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Alzheimer's disease (AD) can be one of the most difficult neurodegenerative disorders to 

detect early and accurately. Unimodal detection approaches rely on either neuroimaging or 

speech data. These approaches lack information on biomarkers from both modalities that 

characterize the full spectrum of the disease. This paper proposes a Spatial-Temporal 

Attention-based Multimodal Alzheimer's Detection (STA-MAD) framework that draws on 

a combination of magnetic resonance imaging and speech data to promote robust diagnosis 

in the early stages of the disease. The model employs a lightweight 3D CNN model 

equipped with spatial attention to focus detection on the brain areas most relevant to the 

disease.  A temporal attention mechanism is used to assess longitudinal changes associated 

with the disease and wav2vec2-based speech embedding to encode the linguistic 

impairments common in AD. The experimentation is conducted using the ADNI MRI 

dataset and the DementiaBank speech corpus. Results shown that the proposed model 

outperformed current existing model with an overall accuracy of 98.7%, precision of 97.4%, 

recall of 98.1%, F1-score of 97.7%, and 0.99 AUC in the combined multimodal setting. 

This demonstrates the importance of attention-guided multimodal fusion for early diagnosis 

of AD. 
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1. INTRODUCTION

Alzheimer's disease (AD) is a progressive 

neurodegenerative disease that results in memory decline, 

cognitive decline, and loss of independence, and the early 

detection of AD is a significant global health problem facing 

health care systems. Diagnostic methods for AD typically 

utilize clinical interviews, neuropsychological assessment, 

and neuroimaging, but these methods may miss small early 

stage biomarkers. Artificial intelligence (AI) and deep 

learning are becoming very effective for future AD diagnoses 

and prognosis, transformers were also designed for natural 

language processing and have the ability to model long-range 

dependencies [1-5].  

MRI (Magnetic Resonance Imaging) is a well-established 

imaging modality for the detection of AD because it allows for 

detection of changes in brain structure. CNNs (Convolutional 

Neural Networks) have shown promising results on MRI 

based classification tasks. Furthermore, recently developed 

enhanced attention augmentation on CNNs has been achieved, 

which allows extraction of more feature rich information by 

paying attention to the most discriminative parts of the brain 

[2]. Additionally, multimodal learning has also utilized graph 

models to improve relationship learning across modalities, 

achieving state-of-the-art performance in AD classification 

[3]. For example, multimodal GNN frameworks can be 

established for simultaneous classification of sMRI and PET 

scans in AD, which has shown to improve sensitivity of early 

diagnosis [4]. Similarly, GNNs (Graph Neural Networks) have 

also been utilized to assess both functionally and structurally 

connected networks in the brain for AD and have proven 

successful in dementia market [6]. 

In addition to single-modal approaches, multimodal 

learning has attracted increasing interest for AD given the 

complex nature of the disorder, which is represented in 

multiple data types. Many prior studies have worked to 

enhance multimodal analysis when applied to AD using 

relation-induced multimodal representation learning [7], deep 

Riemannian manifold learning [8], and hybrid machine 

learning methods with limited data 
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transferability/generalizability [9]. Many emerging works 

have also engaged in multimodal learning through attention-

based multimodal fusion, using dual encoder–joint attention 

networks [10] and cross-attention architectures [11], which 

allows for enhanced integration of complementary knowledge 

across different imaging modalities. In the meantime, 

transformers have fundamentally changed the vision space and 

have been adopted in medical imaging. The adoption of 

transformers in this area creates opportunities for modeling 

global structural features (beyond what is achievable with 

CNNs) and spatial context, while also utilizing CNNs as local 

models. Hybrid architectures are being created for AD 

detection, which are inherently able to integrate both fine-

grained local patterns and long-range or global contextualized 

embeddings. 

Despite these advances, there is still a large gap in the 

existing research that has focused on imaging modalities (i.e. 

MRI, PET, fMRI), with little interest in the speech and 

language features assessed in this manuscript, which are also 

significant biomarkers of AD. Indeed, speech can be assessed 

for early language impairments like pauses, diminished 

vocabulary richness, and semantic parsing disfluencies, 

making speech recordings a complement for assessing AD, 

though underutilized as a modality. There are current 

multimodal approaches that exist, however they rarely attempt 

to combine MRI and speech signal learning in a deep learning 

approach.  In this research, we put forward a new lightweight 

hybrid framework for integrating spatial and temporal 

attention and multimodal fusion of MRI and clinical data. 

Many of the existing literature often considers these 

modalities and approaches in isolation from one another e.g., 

neuroimaging-based classification versus speech-derived 

cognitive assessments. Such an isolated approach puts 

diagnostic accuracy at risk given that AD is expressed in both 

neurological and linguistic domains. Additionally, while 

multimodal frameworks have developed in other settings, 

multimodal approaches, especially MRI-speech integration. It 

would benefit from additional exploration particularly because 

of the need to learn features from both modalities 

simultaneously. Explainability is another area of consideration 

existing deep learning approaches certainly have performance 

accuracy but they do not often have supporting mechanisms to 

be interpretable and bring value to clinicians in terms of being 

transparent and trustworthy in confidence, bias, etc. 

