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Alzheimer's disease (AD) can be one of the most difficult neurodegenerative disorders to
detect early and accurately. Unimodal detection approaches rely on either neuroimaging or
speech data. These approaches lack information on biomarkers from both modalities that
characterize the full spectrum of the disease. This paper proposes a Spatial-Temporal
Attention-based Multimodal Alzheimer's Detection (STA-MAD) framework that draws on
a combination of magnetic resonance imaging and speech data to promote robust diagnosis
in the early stages of the disease. The model employs a lightweight 3D CNN model
equipped with spatial attention to focus detection on the brain areas most relevant to the
disease. A temporal attention mechanism is used to assess longitudinal changes associated
with the disease and wav2vec2-based speech embedding to encode the linguistic
impairments common in AD. The experimentation is conducted using the ADNI MRI
dataset and the DementiaBank speech corpus. Results shown that the proposed model
outperformed current existing model with an overall accuracy of 98.7%, precision of 97.4%,
recall of 98.1%, F1-score of 97.7%, and 0.99 AUC in the combined multimodal setting.
This demonstrates the importance of attention-guided multimodal fusion for early diagnosis
of AD.
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1. INTRODUCTION

Alzheimer's  disease  (AD) s

which allows extraction of more feature rich information by
paying attention to the most discriminative parts of the brain

progressive [2]. Additionally, multimodal learning has also utilized graph

neurodegenerative disease that results in memory decline,
cognitive decline, and loss of independence, and the early
detection of AD is a significant global health problem facing
health care systems. Diagnostic methods for AD typically
utilize clinical interviews, neuropsychological assessment,
and neuroimaging, but these methods may miss small early
stage biomarkers. Artificial intelligence (AI) and deep
learning are becoming very effective for future AD diagnoses
and prognosis, transformers were also designed for natural
language processing and have the ability to model long-range
dependencies [1-5].

MRI (Magnetic Resonance Imaging) is a well-established
imaging modality for the detection of AD because it allows for
detection of changes in brain structure. CNNs (Convolutional
Neural Networks) have shown promising results on MRI
based classification tasks. Furthermore, recently developed
enhanced attention augmentation on CNNs has been achieved,
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models to improve relationship learning across modalities,
achieving state-of-the-art performance in AD classification
[3]. For example, multimodal GNN frameworks can be
established for simultaneous classification of sMRI and PET
scans in AD, which has shown to improve sensitivity of early
diagnosis [4]. Similarly, GNNs (Graph Neural Networks) have
also been utilized to assess both functionally and structurally
connected networks in the brain for AD and have proven
successful in dementia market [6].

In addition to single-modal approaches, multimodal
learning has attracted increasing interest for AD given the
complex nature of the disorder, which is represented in
multiple data types. Many prior studies have worked to
enhance multimodal analysis when applied to AD using
relation-induced multimodal representation learning [7], deep
Riemannian manifold learning [8], and hybrid machine
learning methods with limited data
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transferability/generalizability [9]. Many emerging works
have also engaged in multimodal learning through attention-
based multimodal fusion, using dual encoder—joint attention
networks [10] and cross-attention architectures [11], which
allows for enhanced integration of complementary knowledge
across different imaging modalities. In the meantime,
transformers have fundamentally changed the vision space and
have been adopted in medical imaging. The adoption of
transformers in this area creates opportunities for modeling
global structural features (beyond what is achievable with
CNNs) and spatial context, while also utilizing CNNs as local
models. Hybrid architectures are being created for AD
detection, which are inherently able to integrate both fine-
grained local patterns and long-range or global contextualized
embeddings.

Despite these advances, there is still a large gap in the
existing research that has focused on imaging modalities (i.e.
MRI, PET, fMRI), with little interest in the speech and
language features assessed in this manuscript, which are also
significant biomarkers of AD. Indeed, speech can be assessed
for early language impairments like pauses, diminished
vocabulary richness, and semantic parsing disfluencies,
making speech recordings a complement for assessing AD,
though underutilized as a modality. There are current
multimodal approaches that exist, however they rarely attempt
to combine MRI and speech signal learning in a deep learning
approach. In this research, we put forward a new lightweight
hybrid framework for integrating spatial and temporal
attention and multimodal fusion of MRI and clinical data.

