGRU, which integrates 

Dense layers, Bidirectional GRU (BiGRU), and an attention mechanism for learning 

discriminatory features for classification. We compared Att-DGRU with benchmark 

architectures such as CNN–BiLSTM, MLW-CNN, and PathCNN. Att-DGRU achieved an 

accuracy of 97.2%, precision of 0.974, recall (sensitivity) of 0.971, specificity of 0.973, F1-

score of 0.972, MCC of 0.946, NPV of 0.970, FNR of 0.029, and FPR of 0.027, showing 

its effective classification performance in identifying NSCLC cases while maintaining a 

low false negative occurrence. Through comparative analysis, Att-DGRU performed better 

than or closely matched other architectures on all evaluation metrics. Together, the 

experimental results provide findings that endorse the Att-DGRU as a flexible, effective, 

interpretable, and resource-aware model framework for binary diagnosis of lung cancer. 

This may ultimately facilitate clinical decision-making and allow scaled, affordable 

diagnostic possibilities. The results of this study showed that the proposed hybrid 

architectures provided a statistically and clinically significant effect in reducing 

misclassification rates, proving that the two models will produce a useful decision-support 

measure for lung cancer diagnosis in clinical settings and will also allow for a non-invasive 

manner of diagnosis in under-resourced healthcare contexts. 

Keywords: 

lung cancer classification, NSCLC and 

SCLC diagnosis, deep learning, attention 

mechanism, Bidirectional GRU (BiGRU), 

structured clinical data, performance 

evaluation metrics 

1. INTRODUCTION

Lung cancer is still one of the most common and lethal 

cancers, representing a considerable portion of cancer‑related 

deaths. Non‑Small Cell Lung Cancer (NSCLC) and Small Cell 

Lung Cancer (SCLC) account for the major clinical 

classifications of lung cancer with distinct pathological, 

genomic, and treatment profiles [1]. Distinguishing between 

NSCLC and SCLC is important as there are meaningful 

differences in treatment approaches and prognoses [2]. 

Although the traditional types of diagnosis—histopathology 

and imaging have been reliable for diagnoses, both are limited 

in their capability to differentiate early and to scale, 

particularly when limited resources are available [3]. 

Emerging research in machine learning and deep learning 

provides new opportunities to automate the classification of 

cancer subtypes using demographic and clinical data [4, 5]. In 

this study, we aim to classify lung cancer into NSCLC and 

SCLC as a supervised learning problem with structured tabular 

data. We framed the task as a binary classification problem, 

with the intention of building intelligent, data‑driven 

diagnostic tools that will help increase early detection, clinical 

decision‑making support, and personalized treatment 

planning [6]. Using a public Kaggle dataset, we present and 

assess new deep learning models for distinguishing between 

these two important lung cancer subtypes. 

Various deep learning and machine learning models have 

been used for lung cancer subtype classification, including 
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convolutional neural network (CNN) architectures, 

multi‑layer perceptron’s (MLPs), and XGBoost‑based 

classifiers [7]. Despite their good performance on image data, 

CNNs frequently perform poorly on structured tabular datasets 

where they cannot assess the importance of features 

dynamically [8]. MLPs are fairly simple and widely used, but 

do not flexibly focus on feature selection and often lead to poor 

generalization on noisy or imbalanced clinical data. XGBoost, 

along with other ensemble methods, are powerful predictors 

for binary, categorical, and multiclass tasks, but they result in 

black‑box models that lack interpretability, an important 

requirement for healthcare use. Furthermore, when 

mixed‑type features (numerical/categorical) are used as 

supervised variables, such weaknesses undermine trust and 

reduce clinical usability. 

To address these difficulties, there is an urgent need for deep 

learning architectures that guarantee not only high 

classification accuracy but also transparency, feature 

awareness, and adaptability with real clinical data. This leads 

us to investigate adopting the TabNet and FT‑Transformer 

architectures that are designed to leverage tabular data, 

accommodate mixed features, and provide inherent 

transparency through attention and feature masks [9]. We 

developed two specialized models for NSCLC vs. SCLC 

classification, which we expect to improve classification 

accuracy and confidence while providing a more intuitive 

framework for explainable decision‑making within a clinical 

workflow. This step will contribute to the larger goal of 

developing intelligent, interpretable, and trustworthy AI tools 

for the diagnosis and subtype prediction of cancer [10]. 

1.1 Key objectives 

The following is the key contribution of the research: 

• To ensure reliable model training, preprocessing was

performed by handling missing values through imputation

and encoding categorical variables. To standardize the

feature space, numerical attributes were normalized using

standard scaling for consistent model performance.

• To propose a novel hybrid architecture (Att-DGRU) that

integrates attention mechanisms with Bidirectional GRUs

and dense layers for effective contextual learning in SCLC

classification.

• To demonstrate Non-Small Cell Lung Cancer (NSCLC)

classification using a novel hybrid approach called hybrid

CNN–BiLSTM.

Moreover, the organization of the study is structured as

follows: Section 1 provides the introduction of the study, 

recent literatures related to lung cancer classification is 

discussed in Section 2, and the proposed model has been 

discussed in Section 3. Moreover, the result and discussion are 

given in Section 4, and the conclusion for the study has been 

given in Section 5. 

