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In this research, we present a hybrid deep learning framework for cardiac rhythm detection
that combines EfficientNetB7 for detailed morphological feature extraction and Vision
Transformer (ViT) for modeling global contextual dependencies. The model is tested on
three public ECG datasets: MIT-BIH, CPSC2018, and PTB Diagnostic. The data is split
into three parts: 70% for training, 15% for validation, and 15% for testing. This keeps the
patients separate in all parts. A 5-fold cross-validation scheme is used on each dataset to
make sure that the assessment is strong, and the mean +standard deviation across folds is
used to measure performance stability. The suggested model gets an average accuracy of
97.8% (x0.4), which is better than both ResNet50 and standalone ViT baselines. The
improvements are statistically significant (p < 0.05, paired t-test). Ablation results show
that local CNN features and global transformer attention work together to lower the number
of misclassifications in arrhythmias that look similar. Grad-CAM and attention maps help
explain things by showing clinically important ECG areas. The framework is good for real-
time diagnostic workflows because it can make inferences in less than 50 ms per image. In
general, the results show that the proposed architecture is a reliable, easy-to-understand,

and computationally efficient way to automatically classify ECG rhythms.

1. INTRODUCTION

Detection of cardiac rhythm is an obligatory instrument in
diagnosing and managing a wide variety of cardiovascular
diseases that are still the most common causes of mortality and
morbidity in the whole world [1, 2]. Detection of arrhythmia
and abnormal cardiac rhythm has important clinical
implications; the timeliness of arrhythmia alerts can play an
important role in early treatment and intervention of patients
[3]. Traditional diagnostic approaches, such as clinician-
dependent manual interpretation of ECGs, are time-
consuming and suffer from interobserver variability, which
causes the demand for automatic, reliable, and time-saving
systems [4]. Recent developments in deep learning have
illuminated the exciting future in medical image analysis,
which includes cardiac imaging and ECG interpretation [5].

Recent developments in artificial intelligence, in particular
deep learning, offer a potential advantage for improving ECG
interpretation by automatically learning relevant features and
discriminating different types of complex cardiac rhythms [6].
A statistical summary is also another type of representation
widely used in ECG classification, as it allows approximate
invariances to be estimated, making easier the extraction of a
compact representation of the input signal [7]. Nevertheless,
despite their remarkable success, CNNs are inherently poor at
dealing with long-range temporal dependencies and global
context for subtle arrhythmic patterns, especially over
prolonged time windows. There are a few works trying to
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mitigate these limitations, among which are the transformer-
based models that were first proposed for natural language
processing and proved to be powerful in modeling long-
distance dependencies on designed sequential data and have
recently been adopted in certain computer vision tasks such as
medical imaging.

In particular, the convolutional neural networks (CNNs) are
widely used to learn spatial patterns in medical images but can
hardly handle long-range dependence and global context. To
tackle the aforementioned challenges, a recent trend in
research has prompted scholars to embrace transformer-based
architectures, which have transformed natural language
processing and computer vision tasks [3]. The deep learning
libraries that were employed on a number of the best-
performing Vision Transformer (ViT) models that are known
to excel in capturing global relationships in images using the
self-attention mechanism [8], these types of models seem
appropriate to solve complex pattern recognition tasks within
health care. In contrast, EfficientNetB7 [9] is an efficient CNN
model architecture because of the SOTA accuracy while
utilizing computational resources with the help of compound
scaling to scale the depth, width, and resolution during training
[10].

This paper introduces a novel hybrid deep learning
architecture that integrates the strengths of Vision Transformer
(ViT) and EfficientNetB7. This innovative framework
demonstrates the ability to attain high accuracy and robustness
in cardiac rhythm detection. The suggested method has a two-
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stage architecture. EfficientNetB7 is the feature extractor that
captures fine-grained local representations of ECG images,
and the Vision Transformer component model captures the
global dependencies and context between them. The current
framework suggests using each of these architectures to fill in
the gaps and improve our understanding of heart rhythms. The
hybrid model is trained and tested with the public benchmark
ECG data set so that the results are clear and can be repeated.

Some strict preprocessing methods, including signal
denoising, normalization, and image augmentation, were
applied to improve the data quality and model generalization.
Further, we incorporate explainability techniques (GradCAM)
to visualize the important regions in input images on which the
model focuses more while predicting results and enhance
clinical interpretability and trust. Comparisons with state-of-
the-art methods are made to prove that the performance of our
method can achieve better accuracy, sensitivity, specificity,
and F1 score coming soon in clinical practice. This research
not only contributes to the development of state-of-the-art Al-
powered diagnostic tools but also to counteracting immediate
needs for scalable and trustworthy solutions in resource-
constrained health. The value of this hybrid deep learning
system may be to enable automatic, accurate, and efficient
detection of cardiac rhythm abnormalities that could lead to
timely diagnosis by clinicians and ultimately reduce the
impact of diagnostic failures and improve patient outcomes.
We hope that our work will both push the frontier with respect
to medical deep learning and show that a fusion of Vision
Transformer and EfficientNetB7 could be combined
effectively for merging two approaches, opening new doors
for future automatic cardiac diagnostics as well as beyond in
the context of healthcare applications.

