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Ficus fistulosa is a keystone species in tropical forests, playing a crucial role in ecosystem
stability and biodiversity conservation. Comprehending its distribution pattern is crucial
for effective conservation and management efforts. This study employs species
distribution modeling (SDM) to predict the potential habitat of . fistulosa in Java Island,
Indonesia. The approach that was utilized included the collection of data on the
occurrence and environmental conditions of F. fistulosa, the modeling of species
distribution by the utilization of the maximum entropy algorithm (MaxEnt), and the
evaluation of the accuracy of the model. We used climate data (temperature,
precipitation) from WorldClim version 2.1. A total of 19 bioclimatic variables, identified
as Biol to Biol9, were used. Future projections were generated using the Shared
Socioeconomic Pathway (SSP585) scenario, representing a high-emission and fossil-
fuel-intensive development trajectory. The bioclimatic variables for this scenario were
obtained from the UKESM1-0-LL General Circulation Model (GCM) with a spatial
resolution of 30 arc-seconds (~1 km?) via the EcoCommons climate dataset repository.
The Area Under the Curve (AUC) value was employed to evaluate the reliability of the
model produced. Model validation indicates high predictive performance, with key
environmental variables such as precipitation, temperature seasonality, and elevation
significantly influencing habitat suitability. The results highlight priority conservation
areas and suggest that future land-use changes and climate variability may impact the
species distribution. The area of highly suitable habitats will significantly decrease by the
year 2100, especially in highland and hydrologically critical regions. Moderate suitable
areas decrease to 14.3%, high suitability areas reduce to 25.6%, and very high suitability
areas shrink to 8.6%. These findings offer significant insights for biodiversity
conservation strategies and ecological management of F. fistulosa in Java Island.
Integrating F. fistulosa into climate-adaptive restoration is essential for preserving
biodiversity and enhancing ecosystem resilience.

1. INTRODUCTION

Indonesia was probably due to climate change. Climate change
would alter temperature, precipitation, and habitat availability,

Indonesia possesses one of the largest areas of tropical
forests in the world, harboring exceptionally high biodiversity
and serving as a critical hotspot for global conservation.
Although they occupy a relatively small fraction of Earth’s
surface (< 10%), tropical forests support an estimated two-
thirds of global species richness [1]. The tropical forests of
Indonesia provide habitat for numerous plant and animal
species, many of which are endemic and essential for
sustaining ecosystem equilibrium [2]. However, the tropical
forest in Indonesia declined from 113,500 hectares in 2020-
2021 to 104,000 hectares in 2021-2022. This represents an
8.4% decrease and marks a historical low for deforestation in
Indonesia since tracking began in 1990 [3].

On the other hand, the decrease in the tropical forests in
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which in turn impacts the survival, reproduction, and
migration of species. Many species are forced to shift their
ranges, while others face heightened risks of extinction due to
habitat degradation and environmental inadequacy.
Anticipating these changes is crucial for biodiversity
conservation, ecosystem management, and the development of
effective adaptation strategies. Climate change may pose a
significant threat to global species biodiversity within the next
century [4]. Tree species vary in their reactions to anticipated
climate change. Species are adapting their phenology,
behavior, morphology, and geographic distribution in
response to climate change [4, 5]. The majority of the species
would suffer a lot of suitable habitat area [6]. Climate change
has caused species distributions to ascend to greater elevations
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[7]. Many of these changes are associated with increased
temperatures and reduced precipitation [8]. Thus,
understanding and predicting the future distribution of species
has become increasingly important in the context of global
climate change.

The genus Ficus plays a crucial role in many tropical
rainforest ecosystems and has been proven to be a keystone
resource for both animals and populations [9-11]. Ficus fruit
was identified as a vital source of food for frugivores [12-14].
Ficus trees may grow a lot of fruit all year round [15, 16]. The
majority of plant species depend on frugivorous mammals for
seed dispersion [17]. The frugivorous vertebrates that frequent
fruiting Ficus trees include bats, birds, and monkeys [15, 18].
In addition to their advantages for animal life, Ficus trees
could potentially function as more effective facilitators for
forest restoration compared to other existing tree species in
disturbed landscapes. Ficus trees facilitate the regeneration of
plant communities that reflect the overall environment [19].
Ficus species considerably contribute to the preservation of
the hydrological cycle, influencing the soil water content and
soil capacity to retain water [20]. Ficus species are
recommended for land rehabilitation in Kuningan Regency,
Indonesia, due to their adaptability and contribution to soil
restoration [21, 22].

