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The moisture content and pH level are the primary parameters influencing the efficacy of
the solid-state fermentation (SSF) process of feed ingredients derived from agricultural
residues. Due to the potential for contamination and process failure, the traditional
methods for detecting changes in moisture content and pH level during the SSF process
are unfeasible. Consequently, there is an urgent necessity to develop alternative
techniques that yield highly accurate results without being time-consuming or labor-
intensive. One of the most promising sensing techniques for in-line applications is near-
infrared (NIR) spectroscopy. This study employed both classical and advanced machine
learning (ML) models based on NIR spectra to develop a predictive model for moisture
content and pH level in the thermophilic SSF process of citronella residues (CR) feed for
ruminant livestock using different white-rot fungi. Principal component analysis (PCA)
was utilized on the NIR spectra to extract relevant features for input into the ML models.
Among the models evaluated, support vector regression (SVR) demonstrated the highest
predictive accuracy (R%, of 1.00 for both moisture content and pH level), outperforming
light gradient-boosting machine (LightGBM) and random forest (RF). Although SVR
achieved the highest predictive accuracy, LightGBM offers practical advantages,
including faster training, lower computational demand, and better scalability for large
datasets. With competitive predictive performance (R?, of 0.95 for moisture and 0.87 for
pH), LightGBM provides a strong alternative for applications requiring real-time or
resource-efficient deployment. In conclusion, integrating NIR spectroscopy with ML
offers a promising pathway for intelligent and real-time monitoring in large-scale SSF
applications, contributing to sustainable valorization of agricultural residues into high-
quality ruminant feed.

1. INTRODUCTION

to 30%), and lignin (15 to 20%) [3]. Citronella residues have
been utilized as ruminant feed, though not extensively. Its

The biotransformation of lignocellulosic biomass derived
from agricultural residues represents a viable renewable
resource for ruminant feed, enhancing sustainable animal
production, feed security, and environmental sustainability.
This approach effectively addresses the negative
consequences of the inherent conflict between human and
livestock food production levels, thereby posing a direct risk
to food security. Citronella residues (CR), a significant by-
product of the citronella distillation process, are regarded as a
promising option for this purpose due to their considerable
potential. Each 1,000 kg of distilled citronella leaves yields 8
kg of essential oil, while the remaining 992 kg of biomass
residue is discarded as waste [1]. The CR contains 5.82%
crude protein, 2.79% crude fat, and 35.03% crude fiber [2],
which is composed of cellulose (35 to 40%), hemicellulose (25
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extensive use in ruminant feed faces a notable challenge,
specifically due to its low feed intake and digestibility [4]. The
complex and extensively lignified structure of lignocellulose
cell walls renders them less accessible to microbial enzymes
in the rumen. Therefore, adequate pretreatment is essential
before further utilization.

Various methods have been employed to convert highly
lignified biomass into more digestible animal feed. Several
processing methods have been employed by researchers,
encompassing physical, chemical, and biological procedures.
Currently, biological processing, particularly fungal microbial
fermentation, has attracted considerable attention from
researchers due to the increasing global demand for
environmentally sustainable technologies [5]. Solid-state
fermentation (SSF) processes have been used to promote the
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microbial fermentation of fungi on solid substrates, including
citronella residues. SSF is a fermentation process that utilizes
a solid substrate to support the growth of microorganisms,
mimicking the conditions present in natural habitats where
microorganisms grow in the absence or near absence of free
water [6, 7]. Among the fungal strains used in SSF,
Phanerochaete  chrysosporium,  Pleurotus  ostreatus,
Trichoderma viride, and Lentinula edodes have been studied
for their strong lignocellulolytic enzyme activity, enabling
effective degradation of complex fibrous substrates [5, 8-11].
SSF is characterized by lower costs, mild reactions, and an
effortless manufacturing process. At present, SSF is conducted
on a commercial basis within the food sector and waste
treatment. Nevertheless, conventional SSF in the food and
feed sector predominantly occurs under mesophilic settings
(from 20 to 40°C), accompanied by an essential autoclaving
procedure before fermentation to prevent product
contamination.