2. LITERATURE REVIEW

Eshun et al. [11] focused on the classification of the four 

principal sub-types of non-small cell lung cancer (NSCLC): 

squamous cell carcinoma (SCC), adenocarcinoma (ADC), 

large cell carcinoma (LCC), and not otherwise specified 

(NOS). Most of the previous studies primarily focused on SCC 

and ADC. The researchers used CT scan images of 349 

patients to derive a total of 1029 radiomic features. A hybrid 

model known as SLS was developed using SMOTE (to 

balance the classes), ℓ2,1-norm (to select the features), and 

SVM (for classification). After being reduced to 247 features, 

SLS achieved an 89% accuracy on training and 86% accuracy 

on testing. 

Wang et al. [12] developed a novel44model called MLW-

gcForest, which was proposed as an enhanced version of 

gcForest that makes use of weights for the decision trees and 

the feature vectors. Three separate models were trained and 

fused together. This approach was better accuracy than 

previous models with an accuracy of 0.908, precision of 0.896, 

recall of 0.882, & AUC of 0.96. 

Liu et al. [13] suggested that research makes use of 

histopathology images to infer gene expression subtypes in 

NSCLC, focusing on cases of adenocarcinoma and squamous 

cell carcinoma. More than 800 whole-slide images were 

obtained from TCGA to develop CNN assignable to the task 

of distinguishing tumor from normal tissue and predicting the 

transcriptomic subtype, achieving AUC > 0.935 for tumour 

detection, and AUC > 0.88 for subtype prediction. Results 

were validated against a completely independent dataset, 

which demonstrated acceptable reliability. 

Table 1. The research gap among the existing studies 

Authors Proposed Techniques Data Used Performance Metrics Limitations 

Eshun et al. 

[11] 

SLS (SMOTE+ 

ℓ2,1-norm+ SVM) 

349 CT scans from 

2 datasets(NSCLC types) 

Accuracy 

(Train/Test): 89%/86% 

Focused only on radiomics; 

moderate generalization risk 

Wang et al. 

[12] 

MLW-gcForest (Weighted 

gcForestfusion) 

Multi-modal 

genetic data (RNA- seq, 

methylation, CNV) 

Accuracy: 0.908, 

Precision: 0.896, Recall: 

0.882, AUC: 0.96 

Needs high-quality multi-omics 

data; 

may struggle with 

smallnoisydatasets 

Liu et al. 

[13] 

CNN for transcriptomic 

subtype prediction 

884 histopathology images 

(LUAD + LUSC, TCGA) 

TumordetectionAUC > 0.935, 

Subtype AUC > 0.88 

No pathology knowledge used; 

Focuses on LUAD and LUSC only 

Dong et al. 

[14] 

CNN + Soft Voting for 

growth pattern detection 

19,924imagetiles (CSMC, 

MIMW, TCGA) 

Accuracy: 89.2 

F1 scores: Solid (0.91), 

Micropapillary (0.76), 

Acinar (0.74),  

Cribriform (0.60), 

non-tumor (0.96) 

Cribriform accuracy lower; 

performance varies by image quality 

Yu et al. 

[15] 
PathCNN (Simplified CNN) 

Whole-slide images (various 

tumor sites) 

Highaccuracy, identifies 

staining/outliers 

Not quantified; simpler model may 

miss finer patterns 
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Dong et al. [14] developed CNN with soft-voting applied to 

break down solid tumour tissue into five categories (Solid, 

micropapillary, acinar, cribriform, and non-tumour). The 

model was trained using a total of 19,924 image tiles and 

tested on 128 slides from CSMC, MIMW, and TCGA, 

yielding an overall accuracy of 89.24% and F1-scores from 

500.6 (cribriform) to 0.96 (non-tumour). The CSMC dataset 

showed the highest accuracy, due to the better quality of the 

images in this dataset. 

Yu et al. [15] analyzed that large tissue slides are time-

consuming and more error-prone than using automated image 

analysis. The goal of this study is to propose PathCNN, a 

lightweight and efficient CNN model that allows for multi-

class cancer diagnosis classification. PathCNN is competitive 

in accuracy when compared with more complex models like 

Google's Inception, but at a substantially lower computational 

cost. PathCNN was trained using hundreds of images of each 

tumour tissue and related normal tissues, and captured visual 

patterns and outliers through a weight analysis of the final 

layer output. Table 1 shows the research gap among the 

existing studies. 

Some studies listed in Table 1, such as Liu et al. [13] and 

Dong et al. [14], were developed using histopathology or 

image-based datasets. They are included for their 

methodological relevance, as they illustrate the evolution of 

deep learning architectures for lung cancer subtype prediction 

[15]. The proposed work extends these concepts to structure 

clinical and radiomic data, emphasizing interpretability and 

diagnostic applicability beyond imaging modalities [16]. 

3. PROPOSED MODEL

The workflow diagram shown in Figure 1 is a detailed 

framework for lung cancer classification using a two-stage 

hybrid deep learning approach. The pipeline begins with input 

(the data to be classified, whether radiomic or clinical features), 

and a pre-processing module, where we included all of the 

requisite tasks, like data cleaning, encoding, and normalising 

the features of the dataset (to maximise learning). 

Figure 1. Architecture of the proposed model 

Subsequently, the pre-processed dataset is used in the 

CNN–BiLSTM model that classifies Non-Small Cell Lung 

Cancer (NSCLC) by inferring spatial and temporal patterns. 