Within the varied members of the genus, Ficus fistulosa,
often known as wilodo, stands out as a species of significant
ecological relevance in tropical montane forests. F. fistulosa
serves as a keystone species in tropical montane forests due to
its significant influence on the ecosystem. In Mount Merbabu,
Indonesia, F. fistulosa grows at an altitude of 1,500-2,500
meters above sea level and is recommended as a restoration
species [23, 24]. As a member of the Moraceae family, F.
fistulosa is known for its vital role in maintaining biodiversity,
especially as a food source for many frugivores, including
birds and primates [13]. Additionally, F. fistulosa is
recognized for its ability to store and regulate water, making it
a crucial component in water retention areas. This
characteristic is particularly beneficial in watershed areas and
highland regions, where the species can play a key role in
ensuring water availability to downstream ecosystems. The
capacity of this species to retain water is not only important
for maintaining soil moisture and reducing erosion but also for
regulating hydrological cycles, contributing to flood control
and groundwater recharge in surrounding lowland areas. The
ability of F. fistulosa to endure in ecologically unfavorable
conditions enables this species to serve as a restoration plant
in the shrub area of Gunung Ciremai National Park, Indonesia
[25]. F. fistulosa is also a promising candidate for the
development of antivirals against HI'V, Hepatitis C, diarrhea,
diabetes, malaria, antioxidants, and antimicrobials in the
context of herbal therapy [26-30].

Despite its ecological significance, F. fistulosa has become
increasingly rare in the wild, especially on the densely
populated island of Java. Habitat loss due to land-use changes,
deforestation, and agricultural expansion has led to a rapid
decline in its population, particularly in critical watershed
areas. This decrease is troubling considering the species'
function in sustaining environmental stability in these areas.
The decreasing presence of F. fistulosa has prompted an
urgent need for conservation efforts aimed at identifying
suitable habitats that can support its recovery. Furthermore,
understanding and predicting the future distribution of species
has become increasingly important in the context of global
climate change. It is also very important to anticipate these
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changes, which is crucial for biodiversity conservation,
ecosystem management, and the development of effective
adaptation strategies. One approach utilized for projecting the
future distribution of species is species distribution modeling
(SDM). SDM utilizes species occurrence data and
environmental variables to assess the probable distribution of
species under present and future climatic conditions [31].

In terms of F.. fistulosa, SDM can be used to predict the map
of potential habitats for F. fistulosa on Java Island, relating to
the effects of climate change. Numerous research has
examined the effects of climate change on the geographical
distribution of native tree species through the application of
species distribution models (SDM). For example, Islam et al.
[32] created SDM using MaxEnt to predict the effect of
climate change on the spatial redistribution of F. benghalensis
and F. hispida in Bangladesh. Fungjanthuek et al. [33]
constructed an SDM utilizing MaxEnt to evaluate habitat
suitability and predict potential habitats of F. squamosa and F.
heterostyla in China.

Given the importance of preserving this species for its
ecological and hydrological functions, SDM offers a valuable
approach to guide conservation efforts and habitat restoration
initiatives [34]. By predicting areas where F. fistulosa could
thrive, targeted actions can be taken to protect and restore
suitable habitats, particularly in upland areas where the species
can contribute significantly to the sustainability of water
catchment areas. SDMs are the most common type of model
used in ecology, evolution, and conservation. They can be
used to guide conservation efforts and management strategies,
prioritize conservation actions, assess the effects of global
change, and figure out how environmental factors affect
species responses [35, 36].

This study applies the SDM framework to explore the
potential geographic distribution of F. fistulosa in Java. By
combining ecological knowledge with predictive modeling,
this research's objectives are (1) to simulate the current
potential geographic distribution of F. fistulosa in Java, (2) to
predict its future distribution under the SSP585 scenario in
2100, (3) to identify the key environmental factors influencing
its distribution, and (4) to provide scientific recommendations
for conservation planning.