This paper proposes a multimodal attention-based deep 

neural network framework STA-MAD that combines 

structural MR images with speech features for early AD 

detection. The contributions of the proposed work are as 

follows: 

• Designed an attention-augmented CNN–Transformer

hybrid neural network to implement MRI analysis to

extract local and global structural information.

• Extracted self-supervised speech embeddings using

an attention-based architecture to highlight mapped

linguistic markers of AD, while offering enhanced

self-supervised representations.

• Introduced an attention-guided function that adapts

the contributions from both MRI and speech-based

features for both explainable and diagnostic

purposes.

The remainder of the paper is organized as follows. Section 

2 summarizes the related literature on multimodal and 

attention-based strategies for Alzheimer's detection. Section 3 

describes our proposed Spatial-Temporal Attention-based 

Multimodal Alzheimer's Detection (STA-MAD) framework. 

Section 4 provides information about the datasets, 

preprocessing, and experimental setup. In Section 5, we report 

results, comparative evaluation, and ablation studies. 

2. LITERATURE REVIEW

In recent years deep learning has transformed how we 

diagnose Alzheimer's Disease (AD) using neuroimaging with 

important implications for multimodal applications. 

Dosovitskiy et al. [1] proposed the Vision Transformer (ViT) 

and confirmed that patch-based self-attention can model long-

range dependencies in images. ViT requires gargantuan scale 

pretraining to be effective thus limiting direct application to 

the relatively small labelled dataset medical domain. Patching 

removes subtle spatial continuity that may be important in 3D 

neuroimaging and attention maps from ViT must be validated 

with care to confirm they can be treated as medically relevant. 

Hybrid and attention-augmented CNN designs have been 

created purposefully for neuroimaging. Muksimova et al. [2] 

have developed a sophisticated 3D CNN through the addition 

of attention modules for MRI-based AD classification and 

improved localization of disease-relevant areas. Their trials 

only address imaging-only data where multimodal signals 

were ignored the intended evaluation cohort seemed limited 

and handling of site/scanner variability wasn't evaluated in 

depth. GNN and graph-theory based approaches model the 

connectivity and inter-regional relationships of the brain to 

detect AD. 

Mashhadi and Marinescu [3] introduced a framework that is 

multi-modal in nature and is based on graphs for modelling 

inter-region relationships across modalities. Graph 

construction is reliant on ROI (region of interest) definitions 

and thresholding methods that limit replication and are 

sensitive to hyperparameters; complexity and interpretability 

for clinicians remains unsolved. Zhang et al. [4] developed a 

multimodal GNN which combined depth-sMRI based and 

PET-based derived connectomes for early diagnosis. This 

approach provided increased depth of learning across 

modalities in comparison to other ViTs. The reliance on PET 

data limits the generalizability of this approach, and this 

approach may not generalize to other non-imaging-based 

methods (e.g., speech) given the fusion model developed. 

Finally, there is little external multi-site validation on this 

method. 

Wang et al. [6] proposed a highly-generable ML framework 

to predict model progression using a limited data approaching 

small-sample problems. While statistical generalizability was 

gained, this framework lacked the multimodal fusion that 

could have potentially contributed to the predictions further, 

and no real-world vies of external validation. Ning et al. [7] 

introduced a relation-induced multimodal shared 

representation learning method in an effort to gain a 

discriminatively powerful interaction across the different 

modalities.  The challenge of balancing contributions from the 

modalities remains difficult over-reliance on dominant 

modalities may limit modeling weaker, informative 

modalities. 

For example, Wang et al. [9] utilized GNNs on functional 

connectivity networks to analyze dementia and confirmed the 

sensitivity of the methods exploring connectivity patterns. 

Functional connectivity takes huge account of preprocessing, 

as well as motion and scanning protocols. Furthermore, GNNs 
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can be data-hungry and may not generalizable to smaller 

clinical cohorts without some level of regularization or domain 

adaptation. Dai et al. [10] presented cross-attention and dual-

encoder joint-attention networks to align and integrate distinct 

multi-modality features. These cross-attention methods 

generally need large paired datasets to properly align patterns, 

and this complexity could hinder the interpretability for end 

users; incorporating treatments for missing modalities is often 

not a thorough examination. Many studies have contributed to 

model generalizability, interpretability, and clinical 

applications. 

Huang and Li [12] applied a Resizer Swin Transformer to 

sMRI, and had good classification performance by capturing 

multi-scale structure. Performance was sensitive to 

resize/patch parameters which could have disposed of some 

subtle anatomical detail and the computational/resource 

intensity of the deployment lower-resource settings. Malik et 

al. [13] provided two comprehensive surveys on the methods 

for classifying multimodal AD classification and on deep 

learning for AD prediction respectively. Both summarizing 

degrees of challenges and the directions to explore them. 