Following classification of NSCLC, the refined Att- DGRU 

model is used to classify 2Small Cell Lung Cancer (SCLC) 

using sequential dependencies and relevant features produced 

by the Att-DGRU model. In the final stage of the framework, 

we evaluated the performance of our classification method 

based on accuracy, precision, recall and F1-score. Without 

detrimentally affecting reliability, the layered approach we 

present here should allow for automated and accurate 

diagnostic classification in lung cancer screening. 

3.1 Dataset description 

The Lung Cancer Data in Kaggle, hosted by Andrew Mvd, 

is available with patient-level information that can be used to 

categorize the type of lung cancer. This dataset consists of 

around 300 records that belong to two main classes: Non-

Small Cell Lung Cancer (NSCLC) and Small Cell Lung 

Cancer (SCLC). It is offered in CSV (table) format, with the 

primary clinical items being Age, Gender, Smoking Status, 

Symptoms, and the type of Cancer (label) he/she has. 

In this paper, a feature engineering was applied to the 

dataset to enhance clinical interpretability and model 

performance. Other derived attributes are: 

Air Pollution Exposure- an environmental score that 

represents the long-term exposure to pollutants. 

Genetic Risk Index- the summative gene of hereditary 

vulnerability determined by reported family history and 

genetic markers. 

Symptom Score- composite score obtained by summing up 

several symptom indicators (e.g., cough, chest pain, weight 

loss, fatigue). 

Other causes- alcohol consumption, job risk, and chronic 

illness. 

Moreover, the dataset link is given as follows, 

https://www.kaggle.com/datasets/andrewmvd/lung-cancer-

dataset and the following Table 2 shows the key features in the 

dataset. 

Table 2. Key features in the dataset 

Feature Description 

Classes NSCLC and SCLC 

Size 
~1,000 patient records (after preprocessing and 

augmentation) 

Data Format CSV (tabular) 

Attributes 

Age, Gender, Smoking Status, Air Pollution 

Exposure, Genetic Risk Index, Symptom Score, and 

other clinical factors 

Label Binary (class 0 = NSCLC, class 1 = SCLC) 

3.2 Preprocessing 

Proper preprocessing is crucial for ensuring data integrity, 

consistency, and usability in training deep learning models. 

This study included three main preprocessing components: 

cleaning, encoding, and feature scaling. The focus was on 

Standard Scaler, a prevalent normalization technique for 

numerical data [17]. 

Data Cleaning: Missing or null values in the dataset were 

managed using: 

Row removal for records with substantial (> 90%) null 

values. 

• Mean imputation was used for numerical fields and

mode imputation was used in categorical fields. 

Let 𝐷 = {𝑥1, 𝑥2, . . . ,} denote the dataset. If a value 𝑥𝑖 is 

missing, then use mean imputation as given in Eq. (1), 

𝑥𝑖 =
1

𝑁
∑

𝑥

𝑗

𝑁

𝑗=1
(1) 

Label Encoding: Convert binary target class into numerical 

form using direct mapping and the binary target class, cancer 
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type, was encoded using Eq. (2), 

𝑁𝑆𝐶𝐿𝐶 → 0, 𝑆𝐶𝐿𝐶 → 1 (2) 

Categorical Feature Encoding: Nominal features such as 

Gender and Smoking Status were encoded with One- Hot 

Encoding creating separate binary columns for each class. Let 

𝐶{𝑐1, 𝑐2, … ,} be a categorical variable. Then it can be 

mathematically deliberated using Eq. (3), 

𝑣𝑖 = {0 
1  𝑖𝑓 𝑐 = 𝑐𝑖 (3) 

Feature Scaling (Standard Scaler): 

To ensure that numerical values (e.g., Age) are on uniform 

scale, Standard Scaler was employed. This technique centers 

the values around a mean of 0 with unity variance, and it can 

be mathematically deliberated using Eq. (4), 

𝑍 =
𝑥 − 𝜇

𝜎
(4) 

where, 𝑥 is the original feature value, 𝜇 is the mean of the 

feature and 𝜎 is the standard deviation. This scaling is 

especially crucial for models like neural networks, where 

unscaled features can negatively impact convergence during 

training. Final Dataset Representation: Let 𝑋 represent the 

input feature matrix after preprocessing and 𝑌 the encoded 

target vector using the following Eq. (5), 

𝑋 = {𝑥1, 𝑥2, . . . 𝑥𝑛}, 𝑌 = {𝑦1, 𝑦2, . . . 𝑦𝑛},   𝑦𝑖  ∈ {0,1} (5) 

Figure 2. Workflow of pre-processing Z-score normalization 

Table 3. Experimental design on dataset of NSCLC and SCLC 

Category Description 

Dataset Source Lung Cancer Dataset from Kaggle (Andrew MVD) 

Total Samples 1000 patient records (after preprocessing) 

Input Features Age, Gender, Smoking Status, Air Pollution, Genetic Risk, Symptom Score, etc. 