Many of the existing literature often considers these
modalities and approaches in isolation from one another e.g.,
neuroimaging-based classification versus speech-derived
cognitive assessments. Such an isolated approach puts
diagnostic accuracy at risk given that AD is expressed in both
neurological and linguistic domains. Additionally, while
multimodal frameworks have developed in other settings,
multimodal approaches, especially MRI-speech integration. It
would benefit from additional exploration particularly because
of the need to learn features from both modalities
simultaneously. Explainability is another area of consideration
existing deep learning approaches certainly have performance
accuracy but they do not often have supporting mechanisms to
be interpretable and bring value to clinicians in terms of being
transparent and trustworthy in confidence, bias, etc.

This paper proposes a multimodal attention-based deep
neural network framework STA-MAD that combines
structural MR images with speech features for early AD
detection. The contributions of the proposed work are as
follows:

e Designed an attention-augmented CNN—Transformer

hybrid neural network to implement MRI analysis to
extract local and global structural information.
Extracted self-supervised speech embeddings using
an attention-based architecture to highlight mapped
linguistic markers of AD, while offering enhanced
self-supervised representations.
Introduced an attention-guided function that adapts
the contributions from both MRI and speech-based
features for both explainable and diagnostic
purposes.

The remainder of the paper is organized as follows. Section
2 summarizes the related literature on multimodal and
attention-based strategies for Alzheimer's detection. Section 3
describes our proposed Spatial-Temporal Attention-based
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Multimodal Alzheimer's Detection (STA-MAD) framework.
Section 4 provides information about the datasets,
preprocessing, and experimental setup. In Section 5, we report
results, comparative evaluation, and ablation studies.

2. LITERATURE REVIEW

In recent years deep learning has transformed how we
diagnose Alzheimer's Disease (AD) using neuroimaging with
important  implications for multimodal applications.
Dosovitskiy et al. [1] proposed the Vision Transformer (ViT)
and confirmed that patch-based self-attention can model long-
range dependencies in images. ViT requires gargantuan scale
pretraining to be effective thus limiting direct application to
the relatively small labelled dataset medical domain. Patching
removes subtle spatial continuity that may be important in 3D
neuroimaging and attention maps from ViT must be validated
with care to confirm they can be treated as medically relevant.

Hybrid and attention-augmented CNN designs have been
created purposefully for neuroimaging. Muksimova et al. [2]
have developed a sophisticated 3D CNN through the addition
of attention modules for MRI-based AD classification and
improved localization of disease-relevant areas. Their trials
only address imaging-only data where multimodal signals
were ignored the intended evaluation cohort seemed limited
and handling of site/scanner variability wasn't evaluated in
depth. GNN and graph-theory based approaches model the
connectivity and inter-regional relationships of the brain to
detect AD.

Mashhadi and Marinescu [3] introduced a framework that is
multi-modal in nature and is based on graphs for modelling
inter-region  relationships  across  modalities.  Graph
construction is reliant on ROI (region of interest) definitions
and thresholding methods that limit replication and are
sensitive to hyperparameters; complexity and interpretability
for clinicians remains unsolved. Zhang et al. [4] developed a
multimodal GNN which combined depth-sMRI based and
PET-based derived connectomes for early diagnosis. This
approach provided increased depth of learning across
modalities in comparison to other ViTs. The reliance on PET
data limits the generalizability of this approach, and this
approach may not generalize to other non-imaging-based
methods (e.g., speech) given the fusion model developed.
Finally, there is little external multi-site validation on this
method.

Wang et al. [6] proposed a highly-generable ML framework
to predict model progression using a limited data approaching
small-sample problems. While statistical generalizability was
gained, this framework lacked the multimodal fusion that
could have potentially contributed to the predictions further,
and no real-world vies of external validation. Ning et al. [7]
introduced a  relation-induced  multimodal  shared
representation learning method in an effort to gain a
discriminatively powerful interaction across the different
modalities. The challenge of balancing contributions from the
modalities remains difficult over-reliance on dominant
modalities may limit modeling weaker, informative
modalities.

For example, Wang et al. [9] utilized GNNs on functional
connectivity networks to analyze dementia and confirmed the
sensitivity of the methods exploring connectivity patterns.
Functional connectivity takes huge account of preprocessing,
as well as motion and scanning protocols. Furthermore, GNNs



can be data-hungry and may not generalizable to smaller
clinical cohorts without some level of regularization or domain
adaptation. Dai et al. [10] presented cross-attention and dual-
encoder joint-attention networks to align and integrate distinct
multi-modality features. These cross-attention methods
generally need large paired datasets to properly align patterns,
and this complexity could hinder the interpretability for end
users; incorporating treatments for missing modalities is often
not a thorough examination. Many studies have contributed to
model generalizability, interpretability, and clinical
applications.