2. RESEARCH METHODS
2.1 Species description

F. fistulosa is a tree that produces a nutritious fruit. The
unripe fruits are green and brownish and have a spherical
shape with some attenuation on the top and bottom. They are
approximately the size of a thumbnail [16, 37]. F. fistulosa is
an evergreen tree and has both male and female parts. The bark
is dark brown. The stipules are 1-2 cm long and ovate-
lanceolate. The leaves are arranged in an alternating pattern,
and the petiole is 1.5 to 4 cm long. The leaves are hairy or
hirsute, and the leaf blade is obovate to oblong, measuring 10-
20 x 4-8 cm, papery, and has sparse pubescence or yellow
tubercles on the abaxial side. Figs are on short, cone-shaped
branchlets on the main branches. When they are ripe, they are
reddish orange and about 1.5 to 2 cm in diameter. F. fistulosa
is a species distributed in China, Taiwan, Bangladesh,
Cambodia, Laos, Myanmar, Thailand, Vietnam, Malesia,
Sumatra, Borneo, Lesser Sunda, Java, Philippines, Sulawesi,
Papua, New Guinea [38]. Figure 1 presents the sketch of the



F. fistulosa herbarium.
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Figure 1. (a) leaves, (b) fruits, (c) trunk, and (d) trees of F.
fistulosa Reinw. ex Blume

The SDM was conducted using the Biodiversity and
Climate Change Virtual Laboratory (BCCVL)-EcoCommons
platform (www.ecocommons.org.au), which integrates the
MaxEnt algorithm under a standardized configuration
framework [39]. The SDM employed occurrence data from the

95°0'0"E 100°00"E 105°0'0"E 110°00"E 115°00"E
1 1 I 1 1

120°0'0"E
1

field and geographic coordinates from the Global Biodiversity
Information Facility (GBIF/www.gbif.org) as input data. After
re-screening the GBIF database (accessed on August 07,
2024), we found a total of 252 occurrence records of F.
fistulosa across Indonesia, with 76 verified presence points
located on Java Island (Figure 2). A total of 76 occurrence
records of F. fistulosa were used after removing duplicate
coordinates within the same 30 arc-second (~1 km?) grid cell
of the environmental layers, thereby reducing spatial
autocorrelation. The modeling employed 19 bioclimatic
variables from the WorldClim v2 database. To address
potential multicollinearity, the platform automatically
screened predictors based on pairwise correlation (|r] > 0.7),
and only variables with low intercorrelation and meaningful
ecological relevance were retained in the final model. Among
these, Bi0o9, Bio6, and Biol6 in the current projection and
Bio6, Biol2, and Biol and Bio9 in the future projection,
contributed the most to model performance.

The model applied BCCVL’s default-tuned MaxEnt
settings, with automatic feature selection, regularization
multiplier 1.0, and maximum iterations = 500. Model
convergence was achieved with a regularized training gain of
1.8581 and an unregularized training gain of 2.7057,
indicating stable model fitting. Habitat suitability thresholds
were determined using the 10-percentile training presence
(0.1442) and equal sensitivity and specificity (0.1828) criteria.
The MaxEnt thresholds (10-percentile and equal sensitivity—
specificity) were used solely for evaluating model
discrimination performance, whereas the suitability classes
used for area calculations followed the equal-interval
classification of Li et al. [40], independent of any MaxEnt
threshold.