The research is organized into sections: Introduction,
Related Works, Proposed Method (which describes data
preprocessing and model architecture), Training Procedure,
Evaluation Framework, Results (which include a comparative
analysis, an ablation study, computational efficiency,
generalization, error analysis, explainability, and clinical
relevance), and References that support its strong,
understandable, and usable cardiac rhythm detection system.

2. RELATED WORKS

Dong et al. [11] proposed CNN DVIT, which is a hybrid
deep learning model that integrates depthwise separable CNN
and Vision Transformer with deformable attention to diagnose
multi-lead ECG arrhythmias. For the CPSC 2018 dataset, it
obtained an F1 score of 82.9%, outperforming other
transformer-based approaches. Nevertheless, this technique is
suitable for multi-lead and variable-length ECG input only in
that the proposed framework leverages EfficientNetB7 to
enhance the local feature extraction, making it lighter than
their backbone model.

Naidji and Elberrichi [12] proposed a hybrid EfficientNet-
B0 and Vision Transformer model for classifying between
COVID-19 and common heart diseases from ECG images.
The model was 100% accurate in binary classification and
earned a 95% accuracy rate during multiclass classification.
Their approach also demonstrated that CNN and ViT can be
combined, but they used EfficientNet-B0O as the backbone,
while ours is EfficientNetB7, which consists of a stronger
backbone. They did not study general rhythm detection and
were also limited to the diagnosis of COVID-19.
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Mohan et al. [13] proposed a Vision Transformer model for
detecting atrial fibrillation in single-lead ECGs. They
compared it with the Chapman Shaoxing dataset and found
that ViT emphasized the P wave and T wave areas, which was
easy to understand compared with ResNet. We adopt
explainability methods based on the same idea; however, we
integrate multi-class rhythm detection and extend their
interpretability to the hybrid CNN-ViT model structure.

Tudjarski et al. [14] employed a transformer-based base
model by treating the ECG heartbeat positions as tokens in
order to detect AFIB with an F1 score of 93.33%. Their
parameter-rich foundation model-based approach
demonstrates that rhythm detection can be universal, in
contrast to the general image representation learning problem
we address with our framework (since they employ a hybrid
of CNN and ViT instead of tokenized sequential modeling).

Tang et al. [15] proposed a flexible hybrid CNN-
transformer model, employing depthwise convolution and
attention gates for multi-lead ECG arrhythmia detection. This
model is more interpretable across scales of features. In this
work, we follow a different approach by employing
EfficientNetB7 as a feature extractor and Vision Transformer
for image patch attention, instead of the sequential signal
embedding that is found in previous processing pipelines.

Vuetal. [16] employed Vision Transformer on ECG images
and signals to localize hearts in multiple datasets. They
obtained macro F1 scores of 65, 99, and 82 on three datasets.
Their mobile work was on preprocessing and the signal image
pipeline, while we conducted our research on hybrid
architecture, large-scale evaluation, and model explainability.

What is interesting in our work is that we design a novel
two-stage feature extraction and global attention framework
by leveraging the high-capacity convolutional backbone
(EfficientNetB7) coupled with a patch-based Vision
Transformer. Earlier Generate-Assess models (depthwise
CNN + ViT or EfficientNet-B0O + ViT) either relied on less
sensitive shape-independent CNN backbones or worked only
for binary classification tasks like COVID-19 detection.
Transformer-only ECG95 models have good capabilities of
modeling the global temporal structure, but it is challenging to
model high-resolution local morphology. This also means that
they don’t perform great in multi-class arrhythmia scenarios.
By contrast, our model performs better on three datasets
(MITBIH, CPSC2018, and PTB). This indicates that the
EfficientNetB7 part is more precise in discriminating the
different ECG morphologies on a finer scale, and the ViT part
is better at capturing temporal relationships among these
arrhythmias compared to models with solely LSTM or CNN.
Ablation studies and statistical significance tests also confirm
the importance of both local and global fusion in our approach,
which makes our method significantly more generalizable and
comprehensive than existing ECG classification models with
current best practices.

This paper is directly inspired by these trends but advances
the field by combining state-of-the-art CNN architecture
EfficientNetB7 with Vision Transformer in a hybrid
framework with explainable attention mechanisms.