SSF of highly lignified biomass into value-added feed faces
many challenges, including the types of substrates and fungal
strains, which lead to varying final product quality. The
fermentation process is affected by several parameters,
including pH, temperature, nutrient availability, substrate
moisture content, incubation duration, and inoculation volume,
which vary among different microbial species [12].
Consequently, awareness of the microbe's growth
circumstances is critical for maximizing metabolite production
via SSF. Among them, pH and moisture content are considered
the most important process parameters for microorganism
growth, cellulase production, and microbial protein synthesis
during fermentation [13]. Previous studies have reported that
optimal initial moisture and pH levels vary depending on the
fungal strain and substrate, with most SSF protocols starting
within a slightly acidic range (pH 4.5-6.0) to support fungal
growth [5, 14]. In our study, initial pH was measured but not
controlled throughout fermentation, as pH was expected to
change naturally due to microbial activity. This approach is
consistent with previous SSF studies aiming to monitor
fermentation dynamics rather than maintain constant
physicochemical conditions. Microbial activity affects the pH
level and moisture content of the substrate, hence influencing
the quality of the fermentation output. The main reason for
changes in pH during SSF is the release of organic acids, such
as lactic, citric, and acetic acids. On the other hand, the
increase in pH is linked to the assimilation of these organic
acids [12]. Meanwhile, changes in moisture content in the
substrate play an important role in microbial growth, enzyme
production, and nutrient transfer [15]. Therefore, monitoring
pH level and moisture content during the SSF process is
crucial to achieve an optimum quality and yield of the desired
product. To achieve this goal, an analytical method is required
that can deliver real-time data on critical process parameters.
These parameters are usually measured offline, which takes
time and adds to analytical error through sampling and sample
preparation [16].

One of the most promising sensing techniques for in-line
applications is near-infrared (NIR) spectroscopy. NIR
characterizes materials by assessing the absorption or
reflection of light at wavelengths ranging from 850 to 2,500
nm. Owing to the inherent variations in the chemical
composition and physical quality of materials, different
spectra can be generated for each material. The NIR method
serves as an effective and reliable tool for real-time monitoring
of bioprocess and shows potential for future applications in
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intelligent control of feed production. This approach has been
utilized to create rapid, accurate, non-destructive, and
reproducible techniques for analyzing the compositions of
diverse materials, such as food [17], agricultural products [18,
19], quality of fermentation products [20], animal feed [21, 22],
and so on. The NIR spectral range (1,000-2,500 nm) has been
widely used for the evaluation of fermented lignocellulosic
biomass due to its ability to capture molecular vibrations
associated with organic components such as moisture, proteins,
and fiber. For instance, Dai et al. [23] successfully applied NIR
spectroscopy for the rapid and cost-effective determination of
pH, moisture, soluble protein, and trypsin inhibitor contents
during thermophilic SSF of unsterilized soybean meal by
Bacillus licheniformis Y'Y C4. From an application perspective,
NIR can quickly measure the moisture content of substrates,
help maintain microbial activity, and determine the
appropriate decision-making method. NIR enables rapid
assessment of pH level, which is essential for assessing
microbial metabolic activity to ensure optimal product results
[12]. However, the complexities of NIR spectra present
several challenges for data interpretation. Numerous
wavelengths and absorption bands in the NIR spectra
complicate the analysis. This complexity leads to too much
interference and multicollinearity, reducing prediction
stability. In SSF systems, variations in particle size and density
inhomogeneity further affect light scattering and spectral
consistency. Such effects can be detrimental in real-time
applications where reliability and consistency of predictions
are essential [24]. Consequently, the ability to generalize
predictions on new data sets often shows poor model
prediction accuracy in real-time application scenarios. In
recent years, improvements in computational machine
learning (ML) algorithms have made it a more useful tool for
data mining and building models. Studies indicate that ML
algorithms demonstrate superior performance in both
qualitative and quantitative predictions of materials when
employing NIR, Hyperspectral, and Raman spectroscopy [25,
26]. This finding provides insights and opportunities for
integrating NIR technology with ML algorithms to predict pH
level and moisture content during the SSF process. However,
it is still uncertain which ML algorithm is capable of
improving the accuracy of the SSF monitoring process using
NIR technology, particularly in the context of animal feed
bioprocesses. The objective of this work is to utilize various
ML algorithms in conjunction with features extracted from
NIR spectra using principal component analyses (PCA) to
develop highly accurate predictive models for pH level and
moisture content. As a result, this model offers an innovative,
efficient, and high-throughput approach for monitoring animal
feed bioprocess and provides rapid technical support for
precise decision-making in large-scale SSF systems.

