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The timely and accurate classification of lung cancer subtypes, particularly Non-Small Cell
Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC), is important in potentially
improving treatment protocols and patient outcomes. This study proposed two hybrid deep
learning architectures, CNN-BILSTM and Attention-based Dense GRU (Att-DGRU), for
the purpose of binary classification of lung cancer types through structured clinical
covariates. The CNN-BiLSTM model consisted of convolutional layers to extract spatial
features and BIiLSTM layers to learn temporal dependencies, while the Att-DGRU model
consisted of recurrent units with attention mechanisms to differentiate among relevant input
features. Both models were evaluated on a set of standard metrics, and the CNN-BiLSTM
model performed as the best classifier. Using the CNN-BILSTM architecture improved
classification accuracy, precision, and recall for lung cancer subtype classification
compared to existing models, providing further evidence of robustness and reliability. This
paper proposed a multi-layered deep learning architecture, Att-DGRU, which integrates
Dense layers, Bidirectional GRU (BiGRU), and an attention mechanism for learning
discriminatory features for classification. We compared Att-DGRU with benchmark
architectures such as CNN-BiLSTM, MLW-CNN, and PathCNN. Att-DGRU achieved an
accuracy of 97.2%, precision of 0.974, recall (sensitivity) of 0.971, specificity of 0.973, F1-
score of 0.972, MCC of 0.946, NPV of 0.970, FNR of 0.029, and FPR of 0.027, showing
its effective classification performance in identifying NSCLC cases while maintaining a
low false negative occurrence. Through comparative analysis, Att-DGRU performed better
than or closely matched other architectures on all evaluation metrics. Together, the
experimental results provide findings that endorse the Att-DGRU as a flexible, effective,
interpretable, and resource-aware model framework for binary diagnosis of lung cancer.
This may ultimately facilitate clinical decision-making and allow scaled, affordable
diagnostic possibilities. The results of this study showed that the proposed hybrid
architectures provided a statistically and clinically significant effect in reducing
misclassification rates, proving that the two models will produce a useful decision-support
measure for lung cancer diagnosis in clinical settings and will also allow for a non-invasive
manner of diagnosis in under-resourced healthcare contexts.

1. INTRODUCTION

Lung cancer is still one of the most common and lethal
cancers, representing a considerable portion of cancer-related
deaths. Non-Small Cell Lung Cancer (NSCLC) and Small Cell
Lung Cancer (SCLC) account for the major clinical
classifications of lung cancer with distinct pathological,
genomic, and treatment profiles [1]. Distinguishing between
NSCLC and SCLC is important as there are meaningful
differences in treatment approaches and prognoses [2].
Although the traditional types of diagnosis—histopathology
and imaging have been reliable for diagnoses, both are limited
in their capability to differentiate early and to scale,
particularly when limited resources are available [3].
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Emerging research in machine learning and deep learning
provides new opportunities to automate the classification of
cancer subtypes using demographic and clinical data [4, 5]. In
this study, we aim to classify lung cancer into NSCLC and
SCLC as a supervised learning problem with structured tabular
data. We framed the task as a binary classification problem,
with the intention of building intelligent, data-driven
diagnostic tools that will help increase early detection, clinical
decision-making support, and personalized treatment
planning [6]. Using a public Kaggle dataset, we present and
assess new deep learning models for distinguishing between
these two important lung cancer subtypes.

Various deep learning and machine learning models have
been used for lung cancer subtype classification, including
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convolutional neural network (CNN) architectures,
multi-layer perceptron’s (MLPs), and XGBoost-based
classifiers [7]. Despite their good performance on image data,
CNN s frequently perform poorly on structured tabular datasets
where they cannot assess the importance of features
dynamically [8]. MLPs are fairly simple and widely used, but
do not flexibly focus on feature selection and often lead to poor
generalization on noisy or imbalanced clinical data. XGBoost,
along with other ensemble methods, are powerful predictors
for binary, categorical, and multiclass tasks, but they result in
black-box models that lack interpretability, an important
requirement for healthcare wuse. Furthermore, when
mixed-type features (numerical/categorical) are used as
supervised variables, such weaknesses undermine trust and
reduce clinical usability.

To address these difficulties, there is an urgent need for deep
learning architectures that guarantee not only high
classification accuracy but also transparency, feature
awareness, and adaptability with real clinical data. This leads
us to investigate adopting the TabNet and FT-Transformer
architectures that are designed to leverage tabular data,
accommodate mixed features, and provide inherent
transparency through attention and feature masks[9]. We
developed two specialized models for NSCLC vs. SCLC
classification, which we expect to improve classification
accuracy and confidence while providing a more intuitive
framework for explainable decision-making within a clinical
workflow. This step will contribute to the larger goal of
developing intelligent, interpretable, and trustworthy Al tools
for the diagnosis and subtype prediction of cancer [10].

1.1 Key objectives

The following is the key contribution of the research:

To ensure reliable model training, preprocessing was
performed by handling missing values through imputation
and encoding categorical variables. To standardize the
feature space, numerical attributes were normalized using
standard scaling for consistent model performance.

