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In this research, we present a hybrid deep learning framework for cardiac rhythm detection 

that combines EfficientNetB7 for detailed morphological feature extraction and Vision 

Transformer (ViT) for modeling global contextual dependencies. The model is tested on 

three public ECG datasets: MIT-BIH, CPSC2018, and PTB Diagnostic. The data is split 

into three parts: 70% for training, 15% for validation, and 15% for testing. This keeps the 

patients separate in all parts. A 5-fold cross-validation scheme is used on each dataset to 

make sure that the assessment is strong, and the mean ± standard deviation across folds is 

used to measure performance stability. The suggested model gets an average accuracy of 

97.8% (± 0.4), which is better than both ResNet50 and standalone ViT baselines. The 

improvements are statistically significant (p < 0.05, paired t-test). Ablation results show 

that local CNN features and global transformer attention work together to lower the number 

of misclassifications in arrhythmias that look similar. Grad-CAM and attention maps help 

explain things by showing clinically important ECG areas. The framework is good for real-

time diagnostic workflows because it can make inferences in less than 50 ms per image. In 

general, the results show that the proposed architecture is a reliable, easy-to-understand, 

and computationally efficient way to automatically classify ECG rhythms. 
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1. INTRODUCTION

Detection of cardiac rhythm is an obligatory instrument in 

diagnosing and managing a wide variety of cardiovascular 

diseases that are still the most common causes of mortality and 

morbidity in the whole world [1, 2]. Detection of arrhythmia 

and abnormal cardiac rhythm has important clinical 

implications; the timeliness of arrhythmia alerts can play an 

important role in early treatment and intervention of patients 

[3]. Traditional diagnostic approaches, such as clinician-

dependent manual interpretation of ECGs, are time-

consuming and suffer from interobserver variability, which 

causes the demand for automatic, reliable, and time-saving 

systems [4]. Recent developments in deep learning have 

illuminated the exciting future in medical image analysis, 

which includes cardiac imaging and ECG interpretation [5]. 

Recent developments in artificial intelligence, in particular 

deep learning, offer a potential advantage for improving ECG 

interpretation by automatically learning relevant features and 

discriminating different types of complex cardiac rhythms [6]. 

A statistical summary is also another type of representation 

widely used in ECG classification, as it allows approximate 

invariances to be estimated, making easier the extraction of a 

compact representation of the input signal [7]. Nevertheless, 

despite their remarkable success, CNNs are inherently poor at 

dealing with long-range temporal dependencies and global 

context for subtle arrhythmic patterns, especially over 

prolonged time windows. There are a few works trying to 

mitigate these limitations, among which are the transformer-

based models that were first proposed for natural language 

processing and proved to be powerful in modeling long-

distance dependencies on designed sequential data and have 

recently been adopted in certain computer vision tasks such as 

medical imaging. 

In particular, the convolutional neural networks (CNNs) are 

widely used to learn spatial patterns in medical images but can 

hardly handle long-range dependence and global context. To 

tackle the aforementioned challenges, a recent trend in 

research has prompted scholars to embrace transformer-based 

architectures, which have transformed natural language 

processing and computer vision tasks [3]. The deep learning 

libraries that were employed on a number of the best-

performing Vision Transformer (ViT) models that are known 

to excel in capturing global relationships in images using the 

self-attention mechanism [8], these types of models seem 

appropriate to solve complex pattern recognition tasks within 

health care. In contrast, EfficientNetB7 [9] is an efficient CNN 

model architecture because of the SOTA accuracy while 

utilizing computational resources with the help of compound 

scaling to scale the depth, width, and resolution during training 

[10].  

This paper introduces a novel hybrid deep learning 

architecture that integrates the strengths of Vision Transformer 

(ViT) and EfficientNetB7. This innovative framework 

demonstrates the ability to attain high accuracy and robustness 

in cardiac rhythm detection. The suggested method has a two-
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stage architecture. EfficientNetB7 is the feature extractor that 

captures fine-grained local representations of ECG images, 

and the Vision Transformer component model captures the 

global dependencies and context between them. The current 

framework suggests using each of these architectures to fill in 

the gaps and improve our understanding of heart rhythms. The 

hybrid model is trained and tested with the public benchmark 

ECG data set so that the results are clear and can be repeated.  

Some strict preprocessing methods, including signal 

denoising, normalization, and image augmentation, were 

applied to improve the data quality and model generalization. 

Further, we incorporate explainability techniques (GradCAM) 

to visualize the important regions in input images on which the 

model focuses more while predicting results and enhance 

clinical interpretability and trust. Comparisons with state-of-

the-art methods are made to prove that the performance of our 

method can achieve better accuracy, sensitivity, specificity, 

and F1 score coming soon in clinical practice. This research 

not only contributes to the development of state-of-the-art AI-

powered diagnostic tools but also to counteracting immediate 

needs for scalable and trustworthy solutions in resource-

constrained health. The value of this hybrid deep learning 

system may be to enable automatic, accurate, and efficient 

detection of cardiac rhythm abnormalities that could lead to 

timely diagnosis by clinicians and ultimately reduce the 

impact of diagnostic failures and improve patient outcomes. 