While they provided explicit syntheses, they did not 

experimentally address the outstanding open problems of 

harmonization, missing-data, and explainability with respect 

to clinical relevance. While longitudinal and progression-

prediction studies have the primary aim of being useful for 

real-world clinical translation, updating trends and prediction 

accuracy prospectively must be as good as, if not better than, 

clinicians' subjective judgments.  

As an example, Dai et al. [14] developed BrainFormer, a 

hybrid CNN–Transformer for functional MRI classification. 

That utilized convolutional feature extractors paired with self-

attention mechanisms to capture temporal–spatial relations in 

the data.  In contrast, the hybrid structure increases developer 

complexity and compute costs, a deep evaluation of robustness 

to fMRI preprocessing variability was not included and 

transferability to other non-fMRI types of modalities was not 

demonstrated. Folego et al. [15] found that whole-brain 3D-

CNNs could facilitate the learning of global atrophy patterns 

in neuroimaging data without making explicit region-of-

interest (ROI) selections. In terms of shortcomings, available 

whole-volume 3D models often require substantial memory 

and data demands, typically do not have explicit 

interpretability without additional explainability setup, and 

have the potential to overfit training data in situations where 

varied training data do not exist. Growing trend of 

transformer- and hybrid-based methods found in work tailored 

to function and structural brain data have also recently been 

introduced.  

Liu et al. [16] suggested a Feature Purification Network as 

a means for denoising discriminative acoustic - linguistic 

signals intended to be used for speech-based AD detection. 

Speech datasets are subject to considerable variation in 

recording conditions and recording in different languages 

making cross-dataset robustness an area of concern. This study 

did not consider multimodal fusion, along with imaging. Fan 

et al. [17] demonstrated a multi-scaled self-attention network 

on sMRI with occlusion sensitivity to create interpretations of 

elements in predictions. Occlusion sensitivity offers coarse-

grain interpretability where subtle examples may dwell in 

anatomical attributions. Multi-scale architectures incur hyper-

parameter tuning cost and computation modelling that are 

usually substantial.   

Alphonse et al. [18] proposed a method to employ federated 

learning using brain tumor segmentation with integrated 

attention multiscale models, outlining the benefit of privacy. 

The use of federated frameworks comes with a communication 

overhead challenges related to heterogeneity which led to 

challenges in convergence rates. It becomes challenging to 

aggregate attention across nodes, this direct transferability of 

answer to dementia diagnosis is far from trivial. Mahmud et 

al. [19] explores an explained AI paradigm using deep transfer 

learning that is believed to enhance clinical trust. Transfer 

learning relies on the source/task having similarity and these 

explainable models remain post-hoc practices. Remaining 

unaware they do not provide explanations that align with the 

true relation of causal model behaviour. Speech, along with 

other modalities not reliant on imaging, are increasingly being 

accepted as potential novel biomarkers.  

Karim et al. [20] described the use of graph-theory features 

with classical ML in identifying correctly discriminative 

network biomarkers. Hand-crafted graph metrics can be brittle 

to the choice of percolation and threshold. And the static 

nature of graphs may lose the temporal nature of the disease 

progression. Multimodal fusion and attention-guided cross-

modal methods are useful in integrating complex 

heterogeneous signals. Kishor Kumar Reddy et al. [21] 

proposed a lightweight ViT termed AlzheimerViT which was 

developed for proactive screening. While potentially 

applicable for resource-constrained scenarios, lightweight 

ViTs may sacrifice representational capacity in favor of 

computational efficiency. Furthermore, lightweight ViTs also 

require particular pretraining/fine-tuning settings to ensure 

performance is consistent across various clinical datasets. 

Al-Nuaimi et al. [22] investigated EEG biomarkers for AD 

detection to provide insight into a low-cost potential for the 

modality. EEG is noted for having very poor spatial resolution 

and is more sensitive to noise/artifacts standalone EEG models 

may require multimodal support for a reliable clinical 

diagnosis. Privacy preserving, and federated learning attempts 

have been proposed for distributed learning. Robin et al. [23] 

surveyed evaluation methods on speech-based digital 

biomarkers and offered suggestions to mitigate against 

reproducibility issues. Notwithstanding their suggestions. 

there still exists a lack of available datasets large enough and 

sufficiently diverse to annotate speech datasets or integrate 

speech with imaging data in a diagnostic model. 

In contrast, Kwak et al. [24] applied self-supervised 

contrastive learning to 3D amyloid-PET data to improve 

prediction of subsequent neurodegenerative progression. 

While separately demonstrating the utility of pretraining in 

artificial neural networks. PET-focused work will always have 

limited data due to lower number of available PET scans 

relative to MRIs and effectiveness of specific pretext tasks in 

relation to medical images is sensitive and not yet generalized 

to degrees that are trustworthy. Dao et al. [25] presented a 

longitudinal progression prediction model with a modality 

uncertainty and an optimized information flow that improves 

prediction accuracy. Longitudinal models depend on the 

existence of follow-up data from the same source addressing 

irregular sampling and missing visits is practically challenging 

because they may relate to clinical uncertainty and horses for 

courses. Longitudinal models tend to become more complex 

in the number of data or dimensions considered. 