Target Classes NSCLC (0), SCLC (1) 

Preprocessing Steps Data cleaning (imputation), label encoding, one-hot encoding, standardization 

Model 1 CNN–BiLSTM 

Model 2 Att-DGRU (Dense → GRU → BiGRU → Attention) 

Loss Function Binary Cross-Entropy 

Optimizer Adam (learning rate = 0.001) 

Batch Size 32 

Epochs 50 

Validation Split 20% of training data 

Hardware Used Intel i7 CPU, 32GB RAM, NVIDIA RTX 3060 GPU 

Software Environment Python 3.9, TensorFlow 2.x, Keras, Scikit-learn 

The preprocessing workflow shown in Figure 2 is a 

systematic way to prepare unrefined raw lung cancer data for 

modeling with machine learning [18-22]. The workflow 

begins with data cleaning, where the missing values are dealt 

with by mean imputation (a method designed to achieve 

numerical completeness). After the dataset is cleaned, label 

encoding takes place by using a manual mapping to convert 

the two binary values for target classes (I.e. NSCLC and 

SCLC) to3t8arget classes. Next, categorical variables such as 

gender or smoking status undergo One-Hot Encoding, creating 

a binary vector representation for each one. Finally, the 

remaining numerical attributes (I.e. age) undergo Z-score 

normalization by standard scaling, standardizing, so that each 

numerical attribute has zero mean and unit variance. 

Besides the standard clinical features, a number of derived 

characteristics were calculated in the preprocessing process to 

provide a higher diagnostic presentation of the dataset, 

including Air Pollution Exposure, Genetic Risk Score, and 

Symptom Score. These properties were derived or combined 

on the variables of the environmental exposure, hereditary 

factors, and indicators of symptoms, respectively. All the new 

numeric features received new numbers that were scaled using 

the Standard Scaler after the derivation to ensure that the 

different numbers had equal scales in the entire dataset. This 

helped in ensuring that the final pre-processed data that will be 

used to train the model was consistent, complete, and 
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corresponded with the feature list that was given in Table 3. 

The result of the preprocessing workflow is then a pre-

processed dataset, clearly defined and ready for training 

classification models. 

3.3 NSCLC classification 

Non-Small Cell Lung Cancer (NSCLC) accounts for nearly 

85% of lung cancer cases and includes subtypes such as 

adenocarcinoma (ADC), squamous cell carcinoma (SCC), and 

large cell carcinoma (LCC). Accurate identification of 

NSCLC is essential for treatment planning and prognosis. 

Traditional diagnostic methods such as histopathological or 

imaging-based manual assessments are often time-consuming 

and subjective. To overcome these challenges, a hybrid deep 

learning model combining CNN and BiLSTM is proposed for 

NSCLC classification using structured clinical and radiomic 

descriptors. The CNN component efficiently captures local 

feature interactions among input attributes, while the BiLSTM 

learns sequential and contextual dependencies across features, 

enhancing classification accuracy. 

Step 1: Convolutional Layer – Local Feature Extraction 

The CNN layer acts as a local filter that identifies inter-

feature relationships and high-level attribute combinations 

within the input feature vector. Each convolutional operation 

extracts localized correlations (e.g., between age, smoking 

index, lesion density, and other radiomic scores) using 

learnable kernels, as defined in Eq. (6): 

𝑓𝑖  =  𝑅𝐸𝐿𝑈(𝐾 ∗ 𝑥𝑖 + 𝑏) (6) 

where, 𝑓𝑖 is the Output feature map for the 𝑖-th sample, 𝑥𝑖 is 

the Pre-processed input vector, Convolutional kernel can be 

denoted as 𝐾, Bias term can be denoted as 𝑏, ∗  is the 

Convolution operator and 𝑅𝐸𝐿𝑈(𝑧) = max(0, 𝑧) is the 

activation function introducing non-linearity. This operation 

captures localized attribute dependencies from structured data. 

Step 2: Bidirectional LSTM Representation 

The BiLSTM layer captures bidirectional relationships 

among features — for instance, how clinical attributes such as 

age or smoking history correlate with radiomic parameters 

across the feature sequence. This improves contextual 

understanding by processing information in both forward and 

backward directions, represented in Eq. (7): 

ℎ𝑡  =  𝐵𝐼𝐿𝑆𝑇𝑀(𝑓𝑖)  = ℎ →
𝑡

→
 ⊕ ℎ ←

𝑡

←
 (7) 

where, 𝑓𝑖 is the CNN output feature map, ℎ⃗→ and ℎ⃖𝑡 are the 

forward and backward hidden states, ⨁ is the Concatenation 

and ℎ𝑡 is the contextual representation at timestep 𝑡. 

Step 3: Dense Layer – Class Probability Estimation 

The dense layer consolidates the extracted features to 

produce class probabilities. After capturing inter-feature 

correlations and sequential dependencies, the dense layer 

computes the likelihood of each class (NSCLC or SCLC) 

using the sigmoid function in Eq. (8): 

𝑣
^

𝑖  =  𝜎(𝑊ℎ𝑡 + 𝑏) (8) 

where, ℎ𝑡 is the Context vector from BiLSTM, 𝑊 is the weight 

matrix, (𝑧) =1/1+𝑒−𝑧 is the Sigmoid function, and 𝑦̂𝑖(0,1) is 

the predicted probability of class SCLC (1). If a threshold (e.g., 

0.5) is applied, if 𝑦̂𝑖< 0.5, classify as NSCLC, else: classify as 

SCLC. 