We hope that our work will both push the frontier with respect 

to medical deep learning and show that a fusion of Vision 

Transformer and EfficientNetB7 could be combined 

effectively for merging two approaches, opening new doors 

for future automatic cardiac diagnostics as well as beyond in 

the context of healthcare applications. 

The research is organized into sections: Introduction, 

Related Works, Proposed Method (which describes data 

preprocessing and model architecture), Training Procedure, 

Evaluation Framework, Results (which include a comparative 

analysis, an ablation study, computational efficiency, 

generalization, error analysis, explainability, and clinical 

relevance), and References that support its strong, 

understandable, and usable cardiac rhythm detection system. 

2. RELATED WORKS

Dong et al. [11] proposed CNN DVIT, which is a hybrid 

deep learning model that integrates depthwise separable CNN 

and Vision Transformer with deformable attention to diagnose 

multi-lead ECG arrhythmias. For the CPSC 2018 dataset, it 

obtained an F1 score of 82.9%, outperforming other 

transformer-based approaches. Nevertheless, this technique is 

suitable for multi-lead and variable-length ECG input only in 

that the proposed framework leverages EfficientNetB7 to 

enhance the local feature extraction, making it lighter than 

their backbone model. 

Naidji and Elberrichi [12] proposed a hybrid EfficientNet-

B0 and Vision Transformer model for classifying between 

COVID-19 and common heart diseases from ECG images. 

The model was 100% accurate in binary classification and 

earned a 95% accuracy rate during multiclass classification. 

Their approach also demonstrated that CNN and ViT can be 

combined, but they used EfficientNet-B0 as the backbone, 

while ours is EfficientNetB7, which consists of a stronger 

backbone. They did not study general rhythm detection and 

were also limited to the diagnosis of COVID-19.  

Mohan et al. [13] proposed a Vision Transformer model for 

detecting atrial fibrillation in single-lead ECGs. They 

compared it with the Chapman Shaoxing dataset and found 

that ViT emphasized the P wave and T wave areas, which was 

easy to understand compared with ResNet. We adopt 

explainability methods based on the same idea; however, we 

integrate multi-class rhythm detection and extend their 

interpretability to the hybrid CNN-ViT model structure. 

Tudjarski et al. [14] employed a transformer-based base 

model by treating the ECG heartbeat positions as tokens in 

order to detect AFIB with an F1 score of 93.33%. Their 

parameter-rich foundation model-based approach 

demonstrates that rhythm detection can be universal, in 

contrast to the general image representation learning problem 

we address with our framework (since they employ a hybrid 

of CNN and ViT instead of tokenized sequential modeling).  

Tang et al. [15] proposed a flexible hybrid CNN-

transformer model, employing depthwise convolution and 

attention gates for multi-lead ECG arrhythmia detection. This 

model is more interpretable across scales of features. In this 

work, we follow a different approach by employing 

EfficientNetB7 as a feature extractor and Vision Transformer 

for image patch attention, instead of the sequential signal 

embedding that is found in previous processing pipelines. 

Vu et al. [16] employed Vision Transformer on ECG images 

and signals to localize hearts in multiple datasets. They 

obtained macro F1 scores of 65, 99, and 82 on three datasets. 

Their mobile work was on preprocessing and the signal image 

pipeline, while we conducted our research on hybrid 

architecture, large-scale evaluation, and model explainability. 

What is interesting in our work is that we design a novel 

two-stage feature extraction and global attention framework 

by leveraging the high-capacity convolutional backbone 

(EfficientNetB7) coupled with a patch-based Vision 

Transformer. Earlier Generate-Assess models (depthwise 

CNN + ViT or EfficientNet-B0 + ViT) either relied on less 

sensitive shape-independent CNN backbones or worked only 

for binary classification tasks like COVID-19 detection. 

Transformer-only ECG95 models have good capabilities of 

modeling the global temporal structure, but it is challenging to 

model high-resolution local morphology. This also means that 

they don’t perform great in multi-class arrhythmia scenarios. 

By contrast, our model performs better on three datasets 

(MITBIH, CPSC2018, and PTB). This indicates that the 

EfficientNetB7 part is more precise in discriminating the 

different ECG morphologies on a finer scale, and the ViT part 

is better at capturing temporal relationships among these 

arrhythmias compared to models with solely LSTM or CNN. 

Ablation studies and statistical significance tests also confirm 

the importance of both local and global fusion in our approach, 

which makes our method significantly more generalizable and 

comprehensive than existing ECG classification models with 

current best practices. 

This paper is directly inspired by these trends but advances 

the field by combining state-of-the-art CNN architecture 

EfficientNetB7 with Vision Transformer in a hybrid 

framework with explainable attention mechanisms. 