To propose a novel hybrid architecture (Att-DGRU) that
integrates attention mechanisms with Bidirectional GRUs
and dense layers for effective contextual learning in SCLC
classification.

e To demonstrate Non-Small Cell Lung Cancer (NSCLC)
classification using a novel hybrid approach called hybrid
CNN-BILSTM.

Moreover, the organization of the study is structured as

follows: Section 1 provides the introduction of the study,

recent literatures related to lung cancer classification is
discussed in Section 2, and the proposed model has been
discussed in Section 3. Moreover, the result and discussion are
given in Section 4, and the conclusion for the study has been
given in Section 5.

2. LITERATURE REVIEW

Eshun et al. [11] focused on the classification of the four
principal sub-types of non-small cell lung cancer (NSCLC):
squamous cell carcinoma (SCC), adenocarcinoma (ADC),
large cell carcinoma (LCC), and not otherwise specified
(NOS). Most of the previous studies primarily focused on SCC
and ADC. The researchers used CT scan images of 349
patients to derive a total of 1029 radiomic features. A hybrid
model known as SLS was developed using SMOTE (to
balance the classes), £2,1-norm (to select the features), and
SVM (for classification). After being reduced to 247 features,
SLS achieved an 89% accuracy on training and 86% accuracy
on testing.

Wang et al. [12] developed a novel44model called MLW-
gcForest, which was proposed as an enhanced version of
gcForest that makes use of weights for the decision trees and
the feature vectors. Three separate models were trained and
fused together. This approach was better accuracy than
previous models with an accuracy of 0.908, precision of 0.896,
recall of 0.882, & AUC of 0.96.

Liu et al. [13] suggested that research makes use of
histopathology images to infer gene expression subtypes in
NSCLC, focusing on cases of adenocarcinoma and squamous
cell carcinoma. More than 800 whole-slide images were
obtained from TCGA to develop CNN assignable to the task
of distinguishing tumor from normal tissue and predicting the
transcriptomic subtype, achieving AUC > 0.935 for tumour
detection, and AUC > 0.88 for subtype prediction. Results
were validated against a completely independent dataset,
which demonstrated acceptable reliability.

Table 1. The research gap among the existing studies

Authors Proposed Techniques Data Used Performance Metrics Limitations
Eshun et al. SLS (SMOTE+ 349 CT scans from Accuracy Focused only on radiomics;
[11] £2,1-norm+ SVM) 2 datasets(NSCLC types) (Train/Test): 89%/86% moderate generalization risk
Multi-modal Accuracy: 0.908, Needs high-quality multi-omics

Wang et al. MLW-gcForest (Weighted genetic data (RNA- seq,

[12] gcForestfusion) methylation, CNV/)
Liuetal.  CNN for transcriptomic 884 histopathology images
[13] subtype prediction (LUAD + LUSC, TCGA)
Dongetal. CNN + Soft Voting for 19,924imagetiles (CSMC,
[14] growth pattern detection MIMW, TCGA)
Yuetal. N Whole-slide images (various
[15] PathCNN (Simplified CNN) tumor sites)

TumordetectionAUC > 0.935,

data;
may struggle with
smallnoisydatasets
No pathology knowledge used;
Focuses on LUAD and LUSC only

Precision: 0.896, Recall:
0.882, AUC: 0.96

Subtype AUC > 0.88
Accuracy: 89.2
F1 scores: Solid (0.91),
Micropapillary (0.76),
Acinar (0.74),
Cribriform (0.60),
non-tumor (0.96)
Highaccuracy, identifies
staining/outliers

Cribriform accuracy lower;
performance varies by image quality

Not quantified; simpler model may
miss finer patterns
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Dong et al. [14] developed CNN with soft-voting applied to
break down solid tumour tissue into five categories (Solid,
micropapillary, acinar, cribriform, and non-tumour). The
model was trained using a total of 19,924 image tiles and
tested on 128 slides from CSMC, MIMW, and TCGA,
yielding an overall accuracy of 89.24% and F1-scores from
500.6 (cribriform) to 0.96 (non-tumour). The CSMC dataset
showed the highest accuracy, due to the better quality of the
images in this dataset.

Yu et al. [15] analyzed that large tissue slides are time-
consuming and more error-prone than using automated image
analysis. The goal of this study is to propose PathCNN, a
lightweight and efficient CNN model that allows for multi-
class cancer diagnosis classification. PathCNN is competitive
in accuracy when compared with more complex models like
Google's Inception, but at a substantially lower computational
cost. PathCNN was trained using hundreds of images of each
tumour tissue and related normal tissues, and captured visual
patterns and outliers through a weight analysis of the final
layer output. Table 1 shows the research gap among the
existing studies.

Some studies listed in Table 1, such as Liu et al. [13] and
Dong et al. [14], were developed using histopathology or
image-based datasets. They are included for their
methodological relevance, as they illustrate the evolution of
deep learning architectures for lung cancer subtype prediction
[15]. The proposed work extends these concepts to structure
clinical and radiomic data, emphasizing interpretability and
diagnostic applicability beyond imaging modalities [16].