2. MATERIALS AND METHODS
2.1 Substrate and fungal strains

Citronella residues (CR) served as the substrate for
sequential fermentation in this study. CR was collected from
farmers in the Gayo Lues District of Aceh, Indonesia, after the
extraction of essential oil. The wet residues of CR were
carefully processed to achieve an average particle length of
approximately 3 cm. This particle size was chosen based on
preliminary trials to optimize fungus accessibility and aeration
during fermentation. The chopped material was oven-dried at



60°C for roughly 48 hours until reaching a final moisture
content of 10-12%, preserving the structural carbohydrates
(cellulose and hemicellulose) without thermal degradation
[27]. The dried substrate was then stored in airtight containers
until further fermentation processing. For fermentation
microbes, this study utilized various fungal strains, including
P. chrysosporium (PCH), P. ostreatus (POS), T. viride (TRV),
and L. edodes (LED). The four fungal strains selected for this
study were chosen based on their reported ligninolytic and
cellulolytic enzyme activities and prior successful use in
lignocellulosic biomass fermentation [5, 14]. These strains are
known to improve fiber degradation and nutrient availability
in various agricultural by-products, making them suitable
candidates for SSF of citronella residues. The microbial strains
were sourced from the Indonesian Culture Collection (InaCC)
Laboratory of BRIN, Cibinong, Indonesia. Before fermenting
CR, the fungal strains were pre-cultivated following the
protocol of Tuyen et al. [14] with minor modifications.
Specifically, the fungus was grown on Potato Dextrose Agar
(PDA) medium and incubated at 24°C until its mycelia had
extensively colonized the agar surface. Inoculum preparation
involved transferring an agar fragment (from 1.5 to 2.0 cm)
containing fungal culture onto sterilized cracked corn. The
inoculated corn was then incubated at 24°C until it was fully
colonized by fungal mycelia. To maintain the inoculum and
inhibit further growth, the corn grain spawn was stored at 6°C

in a controlled environment for one week prior to fermentation.

2.2 Fermentation of CR samples over time periods

In this study, SSF was initiated using 447 g of dried CR as
the solid substrate. The substrate matrix was further enriched
with nutrients, including 30 g of molasses and 100 g of corn
bran. Subsequently, the substrate was inoculated with 50 g of
corn grain spawn of each fungal strain (PCH, POS, TRV, and
LED), and sterile water was added during mixing to maintain
a total moisture content of 60%. Both the SSF and
uninoculated substrate (WOI) were aerobically incubated at
room temperature (approximately 37°C) for 28 days in
polyethylene bags. Four full fermentation periods were carried
out in five replicates, and each period lasted seven days with
25 data sets. Samples used for NIR spectra acquisition and
laboratory reference measurements were taken every seven
days during the fermentation process. Thus, a total of 100
samples were obtained in four different SSF periods.

2.3 NIR spectra acquisition

The NIR spectra of the SSF samples were collected using
the NIRFlex N-500 spectrometers (Bichi, Flawil,
Switzerland). Spectra measurements were performed on the
SSF samples immediately after harvesting during each period.
About 5 g of each SSF sample was placed in a sample holder
and flattened to create a smooth surface before scanning. NIR
spectra were measured in the absorbance mode in the
wavelength range from 1,000 to 2,500 nm (10,000 to 4,000
cm1) with an average resolution of 1 nm, resulting in 1,557
data points. Each spectrum was scanned 32 times, and the
results are averaged per single spectrum. Spectra acquisition
was conducted at an ambient temperature of approximately 29
to 31°C.