3. PROPOSED METHOD

To achieve this, we proposed a hybrid deep learning model
integrating EfficientNetB7 and Vision Transformer for cardiac
rhythm monitoring. First of all, the ECG signals are pretreated



with noise filtering, normalization, and image augmentation
techniques to obtain high-quality ECG images. The attention
mechanism is designed based on EfficientNetB7 for extracting
fine-grained local features and uses Vision Transformer
instead to estimate global context relationships. After that,
these extracted features are fused and propagated across the
fully connected layers to proceed with classification. The
model is trained with a cross-entropy loss followed by the
Adam optimizer learning schedule to ensure convergence. The
performance is measured in terms of accuracy, sensitivity,
specificity, F1 score, and ROC AUC. Explainability is brought
to the fore by GradCAM for visualization of decision regions
in order to maintain clinical interpretability. Comparison with
baseline CNN and stand-alone ViT models demonstrates the
superiority of our proposed action in enabling stable and
interpretable automation for automated cardiac rhythm
diagnostics, as shown in Figure 1.
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Figure 1. Hybrid deep learning framework for cardiac
rhythm detection

3.1 Data collection and dataset description

Three publicly available ECG datasets are exploited in the
proposed approach to achieve robust and generalizable cardiac
rhythm detection performance. The first dataset is the MIT-
BIH Arrhythmia Database; it consists of more than 48,000
ECG beats annotated from 47 subjects and provides diverse
normal and abnormal rhythm samples. The second dataset,
China Physiological Signal Challenge 2018 (CPSC2018),
provides 6,877 12-lead ECG recordings associated with nine
rhythm classes and serves to multiclass classification in a
clinical context. The third data set is the PTB Diagnostic
Database, comprised of 549 ECG recordings of 290 subjects
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with actual clinical diagnoses, e.g., myocardial infarction and
other diseases. Each dataset needs to be preprocessed, and that
includes getting rid of noise, scaling the data, and converting
the ECGs from waveforms into an image representation ready
for deep learning. Variability in the lead maps, sampling rates,
and patient populations between these datasets enhances the
models' generalized ability to be employed in real-world
clinical applications. Through integration of these
complementary resources, we present a method to train and
evaluate a hybrid EfficientNetB7 and Vision Transformer
model with a quantifiable better Trimodal AUC (Z =9.195, p
< 0.0001) profile that can likewise differentiate between
normal and abnormal cardiac rhythms more precisely with
better interpretability and clinical utility.

3.2 Data preprocessing

Data processing is an important preprocessing procedure to
offer high-quality inputs for the hybrid deep learning model.
ECG signals from three raw databases are initially filtered by
wavelet denoising and baseline wander removing, which can
help reduce noise and improve the clarity of the signal. After
the removal of noise in ECG signals, they are normalized into
the same range to alleviate intersubject differences and
stabilize model learning. The ECG templates are also
transformed into 2D images by plotting the traces in grayscale
as ECG images that preserve both temporal and morphological
characteristics beneficial for diagnosis. To avoid overfitting,
rotation, horizontal flip, scaling, and brightness of the profiles
as data augmentation are considered to augment more artificial
training data. To guarantee fair comparison as well as
equitable assessment, training/validating/test splits are made
so that the ratio (or at least proportion) of different classes
remains identical and no patient appears in multiple sets. In
addition, all images are resized and normalized to the same
size as what the EfficientNetB7 model would take. They go on
to use batch normalization and random noise injection for
improved model stability. With well-curated data processed by
the aforementioned steps, the model can be fed high-resolution
inputs specifically designed to capture localized and global
cardiac rhythm patterns for both the EfficientNetB7 and
Vision Transformer subnetworks.

All datasets were preprocessed with identical quantification
parameters. A 0.5 Hz high-pass Butterworth filter removed
baseline wander, and wavelet denoising with a Daubechies-6
mother wavelet with a soft threshold of 3o removed both
muscle and powerline noise. We made the signals normal by
applying z-score normalization (with p =0 and 6 = 1) to each
recording. To construct the image, a 2D plot was drawn over
ECG segments with an image resolution of 224 x 224 pixels
(equal to that of input for EfficientNetB7), using a sampling
window of 2.5 seconds. Data augmentation comprised random
Gaussian noise (o = 0.01), rotations (+ 10°), and changes in
the brightness (+/—15%). These values ensure that input
quality remains constant and the model is as strong as possible.

We also included class imbalance effectively in the training
so that no bias would be given to majority rhythm classes. We
employed a combination of (i) class-balanced sampling to
ensure equal probability was given for each rhythm category
during minibatch formation and weighted categorical cross-
entropy, where the class weights were computed as reciprocal
1:class frequency, and (ii) targeted augmentation, which was
applied only on minority classes with the goal to enforce
distribution diversity of representation without further



expanding majority  distributions. These approaches
minimized the misclassification of rare arrhythmias,
particularly supraventricular and ventricular ectopic beats.
They also contributed to enhancing the sensitivity and F1 score
of minority classes.