3. PROPOSED MODEL

The workflow diagram shown in Figure 1 is a detailed
framework for lung cancer classification using a two-stage
hybrid deep learning approach. The pipeline begins with input
(the data to be classified, whether radiomic or clinical features),
and a pre-processing module, where we included all of the
requisite tasks, like data cleaning, encoding, and normalising
the features of the dataset (to maximise learning).

&

— — CNN-BILSTM —  Att-DGRU
kil NSCLC SCLC
Input data Pre-processing classification Classification
%
Performance
evaluation

Figure 1. Architecture of the proposed model

Subsequently, the pre-processed dataset is used in the
CNN-BiLSTM model that classifies Non-Small Cell Lung
Cancer (NSCLC) by inferring spatial and temporal patterns.
Following classification of NSCLC, the refined Att- DGRU
model is used to classify 2Small Cell Lung Cancer (SCLC)
using sequential dependencies and relevant features produced
by the Att-DGRU model. In the final stage of the framework,
we evaluated the performance of our classification method
based on accuracy, precision, recall and Fl-score. Without
detrimentally affecting reliability, the layered approach we
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present here should allow for automated and accurate
diagnostic classification in lung cancer screening.

3.1 Dataset description

The Lung Cancer Data in Kaggle, hosted by Andrew Mvd,
is available with patient-level information that can be used to
categorize the type of lung cancer. This dataset consists of
around 300 records that belong to two main classes: Non-
Small Cell Lung Cancer (NSCLC) and Small Cell Lung
Cancer (SCLC). It is offered in CSV (table) format, with the
primary clinical items being Age, Gender, Smoking Status,
Symptoms, and the type of Cancer (label) he/she has.

In this paper, a feature engineering was applied to the
dataset to enhance clinical interpretability and model
performance. Other derived attributes are:

Air Pollution Exposure- an environmental score that
represents the long-term exposure to pollutants.

Genetic Risk Index- the summative gene of hereditary
vulnerability determined by reported family history and
genetic markers.

Symptom Score- composite score obtained by summing up
several symptom indicators (e.g., cough, chest pain, weight
loss, fatigue).

Other causes- alcohol consumption, job risk, and chronic
illness.

Moreover, the dataset link is given as follows,
https://www .kaggle.com/datasets/andrewmvd/lung-cancer-
dataset and the following Table 2 shows the key features in the
dataset.

Table 2. Key features in the dataset

Feature Description
Classes NSCLC and SCLC
Si ~1,000 patient records (after preprocessing and
ize :
augmentation)
Data Format CSV (tabular)
Age, Gender, Smoking Status, Air Pollution
Attributes  Exposure, Genetic Risk Index, Symptom Score, and
other clinical factors
Label Binary (class 0 = NSCLC, class 1 = SCLC)

3.2 Preprocessing

Proper preprocessing is crucial for ensuring data integrity,
consistency, and usability in training deep learning models.
This study included three main preprocessing components:
cleaning, encoding, and feature scaling. The focus was on
Standard Scaler, a prevalent normalization technique for
numerical data [17].

Data Cleaning: Missing or null values in the dataset were
managed using:

Row removal for records with substantial (> 90%) null
values.

. Mean imputation was used for numerical fields and
mode imputation was used in categorical fields.

Let D = {x1, x2, ... ,} denote the dataset. If a value xi is
missing, then use mean imputation as given in Eq. (1),

X

ZN
j=1/

Label Encoding: Convert binary target class into numerical
form using direct mapping and the binary target class, cancer

xX; ==
L

(1



type, was encoded using Eq. (2),

NSCLC — 0,SCLC — 1 2)
Categorical Feature Encoding: Nominal features such as
Gender and Smoking Status were encoded with One- Hot
Encoding creating separate binary columns for each class. Let
Cef{cl, c2, ... ,} be a categorical variable. Then it can be
mathematically deliberated using Eq. (3),
vi={(ifc=q (3)

Feature Scaling (Standard Scaler):

To ensure that numerical values (e.g., Age) are on uniform
scale, Standard Scaler was employed. This technique centers

Data Cleaning

;H

Input Data

Mean
imputation

Label encoding

'/

Mapping

the values around a mean of 0 with unity variance, and it can
be mathematically deliberated using Eq. (4),

x —
Z= s
o

(4)

where, x is the original feature value, p is the mean of the
feature and o is the standard deviation. This scaling is
especially crucial for models like neural networks, where
unscaled features can negatively impact convergence during
training. Final Dataset Representation: Let X represent the
input feature matrix after preprocessing and Y the encoded
target vector using the following Eq. (5),

X =2 Y ={y1,y2,- 00} v €003 (5)

Categorial encoding Feature scaling

One-Hot
Encoding

Z-score normalization

l

172.16.0.0
172.16.1.0
172.16.2.0

Figure 2. Workflow of pre-processing Z-score normalization

Table 3. Experimental design on dataset of NSCLC and SCLC

Category

Description

Dataset Source
Total Samples
Input Features
Target Classes
Preprocessing Steps
Model 1
Model 2
Loss Function
Optimizer
Batch Size
Epochs
Validation Split
Hardware Used
Software Environment

Lung Cancer Dataset from Kaggle (Andrew MVD)
1000 patient records (after preprocessing)
Age, Gender, Smoking Status, Air Pollution, Genetic Risk, Symptom Score, etc.