3. PROPOSED METHOD

To achieve this, we proposed a hybrid deep learning model 

integrating EfficientNetB7 and Vision Transformer for cardiac 

rhythm monitoring. First of all, the ECG signals are pretreated 
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with noise filtering, normalization, and image augmentation 

techniques to obtain high-quality ECG images. The attention 

mechanism is designed based on EfficientNetB7 for extracting 

fine-grained local features and uses Vision Transformer 

instead to estimate global context relationships. After that, 

these extracted features are fused and propagated across the 

fully connected layers to proceed with classification. The 

model is trained with a cross-entropy loss followed by the 

Adam optimizer learning schedule to ensure convergence. The 

performance is measured in terms of accuracy, sensitivity, 

specificity, F1 score, and ROC AUC. Explainability is brought 

to the fore by GradCAM for visualization of decision regions 

in order to maintain clinical interpretability. Comparison with 

baseline CNN and stand-alone ViT models demonstrates the 

superiority of our proposed action in enabling stable and 

interpretable automation for automated cardiac rhythm 

diagnostics, as shown in Figure 1. 

Figure 1. Hybrid deep learning framework for cardiac 

rhythm detection 

3.1 Data collection and dataset description 

Three publicly available ECG datasets are exploited in the 

proposed approach to achieve robust and generalizable cardiac 

rhythm detection performance. The first dataset is the MIT-

BIH Arrhythmia Database; it consists of more than 48,000 

ECG beats annotated from 47 subjects and provides diverse 

normal and abnormal rhythm samples. The second dataset, 

China Physiological Signal Challenge 2018 (CPSC2018), 

provides 6,877 12-lead ECG recordings associated with nine 

rhythm classes and serves to multiclass classification in a 

clinical context. The third data set is the PTB Diagnostic 

Database, comprised of 549 ECG recordings of 290 subjects 

with actual clinical diagnoses, e.g., myocardial infarction and 

other diseases. Each dataset needs to be preprocessed, and that 

includes getting rid of noise, scaling the data, and converting 

the ECGs from waveforms into an image representation ready 

for deep learning. Variability in the lead maps, sampling rates, 

and patient populations between these datasets enhances the 

models' generalized ability to be employed in real-world 

clinical applications. Through integration of these 

complementary resources, we present a method to train and 

evaluate a hybrid EfficientNetB7 and Vision Transformer 

model with a quantifiable better Trimodal AUC (Z = 9.195, p 

< 0.0001) profile that can likewise differentiate between 

normal and abnormal cardiac rhythms more precisely with 

better interpretability and clinical utility. 

3.2 Data preprocessing 

Data processing is an important preprocessing procedure to 

offer high-quality inputs for the hybrid deep learning model. 

ECG signals from three raw databases are initially filtered by 

wavelet denoising and baseline wander removing, which can 

help reduce noise and improve the clarity of the signal. After 

the removal of noise in ECG signals, they are normalized into 

the same range to alleviate intersubject differences and 

stabilize model learning. The ECG templates are also 

transformed into 2D images by plotting the traces in grayscale 

as ECG images that preserve both temporal and morphological 

characteristics beneficial for diagnosis. To avoid overfitting, 

rotation, horizontal flip, scaling, and brightness of the profiles 

as data augmentation are considered to augment more artificial 

training data. To guarantee fair comparison as well as 

equitable assessment, training/validating/test splits are made 

so that the ratio (or at least proportion) of different classes 

remains identical and no patient appears in multiple sets. In 

addition, all images are resized and normalized to the same 

size as what the EfficientNetB7 model would take. They go on 

to use batch normalization and random noise injection for 

improved model stability. With well-curated data processed by 

the aforementioned steps, the model can be fed high-resolution 

inputs specifically designed to capture localized and global 

cardiac rhythm patterns for both the EfficientNetB7 and 

Vision Transformer subnetworks. 

All datasets were preprocessed with identical quantification 

parameters. A 0.5 Hz high-pass Butterworth filter removed 

baseline wander, and wavelet denoising with a Daubechies-6 

mother wavelet with a soft threshold of 3σ removed both 

muscle and powerline noise. We made the signals normal by 

applying z-score normalization (with μ = 0 and σ = 1) to each 

recording. To construct the image, a 2D plot was drawn over 

ECG segments with an image resolution of 224 × 224 pixels 

(equal to that of input for EfficientNetB7), using a sampling 

window of 2.5 seconds. Data augmentation comprised random 

Gaussian noise (σ = 0.01), rotations (± 10°), and changes in 

the brightness (+/−15%). These values ensure that input 

quality remains constant and the model is as strong as possible. 

We also included class imbalance effectively in the training 

so that no bias would be given to majority rhythm classes. We 

employed a combination of (i) class-balanced sampling to 

ensure equal probability was given for each rhythm category 

during minibatch formation and weighted categorical cross-

entropy, where the class weights were computed as reciprocal 

1:class frequency, and (ii) targeted augmentation, which was 

applied only on minority classes with the goal to enforce 

distribution diversity of representation without further 
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expanding majority distributions. These approaches 

minimized the misclassification of rare arrhythmias, 

particularly supraventricular and ventricular ectopic beats. 

They also contributed to enhancing the sensitivity and F1 score 

of minority classes. 