Step 4: Loss Function – Binary Cross-Entropy 

The model is trained using binary cross-entropy, measuring 

the divergence between predicted and true labels and the 

binary Cross-Entropy can be mathematically deliberated using 

Eq. (9) 

𝐿 =  [𝑦𝑖 log(𝑦𝑖

^
)  + (1 − 𝑦𝑖)log(1 − 𝑦𝑖

^
)] (9) 

where, 𝑦𝑖 is the True label (0 = NSCLC, 1 = SCLC), 𝑦̂𝑖 is the 

predicted probability, and 𝐿 is the minimized loss during 

training. 

Figure 3. CNN–BiLSTM architecture for lung cancer 

classification 

The fusion architecture enables the model to learn deeper 

patterns beyond simple feature associations and is particularly 

effective in identifying subtle traits of NSCLC that may not be 

captured by traditional models or shallow classifiers. The 

CNN–BiLSTM hybrid model for lung cancer diagnosis begins 

with pre-processed input features, including clinical attributes 

such as age, gender, and smoking status, along with radiomic 

descriptors derived from CT analysis. These structured input 

features are first passed into the CNN block, which identifies 

localized feature interactions and non-linear relationships 

among the clinical and radiomic variables associated with 

NSCLC. The extracted feature representations are then fed 

into the BiLSTM layer, which models bidirectional 

dependencies between features, allowing the network to 

understand complex inter-feature patterns — for instance, how 

patient age and smoking index jointly influence certain 

radiomic characteristics or disease tendencies. The resulting 

contextual representations are then processed through a dense 

layer to estimate class probabilities. Finally, a sigmoid 

activation function produces a score between 0 and 1: if the 

score is less than 0.5, the sample is classified as NSCLC (class 

0); otherwise, it is classified as SCLC (class 1). This 

classification outcome enables the model to distinguish 

NSCLC cases effectively based on multi-dimensional 

correlations within clinical and radiomic features, rather than 

relying on explicit pixel- or image-based patterns. 

Architecture for the CNN–BiLSTM Lung Classifier is shown 

in Figure 3. 

3.4 SCLC classification in lung cancer diagnosis 

This architecture combines Dense Neural Layers for 

hierarchical abstraction1and a Gated Recurrent Unit (GRU) 

with an Attention Mechanism, enhancing awareness of the 
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most informative and differentiated patterns from this 

structured and sequential clinical dataset to help differentiate 

subtle cases of SCLC. The Att-DGRU model is designed 

primarily for the identification of likely cases of SCLC that are 

typically more aggressive and harder to identify. SCLC has a 

symptom set that often overlaps with other lung cancers, 

usually leading to a longer diagnostic determination if relying 

solely on the case history of a patient. The dense layer of the 

model represents the initial transformation of clinical features 

both derived from the prospective clinical features as well as 

those derived from imaging. GRUs are less computationally 

demanding than LSTMs, so the model can preserve sequential 

dependencies found in patient record or feature data. The 

attention mechanism highlights significant or unique features, 

where features such as rapid progression, smoker status, or 

certain radiomic signatures can be prioritized, making the 

model more user-friendly and resilient against over-

parameterization. 

Let 𝑋 = {𝑥1, 𝑥2, . . . ,} represent the pre-processed input 

feature matrix from clinical and radiomic attributes. 

Step 1: Dense Layer for Feature Abstraction 

A dense (fully connected) layer is used for initial non-linear 

transformation of features and it can be mathematically 

expressed using Eq. (10), 

𝑧𝑖  =  𝑅𝑒𝐿𝑈(𝑊1𝑥𝑖  + 𝑏1) (10) 

where, 𝑥𝑖 be the input feature vector, 𝑊1 and 𝑏1 are the 

Learnable weights and bias. Moreover, 𝑅𝑒(𝑧) = max(0, 𝑧). 

Step 2: GRU for Sequential Pattern Modeling 

The GRU captures time-dependent or ordered feature 

relations with fewer parameters than LSTM and it can be 

mathematically expressed using Eq. (11), 

ℎ𝑡 = 𝐺𝑅𝑈(𝑧𝑖  , ℎ𝑡−1) (11) 

where, ℎt-1, 𝑧t is the input to GRU and GRU uses update gate 

and reset gate internally to control flow of information. 

Step 3: Attention Mechanism for Informative Focus 

Attention allows the model to weigh critical time steps or 

features more heavily and the Attention Mechanism can be 

mathematically given in Eqs. (12)-(13), 

𝑡 = ∑  𝑒𝑥𝑝(
𝑇

𝑘=1
𝑒𝑡)/𝑒𝑥𝑝(𝑒𝑘) (12) 

𝐶 = ∑ 𝛼𝑡 ℎ𝑡𝑇
𝑡=1  (13) 

where, 𝑒𝑡 = 𝑣𝑡tanh(𝑊2ℎ𝑡 + 𝑏2), 𝛼𝑡 is the attention weight at 

time 𝑡, 𝑒𝑡 is the importance score and the Context vector 

(weighted sum of hidden states) can be denoted as 𝑐. 