NSCLC (0), SCLC (1)

Data cleaning (imputation), label encoding, one-hot encoding, standardization

CNN-BIiLSTM

Att-DGRU (Dense — GRU — BiGRU — Attention)

Binary Cross-Entropy
Adam (learning rate = 0.001)

32
50

20% of training data

Intel i7 CPU, 32GB RAM, NVIDIA RTX 3060 GPU
Python 3.9, TensorFlow 2.x, Keras, Scikit-learn

The preprocessing workflow shown in Figure 2 is a
systematic way to prepare unrefined raw lung cancer data for
modeling with machine learning [18-22]. The workflow
begins with data cleaning, where the missing values are dealt
with by mean imputation (a method designed to achieve
numerical completeness). After the dataset is cleaned, label
encoding takes place by using a manual mapping to convert
the two binary values for target classes (I.e. NSCLC and
SCLC) to3t8arget classes. Next, categorical variables such as
gender or smoking status undergo One-Hot Encoding, creating
a binary vector representation for each one. Finally, the
remaining numerical attributes (I.e. age) undergo Z-score
normalization by standard scaling, standardizing, so that each
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numerical attribute has zero mean and unit variance.

Besides the standard clinical features, a number of derived
characteristics were calculated in the preprocessing process to
provide a higher diagnostic presentation of the dataset,
including Air Pollution Exposure, Genetic Risk Score, and
Symptom Score. These properties were derived or combined
on the variables of the environmental exposure, hereditary
factors, and indicators of symptoms, respectively. All the new
numeric features received new numbers that were scaled using
the Standard Scaler after the derivation to ensure that the
different numbers had equal scales in the entire dataset. This
helped in ensuring that the final pre-processed data that will be
used to train the model was consistent, complete, and



corresponded with the feature list that was given in Table 3.
The result of the preprocessing workflow is then a pre-
processed dataset, clearly defined and ready for training
classification models.

3.3 NSCLC classification

Non-Small Cell Lung Cancer (NSCLC) accounts for nearly
85% of lung cancer cases and includes subtypes such as
adenocarcinoma (ADC), squamous cell carcinoma (SCC), and
large cell carcinoma (LCC). Accurate identification of
NSCLC is essential for treatment planning and prognosis.
Traditional diagnostic methods such as histopathological or
imaging-based manual assessments are often time-consuming
and subjective. To overcome these challenges, a hybrid deep
learning model combining CNN and BiLSTM is proposed for
NSCLC classification using structured clinical and radiomic
descriptors. The CNN component efficiently captures local
feature interactions among input attributes, while the BILSTM
learns sequential and contextual dependencies across features,
enhancing classification accuracy.

Step 1: Convolutional Layer — Local Feature Extraction

The CNN layer acts as a local filter that identifies inter-
feature relationships and high-level attribute combinations
within the input feature vector. Each convolutional operation
extracts localized correlations (e.g., between age, smoking
index, lesion density, and other radiomic scores) using
learnable kernels, as defined in Eq. (6):

fi = RELU(K *x; + b) (6)
where, fi is the Output feature map for the i-th sample, x; is
the Pre-processed input vector, Convolutional kernel can be
denoted as K, Bias term can be denoted as b, * is the
Convolution operator and RELU(z) = max(0, z) is the
activation function introducing non-linearity. This operation
captures localized attribute dependencies from structured data.

Step 2: Bidirectional LSTM Representation

The BIiLSTM layer captures bidirectional relationships
among features — for instance, how clinical attributes such as
age or smoking history correlate with radiomic parameters
across the feature sequence. This improves contextual
understanding by processing information in both forward and
backward directions, represented in Eq. (7):

h, = BILSTM(f,)) = h % ®h % 7)

where, fiis the CNN output feature map, #— and /: are the
forward and backward hidden states, @ is the Concatenation
and A is the contextual representation at timestep .

Step 3: Dense Layer — Class Probability Estimation

The dense layer consolidates the extracted features to
produce class probabilities. After capturing inter-feature
correlations and sequential dependencies, the dense layer
computes the likelihood of each class (NSCLC or SCLC)
using the sigmoid function in Eq. (8):

v; = o(Wh, + b) (®)
where, /4 is the Context vector from BiLSTM, W is the weight
matrix, (z) =1/1+e—z is the Sigmoid function, and yie(0,1) is
the predicted probability of class SCLC (1). If a threshold (e.g.,
0.5) is applied, if i< 0.5, classify as NSCLC, else: classify as
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SCLC.