Model performance was evaluated by randomly partitioning
the dataset into 75% training and 25% testing subsets with
five-fold cross-validation. The mean test AUC value (= 0.90)
indicated excellent model accuracy and strong discriminatory
capacity.
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Figure 2. A total of 252 occurrence records of F. fistulosa across Indonesia, with 76 verified presence points located on Java
Island

2571



The bioclimatic characteristics of the environment were
utilized in the process of developing the species distribution
model for F. fistulosa. The bioclimatic variables were sourced
from WorldClim version 2.1, an interpolation dataset from
1970-2000 with a spatial resolution of 1 km, which was used
to generate the current prediction. For future prediction,
WorldClim v2.1, future climate Bioclimatic Variables 2081—
2100, UKESMI1-0-LL SSP585 was employed. Future
projections were generated using the Shared Socioeconomic
Pathway (SSP585) scenario, representing a high-emission and
fossil-fuel-intensive development trajectory. The SSP585
scenario assumes continued population growth, high
economic development driven by energy-intensive industries,
and limited climate change mitigation, leading to an
approximate radiative forcing of 8.5 W/m? by 2100. This
scenario corresponds to a projected global mean temperature
increase of about 4.3°C by 2100 relative to pre-industrial
levels, reflecting a “business-as-usual” pathway. This pathway
was selected to represent a worst-case climate projection for
assessing the potential future distribution and habitat
suitability of F. fistulosa under extreme warming conditions.
The bioclimatic variables for this scenario were obtained from
the UKESM1-0-LL General Circulation Model (GCM) with a
spatial resolution of 30 arc-seconds (~1 km?) via the
EcoCommons climate dataset repository. A total of 19
bioclimatic variables, identified as Biol to Biol9, were used
(Table 1). MaxEnt is relatively robust to correlated predictors
due to its internal regularization mechanism, which penalizes
unnecessary model complexity and reduces the influence of
redundant variables. This approach helps prevent overfitting
even when the full set of bioclimatic variables is used. In
addition, the BCCVL implementation of MaxEnt employs
cross-validation and standardized regularization settings that
further mitigate the potential effects of predictor collinearity.
The BCCVL-EcoCommons platform does not provide a built-
in correlation matrix or a variable-screening tool prior to
model execution. Consequently, unless users perform external
preprocessing steps—which were not available in the
workflow adopted here—the full bioclimatic dataset is
typically used. Therefore, all 19 bioclimatic variables were
included in both the current and future distribution models.

Table 1. Information about the data collected from
WorldClim Version 2.1

1 Biol Annual mean temperature

2 Bio2 Mean diurnal range

3 Bio3 Isothermality

4  Bio4 Temperature seasonality

5 Bio5 Maximum temperature of the warmest month
6  Bio6 Minimum temperature of the coldest month
7  Bio7 Temperature annual range

8 Bio8 Mean temperature of the wettest quarter
9  Bio9 Mean temperature of driest quarter

10 Biol0 Mean temperature of the warmest quarter
11 Bioll Mean temperature of the coldest quarter
12 Biol2 Annual precipitation

13 Biol3 Precipitation of the wettest month

14 Biol4 Precipitation of the driest month

15 Biol5 Precipitation seasonality

16 Biol6 Precipitation of the wettest quarter

17 Biol7 Precipitation of the driest quarter

18 Biol8 Precipitation of the warmest quarter

19 Biol9 Precipitation of the coldest quarter

Using the maximum entropy model (MaxEnt) method
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available on the Biodiversity and Climate Change Virtual
Laboratory (BCCVL) within the Ecocommons platform,
species distribution modelling analysis was conducted. The
Area Under the Curve (AUC) value was employed to evaluate
the reliability of the model produced [41]. The Receiver
Operating Characteristic (ROC) method was employed to
evaluate the model's efficacy. ROC works by comparing
sensitivity and specificity. Sensitivity shows how well the
model can predict presence, and specificity shows how well it
can predict absence [39]. The assessment outcomes are
presented as AUC values (Table 2) [41-43].

Table 2. Model performance values

AUC Score Model Performance
0.9-1 Excellent
0.8-0.9 Good
0.7-0.8 Fair
0.6-0.7 Poor

The predictions were represented as grid cell suitability on
a scale from 0 to 1, with 0 indicating extremely low
distribution probability and 1 representing very high
distribution probability. Li et al. [40] identified five distinct
threshold ranges for classifying species suitability areas: 0—0.2
for unsuitable areas, 0.2—0.4 for low suitability areas, 0.4—0.6
for moderate suitability areas, 0.6—0.8 for medium suitability
areas, and 0.8—1 for high suitability areas.