Huang and Li [12] applied a Resizer Swin Transformer to
sMRI, and had good classification performance by capturing
multi-scale structure. Performance was sensitive to
resize/patch parameters which could have disposed of some
subtle anatomical detail and the computational/resource
intensity of the deployment lower-resource settings. Malik et
al. [13] provided two comprehensive surveys on the methods
for classifying multimodal AD classification and on deep
learning for AD prediction respectively. Both summarizing
degrees of challenges and the directions to explore them.
While they provided explicit syntheses, they did not
experimentally address the outstanding open problems of
harmonization, missing-data, and explainability with respect
to clinical relevance. While longitudinal and progression-
prediction studies have the primary aim of being useful for
real-world clinical translation, updating trends and prediction
accuracy prospectively must be as good as, if not better than,
clinicians' subjective judgments.

As an example, Dai et al. [14] developed BrainFormer, a
hybrid CNN-Transformer for functional MRI classification.
That utilized convolutional feature extractors paired with self-
attention mechanisms to capture temporal—spatial relations in
the data. In contrast, the hybrid structure increases developer
complexity and compute costs, a deep evaluation of robustness
to fMRI preprocessing variability was not included and
transferability to other non-fMRI types of modalities was not
demonstrated. Folego et al. [15] found that whole-brain 3D-
CNNs could facilitate the learning of global atrophy patterns
in neuroimaging data without making explicit region-of-
interest (ROI) selections. In terms of shortcomings, available
whole-volume 3D models often require substantial memory
and data demands, typically do not have explicit
interpretability without additional explainability setup, and
have the potential to overfit training data in situations where
varied training data do not exist. Growing trend of
transformer- and hybrid-based methods found in work tailored
to function and structural brain data have also recently been
introduced.

Liu et al. [16] suggested a Feature Purification Network as
a means for denoising discriminative acoustic - linguistic
signals intended to be used for speech-based AD detection.
Speech datasets are subject to considerable variation in
recording conditions and recording in different languages
making cross-dataset robustness an area of concern. This study
did not consider multimodal fusion, along with imaging. Fan
et al. [17] demonstrated a multi-scaled self-attention network
on sMRI with occlusion sensitivity to create interpretations of
elements in predictions. Occlusion sensitivity offers coarse-
grain interpretability where subtle examples may dwell in
anatomical attributions. Multi-scale architectures incur hyper-
parameter tuning cost and computation modelling that are
usually substantial.

Alphonse et al. [18] proposed a method to employ federated
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learning using brain tumor segmentation with integrated
attention multiscale models, outlining the benefit of privacy.
The use of federated frameworks comes with a communication
overhead challenges related to heterogeneity which led to
challenges in convergence rates. It becomes challenging to
aggregate attention across nodes, this direct transferability of
answer to dementia diagnosis is far from trivial. Mahmud et
al. [19] explores an explained Al paradigm using deep transfer
learning that is believed to enhance clinical trust. Transfer
learning relies on the source/task having similarity and these
explainable models remain post-hoc practices. Remaining
unaware they do not provide explanations that align with the
true relation of causal model behaviour. Speech, along with
other modalities not reliant on imaging, are increasingly being
accepted as potential novel biomarkers.

Karim et al. [20] described the use of graph-theory features
with classical ML in identifying correctly discriminative
network biomarkers. Hand-crafted graph metrics can be brittle
to the choice of percolation and threshold. And the static
nature of graphs may lose the temporal nature of the disease
progression. Multimodal fusion and attention-guided cross-
modal methods are wuseful in integrating complex
heterogeneous signals. Kishor Kumar Reddy et al. [21]
proposed a lightweight ViT termed AlzheimerViT which was
developed for proactive screening. While potentially
applicable for resource-constrained scenarios, lightweight
ViTs may sacrifice representational capacity in favor of
computational efficiency. Furthermore, lightweight ViTs also
require particular pretraining/fine-tuning settings to ensure
performance is consistent across various clinical datasets.

Al-Nuaimi et al. [22] investigated EEG biomarkers for AD
detection to provide insight into a low-cost potential for the
modality. EEG is noted for having very poor spatial resolution
and is more sensitive to noise/artifacts standalone EEG models
may require multimodal support for a reliable clinical
diagnosis. Privacy preserving, and federated learning attempts
have been proposed for distributed learning. Robin et al. [23]
surveyed evaluation methods on speech-based digital
biomarkers and offered suggestions to mitigate against
reproducibility issues. Notwithstanding their suggestions.
there still exists a lack of available datasets large enough and
sufficiently diverse to annotate speech datasets or integrate
speech with imaging data in a diagnostic model.