Step 4: Loss Function — Binary Cross-Entropy

The model is trained using binary cross-entropy, measuring
the divergence between predicted and true labels and the
binary Cross-Entropy can be mathematically deliberated using

Eq. (9)

L= [ylog(y) + (1—yplog(1 —y)] ©)

where, y: is the True label (0 = NSCLC, 1 = SCLC), ¥/ is the
predicted probability, and L is the minimized loss during

training.
‘ ’l

Max Pooling layer

v

<«— Flatten Layer
Dense layer

Classified
outcome

. >

Pre-processed
data

crm®

Convolutional
Layer

Figure 3. CNN-BiLSTM architecture for lung cancer
classification

The fusion architecture enables the model to learn deeper
patterns beyond simple feature associations and is particularly
effective in identifying subtle traits of NSCLC that may not be
captured by traditional models or shallow classifiers. The
CNN-BiLSTM hybrid model for lung cancer diagnosis begins
with pre-processed input features, including clinical attributes
such as age, gender, and smoking status, along with radiomic
descriptors derived from CT analysis. These structured input
features are first passed into the CNN block, which identifies
localized feature interactions and non-linear relationships
among the clinical and radiomic variables associated with
NSCLC. The extracted feature representations are then fed
into the BILSTM layer, which models bidirectional
dependencies between features, allowing the network to
understand complex inter-feature patterns — for instance, how
patient age and smoking index jointly influence certain
radiomic characteristics or disease tendencies. The resulting
contextual representations are then processed through a dense
layer to estimate class probabilities. Finally, a sigmoid
activation function produces a score between 0 and 1: if the
score is less than 0.5, the sample is classified as NSCLC (class
0); otherwise, it is classified as SCLC (class 1). This
classification outcome enables the model to distinguish
NSCLC cases effectively based on multi-dimensional
correlations within clinical and radiomic features, rather than
relying on explicit pixel- or image-based patterns.
Architecture for the CNN-BiLSTM Lung Classifier is shown
in Figure 3.

3.4 SCLC classification in lung cancer diagnosis
This architecture combines Dense Neural Layers for

hierarchical abstractionland a Gated Recurrent Unit (GRU)
with an Attention Mechanism, enhancing awareness of the



most informative and differentiated patterns from this
structured and sequential clinical dataset to help differentiate
subtle cases of SCLC. The Att-DGRU model is designed
primarily for the identification of likely cases of SCLC that are
typically more aggressive and harder to identify. SCLC has a
symptom set that often overlaps with other lung cancers,
usually leading to a longer diagnostic determination if relying
solely on the case history of a patient. The dense layer of the
model represents the initial transformation of clinical features
both derived from the prospective clinical features as well as
those derived from imaging. GRUs are less computationally
demanding than LSTMs, so the model can preserve sequential
dependencies found in patient record or feature data. The
attention mechanism highlights significant or unique features,
where features such as rapid progression, smoker status, or
certain radiomic signatures can be prioritized, making the
model more user-friendly and resilient against over-
parameterization.

Let X = {xi1, x2, . . . ,} represent the pre-processed input
feature matrix from clinical and radiomic attributes.

Step 1: Dense Layer for Feature Abstraction

A dense (fully connected) layer is used for initial non-linear
transformation of features and it can be mathematically
expressed using Eq. (10),

z; = ReLU(W;x; + by) (10)
where, x; be the input feature vector, W, and b, are the
Learnable weights and bias. Moreover, Re(z) = max(0, z).

Step 2: GRU for Sequential Pattern Modeling

The GRU captures time-dependent or ordered feature
relations with fewer parameters than LSTM and it can be
mathematically expressed using Eq. (11),

hy = GRU(z;, he—1) (11)

where, 4., zt is the input to GRU and GRU uses update gate
and reset gate internally to control flow of information.

Step 3: Attention Mechanism for Informative Focus

Attention allows the model to weigh critical time steps or
features more heavily and the Attention Mechanism can be
mathematically given in Eqgs. (12)-(13),

t=Y . _ exp(e)/exp(er) (12)

C=YI_,atht (13)
where, e: = vttanh(W,ht + by), at is the attention weight at
time t, e: is the importance score and the Context vector
(weighted sum of hidden states) can be denoted as c.

Step 4: Output Layer Sigmoid for
Classification

The output layer of the deep learning model employs a
sigmoid activation function to map the learned feature
representation to a probability score between 0 and 1,
indicating the likelihood that a case is classified as Small Cell
Lung Cancer (SCLC). This layer accepts a context vector—
created through attention and GRU encoding— which is
passed through a dense transformation and then the sigmoid
activation function which serves to biases all input mapped
within the [0,1] interval. If the predicted score is evaluated as
> 0.5, the model assigns a case to the SCLC class, if the score
is less than 0.5 then the case is assigned to the NSCLC class.
This kind of evaluation ensures to provide an unambiguously

Binary
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interpretable binary decision boundary that is clinically
relevant. Furthermore, Binary Classification has been given in
Eq. (14),

y = o(W5C + b3) (14)
where, y€(0,1) is the Predicted probability of SCLC, W3 and
b; are the Weights and bias for final layer as well as the
Sigmoid activation function can be denoted as . This model
outputs a probability score where > 0.5 is classified as SCLC,
and y < 0.5 as NSCLC. By integrating attention, it improves
the sensitivity of the model towards subtle, discriminative cues
typical of SCLC, helping clinicians in early, accurate detection.