The main output of SDM is a map that shows the predicted
distribution or habitat suitability of F. fistulosa. The resultant
raster file is further processed in QGIS or ARCGIS. A base
map of Java Island is added as an overlay. It is important to
note that this map does not represent the actual presence of the
species; instead, it serves as a prediction of suitable habitat
distribution based on environmental variables (specifically the
current and future climate conditions) included in the model
[44].

3. RESULTS AND DISCUSSION

The species distribution model for F. fistulosa on Java
Island reveals distinct distribution patterns under current
conditions and future projections for the year 2100 (Figure 3).
The current distribution map (Figure 3(A)) indicates that
suitable habitats for the species are concentrated in specific
areas, primarily in regions with favorable environmental
factors, such as high humidity and mid-to-low elevations.
High suitability areas are predominantly found in western and
central Java, suggesting a preference for regions relatively less
disturbed by human activities.

In contrast, the future distribution projection for 2100
(Figure 3(B)) highlights potential shifts in suitable habitats due
to climate change impacts. A noticeable reduction in suitable
habitat areas is projected, particularly in regions subject to
high anthropogenic pressures. However, the model also
indicates the emergence of new potential habitats, although on
a more limited scale. These changes illustrate how vital it is to
protect this species, especially in areas with high habitat
suitability under both current and future conditions.

Table 3 presents the area sizes for each category of habitat
suitability for F. fistulosa in Java Island under current
conditions and future projections for the year 2100. The
current model indicates that the majority of the land area falls
under the "very low" and "low" suitability categories, with



areas of 4,466,785.54 hectares and 3,178,748.78 hectares,
respectively. Moderately suitable habitats account for
2,448,065.56 hectares, while "high" and "very high" suitability

areas comprise 2,276,465.72 hectares and 1,084,348.43
hectares, respectively.
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Figure 3. Species distribution model for Ficus fistulosa in Java Island, Indonesia

Table 3. Area size for each category of habitat suitability for F. fistulosa in Java Island

No. Category Current Future Change (%)
1 Very low  4,466,785.54  2,940,463.71 -34.2
2 Low 3,178,748.78  5,273,062.65 +65.9
3 Moderate 2,448,065.56 2,098,033.01 -143
4 High 2,276,465.72  1,692,645.67 -25.6
5 Veryhigh 1,084,348.43  990,591.25 -8.6

The future projections for 2100 demonstrate significant
shifts in habitat suitability. Areas categorized as "low"
increase to 5,273,062.655 hectares (65.9%), while all higher
categories (moderate, high, and very high suitability) decline.
“Moderate” suitable areas decrease slightly to 2,098,033.015
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hectares (14.3%), and “high” suitability areas reduce to
1,692,645.674 hectares (25.6%). The "very high" suitability
category shows the most significant reduction, shrinking to
990,591.257 hectares (8.6%) (Table 3). This indicates a
general decline in optimal habitats, accompanied by an



expansion of marginally suitable zones. This shows that a
transition in climatic zones, where formerly ideal conditions
for F. fistulosa growth are expected to deteriorate in the future.

It is suggested that climate change is the main cause of the
changes in habitat suitability for F. fistulosa. Climate change
impacts things like temperature and precipitation in the area.
These projected changes carry significant ecological
consequences. F. fistulosa are essential resources that support
a variety of frugivores, such as birds, bats, and monkeys. The
loss of highly suited habitats could make it harder for these
animals to get food, which could undermine their food security
and possibly destabilize networks of mutualistic seed-
dispersal. Additionally, F. fistulosas is crucial for regulating
water flow, as it helps keep water in the soil and stops erosion.
A decrease in optimal distribution could reduce these
ecosystem services, leading to downstream effects on
watershed stability, flood control, and groundwater recharge.
From a conservation and restoration point of view, the results
show how important it is to include F. fistulosa in climate-
adaptive management plans right now. Restoration initiatives
should focus on planting in regions that are moderately to
highly suitable, especially in mid- to high-elevation zones
where the climate is more likely to be stable over time. Also,
keeping ecological corridors open between habitats that are
broken up will be important for natural dispersal and range
adjustments.