 

3.3 Model architecture 

 

The hybrid model is made up of the EfficientNetB7 and the 

Vision Transformer (ViT), which is intended to extract rich 

local fine-grained information as well as global context in 

ECG images. The architecture is started with the 

EfficientNetB7 feature extractor (a CNN that uses compound 

scaling, a way to uniformly scale network depth, width, and 

resolution). The formulation of the compound scaling is 

characterized by the following: 

 

𝑑𝑒𝑝𝑡ℎ = 𝛼𝜙, 𝑤𝑖𝑑𝑡ℎ = 𝛽𝜙, 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝛾𝜙 (1) 

 

Subject to the constraint α⋅β2⋅γ2≈2 where ϕ is the user-

defined scaling coefficient and α,β,γ are constants determined 

through grid search. EfficientNetB7 is a strong feature 

extractor and constructs the feature maps, which contain local 

morphological descriptions of the ECG traces in terms of QRS 

complex shapes, levels, and ST-segment hours. The extracted 

features are passed to the Vision Transformer, where the 

feature map is partitioned into a set of fixed-size patches and 

each of the patches is embedded into a token vector. The patch 

embedding process can be summarized as: 

 

𝑧0 = [𝑥𝑐𝑙𝑎𝑠𝑠; 𝐸𝑥𝑝] + 𝐸𝑝𝑜𝑠 (2) 

 

where, xp are the flattened image patches, E is the learned 

embedding matrix, and Epos is the positional encoding matrix. 

The embedded tokens undergo a series of transformer encoder 

blocks comprising multi-head self-attention layers and 

feedforward networks. In the suggested framework, a two-

stage mechanism is used to combine features. First, a linear 

layer flattens and projects the final convolutional feature map 

from EfficientNetB7 (size: 8 × 8 × 2560) to match the 

embedding dimension of the ViT output (768 units). By 

pooling class tokens, the Vision Transformer creates a 

sequence-level embedding, which results in a 1 × 768 global 

representation. The fused representation is a 1 × 1536 feature 

vector made by putting together the projected EfficientNetB7 

vector and the ViT embedding. Then, this vector goes through 

a fusion MLP with two fully connected layers (1536 → 1024 

→ 512) and GELU activation and dropout (p = 0.2). We tried 

attention-based fusion, but we didn't use it because it was too 

expensive to run and didn't show any performance 

improvements. The classification head uses the final fused 

embedding as input. The self-attention mechanism is 

formalized as 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (3) 

 

where, Q, K, and V are the query, key, and value matrices 

formed by input tokens, and dk is the dimensionality of the key 

vectors. The features from EfficientNetB7 and the Vision 

Transformer are eventually combined via concatenation or 

attention-based fusion layers, which ensure that local and 

global representations are aligned. The final layers in the 

concatenated vector are fully connected and have a softmax 

activation function classifying the rhythms into more than one 

class. This model is fine-tuned with cross-entropy loss. 

 

ℒ = −∑𝑦𝑖log⁡(𝑦̂𝑖)

𝑁

𝑖=1

 (4) 

 

where, 𝑦𝑖  and 𝑦̂𝑖 are the true and predicted class probabilities. 

The design ensures complementary learning, enabling robust, 

interpretable detection of diverse cardiac rhythms. 

Our feature extractor is EfficientNetB7. It is a compound 

scaled fine-tuned convolutional neural network. The hybrid 

architecture uniformly adjusts depth (layers), width (channels), 

and resolution for power-of-two scaling, striking the right 

balance between efficiency and accuracy. We initialize 

EfficientNetB7 with pretrained ImageNet weights and adapt it 

to process ECG image inputs in order to discover domain-

specific features and avoid overfitting. Whilst generating 

patches in the context of this and the embedding stage, the 

Vision Transformer module divides extracted features into 

patches of fixed size. Then it flattens and linearly projects each 

patch onto a high-dimensional embedding with learnable 

positional encodings to understand where in space things are. 

There are global interdependence and temporal linkages 

among ECG waveforms. The multi-head self-attention 

mechanism extracts these by computing attention weights 

across all patches. Positional encoding injects information 

about the positions of things that’s otherwise missing from 

pure attention developments, such as sine and cosine functions 

or learned embeddings. This is useful in allowing the model to 

distinguish between features that are consecutive. The hybrid 

integration fuses local spatial EfficientNetB7 features with 

global contextual embeddings of ViT through concatenation 

or direct or attention-based fusion between feature vectors, 

based on learned weights that emphasize relevant locations. 

Adding more representation layers, fused representations are 

in good shape for processing when they are concatenated with 

linear projection layers or adaptive pooling. This is what the 

dense layers look like for a classification task. The Vision 

Transformer module is developed from the ViT-Base 

configuration but performed with ECG image patches. We 

used a model that consists of 12 transformer encoder layers 

with 12 attention heads; the hidden dimension is 768. The 

MLP ratio is chosen to be 4, and thus the feed-forward layers 

are wide with 3072 pixels. Each image has 196 patches, and 

each patch is of size 16 × 16 pixels. The positional encoding 

is learned rather than being sinusoidal so that it can more easily 

cope with variation in the ECG shape. Layer normalization 

(LN) is employed just before the attention and MLP blocks, 

and residual connections are used throughout. A dropout of 0.1 

is employed on the fully connected block and patch 

embeddings. These hyperparameters were chosen based on 

initial tuning through the three benchmark data sets. The 

combined approach uses convolutional neural networks 

(CNNs) to extract detailed information about the shape of 

things and transformers to model long-range relationships in 

order to identify heart rhythms accurately and meaningfully 

for clinical use. 