Raza et al. [26] have surveyed on the methods for 

classifying multimodal AD classification and on deep learning 

for AD prediction respectively. They summarized degrees of 

challenges and the directions to explore them. While they 
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provided explicit syntheses, they did not experimentally 

address the outstanding open problems of harmonization, 

missing-data, and explainability with respect to clinical 

relevance. While longitudinal and progression-prediction 

studies have the primary aim of being useful for real-world 

clinical translation, updating trends and prediction accuracy 

prospectively must be as good as, if not better than, clinicians' 

subjective judgments.  

Mubonanyikuzo et al. [27] conducted a meta-analysis and 

systematic review on Vision Transformers for the detection of 

AD and aggregated the effect sizes and trends. Meta-analytical 

conclusions are limited by heterogeneity in designs pre-

processing and reporting. Publication bias and variability in 

pre-processing may bias the pooled estimates. Table 1 gives 

few existing works. 

Table 1. Literatures on the detection and analysis of AD 

Model / Reference Modality Dataset Methodology Key Limitations 

Resizer Swin Transformer (RST) 

[12] 
MRI ADNI 

Resized Swin Transformer with multi-head 

self-attention 

Overfitting risk; no interpretability or 

multimodality 

3D-CNN-VSwinFormer [28] MRI ADNI 
3D CNN + Swin Transformer for 

volumetric feature extraction 

Lacks cross-modal integration; high 

computational cost 

VGG-TSwinFormer [29] 
MRI 

(longitudinal) 
ADNI 

VGG backbone with temporal Swin 

Transformer 

Poor generalization; ignores cognitive 

modalities 

Attention-based 3D CNN [30] MRI / PET ADNI 
Channel and spatial attention with dual 

input 

Requires multimodal scans; high data 

dependency 

Lightweight Conv-Attention 

Transformer [31] 
MRI MCI Lightweight hybrid CNN–Transformer Limited explainability; MRI-only 

Many recent papers have made strides in detecting 

Alzheimer’s disease through the introduction of attention 

mechanisms, multimodal fusion, and temporal modelling. Few 

studies have integrated all three elements (spatial attention, 

temporal modelling, multimodal fusion) in a single model that 

is also lightweight and interpretable. Most existing models are 

computationally complex and limit future clinical 

implementation. There is a paucity of longitudinal multimodal 

datasets sharing, this lack of data limits the validity of training 

and testing. Different explanation methods are usually 

performed instead of representing a component or aspect of 

models themselves. The intention of the proposed framework 

is to address these issues by creating a computationally light 

hybrid model that fuses MRI and clinical data. Systematically 

incorporates timed attention for disease progression and 

integrates explain ability tools directly to facilitate clinical 

implementation. 

3. PROPOSED WORK

The proposed model is Spatial-Temporal Attention for 

Multimodal Alzheimer’s Detection (STA-MAD) presented in 

this section. The primary objective of this study is to develop 

a computationally efficient and interpretable deep learning 

framework for early diagnosis of Alzheimer’s disease (AD), 

leveraging longitudinal brain MRI scans and complementary 

clinical data. The proposed model addresses several key 

limitations observed in existing methods by integrating spatial 

and temporal attention mechanisms within a lightweight 

hybrid architecture, coupled with multimodal data fusion and 

explainability tools. 

Our proposed framework consists of four main components: 

a lightweight 3D CNN backbone for spatial feature extraction, 

spatial attention to focus on relevant brain regions, temporal 

attention to model longitudinal changes, and multimodal 

fusion to integrate clinical data. Below, we define the 

mathematical models for each component. 

Proposed model designed with a lightweight 3D 

convolutional neural network (3D CNN) backbone that can 

process volumetric MRI data to maintain rich spatial features 

while being computationally efficient. The lightweight 

architecture allows deployment in clinical environments with 

potential hardware constraints. Further, we added spatial 

attention modules to the backbone that emphasize brain 

regions that are related to disease to provide better feature 

representation, helping subsequent tasks with both accuracy 

and interpretability. 

Let 𝑋𝑡 ∈ 𝑅𝐻×𝑊×𝐷 be the 3D MRI scan at time t, where

𝐻, 𝑊, 𝐷 are height, width, and depth. The CNN backbone will 

output a spatial feature map using Eq. (1).  