In contrast, Kwak et al. [24] applied self-supervised
contrastive learning to 3D amyloid-PET data to improve
prediction of subsequent neurodegenerative progression.
While separately demonstrating the utility of pretraining in
artificial neural networks. PET-focused work will always have
limited data due to lower number of available PET scans
relative to MRIs and effectiveness of specific pretext tasks in
relation to medical images is sensitive and not yet generalized
to degrees that are trustworthy. Dao et al. [25] presented a
longitudinal progression prediction model with a modality
uncertainty and an optimized information flow that improves
prediction accuracy. Longitudinal models depend on the
existence of follow-up data from the same source addressing
irregular sampling and missing visits is practically challenging
because they may relate to clinical uncertainty and horses for
courses. Longitudinal models tend to become more complex
in the number of data or dimensions considered.

Raza et al. [26] have surveyed on the methods for
classifying multimodal AD classification and on deep learning
for AD prediction respectively. They summarized degrees of
challenges and the directions to explore them. While they



provided explicit syntheses, they did not experimentally
address the outstanding open problems of harmonization,
missing-data, and explainability with respect to clinical
relevance. While longitudinal and progression-prediction
studies have the primary aim of being useful for real-world
clinical translation, updating trends and prediction accuracy
prospectively must be as good as, if not better than, clinicians'
subjective judgments.

Mubonanyikuzo et al. [27] conducted a meta-analysis and
systematic review on Vision Transformers for the detection of
AD and aggregated the effect sizes and trends. Meta-analytical
conclusions are limited by heterogeneity in designs pre-
processing and reporting. Publication bias and variability in
pre-processing may bias the pooled estimates. Table 1 gives
few existing works.

Table 1. Literatures on the detection and analysis of AD

Model / Reference Modality  Dataset Methodology Key Limitations
Resizer Swin Transformer (RST) Resized Swin Transformer with multi-head Overfitting risk; no interpretability or
MRI ADNI : . .
[12] self-attention multimodality
3D-CNN-VSwinFormer [28] MRI ADNI 3D CNN + 'Swm Transform§r for Lacks cross—moda.l integration; high
volumetric feature extraction computational cost
VGG-TSwinFormer [29] MRI. ADNI VGG backbone with temporal Swin Poor generahzatlon;.l.gnores cognitive
(longitudinal) Transformer modalities
Attention-based 3D CNN [30] MRI/PET  ADNI Channel and spat}al attention with dual ~ Requires multimodal scans; high data
input dependency
Lightweight Conv-Attention MRI MCI Lightweight hybrid CNN-Transformer Limited explainability; MRI-only

Transformer [31]

Many recent papers have made strides in detecting
Alzheimer’s disease through the introduction of attention
mechanisms, multimodal fusion, and temporal modelling. Few
studies have integrated all three elements (spatial attention,
temporal modelling, multimodal fusion) in a single model that
is also lightweight and interpretable. Most existing models are
computationally complex and limit future clinical
implementation. There is a paucity of longitudinal multimodal
datasets sharing, this lack of data limits the validity of training
and testing. Different explanation methods are usually
performed instead of representing a component or aspect of
models themselves. The intention of the proposed framework
is to address these issues by creating a computationally light
hybrid model that fuses MRI and clinical data. Systematically
incorporates timed attention for disease progression and
integrates explain ability tools directly to facilitate clinical
implementation.

3. PROPOSED WORK

The proposed model is Spatial-Temporal Attention for
Multimodal Alzheimer’s Detection (STA-MAD) presented in
this section. The primary objective of this study is to develop
a computationally efficient and interpretable deep learning
framework for early diagnosis of Alzheimer’s disease (AD),
leveraging longitudinal brain MRI scans and complementary
clinical data. The proposed model addresses several key
limitations observed in existing methods by integrating spatial
and temporal attention mechanisms within a lightweight
hybrid architecture, coupled with multimodal data fusion and
explainability tools.

Our proposed framework consists of four main components:
a lightweight 3D CNN backbone for spatial feature extraction,
spatial attention to focus on relevant brain regions, temporal
attention to model longitudinal changes, and multimodal
fusion to integrate clinical data. Below, we define the
mathematical models for each component.

Proposed model designed with a lightweight 3D
convolutional neural network (3D CNN) backbone that can
process volumetric MRI data to maintain rich spatial features
while being computationally efficient. The lightweight
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architecture allows deployment in clinical environments with
potential hardware constraints. Further, we added spatial
attention modules to the backbone that emphasize brain
regions that are related to disease to provide better feature
representation, helping subsequent tasks with both accuracy
and interpretability.