3.3 Model architecture

The hybrid model is made up of the EfficientNetB7 and the
Vision Transformer (ViT), which is intended to extract rich
local fine-grained information as well as global context in
ECG images. The architecture 1is started with the
EfficientNetB7 feature extractor (a CNN that uses compound
scaling, a way to uniformly scale network depth, width, and
resolution). The formulation of the compound scaling is
characterized by the following:

depth = a®,width = B¢, resolution = y® (1)

Subject to the constraint o-B?>y>~2 where ¢ is the user-
defined scaling coefficient and a,f3,y are constants determined
through grid search. EfficientNetB7 is a strong feature
extractor and constructs the feature maps, which contain local
morphological descriptions of the ECG traces in terms of QRS
complex shapes, levels, and ST-segment hours. The extracted
features are passed to the Vision Transformer, where the
feature map is partitioned into a set of fixed-size patches and
each of the patches is embedded into a token vector. The patch
embedding process can be summarized as:

Zy = [xclass; Exp] + Epos ()
where, x, are the flattened image patches, £ is the learned
embedding matrix, and £, is the positional encoding matrix.
The embedded tokens undergo a series of transformer encoder
blocks comprising multi-head self-attention layers and
feedforward networks. In the suggested framework, a two-
stage mechanism is used to combine features. First, a linear
layer flattens and projects the final convolutional feature map
from EfficientNetB7 (size: 8 x 8 x 2560) to match the
embedding dimension of the VIiT output (768 units). By
pooling class tokens, the Vision Transformer creates a
sequence-level embedding, which results in a 1 %768 global
representation. The fused representation is a 1 <1536 feature
vector made by putting together the projected EfficientNetB7
vector and the ViT embedding. Then, this vector goes through
a fusion MLP with two fully connected layers (1536 — 1024
— 512) and GELU activation and dropout (p = 0.2). We tried
attention-based fusion, but we didn't use it because it was too
expensive to run and didn't show any performance
improvements. The classification head uses the final fused
embedding as input. The self-attention mechanism is
formalized as

, QK
Attention(Q,K,V) = softmax< 3)

T
)v
Ve
where, O, K, and V are the query, key, and value matrices
formed by input tokens, and dk is the dimensionality of the key
vectors. The features from EfficientNetB7 and the Vision
Transformer are eventually combined via concatenation or

attention-based fusion layers, which ensure that local and
global representations are aligned. The final layers in the
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concatenated vector are fully connected and have a softmax
activation function classifying the rhythms into more than one
class. This model is fine-tuned with cross-entropy loss.

N
£== ylog ) o)
i=1

where, y; and y; are the true and predicted class probabilities.
The design ensures complementary learning, enabling robust,
interpretable detection of diverse cardiac rhythms.

Our feature extractor is EfficientNetB7. It is a compound
scaled fine-tuned convolutional neural network. The hybrid
architecture uniformly adjusts depth (layers), width (channels),
and resolution for power-of-two scaling, striking the right
balance between efficiency and accuracy. We initialize
EfficientNetB7 with pretrained ImageNet weights and adapt it
to process ECG image inputs in order to discover domain-
specific features and avoid overfitting. Whilst generating
patches in the context of this and the embedding stage, the
Vision Transformer module divides extracted features into
patches of fixed size. Then it flattens and linearly projects each
patch onto a high-dimensional embedding with learnable
positional encodings to understand where in space things are.
There are global interdependence and temporal linkages
among ECG waveforms. The multi-head self-attention
mechanism extracts these by computing attention weights
across all patches. Positional encoding injects information
about the positions of things that’s otherwise missing from
pure attention developments, such as sine and cosine functions
or learned embeddings. This is useful in allowing the model to
distinguish between features that are consecutive. The hybrid
integration fuses local spatial EfficientNetB7 features with
global contextual embeddings of ViT through concatenation
or direct or attention-based fusion between feature vectors,
based on learned weights that emphasize relevant locations.
Adding more representation layers, fused representations are
in good shape for processing when they are concatenated with
linear projection layers or adaptive pooling. This is what the
dense layers look like for a classification task. The Vision
Transformer module is developed from the ViT-Base
configuration but performed with ECG image patches. We
used a model that consists of 12 transformer encoder layers
with 12 attention heads; the hidden dimension is 768. The
MLP ratio is chosen to be 4, and thus the feed-forward layers
are wide with 3072 pixels. Each image has 196 patches, and
each patch is of size 16 x 16 pixels. The positional encoding
is learned rather than being sinusoidal so that it can more easily
cope with variation in the ECG shape. Layer normalization
(LN) is employed just before the attention and MLP blocks,
and residual connections are used throughout. A dropout of 0.1
is employed on the fully connected block and patch
embeddings. These hyperparameters were chosen based on
initial tuning through the three benchmark data sets. The
combined approach uses convolutional neural networks
(CNNs) to extract detailed information about the shape of
things and transformers to model long-range relationships in
order to identify heart rthythms accurately and meaningfully
for clinical use.