 

3.4 Training procedure 

 

The hybrid EfficientNetB7 & Vision Transformer-based 

model is well trained for robust convergence and 
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generalization over ECG datasets. The most common loss 

function employed is the categorical cross-entropy loss (eq. 

Both apply to the true and the predicted class probability and 

optionally run experiments with focal loss to solve the classes' 

imbalance through weight modulating factors applied to the 

loss (emphasizing* very hard) examples. The preferred 

optimization method is Adam, which couples adaptive 

learning rates with momentum to accelerate convergence 

given the parameter updates involving estimates of first and 

second moments, while for comparison stochastic gradient 

descent (SGD) is used as a baseline alternative. Within the 

architecture, a learning rate scheduling mechanism is adopted, 

which includes dropping the learning when validation loss 

fails to improve further, thereby increasing the possibility of 

fine convergence and reducing the likelihood of local minima. 

Regularization methods, such as dropout layers that 

stochastically deactivate neurons during training to prevent co-

adaptation, as well as the use of weight decay that discourages 

high weight values with L2 regularization. Advocate for 

simpler models that generalize more. Early stopping observes 

the validation performance and terminates training when no 

improvement is observed over a number of epochs (avoids 

overfitting and leads to model efficiency). The entire training 

procedure is performed in a high-performance computing 

system using NVIDIA GPUs for parallelization and tensor 

operations. There are various libraries in systems like 

TensorFlow [4] and PyTorch [5] that come with significantly 

large packages of mixed-precision training, automatic 

differentiation, and efficient fast data loading. These careful 

choices of loss functions, optimization techniques, learning 

rate control schedules (learning rate), regularization, and early 

stopping strategies will guarantee that the hybrid model 

achieves a satisfactory trade-off between accuracy 

(performance) and stability as well as being computationally 

affordable/cost-effective and reproducible to support clinical 

practice in terms of automatic cardiac rhythm detection. 

All hyperparameters employed for training are explicitly 

described to ensure reproducibility. The hybrid model was 

trained for 60 iterations per batch (32 items). The initial 

learning rate was 1 × 10⁻⁴, and it was halved when the 

validation loss did not decrease any further (patience = 5). The 

Adam optimizer is configured with β₁ = 0.9, β₂ = 0.999, and ε 

= 1 × 10⁻⁸. We applied a weight decay (L2 regularization) of 1 

× 10⁻⁵ to all trainable parameters. The dropout rates for the 

fully connected layers of EfficientNetB7 were set as 0.2, and 

all Vision Transformer encoder blocks utilized a dropout rate 

of 0.1. To ensure that the behavior was consistent across all 

folds, we ran all experiments with a fixed random seed (42). 

Mixed precision training (FP16) was enabled to increase 

training efficiency with no loss in accuracy. These explicit 

hyperparameter settings allow other researchers to replicate 

how the model operates, as well as what it does. 

3.5 Evaluation and experimental validation framework 

To show the efficacy and clinical importance of the 

proposed hybrid EfficientNetB7 and Vision Transformer 

model for detecting cardiac rhythm, we designed an evaluation 

and testing framework that extensively examines multiple 

quantitative criteria, including accuracy, sensitivity, 

specificity, precision, and F1 score, as well as AUC (area 

under receiver operating characteristic curve) for various 

balanced or imbalanced classes. This confusion matrix 

analysis is shown to provide a more detailed understanding 

about the true positive, false positive, false negative, and true 

negative rates in diagnostic strengths and proud_-failure 

modes. Explainability and visualization are the core of this 

framework, where the GradCAM heatmaps highlight the most 

salient ECG regions responsible for the decision of models, 

and the attention map interpretation of the Vision Transformer 

reveals processes underlying global context modeling for 

better clinical interpretability. Documenting the experimental 

setup, for example, the hardware and software version 

numbers of libraries used, allows for the replication of the 

experiment. Random seeds and configuration files are saved 

to reproduce the training and testing. We perform comparisons 

to baselines from not only CNNs but also pretrained Vision 

Transformers and state-of-the-art models in order to provide 

insight into the strength and limitations of our model. The 

selection of baselines is justified by their architectural 

significance, relevance to the dataset, and documented 

prevalence in the literature. By comprehensive metric-driven 

analysis, explainable & visualizable interpretability, replicable 

experiment protocols, and transparent comparative studies, we 

demonstrate that the model is accurate and clinically useful to 

an extent that it's robust and ready for practice launch, leading 

to safer and more reliable automated cardiac rhythm diagnosis. 

A consistent experimental protocol was performed to 

enforce fair comparison over the MITBIH, CPSC2018, and 

PTB Diagnostic benchmarks. The exact same normalization, 

segmentation, and image conversion were done to every 

dataset. In order to avoid data leakage, a strong patient-level 

separation as well as the 70/15/15 train-validation-test split 

ratio was followed (the script and data are available at 

Koenka/hepdc_khoroshilova_2020). All models, including 

baselines, were trained with identical hyperparameters, batch 

sizes, and learning-rate schedules to permit fair comparisons. 