𝐹𝑡 = 𝑓𝐶𝑁𝑁(𝑋𝑡;𝜃𝐶𝑁𝑁) ∈ 𝑅(𝐶×𝐻′×𝑊′×𝐷′) (1) 

Here C is the number of channels, and 𝐻′ , 𝑊′, 𝐷′are the

spatial resolutions after convolution and pooling, and 𝜃𝐶𝑁𝑁 are

the trainable parameters. The model uses a temporal attention 

mechanism that can handle sequences of MRI scans collected 

over different time points in order to capture disease 

progression. By doing this, the network is able to emphasize 

temporal changes of relevance to change in brain structure and 

gives a more sophisticated understanding of the disease's 

progression from its pathological evolution to dementia stage 

over the years. Temporal attention is used to clamp down on 

informative time points so that the model can take fully 

advantage of naturalistic follow-up intervals and other missing 

data. A spatial attention map 𝐴𝑡  is computed over 𝐹𝑡  to

identify relevant spatial positions as given in Eq. (2). 

𝐴𝑡 =  𝜎(𝐶𝑜𝑛𝑣3𝐷(𝐹𝑡 , 𝜃𝑠𝑎)) (2) 

Here Conv3D is a convolutional layer producing a single-

channel attention map, 𝜃𝑠𝑎 summarizes the parameters of a 3D

convolution layer. σ is the sigmoid activation that normalizes 

attention values between 0 and 1. The attention map indicates 

disease-relevant regions while diminishing less important 

regions. 

where, ⊙ denotes element-wise multiplication with the single-

channel attention map being broadcast for all feature channels. 

This builds interpretability by ensuring the model focuses on 

clinically important brain structures (e.g. hippocampus and 

medial temporal lobe). The spatially attended feature map is 

given as Eqs. (3) and (4). 
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𝐹𝑎𝑡𝑡
𝑡 =  𝐴𝑡 ⊙  𝐹𝑡 (3) 

𝐴𝑡 = 𝜎(𝐶𝑜𝑛𝑣3𝐷(𝐹𝑡; 𝜃𝑠𝑎)) ∈ [0,1]1×𝐻′×𝑊′×𝐷′
(4) 

Alzheimer's disease is, by its nature progressive, so 

examining brain changes across several time points is 

necessary. To achieve this, we added a time attention 

mechanism to the model. Given a sequence of T attended 

features 𝑓𝑡̃, we first flatten each into vectors as shown in Eq.

(5). 

Ft = Flatten(F~t) ∈ RM (5) 

Here M = C × H′ × W′ × D′ is the total number of features.

A sequence of features across T time points forms a matrix is 

given in Eq. (6). 

F = [f1, f2, … , fT]T ∈ RT×M (6) 

In order to introduce temporal attention to assess temporal 

aspects present in the speech modality and capture information 

pertaining to cognitive decline, a temporal attention layer is 

implemented on top of the sequenced embeddings generated 

from the wav2vec2 encoder. Let ℎ𝑡 ∈ 𝑅𝑑ℎrepresent the hidden

representation of the feature vector 𝑓𝑡  at time step t, where

Trepresent the number of time steps. The attention score for 

each time step is derived from Eq. (7). 

et = vT tanh(Whht + bh) (7) 

Here, 𝑊ℎ ∈ 𝑅𝑑𝑎×𝑑ℎ and 𝑏ℎ ∈ 𝑅𝑑𝑎 are both learnable

parameters that project each hidden state into a latent attention 

space, and 𝑣 ∈ 𝑅𝑑𝑎 is a trainable weight vector for each

projected factor which indicates the importance to assign to 

each projection. The activation is non-linear, and the 

activation function tanh(⋅) is used to introduce non-linearities 

to represent complex temporal relationships in speech. Then, 

based on obtaining attention weights αt, we normalize the 

attention weights with a softmax operation across the time 

steps represented in Eq. (8). 

αt =
exp(et)

∑ exp(ek)T
K−1

(8) 

The normalized coefficients 𝛼𝑡 reflect the relative weight of

each time step in the full speech series, according greater 

weight to temporally prominent areas e.g., the presence of 

pauses, disfluencies, or tone changes associated with 

Alzheimer’s disease progression. Eventually, the temporal 

context vector c, which is the weighted sum of all temporal 

embeddings, is calculated as stated in Eq. (9). 

c = ∑ αtft

T

t=1

(9) 

The context vector 𝑐 ∈ 𝑅𝑑ℎ  emanating from the attentional

mechanism serves as a condensed summary of the entire 

speech sequence, with a focus on features from the most 

relevant parts based on the attention-weighting process. Hence 

the attention-weighted summation cancels out unnecessary or 

non-diagnostic speech patterns while highlighting salient 

cognitive indicators and enhancing the interpretive quality and 

performance of the multimodal fusion. 

Understanding that clinical assessments provide different 

complementary information to neuroimaging, the proposed 

framework incorporates clinical variables relevant to a patient 

(i.e., demographic variables, cognitive scores) with a separate 

embedding network. The framework utilizes a cross-modal 

attention mechanism that mixes features extracted from MRI 

alongside the clinical embedding network to take advantage of 

synergistic learning across modalities. This design 

incorporates a multimodal fusion process that enhances the 

overall predictive and generalization performance of the 

model. 

Let z ∈ Rd  denote clinical features (e.g., demographics,

cognitive scores), processed by a fully connected network. 