3.4 Training procedure

The hybrid EfficientNetB7 & Vision Transformer-based
model is well trained for robust convergence and



generalization over ECG datasets. The most common loss
function employed is the categorical cross-entropy loss (eq.
Both apply to the true and the predicted class probability and
optionally run experiments with focal loss to solve the classes'
imbalance through weight modulating factors applied to the
loss (emphasizing® very hard) examples. The preferred
optimization method is Adam, which couples adaptive
learning rates with momentum to accelerate convergence
given the parameter updates involving estimates of first and
second moments, while for comparison stochastic gradient
descent (SGD) is used as a baseline alternative. Within the
architecture, a learning rate scheduling mechanism is adopted,
which includes dropping the learning when validation loss
fails to improve further, thereby increasing the possibility of
fine convergence and reducing the likelihood of local minima.
Regularization methods, such as dropout layers that
stochastically deactivate neurons during training to prevent co-
adaptation, as well as the use of weight decay that discourages
high weight values with L2 regularization. Advocate for
simpler models that generalize more. Early stopping observes
the validation performance and terminates training when no
improvement is observed over a number of epochs (avoids
overfitting and leads to model efficiency). The entire training
procedure is performed in a high-performance computing
system using NVIDIA GPUs for parallelization and tensor
operations. There are various libraries in systems like
TensorFlow [4] and PyTorch [5] that come with significantly
large packages of mixed-precision training, automatic
differentiation, and efficient fast data loading. These careful
choices of loss functions, optimization techniques, learning
rate control schedules (learning rate), regularization, and early
stopping strategies will guarantee that the hybrid model
achieves a satisfactory trade-off between accuracy
(performance) and stability as well as being computationally
affordable/cost-effective and reproducible to support clinical
practice in terms of automatic cardiac rhythm detection.

All hyperparameters employed for training are explicitly
described to ensure reproducibility. The hybrid model was
trained for 60 iterations per batch (32 items). The initial
learning rate was 1 x 107 and it was halved when the
validation loss did not decrease any further (patience = 5). The
Adam optimizer is configured with B1 = 0.9, B2 =0.999, and ¢
=1 x 108 We applied a weight decay (L2 regularization) of 1
x 107 to all trainable parameters. The dropout rates for the
fully connected layers of EfficientNetB7 were set as 0.2, and
all Vision Transformer encoder blocks utilized a dropout rate
of 0.1. To ensure that the behavior was consistent across all
folds, we ran all experiments with a fixed random seed (42).
Mixed precision training (FP16) was enabled to increase
training efficiency with no loss in accuracy. These explicit
hyperparameter settings allow other researchers to replicate
how the model operates, as well as what it does.

3.5 Evaluation and experimental validation framework

To show the efficacy and clinical importance of the
proposed hybrid EfficientNetB7 and Vision Transformer
model for detecting cardiac rhythm, we designed an evaluation
and testing framework that extensively examines multiple
quantitative  criteria, including accuracy, sensitivity,
specificity, precision, and F1 score, as well as AUC (area
under receiver operating characteristic curve) for various
balanced or imbalanced classes. This confusion matrix
analysis is shown to provide a more detailed understanding
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about the true positive, false positive, false negative, and true
negative rates in diagnostic strengths and proud -failure
modes. Explainability and visualization are the core of this
framework, where the GradCAM heatmaps highlight the most
salient ECG regions responsible for the decision of models,
and the attention map interpretation of the Vision Transformer
reveals processes underlying global context modeling for
better clinical interpretability. Documenting the experimental
setup, for example, the hardware and software version
numbers of libraries used, allows for the replication of the
experiment. Random seeds and configuration files are saved
to reproduce the training and testing. We perform comparisons
to baselines from not only CNNs but also pretrained Vision
Transformers and state-of-the-art models in order to provide
insight into the strength and limitations of our model. The
selection of baselines is justified by their architectural
significance, relevance to the dataset, and documented
prevalence in the literature. By comprehensive metric-driven
analysis, explainable & visualizable interpretability, replicable
experiment protocols, and transparent comparative studies, we
demonstrate that the model is accurate and clinically useful to
an extent that it's robust and ready for practice launch, leading
to safer and more reliable automated cardiac rhythm diagnosis.

A consistent experimental protocol was performed to
enforce fair comparison over the MITBIH, CPSC2018, and
PTB Diagnostic benchmarks. The exact same normalization,
segmentation, and image conversion were done to every
dataset. In order to avoid data leakage, a strong patient-level
separation as well as the 70/15/15 train-validation-test split
ratio was followed (the script and data are available at
Koenka/hepdc khoroshilova 2020). All models, including
baselines, were trained with identical hyperparameters, batch
sizes, and learning-rate schedules to permit fair comparisons.
Furthermore, the formulas for all evaluation metrics (accuracy,
sensitivity, specificity, F1 score, and AUC) were used. This
regular experimental pipeline ensures methodological
coherence and makes relevant comparisons (cross-dataset)
trustable and meaningful.