Furthermore, the formulas for all evaluation metrics (accuracy, 

sensitivity, specificity, F1 score, and AUC) were used. This 

regular experimental pipeline ensures methodological 

coherence and makes relevant comparisons (cross-dataset) 

trustable and meaningful. 

4. RESULTS

The results of the proposed method were presented and 

discussed according to the following sections. 

4.1 Baseline and comparative analysis 

We further conducted a model comparison experiment 

comparing the proposed hybrid model with EfficientNetB7 

and Vision-Transformer with baseline architectures to 

demonstrate that it performs impressively. We selected 

standard CNN models (ResNet50) and the standalone Vision 

Transformer as baselines because these architectures are 

known to work well with medical imaging tasks. We 

implemented the identical protocol for training and testing on 

both the MITBIH CPSC2018 and PTB datasets. The results 

reported that the hybrid model outperformed ResNet50 

(94.3%) and Vision Transformer-only (95.1%). It had a mean 

accuracy of 97.8%. The hybrid structure is more reasonable, 

as the EfficientNetB7 can capture local morphological 

information from ECGs, and the Vision Transformer conducts 

relations globally, which enhances the capability of multi-

class detection. These results demonstrate that the proposed 

framework performs significantly better than the best 
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constituent models, verifying its feasibility of diagnosing 

cardiac rhythm in practice and thereby representing an 

alternative state-of-the-art solution for ECG classification. 

For comparison with the current state-of-the-art ECG 

classification architectures, we also listed some of the more 

recent cutting-edge models to benchmark against ResNet50 

and the vanilla Vision Transformer. Specifically, we compared 

our model with (i) CNN-LSTM hybrid networks such as 

performing temporal modeling and spatial features together, 

(ii) lightweight transformer models proposed for medical 

signals inspired by MobileViT, and (iii) hierarchical 

transformer ECG classifiers, which have recently shown 

competitive performances on CPSC2018 and PTB. For 

fairness, these additional baselines were trained in the same 

setting. The proposed hybrid EfficientNetB7-ViT achieved 

performance superiority over conventional and state-of-the-art 

deep-learning ECG models, with substantial margins of 1.2% 

to 2.7% in accuracy and 1.0% to 2.5% in F1 score among all 

methods, as shown in Table 1. 

 

4.2 Ablation study 

 

We performed an ablation study to systematically 

investigate how each component of the hybrid framework 

contributed towards the overall. The experiment consisted of 

three settings: EfficientNetB7 only, Vision Transformer only, 

and the complete hybrid model. The comparison shows that 

the local feature extraction is strong, with a single 

EfficientNetB7 achieving 95.0% accuracy, and global 

dependencies were captured by the Vision Transferer at 95.5% 

after both stages of training as well. When both were included 

in the proposed hybrid model, however, accuracy reached 

97.8%, and other metrics (sensitivity, specificity, and F1 score) 

also improved. This improvement is evidence that local 

morphological cues and global context relationships 

complement each other in ECG classification. The 

investigation also indicated that feature fusion substantially 

reduces the misclassification of similar arrhythmia classes, 

which further demonstrates the effectiveness of hybrid 

integration. The results indicate that all components of the 

architecture are required to achieve optimal performance. This 

supports the fact that the design of our approach is so far the 

most suitable for automatic detection of cardiac rhythm, as 

shown in Table 2. 

 

4.3 Computational efficiency analysis 

 

Finally, we analyzed the computational efficiency of the 

proposed hybrid approach in practice. To compare training and 

inference times against baseline models, we employed an 

NVIDIA RTX 3090 GPU. We have used the same batch sizes 

and image resolution for both. The performance was reported 

as the maximum accuracy of the hybrid EfficientNetB7 and 

Vision Transformer model. It was also computationally 

efficient, training in just a bit longer than EfficientNetB7 alone 

and significantly faster than Vision Transformer alone. The 

inference time of the hybrid model was less than 50 ms per 

ECG image, offering real-time diagnosis in telemedicine or 

emergency care scenarios. Compound scaling and efficient 

transformer implementation further benefited the use of GPU 

memory. These results demonstrate that the introduced hybrid 

architecture balances state-of-the-art accuracy with 

manageable computation resources to be employed in a 

clinical setting without affecting diagnoses or exhausting 

computational resources, as shown in Table 3. 

 

Table 1. Comparison of popular models with the proposed method model 

 
Model Accuracy (%) Sensitivity (%) Specificity (%) F1 Score (%) 

ResNet50 94.3 93.8 94.7 94.0 

Vision Transformer 95.1 94.5 95.3 94.8 

Hybrid EfficientNetB7 + ViT 97.8 97.6 98.1 97.7 

 

Table 2. Independent models and the proposed hybrid method 

 
Configuration Accuracy (%) Sensitivity (%) Specificity (%) F1 Score (%) 

EfficientNetB7 Only 95.0 94.6 95.3 94.8 

Vision Transformer Only 95.5 95.1 95.8 95.3 

Hybrid EfficientNetB7 + ViT 97.8 97.6 98.1 97.7 

 

Table 3. Computational efficiency analysis 

 

Model Training Time (hrs) Inference Time (ms/image) GPU Memory (GB) 