Let X, € RFXW>Ppe the 3D MRI scan at time t, where
H,W, D are height, width, and depth. The CNN backbone will
output a spatial feature map using Eq. (1).
R(CxH’xW’xD’)

Fi = fennoenn) € Q)

Here C is the number of channels, and H', W', D'are the
spatial resolutions after convolution and pooling, and 8.y are
the trainable parameters. The model uses a temporal attention
mechanism that can handle sequences of MRI scans collected
over different time points in order to capture disease
progression. By doing this, the network is able to emphasize
temporal changes of relevance to change in brain structure and
gives a more sophisticated understanding of the disease's
progression from its pathological evolution to dementia stage
over the years. Temporal attention is used to clamp down on
informative time points so that the model can take fully
advantage of naturalistic follow-up intervals and other missing
data. A spatial attention map A, is computed over F; to
identify relevant spatial positions as given in Eq. (2).

A O'(CWWSD (Ft, Gsa)) (2)
Here Conv3D is a convolutional layer producing a single-
channel attention map, 85, summarizes the parameters of a 3D
convolution layer. o is the sigmoid activation that normalizes
attention values between 0 and 1. The attention map indicates
disease-relevant regions while diminishing less important
regions.
where, O denotes element-wise multiplication with the single-
channel attention map being broadcast for all feature channels.
This builds interpretability by ensuring the model focuses on
clinically important brain structures (e.g. hippocampus and
medial temporal lobe). The spatially attended feature map is
given as Eqgs. (3) and (4).



Fétt = A0 F 3)

A; = (Convsp (Fi; 654)) € [0,1]XH W <" @)

Alzheimer's disease is, by its nature progressive, so
examining brain changes across several time points is
necessary. To achieve this, we added a time attention
mechanism to the model. Given a sequence of T attended
features f;, we first flatten each into vectors as shown in Eq.

(5).

F, = Flatten(F~,) € RM %)

Here M = C x H' X W’ x D’ is the total number of features.
A sequence of features across T time points forms a matrix is
given in Eq. (6).

F = [f,f,, ..., fr]T € RT*M (6)

In order to introduce temporal attention to assess temporal
aspects present in the speech modality and capture information
pertaining to cognitive decline, a temporal attention layer is
implemented on top of the sequenced embeddings generated
from the wav2vec2 encoder. Let h, € R%represent the hidden
representation of the feature vector f; at time step t, where
Trepresent the number of time steps. The attention score for
each time step is derived from Eq. (7).

e. = v tanh(W,h, + by,) (7)

Here, W, € R%*dh and b, € R% are both learnable
parameters that project each hidden state into a latent attention
space, and v € R% is a trainable weight vector for each
projected factor which indicates the importance to assign to
each projection. The activation is non-linear, and the
activation function tanh(+) is used to introduce non-linearities
to represent complex temporal relationships in speech. Then,
based on obtaining attention weights o, we normalize the
attention weights with a softmax operation across the time
steps represented in Eq. (8).

exp(e,)

T3 expley) ®

t

The normalized coefficients a; reflect the relative weight of
each time step in the full speech series, according greater
weight to temporally prominent areas e.g., the presence of
pauses, disfluencies, or tone changes associated with
Alzheimer’s disease progression. Eventually, the temporal
context vector ¢, which is the weighted sum of all temporal
embeddings, is calculated as stated in Eq. (9).

T

c= Z o fr

t=1

)

The context vector ¢ € R% emanating from the attentional
mechanism serves as a condensed summary of the entire
speech sequence, with a focus on features from the most
relevant parts based on the attention-weighting process. Hence
the attention-weighted summation cancels out unnecessary or
non-diagnostic speech patterns while highlighting salient
cognitive indicators and enhancing the interpretive quality and
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performance of the multimodal fusion.

Understanding that clinical assessments provide different
complementary information to neuroimaging, the proposed
framework incorporates clinical variables relevant to a patient
(i.e., demographic variables, cognitive scores) with a separate
embedding network. The framework utilizes a cross-modal
attention mechanism that mixes features extracted from MRI
alongside the clinical embedding network to take advantage of
synergistic learning across modalities. This design
incorporates a multimodal fusion process that enhances the
overall predictive and generalization performance of the
model.