Step 4: Output Layer – Sigmoid for Binary 

Classification 

The output layer of the deep learning model employs a 

sigmoid activation function to map the learned feature 

representation to a probability score between 0 and 1, 

indicating the likelihood that a case is classified as Small Cell 

Lung Cancer (SCLC). This layer accepts a context vector—

created through attention and GRU encoding— which is 

passed through a dense transformation and then the sigmoid 

activation function which serves to biases all input mapped 

within the [0,1] interval. If the predicted score is evaluated as 

≥ 0.5, the model assigns a case to the SCLC class, if the score 

is less than 0.5 then the case is assigned to the NSCLC class. 

This kind of evaluation ensures to provide an unambiguously 

interpretable binary decision boundary that is clinically 

relevant. Furthermore, Binary Classification has been given in 

Eq. (14), 

𝑦 
^

= 𝜎(𝑊3𝐶 + 𝑏3) (14) 

where, 𝑦̂(0,1) is the Predicted probability of SCLC, 𝑊3 and 

𝑏3 are the Weights and bias for final layer as well as the 

Sigmoid activation function can be denoted as 𝜎. This model 

outputs a probability score where 𝑦̂ ≥ 0.5 is classified as SCLC, 

and 𝑦̂ < 0.5 as NSCLC. By integrating attention, it improves 

the sensitivity of the model towards subtle, discriminative cues 

typical of SCLC, helping clinicians in early, accurate detection. 

Figure 4. Att-DGRU-based lung cancer classification model 

Figure 4 outlines the architecture of the Att-DGRU model 

for lung cancer classification. In this case, the model takes the 

pre-processed input data, which was passed through a dense 

layer to project the features into a space for sequential learning. 

The output was passed to the Gated Recurrent Unit (GRU 

layer) to capture the short-term dependencies, then the 

Bidirectional GRU (BiGRU) to improve feature representation, 

as it allows the model to observe the input sequence in both 

forward and backward ways. The output from the GRU layers 

is then passed on to an attention mechanism, which refines it 

further by emphasizing only the most relevant features for 

dynamic feature weighting to improve interpretability and 

classification. The attention-weighted representation is then 

passed through a fully connected layer to learn the decision 

boundaries. Subsequently, a softmax layer is used to output a 

classified outcome that will show probabilities for each lung 

cancer subtype (e.g., NSCLC or SCLC). This allows for 

accurate and interpretable diagnosis. 

4. RESULTS AND DISCUSSION

This study's findings have made it explicit that hybrid deep 

learning methods are particularly effective at classifying lung 

cancer subtypes (i.e., NSCLC and SCLC). Moreover, the 

proposed architectures (i.e., CNN- BiLSTM and Att-DGRU) 

performed much better than methods focused on either spatial 

or sequential feature learning because they combined both 

feature learning processes spatial and sequentially. In other 

words, the use of CNN and LSTM layers in tandem found 

local patterns and modelled input feature dependencies, and 

Att-DGRU really improved modelling relevant clinical 

features (e.g., incorporate an attention mechanism with gated 

recurrent units) through more relevant context in the 
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prediction process. Overall, generated classifications were 

more quality, and robust and generalizable than using 

traditional (or stand-alone) deep learning architectures. 

Improved prediction reliability leads to more secure and 

quicker diagnoses through clinical decisions. Therefore, the 

proposed methods provide capable approaches that could 

guide the decision-making of the radiologist and clinician in a 

self-assured, early, accurate possible lung cancer diagnosis, 

that could support patient management and potentially benefit 

treatment and resulting patient care during possible so-called 

'real world' and hopefully clinical practice. 

4.1 Experimental setup 

The experimental design was rigorously set up to 

investigate the classification performance of the CNN–

BiLSTM and Att-DGRU model on the Kaggle lung cancer 

dataset. The 1000 patient records were pre-processed and the 

input features to represent the demographics, clinical, and 

environmental aspects related to the prediction of NSCLC and 

SCLC classification characteristics. Models used binary cross-

entropy loss and Adam optimizer and were further trained with 

the batch size of 32 over 50 epochs. A validation split of 20% 

was used to assess any generalization. The entire workflow 

was implemented using deep learning libraries in Python and 

was computed on an NVIDIA RTX 3060 GPU, obtaining 

computationally effective, reproducible results. Experimental 

setup details have been given in Table 3. 

4.2 Metrics analysis 

Table 4 shows the full set of performance metrics utilized to 

evaluate classification models for use in medical diagnosis. 

Performance metrics such as accuracy, precision, recall, and 

specificity provide a holistic view of the model's ability to 

predict NSCLC and SCLC correctly. F1-score indicates the 

trade-off between precision and recall, while MCC helps 

provide an overview of correlation. NPV, FNR, and FPR assist 

in identifying and indicating tendencies towards false 

predictions, which aids trustworthy clinical decisions. 