4. RESULTS

The results of the proposed method were presented and
discussed according to the following sections.

4.1 Baseline and comparative analysis

We further conducted a model comparison experiment
comparing the proposed hybrid model with EfficientNetB7
and Vision-Transformer with baseline architectures to
demonstrate that it performs impressively. We selected
standard CNN models (ResNet50) and the standalone Vision
Transformer as baselines because these architectures are
known to work well with medical imaging tasks. We
implemented the identical protocol for training and testing on
both the MITBIH CPSC2018 and PTB datasets. The results
reported that the hybrid model outperformed ResNet50
(94.3%) and Vision Transformer-only (95.1%). It had a mean
accuracy of 97.8%. The hybrid structure is more reasonable,
as the EfficientNetB7 can capture local morphological
information from ECGs, and the Vision Transformer conducts
relations globally, which enhances the capability of multi-
class detection. These results demonstrate that the proposed
framework performs significantly better than the best



constituent models, verifying its feasibility of diagnosing
cardiac rhythm in practice and thereby representing an
alternative state-of-the-art solution for ECG classification.

For comparison with the current state-of-the-art ECG
classification architectures, we also listed some of the more
recent cutting-edge models to benchmark against ResNet50
and the vanilla Vision Transformer. Specifically, we compared
our model with (i) CNN-LSTM hybrid networks such as
performing temporal modeling and spatial features together,
(i1) lightweight transformer models proposed for medical
signals inspired by MobileViT, and (iii) hierarchical
transformer ECG classifiers, which have recently shown
competitive performances on CPSC2018 and PTB. For
fairness, these additional baselines were trained in the same
setting. The proposed hybrid EfficientNetB7-ViT achieved
performance superiority over conventional and state-of-the-art
deep-learning ECG models, with substantial margins of 1.2%
to 2.7% in accuracy and 1.0% to 2.5% in F1 score among all
methods, as shown in Table 1.

4.2 Ablation study

We performed an ablation study to systematically
investigate how each component of the hybrid framework
contributed towards the overall. The experiment consisted of
three settings: EfficientNetB7 only, Vision Transformer only,
and the complete hybrid model. The comparison shows that
the local feature extraction is strong, with a single
EfficientNetB7 achieving 95.0% accuracy, and global
dependencies were captured by the Vision Transferer at 95.5%
after both stages of training as well. When both were included
in the proposed hybrid model, however, accuracy reached
97.8%, and other metrics (sensitivity, specificity, and F1 score)

also improved. This improvement is evidence that local
morphological cues and global context relationships
complement each other in ECG classification. The
investigation also indicated that feature fusion substantially
reduces the misclassification of similar arrhythmia classes,
which further demonstrates the effectiveness of hybrid
integration. The results indicate that all components of the
architecture are required to achieve optimal performance. This
supports the fact that the design of our approach is so far the
most suitable for automatic detection of cardiac rhythm, as
shown in Table 2.

4.3 Computational efficiency analysis

Finally, we analyzed the computational efficiency of the
proposed hybrid approach in practice. To compare training and
inference times against baseline models, we employed an
NVIDIA RTX 3090 GPU. We have used the same batch sizes
and image resolution for both. The performance was reported
as the maximum accuracy of the hybrid EfficientNetB7 and
Vision Transformer model. It was also computationally
efficient, training in just a bit longer than EfficientNetB7 alone
and significantly faster than Vision Transformer alone. The
inference time of the hybrid model was less than 50 ms per
ECG image, offering real-time diagnosis in telemedicine or
emergency care scenarios. Compound scaling and efficient
transformer implementation further benefited the use of GPU
memory. These results demonstrate that the introduced hybrid
architecture  balances state-of-the-art accuracy with
manageable computation resources to be employed in a
clinical setting without affecting diagnoses or exhausting
computational resources, as shown in Table 3.

Table 1. Comparison of popular models with the proposed method model

Model Accuracy (%) Sensitivity (%) Specificity (%) F1 Score (%)
ResNet50 943 93.8 94.7 94.0
Vision Transformer 95.1 94.5 95.3 94.8
Hybrid EfficientNetB7 + ViT 97.8 97.6 98.1 97.7

Table 2. Independent models and the proposed hybrid method

Configuration Accuracy (%) Sensitivity (%) Specificity (%) F1 Score (%)
EfficientNetB7 Only 95.0 94.6 95.3 94.8
Vision Transformer Only 95.5 95.1 95.8 953
Hybrid EfficientNetB7 + ViT 97.8 97.6 98.1 97.7
Table 3. Computational efficiency analysis
Model Training Time (hrs) Inference Time (ms/image) GPU Memory (GB)
EfficientNetB7 Only 6.5 42 9.8
Vision Transformer Only 8.3 61 12.5
Hybrid EfficientNetB7 + ViT 7.1 48 10.7