Here, 𝜃𝑐𝑙𝑖𝑛 represents the trainable parameters of the

embedding neural network and mmm is the embedding 

dimension. We provide a cross-modal attention mechanism 

(queries, keys, and values) is given as Eq. (10). 

z′ = fclin(z; θclin) ∈ Rm (10) 

We fuse imaging and clinical features via cross-modal 

attention are calculated using the Eq. (11). 

𝑞 = 𝑊𝑞𝑐, 𝑘 = 𝑊𝑘𝑧′, 𝑣 = 𝑊𝑣𝑧 (11) 

Cross-modal attention weights are given in Eq. (12). 

𝛽 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑞𝑘𝑇

√𝑑𝑘

) (12) 

where, 𝑑𝑘  is the scaling factor for stability. The final fused

representation is given in Eq. (13). 

ℎ = 𝛽𝑣 + 𝑐 (13) 

where, 𝑊𝑞 , 𝑊𝑘, 𝑊𝑣  is the dimension for scaling. This fusion

guarantees that the progression features derived from images 

are informed by clinical features, which strengthens both the 

predictive robustness and interpretability. 

The fused feature vector ℎ is pushed through fully connected 

layers for classification into different AD stages i.e. 

cognitively normal, mild cognitive impairment, Alzheimer's 

disease. The prediction is given by using Eq. (14). 

𝑦̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓𝑐𝑙𝑠(ℎ; 𝜃𝑐𝑙𝑠)) (14) 

where, 𝑓𝑐𝑙𝑠  is the classification network with learnable

parameters 𝜃𝑐𝑙𝑠. The model is trained using the cross entropy

loss: 

𝐿 = − ∑ ∑ 𝑦𝑖 , clog (𝑦𝑖̂, 𝑐

𝐶

𝑐=1

𝑁

𝑖=1

) (15) 

Here, N is the number of training samples, 𝐶  is the total 

number of classes, 𝑦𝑖,𝑐  is the one-hot encoded groundtruth, and

𝑦𝑖̂, 𝑐 is the predicted probability.

To address the urgent need for transparency of the model, I 

incorporated explainability methods such as Grad-CAM 

tailored to 3D data. These methods allow us to visualize spatial 

and temporal attention maps that identify the brain regions and 

time points that contribute most strongly to the diagnosis. This 

2819



interpretability allows clinicians to confirm the model's 

decisions and build trust when using AI in the diagnostic 

process. The purpose of Grad-CAM (Gradient-weighted Class 

Activation Mapping) is to provide visual interpretability by 

showing which regions of the MRI scan contribute most 

strongly to the decision made by the model for a given class c. 

To interpret decisions, Grad-CAM is applied on the spatial 

attention maps using Eq. (16).  

L
c

Grad − CAM
= ReLU (∑ αk

c Ak

k

) (16) 

Here, 𝐴𝑘 ∈ 𝑅𝐻′×𝑊′×𝐷′
 are the activation maps from the last

convolutional layer of the 3D CNN. Each channel k 

corresponds to a learned filter that extracts a distinct spatial 

pattern from the MRI like hippocampal shrinkage, cortical 

thinning. ac
k represents the importance weight for feature map

Ak with respect to class c. It is computed as the global average

pooling of gradients of the score for class c with respect to 

feature map Ak. where αkc are gradients of class score ccc with

respect to feature maps Ak from convolutional layers, adapted

here for 3D maps. 

In 3D Grad-CAM, clinicians have the ability to visualize 

what brain regions (e.g., hippocampus, temporal lobes, 

ventricles) the model used to classify (adjudicate) the patient 

into AD, MCI, or cognitively normal. This increases 

confidence in clinical practice and also highlights possible 

disease biomarkers. This paper introduces a new, efficient, and 

interpretable deep learning framework that jointly utilizes 

spatial and temporal attention, and multimodal data fusion for 

early AD identification. The new model aims to enhance 

diagnosis accuracy and offer explanatory evidence to facilitate 

patient management by explicitly modeling the disease-

specific longitudinal brain changes, and providing a single 

method that incorporates clinical information. 

4. RESULTS AND DISCUSSIONS

In this regard, we employed two common benchmark 

datasets for our experiments: The Alzheimer's Disease 

Neuroimaging Initiative (ADNI) dataset for MRI scans and the 

DementiaBank Pitt Corpus for speech data. These datasets 

were selected to evaluate the proposal of the multimodal 

attention-based deep neural network on both structural 

neuroimaging and linguistic modalities, allowing for a 

thorough investigation of Alzheimer's disease progression. 

The ADNI dataset includes longitudinal 3D structural MRI 

scans of subjects who have been assigned to Alzheimer’s 

Disease (AD), Mild Cognitive Impairment (MCI), and 

Cognitively Normal (CN) groups. For our experiments, we 

worked with a subset of 1,200 MRI volumes from a mix of 

people in each group, specifically 400 from AD, 400 from 

MCI, and 400 from CN. As mentioned in previous sections, 

the subjects' medical images underwent preprocessing, which 

included skull stripping, spatial normalization to the MNI152 

template, and intensity normalization to minimize scanner 

variability. The dataset was then split into 70% for training, 

15% for validation, and 15% for testing. All the splits were 

conducted on the patient-level to avoid potential data leakage 

issues, and keep the classifications separate from the segments 

of other patients between each split. 