——» Denselayer ——» GRULayer —» BiGRU Layer

G00000
Pre-processed data
v
Classified :
outcome ¢ Aftenfion
Layer
Softmax

Fully
connected layer

Figure 4. Att-DGRU-based lung cancer classification model

Figure 4 outlines the architecture of the Att-DGRU model
for lung cancer classification. In this case, the model takes the
pre-processed input data, which was passed through a dense
layer to project the features into a space for sequential learning.
The output was passed to the Gated Recurrent Unit (GRU
layer) to capture the short-term dependencies, then the
Bidirectional GRU (BiGRU) to improve feature representation,
as it allows the model to observe the input sequence in both
forward and backward ways. The output from the GRU layers
is then passed on to an attention mechanism, which refines it
further by emphasizing only the most relevant features for
dynamic feature weighting to improve interpretability and
classification. The attention-weighted representation is then
passed through a fully connected layer to learn the decision
boundaries. Subsequently, a softmax layer is used to output a
classified outcome that will show probabilities for each lung
cancer subtype (e.g., NSCLC or SCLC). This allows for
accurate and interpretable diagnosis.

4. RESULTS AND DISCUSSION

This study's findings have made it explicit that hybrid deep
learning methods are particularly effective at classifying lung
cancer subtypes (i.e., NSCLC and SCLC). Moreover, the
proposed architectures (i.e., CNN- BiLSTM and Att-DGRU)
performed much better than methods focused on either spatial
or sequential feature learning because they combined both
feature learning processes spatial and sequentially. In other
words, the use of CNN and LSTM layers in tandem found
local patterns and modelled input feature dependencies, and
Att-DGRU really improved modelling relevant clinical
features (e.g., incorporate an attention mechanism with gated
recurrent units) through more relevant context in the



prediction process. Overall, generated classifications were
more quality, and robust and generalizable than using
traditional (or stand-alone) deep learning architectures.
Improved prediction reliability leads to more secure and
quicker diagnoses through clinical decisions. Therefore, the
proposed methods provide capable approaches that could
guide the decision-making of the radiologist and clinician in a
self-assured, early, accurate possible lung cancer diagnosis,
that could support patient management and potentially benefit
treatment and resulting patient care during possible so-called
'real world' and hopefully clinical practice.

4.1 Experimental setup

The experimental design was rigorously set up to
investigate the classification performance of the CNN-
BiLSTM and Att-DGRU model on the Kaggle lung cancer
dataset. The 1000 patient records were pre-processed and the
input features to represent the demographics, clinical, and
environmental aspects related to the prediction of NSCLC and

SCLC classification characteristics. Models used binary cross-
entropy loss and Adam optimizer and were further trained with
the batch size of 32 over 50 epochs. A validation split of 20%
was used to assess any generalization. The entire workflow
was implemented using deep learning libraries in Python and
was computed on an NVIDIA RTX 3060 GPU, obtaining
computationally effective, reproducible results. Experimental
setup details have been given in Table 3.

4.2 Metrics analysis

Table 4 shows the full set of performance metrics utilized to
evaluate classification models for use in medical diagnosis.
Performance metrics such as accuracy, precision, recall, and
specificity provide a holistic view of the model's ability to
predict NSCLC and SCLC correctly. Fl-score indicates the
trade-off between precision and recall, while MCC helps
provide an overview of correlation. NPV, FNR, and FPR assist
in identifying and indicating tendencies towards false
predictions, which aids trustworthy clinical decisions.

Table 4. Performance metrics to evaluate the classification model

Metric Description Formula
o Measures the overall correctness of the model by evaluating _ tp+tn
Accuracy (%) .. . .. =
both positive and negative predictions. tp+tn+ fp+ fn
Indicates the proportion of tp
Precision correctly predicted positive cases out of all predicted = ” f
positives. p+1p
Recall (Sensitivity) Reflects the modality to detect true positive cases correctly. R=tp/tp+ fn
. Measures how well the model identifies actual negatives __tn
Specificity . S=
(true negatives). tn+ fp
Fl-score Harmonic mean of precision and recall, balancing both F1—score = 2x
metrics. P+R
MCC Correlation coefficient that evaluates the quality of binary MCC = tpxtn— fpx fn
classifications. J(tp+ fp)(tp+ f)(tn+ fp)(tn+ fn)
NPV (Negative Proportion of actual negatives among all predicted negative _ tn
Predictive Value) results. tn+ fn
FNR (False Negative Indicates the proportion of actual positives missed by the FNR = fn
Rate) model. fn+tp
FPR (False Positive Measures the proportion of incorrect positive predictions FPR = fp
Rate) among all actual negatives. fp+tn
4.3 Comparison analysis activation functions were also changed to preserve

In the emerging field of lung cancer diagnostics, deep
learning-based ~ models are  enhancing  predictive
performance4iOn the classification of NSCLC and SCLC
subtypes. In the tables, the performance metrics help clarify
the comparisons of five leading models, CNN-BiLSTM, the
proposed Att-DGRU, MLW-CNN [13], CNN + Soft Voting
[14], and PathCNN [15].