Table 4. Performance metrics to evaluate the classification model 

Metric Description Formula 

Accuracy (%) 
Measures the overall correctness of the model by evaluating 

both positive and negative predictions. 

tp tn
A

tp tn fp fn

+
=

+ + +

Precision 

Indicates the proportion of 

correctly predicted positive cases out of all predicted 

positives. 

tp
P

tp fp
=

+

Recall (Sensitivity) Reflects the modality to detect true positive cases correctly. tp/R tp fn= +

Specificity 
Measures how well the model identifies actual negatives 

(true negatives). 

tn
s

tn fp
=

+

F1-score 
Harmonic mean of precision and recall, balancing both 

metrics. 
1 2

P R
F score

P R


− = 

+

MCC 
Correlation coefficient that evaluates the quality of binary 

classifications. ( )( )( )( )

tp tn fp fn
MCC

tp fp tp fn tn fp tn fn

 − 
=

+ + + +

NPV (Negative 

Predictive Value) 

Proportion of actual negatives among all predicted negative 

results. 

tn
NPV

tn fn
=

+

FNR (False Negative 

Rate) 

Indicates the proportion of actual positives missed by the 

model. 

fn
FNR

fn tp
=

+

FPR (False Positive 

Rate) 

Measures the proportion of incorrect positive predictions 

among all actual negatives. 

fp
FPR

fp tn
=

+

4.3 Comparison analysis 

In the emerging field of lung cancer diagnostics, deep 

learning-based models are enhancing predictive 

performance4i0n the classification of NSCLC and SCLC 

subtypes. In the tables, the performance metrics help clarify 

the comparisons of five leading models, CNN–BiLSTM, the 

proposed Att-DGRU, MLW-CNN [13], CNN + Soft Voting 

[14], and PathCNN [15].  

It was necessary to adjust all the baseline models, such as 

MLW-CNN, CNN+Soft Voting, and PathCNN, systematically 

to compare the methods according to methodological fairness 

in relation to the clinical-radiomic dataset in tabular format 

adopted in this study. In particular, the way they implemented 

their convolutional and pooling layers was redesigned as one-

dimensional operations to be able to accept vectors as input 

features instead of image tensors. Besides, normalization and 

activation functions were also changed to preserve 

representational consistency with input data format. Training 

each baseline model separately was done by retraining with 

the same preprocessing, data partitioning, and optimization 

parameters (Adam optimizer, learning rate = 0.001, batch size 

= 32) as with the proposed CNN+BiLSTM and AttDGRU 

models. The tuning of hyperparameters of all the models was 

done via a controlled grid search to ensure that bias due to 

architecture-specific parameter settings is minimized. This re-

arrangement made sure that the performance difference 

between models was more of inherent architectural ability 

rather than variation between input modality or parameter 

adjustment.  

The accuracy of the hybrid CNN–BiLSTM model (97.6%) 

was highest because the model addressed spatial-temporal 

learning and provided sufficient discovery of both long-

distance and local dependencies. The precision (0.978) and 
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recall (0.975) suggest adequate balance between possible false 

positives and false negatives, whereas clinically, if the model 

can misclassify before treatment planning stage is reached, this 

will not impact treatment. The F1 (0.976) and MCC (0.952) 

metrics, too, were remarkable for a predictive model that is 

accurate and robust. Performance comparison score for the 

proposed model vs existing models is tabulated in the 

following Table 5. 

(a) Accuracy (b) Precision

(c) Recall/Sensivity (d) Specificity

(e) F-score (f) MCC
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(g) NPV (h) FNR

(i) FPR

Figure 5. Graphical representation of performance comparison analysis 

Table 5. Performance comparison analysis of proposed model vs existing models 

Metrics CNN– BiLSTM Proposed Att- DGRU MLW- CNN CNN +Soft Voting PathCNN 

Accuracy 97.6 97.2 96.4 89.24 95.1 

Precision 0.978 0.974 0.962 0.956 0.948 

Recall (Sensitivity) 0.95 0.971 0.957 0.95 0.943 

Specificity 0.977 0.973 0.961 0.954 0.949 

F1-score 0.976 0.972 0.959 0.953 0.945 

MCC 0.952 0.946 0.927 0.913 0.902 

NPV 0.974 0.97 0.958 0.952 0.945 

FNR 0.025 0.029 0.043 0.05 0.057 

FPR 0.023 0.027 0.039 0.046 0.051 

The proposed architecture, Att-DGRU (Attention-based 

Dense Bidirectional GRU), follows closely behind with an 

accuracy of 97.2%. The addition of the attention 

layers47enables the model to focus on the most pertinent 

features, facilitating better interpretability and contextual 

awareness. The Att-DGRU's scoring is slightly lower than 

CNN–BiLSTM but its precision (0.974) and recall (0.971) still 

demonstrate great fidelity in classification, and its MCC of 

0.946 demonstrates it is still a strong binary predictor. The 

model's NPV (0.970) and low FNR (0.029) indicate it is robust 

in terms of identifying non-cancer cases while also minimizing 

missed detections. The MLW-CNN is a model that pulls 

together data from multiple modalities using weighted 

decision fusion, displayed an accuracy of 96.4%, indicating 

the model performance was due to the cohesive blending of 

heterogeneous inputs. Although the MLW-CNN does not have 

any recurrent or attention operations, the fact that the model 

achieved an F1-score of 0.959 and MCC of 0.927 indicates it 

generalized well given the circumstances, particularly in 

scenarios where gene expression or methylation could be 

considered as contributions to the modelling. CNN + Soft 

Voting, which detects growth trends, and PathCNN, a simpler 

deep architecture, achieved lower, but still respectable, 

accuracies of 89.24% and 95.1%, respectively. These models 

may have utility in instances where limited computing 

capability is available or if interpretability is an important 

consideration. In summary, while all models are showing 

promise, the CNN–BiLSTM and Att-DGRU models have the 
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best performance, suggesting they are the best candidates for 

application in clinical workflows for lung cancer classification 

in Figure 5. 