2.4 Measurements of moisture content and pH level

The moisture content of the sample was determined based
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on the AOAC 930.15 method by drying 2 g of SSF product to
constant weight at a temperature of 103 £2°C. The moisture
content was determined by calculating the weight loss
following the drying process, and it is expressed as a
percentage on the wet basis. The pH was measured with a pH
meter by weighing 1 g of the sample and mixing it well with
50 mL of deionized water. The solution was centrifuged at
4,000 revolutions per minute for 10 minutes. Following
centrifugation, pH was assessed.

2.5 Data partitioning and PCA dimension reduction

All samples were partitioned into calibration and prediction
sets at a 4:1 ratio, comprising 80 and 20 samples, respectively.
The calibration set was used for model development, while the
prediction set served for independent validation of predictive
performance. To ensure balanced representation, data were
stratified according to fermentation time and fungal strains.
Specifically, within each fungal treatment and each
fermentation phase, one out of every five samples was
systematically allocated to the prediction set, while the
remaining four were retained in the calibration set. This
procedure maintained proportional representation across all
fermentation periods (7, 14, 21, and 28 days) and fungal strains
(WOI, PCH, POS, TRV, and LED). Additionally, samples
exhibiting the highest and lowest pH and moisture values were
included in the calibration set to capture the full range of
spectral variability and enhance model robustness. This
stratification strategy ensured that both data subsets reflected
the overall spectral diversity of the experiment, supporting
reliable model evaluation and generalization.

Principal component analysis (PCA) was applied to the
preprocessed NIR spectral data (1,000-2,500 nm) to reduce
data complexity and remove redundancy among the spectral
variables [28]. The data matrix was structured with samples as
rows and absorbance values at each wavelength as columns.
Prior to analysis, the data were mean-centered and autoscaled
to ensure that all wavelengths contributed equally. PCA was
performed using the scikit-learn library in Python, and the
number of principal components (PCs) retained was
determined based on the criterion of eigenvalues greater than
1 and the cumulative proportion of explained variance [29]. A
total of 10 principal components were retained, accounting for
over 90% of the total spectral variation. The resulting PCs
were used as input variables in the development of predictive
models for estimating moisture content and pH.

2.6 Machine learning (ML) models

The ML modeling workflow consisted of three primary
steps: (1) defining the algorithm structure, (2) tuning
hyperparameters, and (3) evaluating performance. In this study,
three different types of ML algorithms were employed to
develop models for predicting moisture content and pH, and
their performances were compared. These algorithms covered
both classical and advanced ML methodologies. Initially,
random forest (RF) and support vector regression (SVR) were
used to establish classical ML models. For the RF model,
structural parameters included the number of decision trees
and maximum tree depth. The SVR model was characterized
by the kernel type (radial basis function), regularization
parameter (C), and kernel coefficient (y). Additionally, light
gradient-boosting machine (LightGBM), an advanced
gradient-boosting machine (GBM) algorithm, was selected as



the primary algorithm to optimize the GBM framework.
LightGBM was chosen due to its leaf-wise tree growth
strategy and its ability to discretize continuous values into bins,
which significantly enhances training speed and memory
efficiency [30]. For LightGBM, the structure was defined by
the number of leaves, maximum depth, and boosting iterations.

Hyperparameters such as learning rate, maximum tree depth,
minimum child weight, and the number of boosting iterations
were optimized using Bayesian optimization during model
calibration. Bayesian optimization helps prevent overfitting by
penalizing overly complex solutions and promoting models
that generalize well to unseen data. This optimization provides
an efficient way to explore the hyperparameter space by
iteratively assessing model performance, typically measured
by root mean square error (RMSE), and updates a probability
model to identify the most promising hyperparameter
configurations [31]. Subsequently, k-fold cross-validation was
applied during model calibration by dividing the data into 10
folds, with each fold alternately serving as a validation set
while the others functioned as the training set to balance bias
and variance [32]. This process was repeated until each fold
was validated once. The optimized models were then tested on
independent samples to evaluate their predictive performance
for moisture content and pH level.