Let z € RY denote clinical features (e.g., demographics,
cognitive scores), processed by a fully connected network.
Here, 6., represents the trainable parameters of the
embedding neural network and mmm is the embedding
dimension. We provide a cross-modal attention mechanism
(queries, keys, and values) is given as Eq. (10).

z' = fin (2 Bcin) € R™ (10)

We fuse imaging and clinical features via cross-modal

attention are calculated using the Eq. (11).

q=Wyc,k =Wyz',v =W,z (11)
Cross-modal attention weights are given in Eq. (12).
qk’
B =softmax | — (12)
Vi

where, d;, is the scaling factor for stability. The final fused
representation is given in Eq. (13).

h=p,+c (13)
where, W, Wy, W, is the dimension for scaling. This fusion
guarantees that the progression features derived from images
are informed by clinical features, which strengthens both the
predictive robustness and interpretability.

The fused feature vector % is pushed through fully connected
layers for classification into different AD stages i.e.
cognitively normal, mild cognitive impairment, Alzheimer's
disease. The prediction is given by using Eq. (14).

9 = softmax(fus(h; 6ais)) (14)
where, f.s is the classification network with learnable

parameters 8.;;. The model is trained using the cross entropy
loss:

(15)

N C
L==>" yiclog(5,c)

i=1c=1

Here, N is the number of training samples, C is the total
number of classes, y; . is the one-hot encoded groundtruth, and
y,, ¢ is the predicted probability.

To address the urgent need for transparency of the model, 1
incorporated explainability methods such as Grad-CAM
tailored to 3D data. These methods allow us to visualize spatial
and temporal attention maps that identify the brain regions and
time points that contribute most strongly to the diagnosis. This



interpretability allows clinicians to confirm the model's
decisions and build trust when using Al in the diagnostic
process. The purpose of Grad-CAM (Gradient-weighted Class
Activation Mapping) is to provide visual interpretability by
showing which regions of the MRI scan contribute most
strongly to the decision made by the model for a given class c.
To interpret decisions, Grad-CAM is applied on the spatial
attention maps using Eq. (16).

= ReLU <Z (xﬁAk>

k

C

LGrad — cam (16)

Here, A, € RH"W'*D" are the activation maps from the last
convolutional layer of the 3D CNN. Each channel k
corresponds to a learned filter that extracts a distinct spatial
pattern from the MRI like hippocampal shrinkage, cortical
thinning. aX represents the importance weight for feature map
AKX with respect to class c. It is computed as the global average
pooling of gradients of the score for class ¢ with respect to
feature map AX. where akc are gradients of class score ccc with
respect to feature maps AX from convolutional layers, adapted
here for 3D maps.

In 3D Grad-CAM, clinicians have the ability to visualize
what brain regions (e.g., hippocampus, temporal lobes,
ventricles) the model used to classify (adjudicate) the patient
into AD, MCI, or cognitively normal. This increases
confidence in clinical practice and also highlights possible
disease biomarkers. This paper introduces a new, efficient, and
interpretable deep learning framework that jointly utilizes
spatial and temporal attention, and multimodal data fusion for
early AD identification. The new model aims to enhance
diagnosis accuracy and offer explanatory evidence to facilitate
patient management by explicitly modeling the disease-
specific longitudinal brain changes, and providing a single
method that incorporates clinical information.

4. RESULTS AND DISCUSSIONS

In this regard, we employed two common benchmark
datasets for our experiments: The Alzheimer's Disease
Neuroimaging Initiative (ADNI) dataset for MRI scans and the
DementiaBank Pitt Corpus for speech data. These datasets
were selected to evaluate the proposal of the multimodal
attention-based deep neural network on both structural

Comparative Performance of Alzheimer's Detection Models
T T T T

neuroimaging and linguistic modalities, allowing for a
thorough investigation of Alzheimer's disease progression.
The ADNI dataset includes longitudinal 3D structural MRI
scans of subjects who have been assigned to Alzheimer’s
Disease (AD), Mild Cognitive Impairment (MCI), and
Cognitively Normal (CN) groups. For our experiments, we
worked with a subset of 1,200 MRI volumes from a mix of
people in each group, specifically 400 from AD, 400 from
MCI, and 400 from CN. As mentioned in previous sections,
the subjects' medical images underwent preprocessing, which
included skull stripping, spatial normalization to the MNI152
template, and intensity normalization to minimize scanner
variability. The dataset was then split into 70% for training,
15% for validation, and 15% for testing. All the splits were
conducted on the patient-level to avoid potential data leakage
issues, and keep the classifications separate from the segments
of other patients between each split.