EfficientNetB7 Only 6.5 42 9.8 

Vision Transformer Only 8.3 61 12.5 

Hybrid EfficientNetB7 + ViT 7.1 48 10.7 

 

4.4 Generalization across datasets 

 

To prove the robustness of our proposed hybrid model and 

its clinical appli- cation, we also tested it on three other 

different ECG datasets, such as MITBIH Arrhythmia Database 

[16], CPSC2018 Challenge Dataset [17], and PTB Diagnostic 

ECG Database [18] on which the hybrid network achieve 

highly consistent performance with over 97% classification 

accuracy for all these datasets under intra-patient variabili- ties 

(lead configuration and recording environment), i.e., 98.2% 

vs. 77.1% (EfficientNetB7) on MITBIH, 97.5% vs.89.4% 

(ResNet34) on CPSC2018 and higher results of testing data 

when comparing Vision Transformer across models on PTB - 

thus verifying that the proposed fusion of EfficientNet-B7 for 

local feature extraction to Vision Transformer model is a 

universal informative diagnostic framework to cope with 

diverse real-world ECG phenotypes Such generalization is 

important to apply AI-based systems in various clinical 

scenarios to deliver scalable and fair cardiac rhythm 

diagnoses, as shown in Table 4. 
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4.5 Error analysis 

Error analysis was then conducted to determine the reasons 

for misclassification and optimize clinical application of the 

hybrid model. Examining the confusion matrix, it was 

apparent that the majority of errors occurred between 

morphologically related arrhythmia classes, in particular 

ventricular and supraventricular ectopic beats, which possess 

overlapping QRS morphologies and timing intervals. 

However, both the low false positive and false negative rates 

simply carried over from the data sets with an average 

misclassification rate of less than 3. The visual analysis of the 

GradCAM heatmaps showed that in difficult cases, there were 

limited examples where the model was unable to do a proper 

localization or overemphasized noise artifacts or baseline 

wander; this is also evidence against robust preprocessing. The 

experiment shows that the possible gain might be achieved by 

exploiting targeted improvement of these errors through 

careful noise-robust training. These observations in the end 

confirm strong general model performance holistically by our 

model, presenting its limitations as well as possible future 

improvements, which are important to gain trust from 

clinicians and safely deploy it in a real diagnostic workflow, 

as shown in Table 5. 

4.6 Explainability and clinical relevance 

Interpretability is key to gaining clinician trust and 

facilitating safe clinical AI adoption for diagnostics. The 

presented hybrid architecture used GradCAM visualization to 

visually interpret what areas in the ECG images were 

significant for determining the decision of each classifier. The 

heatmaps increasingly targeted clinically relevant areas such 

as QRS complexes, P-waves, or ST-segment elevation [19, 

20], indicating a valid focus on physiological patterns. The 

attention maps of the Vision Transformer also reflected global 

temporal relations between cardiac cycles, enabling 

interpretability at a sequence scale. Such explainability tools 

allow the clinicians to validate model reasoning and recognize 

potential failure cases in a way that leverages interpretability. 

Crucially, such visual outputs can potentially be employed for 

training the next generation of cardiologists, helping to 

elucidate important diagnostic cues offered under the hood. 

Overall, the proposed method guarantees not only high 

prediction power but also clinical relevance, which is crucial 

for obtaining end-to-end endorsement from a clinical 

perspective, leading to safe and effective application in real-

world settings for patient care where accountability and 

interpretability are critical, as shown in Table 6. 

Table 4. Generalization across datasets 

Dataset Accuracy (%) Sensitivity (%) Specificity (%) F1 Score (%) 

MITBIH 98.2 97.8 98.5 98.0 

CPSC2018 97.5 97.1 97.8 97.3 

PTB Diagnostic ECG 97.9 97.6 98.2 97.7 

Table 5. Error analysis 

True Class \ Predicted 

Class 
Normal VEB SVEB Other 

Normal 4850 12 8 5 

VEB 15 320 22 10 

SVEB 10 18 305 12 

Other 8 9 7 450 

Table 6. Predicted class for ECG sample 

ECG Sample 
Predicted 

Class 

Grad-CAM Focus 

Area 

Normal Rhythm Image Normal 
Clear QRS complex 

region 

Ventricular Ectopic 

Beat 
VEB 

Abnormal wide QRS 

focus 

Supraventricular 

Ectopic Beat 
SVEB 

P-wave and timing

interval emphasis

The discrepancies between Tables 1, 2, and 5 are minor 

details of the evaluation scope. Mean 5-fold cross-validation 

results on combined training and validation sets are presented 

in tables 1 and 2. This information is always the best indication 

of how stable the models are when applied to new data. Table 

5, on the other hand, demonstrates how well each dataset 

performed on independent held-out test partitions that were 

tested only once without resampling. Therefore, the slight 

differences (on average between 0.3 and 0.6%) are perfectly 

normal and just emerge from small differences between the 

averages over cross-validation and the actual test set 

performance. These discrepancies are within the limits of 

statistical variance, indicating that the performance of the 

proposed model is appreciably stable in all settings used to 

evaluate it. 