The DementiaBank Pitt Corpus contains recordings as it 

relates to the clinical benchmark of spontaneous speech 

provoked by participants using the picture description task 

(specifically the Cookie Theft picture from the Boston 

Diagnostic Aphasia Examination). The Corpus contains 

recordings from about 210 individuals (117 probable AD and 

93 healthy controls). Transcriptions are also provided and have 

been analyzed for linguistic and acoustical/dynamic features, 

or indicators: speech rate, mean pause time, lexical diversity 

among them. For experimentation purposes the audio files 

were converted to MFCCs, and the text transcripts were 

tokenized and embedded with the pre-trained word 

embeddings from earlier models. The dataset was randomly 

divided into 70% for training and 15% each for validation and 

testing, and was in accordance with the split in relation to MRI 

proportions. The other parameters used here are learning rate 

of 1.0e-4, AdamW optimizer, 100 epoches, the hardware 

environment of NVIDIA RTX 3090 (24 GB VRAM) GPU, 

Intel Core i9-12900K CPU, 64 GB RAM; Ubuntu 22.04, 

Python 3.10, PyTorch 2.1 with CUDA 11.7 / cuDNN 8.x. 

Regarding multimodal evaluation, paired MRI and speech 

data from individual subjects were available so that cross-

modal fusion could occur at the feature level with the proposed 

hybrid 3D CNN–temporal attention–fusion model. This 

multimodal integration allows for an evaluation across the 

imaging and linguistic modalities, which importantly 

illustrates the complementary nature of structural and speech 

biomarkers to assist in timely detection of early Alzheimer’s 

disease. 

Figure 1. Comparative analysis with the benchmark frameworks 
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Table 2. Comparative analysis with the benchmark frameworks 

Models Modalities Dataset Accuracy (%) 

Resizer Swin Transformer (RST) [12] MRI only ADNI 99.59 

3D-CNN-VSwinFormer [28] MRI only ADNI 92.92 

VGG-TSwinformer [29] MRI longitudinal ADNI 77.2 

Attention-based 3D CNN [30] MRI / PET ADNI 89.71 (MRI), 91.18 (PET) 

Lightweight Conv-Attention Transformer [31] MRI only MCI 
95.37 (AD vs. HC), 94.31 (Multiclass), 

92.15 (HC vs. MCI) 

STA-MAD MRI & Speech ADNI & DBP 98.7 

Table 3. Results of the proposed framework using both datasets separately and combined datasets 

Dataset Modalities Used Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC 

ADNI MRI only 96.2 94.1 93.8 93.9 0.95 

DementiaBank Speech only 96.5 92.7 93.2 91.9 0.95 

ADNI + DementiaBank MRI + Speech (Multimodal Fusion) 98.7 97.4 98.1 97.7 0.99 

Table 4. Results of removing ach components of the proposed framework 

Component Removed / Changed Modalities Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC 

Full model  MRI + Speech 98.7 97.4 98.1 97.7 0.99 

No cross-attention MRI + Speech 94.9 93.7 94.2 93.9 0.95 

MRI-only  MRI 94.2 93.1 92.8 92.9 0.95 

Speech-only  Speech 91.5 90.7 91.2 90.9 0.93 

Remove local channel MRI + Speech 95.6 94.3 95.0 94.6 0.96 

Replace ViT  MRI + Speech 95.0 93.9 94.4 94.1 0.95 

Replace wav2vec2 with simple CNN MRI + Speech 95.8 94.6 95.2 94.9 0.96 

Gated fusion  MRI + Speech 95.3 94.0 95.0 94.5 0.955 

No pre-trained encoders  MRI + Speech 93.7 92.5 93.0 92.7 0.93 

Dropout removed  MRI + Speech 96.0 94.8 95.1 95.0 0.965 

Several recent models have pushed the limits of 

Alzheimer’s disease (AD) diagnosis with deep learning in 

various modalities and populations. Table 2 and Figure 1 

shows the comparative analysis with the few benchmark 

frameworks. The 3D-CNN-VSwinFormer, which was trained 

only on MRI of ADNI data, measured an accuracy of 92.92%, 

indicating the advantages of using hybrid CNN–Transformer 

approaches for structural neuroimaging. The VGG-

TSwinFormer incorporated longitudinal MRIs of ADNI to 

derive a more comprehensive picture of disease progression 

and measured an accuracy of 77.2%, suggesting that temporal 

modeling in AD classification has significant room for 

improvements. There was an additional gain with the Resizer 

Swin Transformer (RST), that achieved an outstanding 

accuracy of 99.59% on ADNI MRIs, exemplifying the 

strength of advanced Transformer-based models for feature 

creation.  