2.7 Performance evaluation of prediction models

The performance of prediction models is assessed based on
the squared correlation coefficient (R% and R%,) and the root
mean square error (RMSE. and RMSE;) indexes in the
calibration and prediction sets. An R? value > 0.8 indicates a
model with strong predictive ability, while an RMSE lower
than the actual standard deviation (SD) indicates superior
predictive performance [22, 24]. These metrics were
calculated as follows:

RMSE = €))

n
1 s — 5172
r—lZyz—yl)
i=1

where, y; is the observed value, ¥, is the predicted value, and
n is the number of samples.

1

D =
S n—1

2

Zn:(}’i - ¥)?

where, y is the mean of observed values.

In addition, residual predictive deviation (RPD) and range
error ratio (RER) indexes serve as further indicators. RPD is
determined by dividing the actual SD by RMSE,, where an
RPD value of > 3 indicates a model with excellent predictive
performance [29]. Meanwhile, RER is obtained from the ratio
of the data range to RMSE, with an RER value of > 10
confirming a high prediction model to accurately quality
control in new samples [33]. This evaluation ensures the
statistical validity of the model and its application in real
conditions.
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2.8 SHAP analysis

The Shapley additive explanations (SHAP) values are used
to assess the significance of features in the optimal ML model.
SHAP, based on game theory, improves the interpretability of
tree models by combining the local contribution of each
feature for global analysis [34]. This method breaks down the
prediction into the contribution of each feature, which is
expressed in a positive or negative importance value,
reflecting the direction of its influence. This approach allows
for the identification of the most influential features and their
interactions in producing the final prediction, thus increasing
model transparency and overcoming the 'black box' problem
in ML. The SHAP value used in the study aims to interpret the
importance of wavelengths in the best predictive model.

All analyses in this study were conducted on the Google
Colab platform (12 GB RAM)), utilizing Python version 3.1.3
to implement statistical analyses, ML models, and graphical
visualizations.

3. RESULTS AND DISCUSSION
3.1 Reference content statistics

The moisture content and pH of samples collected from
various fermentation periods were initially analyzed using
traditional chemical methods as a reference. Descriptive
statistics for reference content of moisture and pH in
calibration and prediction datasets are shown in Table 1.

Table 1. Descriptive statistics for reference content of
moisture (% wet basis) and pH level in calibration and
prediction datasets

Statistical Moisture (% wet basis) pH Level

Parameter Cal Pred Cal Pred
n 80 20 80 20
Range 13.3 8.7 5.0 35
Min 525 53.6 5.0 5.4
Max 65.8 62.3 100 89
Mean 58.3 58.2 7.0 6.9
SD 2.7 1.8 1.3 1.0

Cal: calibration; Pred: prediction; SD: standard deviation; Min: minimal;
Max: maximal; n: number of sample datasets.

The moisture content and pH level of the calibration set
ranged from 52.5% to 65.8% and 5.0 to 10.0, respectively. The
corresponding values for the prediction set samples were
53.6% to 62.3% and 5.4 to 8.9, respectively. In general, the
moisture content and pH range of the calibration set covered
the entire range of the prediction set. Additionally, results of
the Two-Sample Kolmogorov-Smirnov Test showed no
significant differences for moisture content (P > 0.39) and pH
level (P > 0.96) between the two datasets, confirming that the
calibration set adequately represented the variation in the
prediction set. Figure 1 illustrates that the moisture content and
pH of fermented CR exhibit a gradual increase with prolonged
fermentation time and display a dynamic trend throughout the
different treatments. This indicates that microbial growth and
metabolism vary depending on the fungus type.



Treatment
LED
PCH
— POS
— TRV
wol

62+

60

Moisture (%)

Q/

Treatment
LED
PCH o)
— POS
1 — TrRv
WOl

7I 1‘4 2‘1 2‘5
Fermentation Time (days)

7 12 21 28
Fermentation Time (days)

Figure 1. Dynamics of changes in moisture content and pH level of CR fermented with various fungal strains
LED: L. edodes; PCH: P. chrysosporium; POS: P. ostreatus; TRV: T. viride; WOI: uninoculated substrate.