The reduction in areas of moderate, high, and very high
suitability can also be attributed to altitudinal changes. F.
fistulosa presently flourishes in tropical montane forests at
elevations of 1,500-2,500 meters above sea level.
Nonetheless, climate-induced warming is anticipated to shift
favourable circumstances to higher elevations. As altitude
rises, the available land area diminishes, hence restricting the
possible range expansion of F. fistulosa. As a result, low
suitability zones are increasing, whereas ideal habitats are
diminishing, indicating the loss of stable climatic niches.

The validation model using the ROC plot demonstrates the
predictive presentation of SDM for F. fistulosa in Java Island,
both for the current condition and future projections (Figure
4). The AUC value for the current model is 0.82, while for the
future projection, the AUC is slightly lower at 0.80. An AUC
value close to 1.0 indicates that the model has good accuracy
in distinguishing between suitable and unsuitable areas for this
species.
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Figure 4. Model accuracy using ROC plot for F. fistulosa in
current and future projections in Java, Indonesia

The ROC plot for the current condition shows a curve that
is significantly separated from the random diagonal line,
indicating that the model has good sensitivity and specificity
in predicting F. fistulosa's habitat. Meanwhile, although the
future projection shows a slight decrease in AUC, the curve
still follows a trend that reflects the model's ability to identify
potential habitats in the future. This decrease in AUC might be
attributed to environmental uncertainties, land-use changes, or
climate factors affecting the species' distribution.

In general, these results show that the MaxEnt model
utilized is good for predicting where F. fistulosa will be found
on Java Island. The slight difference in AUC values between
the current and future conditions indicates potential habitat
changes that need to be considered in conservation strategies.
These results can help policymakers make decisions about
protecting habitats and lessening the impacts of climate
change and human activities on the species' natural ecosystem.

The response curves (Figure 5) of the bioclimatic variables
indicate the relationship between each environmental element
and the possibility of . fistulosa presence in Java Island under
both current and future conditions. The response curves reveal
how F fistulosa responds to environmental gradients
represented by the 19 bioclimatic variables. These patterns
describe the sensitivity of the species to climatic factors that
shape its potential distribution across Java. Several variables
show a particularly strong influence on habitat suitability,
especially temperature and precipitation-related factors.

In the current scenario, some bioclimatic variables show a
clear threshold effect, where habitat suitability sharply
increases or decreases beyond specific climatic values. This
suggests that F. fistulosa has optimal environmental
conditions within a certain range of temperature and
precipitation. However, in the future projections, several
response curves exhibit shifts or fluctuations, indicating
potential changes in species' climatic preferences due to
environmental changes.

Notably, some variables maintain a relatively stable
response pattern, suggesting that certain climatic factors may
continue to be critical factors of habitat suitability. Meanwhile,



other curves show more pronounced variations, which could
be attributed to climate change effects, like increasing
temperatures or modified precipitation patterns.

These results emphasize the importance of understanding
how bioclimatic factors influence F. fistulosa distribution over
time. The changes in response curves show that we need to use
adaptive conservation measures to make sure this species can
survive in the long run, especially if climate change and habitat
loss occur.

Figure 6 shows the relative contribution of each bioclimatic
variable to the SDM of F. fistulosa in Java, considering both
current and future climatic scenarios. These contributions
indicate the importance of different environmental factors in
determining the species' suitable habitat.

In the current scenario, bioclim 09 exhibits the highest
contribution, suggesting that this variable plays a crucial role
in influencing the distribution of F. fistulosa. Habitat
suitability for F. fistulosa rises sharply at moderate mean

temperatures of around 22-26°C and declines outside this
range. This trend indicates that the species performs best in
warm but not excessively hot dry-season conditions typical of
monsoonal and sub-humid tropical forests. Temperature
significantly influenced the rate of stomatal conductance and
photosynthesis. Fig cultivars exhibited adaptive behavior to
manage harsh conditions, including elevated temperatures
[45]. The preference for stable warmth suggests that F.
fistulosa has adapted to microhabitats with moderate thermal
stress during the driest months. These results are comparable
to those of other F. altissima in Guangxi, China habitats that
thrive ideally at a temperature of 20-25°C [46]. Other
variables, such as bioclim 06, bioclim 16, and bioclim_ 10,
also contribute significantly, indicating their strong influence
on habitat suitability. Conversely, variables like bioclim 14
and bioclim_18 have minimal impact, implying they are less
critical in determining the species’ presence.
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Figure 5. Current and future response curve of bioclimatic layers used in the model for F. fistulosa SDM