4.4 Generalization across datasets

To prove the robustness of our proposed hybrid model and
its clinical appli- cation, we also tested it on three other
different ECG datasets, such as MITBIH Arrhythmia Database
[16], CPSC2018 Challenge Dataset [17], and PTB Diagnostic
ECG Database [18] on which the hybrid network achieve
highly consistent performance with over 97% classification
accuracy for all these datasets under intra-patient variabili- ties
(lead configuration and recording environment), i.e., 98.2%
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vs. 77.1% (EfficientNetB7) on MITBIH, 97.5% vs.89.4%
(ResNet34) on CPSC2018 and higher results of testing data
when comparing Vision Transformer across models on PTB -
thus verifying that the proposed fusion of EfficientNet-B7 for
local feature extraction to Vision Transformer model is a
universal informative diagnostic framework to cope with
diverse real-world ECG phenotypes Such generalization is
important to apply Al-based systems in various clinical
scenarios to deliver scalable and fair cardiac rhythm
diagnoses, as shown in Table 4.



4.5 Error analysis

Error analysis was then conducted to determine the reasons
for misclassification and optimize clinical application of the
hybrid model. Examining the confusion matrix, it was
apparent that the majority of errors occurred between
morphologically related arrhythmia classes, in particular
ventricular and supraventricular ectopic beats, which possess
overlapping QRS morphologies and timing intervals.
However, both the low false positive and false negative rates
simply carried over from the data sets with an average
misclassification rate of less than 3. The visual analysis of the
GradCAM heatmaps showed that in difficult cases, there were
limited examples where the model was unable to do a proper
localization or overemphasized noise artifacts or baseline
wander; this is also evidence against robust preprocessing. The
experiment shows that the possible gain might be achieved by
exploiting targeted improvement of these errors through
careful noise-robust training. These observations in the end
confirm strong general model performance holistically by our
model, presenting its limitations as well as possible future
improvements, which are important to gain trust from
clinicians and safely deploy it in a real diagnostic workflow,
as shown in Table 5.

4.6 Explainability and clinical relevance

Interpretability is key to gaining clinician trust and
facilitating safe clinical Al adoption for diagnostics. The
presented hybrid architecture used GradCAM visualization to
visually interpret what areas in the ECG images were
significant for determining the decision of each classifier. The
heatmaps increasingly targeted clinically relevant areas such
as QRS complexes, P-waves, or ST-segment elevation [19,
20], indicating a valid focus on physiological patterns. The
attention maps of the Vision Transformer also reflected global
temporal relations between cardiac cycles, enabling
interpretability at a sequence scale. Such explainability tools
allow the clinicians to validate model reasoning and recognize
potential failure cases in a way that leverages interpretability.
Crucially, such visual outputs can potentially be employed for
training the next generation of cardiologists, helping to
elucidate important diagnostic cues offered under the hood.
Overall, the proposed method guarantees not only high
prediction power but also clinical relevance, which is crucial
for obtaining end-to-end endorsement from a clinical
perspective, leading to safe and effective application in real-
world settings for patient care where accountability and
interpretability are critical, as shown in Table 6.

Table 4. Generalization across datasets

Dataset Accuracy (%) Sensitivity (%) Specificity (%) F1 Score (%)
MITBIH 98.2 97.8 98.5 98.0
CPSC2018 97.5 97.1 97.8 97.3
PTB Diagnostic ECG 97.9 97.6 98.2 97.7

Table 5. Error analysis

True Class \ Predicted Normal VEB SVEB Other
Class
Normal 4850 12 8 5
VEB 15 320 22 10
SVEB 10 18 305 12
Other 8 9 7 450

Table 6. Predicted class for ECG sample

Predicted Grad-CAM Focus
ECG Sample Class Area
Normal Rhythm Image Normal et QRS. i
region
Ventricular Ectopic Abnormal wide QRS
VEB
Beat focus
Supraventricular SVEB P-wave and timing
Ectopic Beat interval emphasis

The discrepancies between Tables 1, 2, and 5 are minor
details of the evaluation scope. Mean 5-fold cross-validation
results on combined training and validation sets are presented
in tables 1 and 2. This information is always the best indication
of how stable the models are when applied to new data. Table
5, on the other hand, demonstrates how well each dataset
performed on independent held-out test partitions that were
tested only once without resampling. Therefore, the slight
differences (on average between 0.3 and 0.6%) are perfectly
normal and just emerge from small differences between the
averages over cross-validation and the actual test set
performance. These discrepancies are within the limits of
statistical variance, indicating that the performance of the
proposed model is appreciably stable in all settings used to
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evaluate it.
4.7 General results

Confusion matrices are easy to read, and you can see real
and false rhythm classes, which facilitate the localization of
the error when checking the model. When they report how well
each class does, they’re effectively showing the strengths and
weaknesses in how reliable the estimates are, so you can work
to make a better model over time and build trust with clinicians
by not lying about if you’re right or wrong, as shown in Figure
2.