In SSF-based enzyme production using agricultural waste
substrates, moisture balance is a key parameter with an
optimal range that varies significantly between 50 to 75%.
Studies show that increasing the moisture content from 40 to
55% contributes to increased enzyme production. During
vegetative growth, white-rot fungi secrete decomposing
enzymes, including laccase, lignin peroxidase (LiP), and
manganese peroxidase (MnP), which partially degrade
complex carbohydrates into CO, and H;O. This process
contributes to a reduction in the overall content of neutral
detergent fiber (NDF) and acid detergent fiber (ADF) in the
substrate [14]. This phenomenon is related to the increase in
moisture content from 52.5 to 65.8% as the duration of
fermentation increases from 7 days to 28 days (Table 1),
caused by the decomposition of the substrate by microbes, so
that the need for enzyme production becomes lower. The
observed increase in moisture content during the fermentation
period is likely due to a combination of microbial metabolic
activity and the breakdown of lignocellulosic components,
which can release bound water into the substrate matrix.
Additionally, metabolic water produced during the aerobic
degradation of carbohydrates and proteins may have
contributed to the overall moisture accumulation. The
relatively closed incubation environment may also have
limited evaporation, promoting moisture retention in the
substrate. pH is another important parameter in the context of
enzyme production through SSF. However, it is typically not
a primary focus in SSF and is mostly maintained during the
initial stages by keeping the moisture of the substrate. Changes
are possible during the enzyme production process due to
microbial metabolic activity. The major reason for the change
in pH from 5.0 to 10.0 during SSF is due to the assimilation of
organic acids such as acetic, citric, and lactic acid, resulting in
an increase in pH level [17]. Filamentous fungi exhibit growth
across a broad pH range of 2 to 9, with an optimal pH range
between 3.8 and 6. Bacterial contamination of molds and
yeasts can be diminished by adjusting the pH to levels harmful
for bacterial growth [8, 35].

3.2 NIR spectra visualisation and PCA feature extraction

The NIR raw spectra (Figure 2) showed distinct trends in
absorption among the different treatment groups (WOI, PCH,
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POS, TRV, and LED) throughout the fermentation period.
Although all spectra exhibited similar peak positions, their
relative intensities differed, indicating variations in
composition among the fungal strains during fermentation.

Absorbance
N
o
3

1750 2250 2500

Wavelength (nm)

1500 2000

Figure 2. Average raw spectra of samples categorized by
inoculum types, collected at fermentation times

w0 99.192%

80 1

60

40 4

Explained Variance (%)

0705% 0073% 0.029% 0.000% 0.000% 0.000% 0.000% 0.000% _0.000%
2 4 6 8 10
Number of Component

Figure 3. The PCA scree plot illustrates the explained
variance proportion allocated to each PC

PCA was performed on raw NIR spectra to investigate
natural variation, reduce dimensionality, and extract features.
PCA converts NIR spectra into principal component (PC)



scores, retaining the most relevant parts while eliminating
collinearity, thereby enhancing ML model performance and
accelerating computational processes [36]. The scree plot
(Figure 3) shows that the first two PCs explain most of the total
variance (PC1 = 99.19% and PC2 = 0.70%), indicating that
these components capture the primary spectral differences
across samples. The PCA score map (Figure 4) further
illustrates the spatial distribution of samples in the PC1-PC2
space, revealing clear clustering patterns according to
fermentation time and treatment. This separation confirms that
NIR spectroscopy can effectively distinguish different
fermentation states based on spectral characteristics.
Consequently, these findings provide a foundation for
directing subsequent analysis toward these components. In the
ML model training process, the first 10 PCs are utilized due to
the spectral variations observed in the higher-ranked
components following the PCA transformation. Relationships
between variables are widely investigated to determine the
physical importance of PC in PCA [37].