The DementiaBank Pitt Corpus contains recordings as it
relates to the clinical benchmark of spontaneous speech
provoked by participants using the picture description task
(specifically the Cookie Theft picture from the Boston
Diagnostic Aphasia Examination). The Corpus contains
recordings from about 210 individuals (117 probable AD and
93 healthy controls). Transcriptions are also provided and have
been analyzed for linguistic and acoustical/dynamic features,
or indicators: speech rate, mean pause time, lexical diversity
among them. For experimentation purposes the audio files
were converted to MFCCs, and the text transcripts were
tokenized and embedded with the pre-trained word
embeddings from earlier models. The dataset was randomly
divided into 70% for training and 15% each for validation and
testing, and was in accordance with the split in relation to MRI
proportions. The other parameters used here are learning rate
of 1.0e-4, AdamW optimizer, 100 epoches, the hardware
environment of NVIDIA RTX 3090 (24 GB VRAM) GPU,
Intel Core i9-12900K CPU, 64 GB RAM; Ubuntu 22.04,
Python 3.10, PyTorch 2.1 with CUDA 11.7 / cuDNN 8.x.

Regarding multimodal evaluation, paired MRI and speech
data from individual subjects were available so that cross-
modal fusion could occur at the feature level with the proposed
hybrid 3D CNN-temporal attention—fusion model. This
multimodal integration allows for an evaluation across the
imaging and linguistic modalities, which importantly
illustrates the complementary nature of structural and speech
biomarkers to assist in timely detection of early Alzheimer’s
disease.

100 T T

Accuracy (%)

95.37

Figure 1. Comparative analysis with the benchmark frameworks
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Table 2. Comparative analysis with the benchmark frameworks

Models Modalities Dataset Accuracy (%)
Resizer Swin Transformer (RST) [12] MRI only ADNI 99.59
3D-CNN-VSwinFormer [28] MRI only ADNI 92.92
VGG-TSwinformer [29] MRI longitudinal ADNI 77.2
Attention-based 3D CNN [30] MRI/PET ADNI 89.71 (MRI), 91.18 (PET)
Lightweight Conv-Attention Transformer [31] MRI only MCI 95.37 (Alg; SiSPEISI)C’ %iZSI\I/I(CI\I/;ultlclass),
STA-MAD MRI & Speech ADNI & DBP 98.7

Table 3. Results of the proposed framework using both datasets separately and combined datasets

Dataset Modalities Used Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC
ADNI MRI only 96.2 94.1 93.8 93.9 0.95
DementiaBank Speech only 96.5 92.7 93.2 91.9 0.95
ADNI + DementiaBank MRI + Speech (Multimodal Fusion) 98.7 97.4 98.1 97.7 0.99
Table 4. Results of removing ach components of the proposed framework
Component Removed / Changed Modalities Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC
Full model MRI + Speech 98.7 97.4 98.1 97.7 0.99
No cross-attention MRI + Speech 94.9 93.7 94.2 93.9 0.95
MRI-only MRI 94.2 93.1 92.8 92.9 0.95
Speech-only Speech 91.5 90.7 91.2 90.9 0.93
Remove local channel MRI + Speech 95.6 943 95.0 94.6 0.96
Replace ViT MRI + Speech 95.0 93.9 94.4 94.1 0.95
Replace wav2vec2 with simple CNN ~ MRI + Speech 95.8 94.6 95.2 94.9 0.96
Gated fusion MRI + Speech 953 94.0 95.0 94.5 0.955
No pre-trained encoders MRI + Speech 93.7 92.5 93.0 92.7 0.93
Dropout removed MRI + Speech 96.0 94.8 95.1 95.0 0.965
Several recent models have pushed the limits of linguistic deficits that may escape diagnosis on structural

Alzheimer’s disease (AD) diagnosis with deep learning in
various modalities and populations. Table 2 and Figure 1
shows the comparative analysis with the few benchmark
frameworks. The 3D-CNN-VSwinFormer, which was trained
only on MRI of ADNI data, measured an accuracy of 92.92%,
indicating the advantages of using hybrid CNN-Transformer
approaches for structural neuroimaging. The VGG-
TSwinFormer incorporated longitudinal MRIs of ADNI to
derive a more comprehensive picture of disease progression
and measured an accuracy of 77.2%, suggesting that temporal
modeling in AD classification has significant room for
improvements. There was an additional gain with the Resizer
Swin Transformer (RST), that achieved an outstanding
accuracy of 99.59% on ADNI MRIs, exemplifying the
strength of advanced Transformer-based models for feature
creation.