The confusion matrix serves as an excellent overview of the 

classifier's ability to differentiate between NSCLC and SCLC 

cases. It reports the model's predictions, based on the four 

potential outcomes: true positives (positive SCLC predictions), 

true negatives (negative NSCLC predictions), false positives 

(NSCLC predictions but instead predicted as SCLC), and false 

negatives (SCLC predicted as NSCLC). A large number of 

positives in the true and true negatives means the predictions 

by the model were valid in Figure 6. 

Figure 6. Confusion matrix of NSCLC and SCLC 

A small number of positives in the false means there is little 

to no misclassifications. In this case of the hybrid proposed 

pipeline CNN–BiLSTM for NSCLC and Att-DGRU for SCLC, 

the confusion matrix helps to give a visualization about how 

reliable the classifier is producing predictions, and with a 

built-in high precision and recall, with the reporting of strong 

performance metrics (e.g., 97.6% and 97.2% accuracy), this 

tool caters to not only performance verification, but for 

identifying news patterns of misclassification that will enable 

more successful future developments of models to improve 

diagnostic reliability for clinical placement. 

4.4 Discussion 

Figure 7. ROC curve of NSCLC and SCLC 

The suggested hybrid deep learning model based on CNN-

BiLSTM and Att-DGRU models proves to be significantly 

better in terms of the classification of NSCLC and SCLC types 

of lung cancer. Its key feature is that it learns automatically 

non-linear and complex patterns with structured clinical, 

radiomic, or genomic descriptors with classification 

accuracies of over 97%. The CNN layers are useful to 

represent and learn localized feature interactions, whereas the 

BiLSTM and GRU units network represent and learn 

sequential or structural relationships between features. 

Attention mechanism of the Att-DGRU architecture can also 

be considered as increasing interpretability because it allows 

the model to give attention to the most informative attributes. 

The proposed framework is highly adapted to the 

identification of the disease in the early stage of lung cancer, 

as these combined features eliminate the need to resort to 

invasive tests and contribute to the further development of 

individualized treatment plans (Figure 7). 

In spite of its strengths, the performance of the model is 

affected by the quality and diversity of the datasets. It needs a 

large and balanced and well-annotated set of data to be able to 

generalize in diverse population groups. Moreover, deep 

learning structures tend to be computationally expensive and 

this could constrain their use in low resource clinical settings 

unless they are simplified. The framework can also be 

sensitive to feature noise or feature discrepancy in hidden data. 

However, it is a major advancement in proper and automated 

lung cancer subtype classification that has helped in improving 

clinical workflow and diagnostic confidence. 

In addition to the quantitative performance, there was an 

interpretability evaluation that evaluated the feature relevance 

and decision behavior of the proposed models. The Att-DGRU 

model always prominently used the clinically significant 

features, including Smoking Status, Genetic Risk, Air 

Pollution Exposure, and Symptom Score which effectively 

contributed to the differentiation between NSCLC and SCLC. 

Such findings are in tandem with known medical facts that 

long-term exposure to smoking, inherited vulnerability and 

environmental pollutants are main determinants of the type of 

lung cancer. On the other hand, less discriminative features 

like Gender and Age were given lesser scores of attention, 

meaning that they had limited predictive power. 

Interpretation of the errors identified that most of the errors 

were found on borderline or low-case cases and were mainly 

occurring in cases of overlapping clinical manifestations, or 

little severity of the symptoms, where distributions of features 

of NSCLC and SCLC overlapped. The CNNBiLSTM model 

was sometimes not able to decode such complicated relations 

because it lacked background awareness, and the attention 

component of AttDGRU partially addressed this issue by 

dynamically highlighting the most informative features. These 

analyses, in general, support the conclusion that the suggested 

architectures not only provide excellent predictive 

performance but they are also highly clinically interpretable, 

since the medically meaningful attributes direct the decision-

making processes. 

5. CONCLUSIONS

This work proposed an advanced hybrid deep learning 

framework for accurately classifying lung cancer subtypes—

Non-Small Cell Lung Cancer (NSCLC) and Small Cell Lung 

Cancer (SCLC) from pre-processed clinical and radiomic 
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feature vectors. We explored two powerful models: the CNN–

BiLSTM and the proposed Att-DGRU. Both deep learning 

models outperformed baseline predictions, with CNN–

BiLSTM achieving an overall accuracy of 97.6% and Att-

DGRU achieving 97.2%, outperforming existing state-of-the-

art approaches, including MLW-CNN (96.4%), PathCNN 

(95.1%), and CNN + Soft Voting (89.24%). Compared to the 

best baseline traditional classification model (MLW-CNN), 

the proposed Att-DGRU resulted in an overall improvement 

of 0.8% along with improvements in precision, recall, and F1-

score, demonstrating its robustness in learning temporal and 

spatial dependencies. Furthermore, the importance of features 

driving classification is more interpretable via the attention 

mechanism in the proposed Att-DGRU than in alternatives. 

Overall, the combination of deep feature learning through 

GRU/BiGRU and attention-based focus demonstrates that Att-

DGRU is ideally suited for real-time and automated diagnosis 

of lung cancer subtypes, and could contribute to more effective 

clinical decisions, better prognosis, and advances that improve 

intelligent diagnosis in medicine. 
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