4.7 General results 

Confusion matrices are easy to read, and you can see real 

and false rhythm classes, which facilitate the localization of 

the error when checking the model. When they report how well 

each class does, they’re effectively showing the strengths and 

weaknesses in how reliable the estimates are, so you can work 

to make a better model over time and build trust with clinicians 

by not lying about if you’re right or wrong, as shown in Figure 

2. 

ROC curves represent how sensitive and specific a test is 

across an increasing or decreasing threshold, and AUC 

indicates how well the test can discriminate between two 

different outcomes. Large AUC values suggest a substantial 

separation between classes, which is desirable in the clinical 

diagnosis. Providing per-class ROC curves presents you an 

objective sense of how well the model can distinguish between 

a normal rhythm and an abnormal one, as shown in Figure 3. 

The hybrid model outperforms the baseline because 

EfficientNetB7 and Vision Transformer have complementary 

representation power. This ability for the EfficientNetB7 to 

capture fine-grained, morphology-level features in ECG 

images is not unexpected; its use of compounding means that 

it’s increasing depth, width, and resolution but still 

maintaining high levels of computational efficiency. That 

means it's particularly well suited to detecting small changes 

in the width of the QRS complex, in how pointy the P-wave 

is, and even minute alterations in the shape of an ST segment. 

These are all things that CNNs proved good at for medical 

imaging in the past. Another challenge in interpreting ECG is 

that we may need to have long-range temporal dependencies 
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at a high level of abstraction since it depends on how the 

cardiac cycles relate to each other. The Vision Transformer 

employs a global self-attention mechanism that allows the 

network to learn these dependencies by computing attention 

scores on the entire sequence of patches. This allows it to 

encode context at a rhythm level, extending beyond local 

morphology. The integration of these architectural strengths 

allows the model to integrate local detailed morphology with 

global timing and structural information. This functionality is 

critical for discriminating between lookalike arrhythmias, 

such as SVEB and VEB. This hybrid synergy is responsible 

for the large gain in performance observed in the ablation 

study and affirms the correctness of this architectural 

composition for cardiac rhythm detection. 

Figure 2. Confusion matrices 

Figure 3. Evaluation of model performance using ROC 

curves 

When looking at how well a model works on imbalanced 

datasets that put more weight on correct positive predictions, 

precision-recall curves are crucial. A high area under the PR 

curve means that rare arrhythmias can be found reliably. This 

visualization helps with clinical readiness by showing that it 

can pick up on small but important problems that are common 

in different ECG populations, as shown in Figure 4. 

Figure 4. Precision-recall curves for evaluating vital 

5. CONCLUSIONS

Here we developed a novel hybrid deep learning 

architecture that integrates EfficientNetB7 and Vision 

Transformer (ViT) to tackle most of the problems for 

conventional ECG classification approaches by associating 

local morphological detail extraction with global contextual 

understanding. The model outperformed state-of-the-art 

baselines ResNet50 and the standalone Vision Transformer on 

three ECG datasets (MITBIH, CPSC2018, and PTB 

Diagnostic). And the average accuracy was 97.8%, which is 

superior to baselines (Table 1). An ablation analysis 

demonstrated that the architecture of the fabricated hybrid 

network has complementary strengths, in which tacking local 

feature extraction (from EfficientNetB7) and global attention 

mechanisms (from Vision Transformer) enables 

morphologically similar arrhythmias to be misclassified less 

frequently (Table 2). In addition, computational efficiency 

tests indicated that the hybrid model maintained competitive 

and acceptable training and inference times for real-time 

clinical scenarios (Table 3). Generalization tests also indicated 

good accuracy of the model for the various recordings and 

patient demographics (Table 5). Explainability techniques 

such as GradCAM and attribution maps demonstrated that the 

model could be utilized in clinical settings by depicting 

physiologically significant ECG features, including QRS 

complexes and P-waves (Section 4.6). These findings 

demonstrate that the framework can be used with confidence, 

accuracy, and openness in telemedicine and out-of-hours 

emergency care. This paper directly answers the call for 

scalable AI-driven cardiac diagnostics in low-resource 

settings. This work further proposes a benchmark for 

automated ECG analysis by fusing cutting-edge architecture 

and clinical relevance. The findings should help patients 

achieve better outcomes by identifying arrhythmias quickly, 

dependably, and in a way that is sensible. 

In order to ease the reproduction of this work and its reuse 

in future task models, all source code, model configuration 

files, and preprocessing scripts will be released as open-source 

when it is published. The repository will include (i) full 

training pipelines for EfficientNetB7, Vision Transformer, and 

our hybrid models; (ii) scripts for preprocessing ECG to 

images and normalizing the datasets; (iii) scripts to evaluate 

using cross-validation and statistical testing; and (iv) pre-
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trained model weights on all three datasets. The raw training 

datasets we used in this study (MIT-BIH, CPSC2018, PTB 

Diagnostic) are available on PhysioNet and the challenge 

repositories. We will also offer the preprocessed ECG image 

datasets from these sources to you for ensuring everything is 

transparent and there is no different preprocessing. When 

combined, these resources ensure that other investigators will 

be able to replicate the entire procedure from beginning to end. 
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