It was necessary to adjust all the baseline models, such as
MLW-CNN, CNN+Soft Voting, and PathCNN, systematically
to compare the methods according to methodological fairness
in relation to the clinical-radiomic dataset in tabular format
adopted in this study. In particular, the way they implemented
their convolutional and pooling layers was redesigned as one-
dimensional operations to be able to accept vectors as input
features instead of image tensors. Besides, normalization and
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representational consistency with input data format. Training
each baseline model separately was done by retraining with
the same preprocessing, data partitioning, and optimization
parameters (Adam optimizer, learning rate = 0.001, batch size
= 32) as with the proposed CNN+BiLSTM and AttDGRU
models. The tuning of hyperparameters of all the models was
done via a controlled grid search to ensure that bias due to
architecture-specific parameter settings is minimized. This re-
arrangement made sure that the performance difference
between models was more of inherent architectural ability
rather than variation between input modality or parameter
adjustment.

The accuracy of the hybrid CNN-BiLSTM model (97.6%)
was highest because the model addressed spatial-temporal
learning and provided sufficient discovery of both long-
distance and local dependencies. The precision (0.978) and



recall (0.975) suggest adequate balance between possible false
positives and false negatives, whereas clinically, if the model
can misclassify before treatment planning stage is reached, this
will not impact treatment. The F1 (0.976) and MCC (0.952)

Accuracy (%)

metrics, too, were remarkable for a predictive model that is
accurate and robust. Performance comparison score for the
proposed model vs existing models is tabulated in the
following Table 5.
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Figure 5. Graphical representation of performance comparison analysis

Table 5. Performance comparison analysis of proposed model vs existing models

Metrics CNN-BiLSTM  Proposed Att- DGRU MLW-CNN CNN +Soft Voting PathCNN
Accuracy 97.6 97.2 96.4 89.24 95.1
Precision 0.978 0.974 0.962 0.956 0.948

Recall (Sensitivity) 0.95 0.971 0.957 0.95 0.943
Specificity 0.977 0.973 0.961 0.954 0.949
F1-score 0.976 0.972 0.959 0.953 0.945
MCC 0.952 0.946 0.927 0.913 0.902

NPV 0.974 0.97 0.958 0.952 0.945

FNR 0.025 0.029 0.043 0.05 0.057

FPR 0.023 0.027 0.039 0.046 0.051

The proposed architecture, Att-DGRU (Attention-based
Dense Bidirectional GRU), follows closely behind with an
accuracy of 97.2%. The addition of the attention
layers47enables the model to focus on the most pertinent
features, facilitating better interpretability and contextual
awareness. The Att-DGRU's scoring is slightly lower than
CNN-BiLSTM but its precision (0.974) and recall (0.971) still
demonstrate great fidelity in classification, and its MCC of
0.946 demonstrates it is still a strong binary predictor. The
model's NPV (0.970) and low FNR (0.029) indicate it is robust
in terms of identifying non-cancer cases while also minimizing
missed detections. The MLW-CNN is a model that pulls
together data from multiple modalities using weighted
decision fusion, displayed an accuracy of 96.4%, indicating
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the model performance was due to the cohesive blending of
heterogeneous inputs. Although the MLW-CNN does not have
any recurrent or attention operations, the fact that the model
achieved an F1-score of 0.959 and MCC of 0.927 indicates it
generalized well given the circumstances, particularly in
scenarios where gene expression or methylation could be
considered as contributions to the modelling. CNN + Soft
Voting, which detects growth trends, and PathCNN, a simpler
deep architecture, achieved lower, but still respectable,
accuracies of 89.24% and 95.1%, respectively. These models
may have utility in instances where limited computing
capability is available or if interpretability is an important
consideration. In summary, while all models are showing
promise, the CNN-BIiLSTM and Att-DGRU models have the



best performance, suggesting they are the best candidates for
application in clinical workflows for lung cancer classification
in Figure 5.

The confusion matrix serves as an excellent overview of the
classifier's ability to differentiate between NSCLC and SCLC
cases. It reports the model's predictions, based on the four
potential outcomes: true positives (positive SCLC predictions),
true negatives (negative NSCLC predictions), false positives
(NSCLC predictions but instead predicted as SCLC), and false
negatives (SCLC predicted as NSCLC). A large number of
positives in the true and true negatives means the predictions
by the model were valid in Figure 6.