Under future climatic conditions, there is a shift in the
relative importance of Dbioclimatic variables. While
bioclim 06 remains a dominant predictor, bioclim 12 and
bioclim 01 gain increased importance compared to the current
scenario. This suggests that future climate change may alter
the ecological drivers of F. fistulosa distribution, potentially
leading to habitat shifts. The decrease in importance of certain
variables, such as bioclim_09, highlights the dynamic nature
of species-environment relationships under changing climatic
conditions. Future climate forecasts indicate a minor shift in
the response curve towards elevated temperature ranges, while
the peak suitability narrows. This contraction indicates a
decrease in thermal tolerance as heat stress escalates. Under
projected climate-change scenarios, increasing temperatures
during the dry season could substantially reduce habitat
suitability, especially in lowland and mid-elevation areas. As
drought and heat stress intensify, F. fistulosa populations are
likely to migrate toward higher elevations or persist in wetter
microsites. This result is in line with the findings of prior
research on the elevational redistribution of species in other
places, such as Mount Gongga, Tibet Plateau [47], Natma
Taung National Park (NTNP), Myanmar [48]. This pattern
highlights the species' reliance on thermally stable
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environments, such as riparian corridors, shaded forest edges,
and moist slopes, where microclimatic fluctuations are
reduced.
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Figure 6. Contribution of each bioclimatic variable in the
SDM of F. fistulosa in Java

These findings highlight how important it is to include
predictions about climate change in plans to protect F.
fistulosa. By identifying key environmental factors affecting
its distribution, targeted conservation efforts can be developed
to mitigate potential habitat loss and ensure the species' long-
term survival in Java. Habitat loss and fragmentation can
severely disrupt the mutualistic relationships between F.
fistulosa and its animal dispersers by reducing both fruit
availability and spatial connectivity among feeding sites.
When these networks are disturbed, frugivorous birds and
bats—key agents in seed dispersal—tend to show reduced
movement, declining population densities, and weakened
ecological functions. To mitigate the ecological consequences
of fragmentation, conservation strategies should focus on
restoring habitat connectivity through well-planned ecological
corridors. Corridors linking riparian zones and forest
fragments where F. fistulosa naturally occurs can facilitate
animal movement, enhance seed dispersal, and stabilize
pollination dynamics.

Overall, this model provides valuable insights into the
spatial distribution of F. fistulosa, which can inform effective
conservation planning and habitat management strategies on
Java Island.

4. CONCLUSIONS

The study's results show that the SDM can help find the best
habitats for F. fistulosa on Java Island by looking at both the
current and future climate conditions. A high level of accuracy
was attained by the model through the utilization of the
MaxEnt algorithm, which was combined with bioclimatic and
topographic factors. This was demonstrated by the AUC
scores. The results suggest that the area of highly suitable
habitats will significantly decrease by the year 2100,
especially in highland and hydrologically critical regions. This
decline of suitable habitats illustrates the vulnerability of F.
fistulosa to the persistent impacts of climate change. These
results have big effects on how we protect biodiversity and
keep ecosystem services working in tropical forest areas. The
species is ecologically significant as a keystone frugivore
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resource, and it plays a role in the hydrological cycle. Areas
should be prioritized for conservation, including Mount Kelud
(East Java), Mount Muria, Mount Slamet, Mount Dieng,
Mount Rogojembangan (Central Java), Mount Ciremai,
Mount Papandayan, Mount Tumpeng, and Mount Halimun
(West Java). This study does not account for biotic
interactions, land-use dynamics, or dispersal constraints,
which may affect realized distributions. We suggested that
future research integrate dynamic land-use data and biotic
variables to improve model realism and predictive accuracy.
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