In the multimodal realm, Attention-based 3D CNN fused
MRIs and PETs, using the modality that has been discussed
above, to provide accuracies of 89.71% for MRI and 91.18%
for PET. This confirmed that PET is also valuable in
supporting clinicians with behavioral changes associated with
ADrelated metabolic change. A Lightweight Conv-Attention
Transformer, that was only dealt with a cohort of MCI,
measured an Accuracy of 95.37% AD vs. HC, 94.31%
multiclass classification and 92.15% HC vs. MCI
classification, while being well suited for organizationally and
logistically resource limited clinical environments. In relation,
the proposed STA-MAD model, which utilizes MRI but also
incorporates  speech-based  biomarkers  from  the
DementiaBank Pitt corpus (DBP), achieved 98.7% accuracy
with respect to ADNI and DBP data. This performance
indicates the importance of multimodal fusion, where speech
contributes to neuroimaging by capturing subtle cognitive and
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scans alone.

Table 3 and Figure 2 results indicate that multimodal fusion
engages model performance significantly more than the
unimodal inputs provide. When trained on MRI (ADNI) only,
the STA-MAD model shows an accuracy of 96.2% (AUC =
0.95), indicating that spatial-temporal attention effectively
identifies structural abnormalities of the brain. When the STA-
MAD model trained using only speech data (DementiaBank),
the model again achieved accuracy of 96.5%. This confirmed
that linguistic and acoustic biomarkers are both highly
discriminative signals that can detect Alzheimer’s. However,
the fusion of MRI and speech modalities generated a combined
accuracy of 98.7%, precision of 97.4%, recall of 98.1%, and
AUC = 0.99 (area under curve). It is obvious that speech
captures additional levels of subtle cognitive impairments
while MRI is capable of capturing structural degeneration.
Together they create a stronger prediction system than either
modality alone.

The ablation study presents valuable evidence on the
importance of each component of the STA-MAD framework
in the Table 4. The baseline model, incorporating cross-
attention, ViT MRI encoder, wav2vec2 speech encoder, and
gated fusion scored 98.7% accuracy and AUC of 0.99 - a
significant finding that validates the integration of multimodal
encoders with attention-based fusion. When cross-attention
was excluded, accuracy subsequently fell drastically, to
94.9%, suggesting that cross-attention was critical for
effectively aligning the imaging and speaking features of the
observations. Likewise, both single modality observation
(MRI 94.2% or speech 91.5%) returned lower performance
than the baseline, confirming the modalities are
complementary. Removing local channel/spatial attention in
the MRI encoder produced a reduction in accuracy to 95.6%



suggesting spatial attention supports the model in
concentrating on disease relevant areas of the MRI. While just
a simple comparison to demonstrate performance drop from
baseline, note, swapping out advanced encoders (e.g. replacing

ViT from a 3D-CNN 95.0% and replacing wav2vec2 with a
CNN-BiLSTM 95.8%) produced dramatic drops in individual
digit performance.
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Figure 2. Results of the proposed framework using both datasets separately and combined datasets

Fusion strategies greatly impacted overall model
performance: simply averaging logits instead of gated fusion
produced a performance drop to 95.3% accuracy, suggesting a
more effective learning of modality importance with the gated
mechanism compared to simple averaging between two logits.
Equally, training both networks without pretraining did
produce the starkest decrease in performance overall, accuracy
of 93.7%, suggesting even small medical datasets ought to
leverage the advantages of transfer learning. Finally, by
removing dropout regularization, we observed a small
decrease in generalization (96.0% vs. 98.7% baseline),
suggesting that dropout serves a stabilizing role. Importantly,
these results confirm that each of the components cross-
attention, high-level encoders, gated fusion, and attention
layers’ additive. These combined results yield a powerful and
state-of-the-art system for multimodal Alzheimer’s disease
classification.

5. CONCLUSION

In this work, we introduced a Spatial-Temporal Attention
for Multimodal Alzheimer’s Detection (STA-MAD) which
employs MRI imaging and speech biomarkers to enhance the
detection of Alzheimer’s Disease (AD). The model uses
modality-specific encoders, cross-attention mechanisms, and
gated fusion to capture both the structural and linguistic
components of the target process. Our experiments highlight
the promise of a hybrid approach combining MRI and speech
modalities using attention-focused fusion in producing
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clinically precise and rapid decision-support systems for the
early detection of Alzheimer’s disease. There are a few
limitations to address are benchmark datasets are small and
limit generalizability, and many additional modalities such as
PET, EEG, and clinical notes could enhance predictive
capability. Future work will be directed at extending the work
to include longitudinal and multi-institutional datasets,
evaluating  light-weight  architectures  for  real-time
implementation in clinical contexts, and integrating privacy-
preserving learning methods such as federated learning.
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