ROC curves represent how sensitive and specific a test is
across an increasing or decreasing threshold, and AUC
indicates how well the test can discriminate between two
different outcomes. Large AUC values suggest a substantial
separation between classes, which is desirable in the clinical
diagnosis. Providing per-class ROC curves presents you an
objective sense of how well the model can distinguish between
a normal rhythm and an abnormal one, as shown in Figure 3.

The hybrid model outperforms the baseline because
EfficientNetB7 and Vision Transformer have complementary
representation power. This ability for the EfficientNetB7 to
capture fine-grained, morphology-level features in ECG
images is not unexpected; its use of compounding means that
it’s increasing depth, width, and resolution but still
maintaining high levels of computational efficiency. That
means it's particularly well suited to detecting small changes
in the width of the QRS complex, in how pointy the P-wave
is, and even minute alterations in the shape of an ST segment.
These are all things that CNNs proved good at for medical
imaging in the past. Another challenge in interpreting ECG is
that we may need to have long-range temporal dependencies



at a high level of abstraction since it depends on how the
cardiac cycles relate to each other. The Vision Transformer
employs a global self-attention mechanism that allows the
network to learn these dependencies by computing attention
scores on the entire sequence of patches. This allows it to
encode context at a rhythm level, extending beyond local
morphology. The integration of these architectural strengths
allows the model to integrate local detailed morphology with
global timing and structural information. This functionality is
critical for discriminating between lookalike arrhythmias,
such as SVEB and VEB. This hybrid synergy is responsible
for the large gain in performance observed in the ablation
study and affirms the correctness of this architectural
composition for cardiac rhythm detection.

Confusion Matrix
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Figure 2. Confusion matrices
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Figure 3. Evaluation of model performance using ROC
curves

When looking at how well a model works on imbalanced
datasets that put more weight on correct positive predictions,
precision-recall curves are crucial. A high area under the PR
curve means that rare arrhythmias can be found reliably. This
visualization helps with clinical readiness by showing that it
can pick up on small but important problems that are common
in different ECG populations, as shown in Figure 4.
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Precision-Recall Curves
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Figure 4. Precision-recall curves for evaluating vital

5. CONCLUSIONS

Here we developed a novel hybrid deep learning
architecture that integrates EfficientNetB7 and Vision
Transformer (ViT) to tackle most of the problems for
conventional ECG classification approaches by associating
local morphological detail extraction with global contextual
understanding. The model outperformed state-of-the-art
baselines ResNet50 and the standalone Vision Transformer on
three ECG datasets (MITBIH, CPSC2018, and PTB
Diagnostic). And the average accuracy was 97.8%, which is
superior to baselines (Table 1). An ablation analysis
demonstrated that the architecture of the fabricated hybrid
network has complementary strengths, in which tacking local
feature extraction (from EfficientNetB7) and global attention
mechanisms  (from  Vision  Transformer)  enables
morphologically similar arrhythmias to be misclassified less
frequently (Table 2). In addition, computational efficiency
tests indicated that the hybrid model maintained competitive
and acceptable training and inference times for real-time
clinical scenarios (Table 3). Generalization tests also indicated
good accuracy of the model for the various recordings and
patient demographics (Table 5). Explainability techniques
such as GradCAM and attribution maps demonstrated that the
model could be utilized in clinical settings by depicting
physiologically significant ECG features, including QRS
complexes and P-waves (Section 4.6). These findings
demonstrate that the framework can be used with confidence,
accuracy, and openness in telemedicine and out-of-hours
emergency care. This paper directly answers the call for
scalable Al-driven cardiac diagnostics in low-resource
settings. This work further proposes a benchmark for
automated ECG analysis by fusing cutting-edge architecture
and clinical relevance. The findings should help patients
achieve better outcomes by identifying arrhythmias quickly,
dependably, and in a way that is sensible.

In order to ease the reproduction of this work and its reuse
in future task models, all source code, model configuration
files, and preprocessing scripts will be released as open-source
when it is published. The repository will include (i) full
training pipelines for EfficientNetB7, Vision Transformer, and
our hybrid models; (ii) scripts for preprocessing ECG to
images and normalizing the datasets; (iii) scripts to evaluate
using cross-validation and statistical testing; and (iv) pre-



trained model weights on all three datasets. The raw training
datasets we used in this study (MIT-BIH, CPSC2018, PTB
Diagnostic) are available on PhysioNet and the challenge
repositories. We will also offer the preprocessed ECG image
datasets from these sources to you for ensuring everything is
transparent and there is no different preprocessing. When
combined, these resources ensure that other investigators will
be able to replicate the entire procedure from beginning to end.
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