Confusion Matrix: CNN-BIiLSTM + Att-DGRU Lung Cancer Classifier

400
NSCLC (0)

True label

200

SCLC (1) 1
- 100

NSCLC (0)

SCLC (1)
Predicted label

Figure 6. Confusion matrix of NSCLC and SCLC

A small number of positives in the false means there is little
to no misclassifications. In this case of the hybrid proposed
pipeline CNN-BiLSTM for NSCLC and Att-DGRU for SCLC,
the confusion matrix helps to give a visualization about how
reliable the classifier is producing predictions, and with a
built-in high precision and recall, with the reporting of strong
performance metrics (e.g., 97.6% and 97.2% accuracy), this
tool caters to not only performance verification, but for
identifying news patterns of misclassification that will enable
more successful future developments of models to improve
diagnostic reliability for clinical placement.

4.4 Discussion

Receiver Operating Characteristic: NSCLC vs. SCLC
1.0

0.8

0.6

True Positive Rate

0.2

ROC curve (area = 0.949)
0.4 0.6 0.8
False Positive Rate

O'%. 0?2 1?0

Figure 7. ROC curve of NSCLC and SCLC
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The suggested hybrid deep learning model based on CNN-
BILSTM and Att-DGRU models proves to be significantly
better in terms of the classification of NSCLC and SCLC types
of lung cancer. Its key feature is that it learns automatically
non-linear and complex patterns with structured clinical,
radiomic, or genomic descriptors with classification
accuracies of over 97%. The CNN layers are useful to
represent and learn localized feature interactions, whereas the
BiLSTM and GRU units network represent and learn
sequential or structural relationships between features.
Attention mechanism of the Att-DGRU architecture can also
be considered as increasing interpretability because it allows
the model to give attention to the most informative attributes.
The proposed framework is highly adapted to the
identification of the disease in the early stage of lung cancer,
as these combined features eliminate the need to resort to
invasive tests and contribute to the further development of
individualized treatment plans (Figure 7).

In spite of its strengths, the performance of the model is
affected by the quality and diversity of the datasets. It needs a
large and balanced and well-annotated set of data to be able to
generalize in diverse population groups. Moreover, deep
learning structures tend to be computationally expensive and
this could constrain their use in low resource clinical settings
unless they are simplified. The framework can also be
sensitive to feature noise or feature discrepancy in hidden data.
However, it is a major advancement in proper and automated
lung cancer subtype classification that has helped in improving
clinical workflow and diagnostic confidence.

In addition to the quantitative performance, there was an
interpretability evaluation that evaluated the feature relevance
and decision behavior of the proposed models. The Att-DGRU
model always prominently used the clinically significant
features, including Smoking Status, Genetic Risk, Air
Pollution Exposure, and Symptom Score which effectively
contributed to the differentiation between NSCLC and SCLC.
Such findings are in tandem with known medical facts that
long-term exposure to smoking, inherited vulnerability and
environmental pollutants are main determinants of the type of
lung cancer. On the other hand, less discriminative features
like Gender and Age were given lesser scores of attention,
meaning that they had limited predictive power.

Interpretation of the errors identified that most of the errors
were found on borderline or low-case cases and were mainly
occurring in cases of overlapping clinical manifestations, or
little severity of the symptoms, where distributions of features
of NSCLC and SCLC overlapped. The CNNBiLSTM model
was sometimes not able to decode such complicated relations
because it lacked background awareness, and the attention
component of AttDGRU partially addressed this issue by
dynamically highlighting the most informative features. These
analyses, in general, support the conclusion that the suggested
architectures not only provide excellent predictive
performance but they are also highly clinically interpretable,
since the medically meaningful attributes direct the decision-
making processes.

5. CONCLUSIONS

This work proposed an advanced hybrid deep learning
framework for accurately classifying lung cancer subtypes—
Non-Small Cell Lung Cancer (NSCLC) and Small Cell Lung
Cancer (SCLC) from pre-processed clinical and radiomic



feature vectors. We explored two powerful models: the CNN—
BILSTM and the proposed Att-DGRU. Both deep learning
models outperformed baseline predictions, with CNN-
BIiLSTM achieving an overall accuracy of 97.6% and Att-
DGRU achieving 97.2%, outperforming existing state-of-the-
art approaches, including MLW-CNN (96.4%), PathCNN
(95.1%), and CNN + Soft Voting (89.24%). Compared to the
best baseline traditional classification model (MLW-CNN),
the proposed Att-DGRU resulted in an overall improvement
of 0.8% along with improvements in precision, recall, and F1-
score, demonstrating its robustness in learning temporal and
spatial dependencies. Furthermore, the importance of features
driving classification is more interpretable via the attention
mechanism in the proposed Att-DGRU than in alternatives.
Overall, the combination of deep feature learning through
GRU/BiGRU and attention-based focus demonstrates that Att-
DGRU is ideally suited for real-time and automated diagnosis
of lung cancer subtypes, and could contribute to more effective
clinical decisions, better prognosis, and advances that improve
intelligent diagnosis in medicine.
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