In the multimodal realm, Attention-based 3D CNN fused 

MRIs and PETs, using the modality that has been discussed 

above, to provide accuracies of 89.71% for MRI and 91.18% 

for PET. This confirmed that PET is also valuable in 

supporting clinicians with behavioral changes associated with 

ADrelated metabolic change. A Lightweight Conv-Attention 

Transformer, that was only dealt with a cohort of MCI, 

measured an Accuracy of 95.37% AD vs. HC, 94.31% 

multiclass classification and 92.15% HC vs. MCI 

classification, while being well suited for organizationally and 

logistically resource limited clinical environments. In relation, 

the proposed STA-MAD model, which utilizes MRI but also 

incorporates speech-based biomarkers from the 

DementiaBank Pitt corpus (DBP), achieved 98.7% accuracy 

with respect to ADNI and DBP data. This performance 

indicates the importance of multimodal fusion, where speech 

contributes to neuroimaging by capturing subtle cognitive and 

linguistic deficits that may escape diagnosis on structural 

scans alone. 

Table 3 and Figure 2 results indicate that multimodal fusion 

engages model performance significantly more than the 

unimodal inputs provide. When trained on MRI (ADNI) only, 

the STA-MAD model shows an accuracy of 96.2% (AUC = 

0.95), indicating that spatial–temporal attention effectively 

identifies structural abnormalities of the brain. When the STA-

MAD model trained using only speech data (DementiaBank), 

the model again achieved accuracy of 96.5%. This confirmed 

that linguistic and acoustic biomarkers are both highly 

discriminative signals that can detect Alzheimer’s. However, 

the fusion of MRI and speech modalities generated a combined 

accuracy of 98.7%, precision of 97.4%, recall of 98.1%, and 

AUC = 0.99 (area under curve). It is obvious that speech 

captures additional levels of subtle cognitive impairments 

while MRI is capable of capturing structural degeneration. 

Together they create a stronger prediction system than either 

modality alone. 

The ablation study presents valuable evidence on the 

importance of each component of the STA-MAD framework 

in the Table 4. The baseline model, incorporating cross-

attention, ViT MRI encoder, wav2vec2 speech encoder, and 

gated fusion scored 98.7% accuracy and AUC of 0.99 - a 

significant finding that validates the integration of multimodal 

encoders with attention-based fusion. When cross-attention 

was excluded, accuracy subsequently fell drastically, to 

94.9%, suggesting that cross-attention was critical for 

effectively aligning the imaging and speaking features of the 

observations. Likewise, both single modality observation 

(MRI 94.2% or speech 91.5%) returned lower performance 

than the baseline, confirming the modalities are 

complementary. Removing local channel/spatial attention in 

the MRI encoder produced a reduction in accuracy to 95.6% 
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suggesting spatial attention supports the model in 

concentrating on disease relevant areas of the MRI. While just 

a simple comparison to demonstrate performance drop from 

baseline, note, swapping out advanced encoders (e.g. replacing 

ViT from a 3D-CNN 95.0% and replacing wav2vec2 with a 

CNN–BiLSTM 95.8%) produced dramatic drops in individual 

digit performance. 

Figure 2. Results of the proposed framework using both datasets separately and combined datasets 

Fusion strategies greatly impacted overall model 

performance: simply averaging logits instead of gated fusion 

produced a performance drop to 95.3% accuracy, suggesting a 

more effective learning of modality importance with the gated 

mechanism compared to simple averaging between two logits. 

Equally, training both networks without pretraining did 

produce the starkest decrease in performance overall, accuracy 

of 93.7%, suggesting even small medical datasets ought to 

leverage the advantages of transfer learning. Finally, by 

removing dropout regularization, we observed a small 

decrease in generalization (96.0% vs. 98.7% baseline), 

suggesting that dropout serves a stabilizing role. Importantly, 

these results confirm that each of the components cross-

attention, high-level encoders, gated fusion, and attention 

layers’ additive. These combined results yield a powerful and 

state-of-the-art system for multimodal Alzheimer’s disease 

classification. 

5. CONCLUSION

In this work, we introduced a Spatial-Temporal Attention 

for Multimodal Alzheimer’s Detection (STA-MAD) which 

employs MRI imaging and speech biomarkers to enhance the 

detection of Alzheimer’s Disease (AD). The model uses 

modality-specific encoders, cross-attention mechanisms, and 

gated fusion to capture both the structural and linguistic 

components of the target process. Our experiments highlight 

the promise of a hybrid approach combining MRI and speech 

modalities using attention-focused fusion in producing 

clinically precise and rapid decision-support systems for the 

early detection of Alzheimer’s disease. There are a few 

limitations to address are benchmark datasets are small and 

limit generalizability, and many additional modalities such as 

PET, EEG, and clinical notes could enhance predictive 

capability. Future work will be directed at extending the work 

to include longitudinal and multi-institutional datasets, 

evaluating light-weight architectures for real-time 

implementation in clinical contexts, and integrating privacy-

preserving learning methods such as federated learning. 
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