The loading plot for the initial four PC (Figure 5) illustrates
distinct absorbance patterns associated with molecular
vibrations. The loading plot shows peaks and valleys that are
significantly correlated with the molecular vibrations in the
sample. The peaks detected at wavelengths of 1,210 nm, 1,350
nm, 1,403 nm, 1,690 nm, 1,750 nm, 1,930 nm, 2,010 nm, 2,100
nm, 2,229 nm, and 2,400 nm indicate specific molecular
vibrations associated with the water content and organic
compounds inside the material. Variations in moisture and pH

during SSF are intricately linked to lignocellulose degradation,
which can be monitored by NIR spectroscopy. The enzymatic
decomposition of lignocellulose during SSF releases soluble
organic acids and alters the hydrogen-bonding environment of
hydroxyl (O-H) and carbonyl (C=0) groups, leading to
detectable changes in overtone and combination absorption
bands in NIR spectra, particularly within the 1,100-1,500 nm
and 2,100-2,300 nm regions associated with pH variation. This
mechanism is supported by comparable findings in
thermophilic SSF of soybean meal, where NIR spectroscopy
successfully monitored pH and other biochemicals [38].
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Figure 5. The loading plots of the four principal components (PC) from the PCA analysis of NIR spectra in the wavelength

range from 1

,000 to 2,500 nm

PC1.: the primary principal component, which accounts for the greatest variance in the dataset. PC2: the second principal component, which accounts for the
second greatest variance; PC3: the third highest variance; PC4: the fourth highest variance.

Throughout fermentation, the fungus generates lignolytic
and cellulolytic enzymes that decompose lignocellulose into

less complex components. Based on these results, the moisture
content in the sample can be identified through intense
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absorbance regions at wavelengths around 1,400 nm and 1,900
nm. These bands correspond to the overtone of stretching the
O-H bond in water and carbohydrate molecules [39]. In
addition, the combination band that appears in the range of
2,100 nm to 2,300 nm (connected with the combination
vibration of O—H, N-H, and C-H), also makes an important
contribution to the characterization of moisture content [38].
This spectral region is mostly made up of information from the
PC1 and PC4. These spectral regions have been consistently
reported as highly correlated with sample moisture content in
various agricultural and fermentation substrates. The first
overtone of O-H stretching around 1400 nm and the
combination band near 1,900 nm are particularly sensitive to
changes in water content [39, 40]. Additionally, the 2,100-
2,300 nm range, arising from O-H, N-H, and C-H
combination vibrations, has been shown to contribute to
moisture prediction accuracy in solid substrates undergoing
bioprocessing [39]. The pH variation in the sample is
correlated with changes in absorbance at wavelengths

approximately between 1,100 to 1,500 nm and 2,100 to 2,300
nm, which are generally associated with overtone vibrations
and combinations of functional groups such as O—H, N-H, and
C=0. PC1, PC2, and PC4 exhibit significant variations within
this wavelength region, thereby serving as primary indicators
for inferring pH level using NIR spectroscopy. This finding
facilitates the creation of ML predictive models capable of
precisely quantifying moisture content and pH by leveraging
spectral properties revealed through PCA transformation. This
approach not only improves prediction accuracy but also
avoids overfitting.

3.3 Performance of ML prediction model

Machine learning (ML) methods are employed to develop
models for detecting moisture content and pH level, utilizing
the PCA-transformed spectra dataset. The performances of the
three distinct ML approaches show significant variations, as
presented in Table 2.

Table 2. Predictive performance of RF, SVR, and LightGBM in monitoring moisture content and pH level during the SSF
process of fermented CR

Cal Pred

Content Method RZ% RMSE. R RMSE, RPD, RER,
RF 0.97 0.46 0.88 0.60 3.00 145

Moisture (%) SVR 1.00 0.03 1.00 0.04 45.00 2175
LightGBM 1.00 0.02 0.95 0.39 4.62 223
RF 0.93 0.35 0.77 0.48 2.08 7.3

pH level SVR 1.00 0.02 1.00 0.03 33.33 116.7
LightGBM 1.00 0.08 0.87 0.35 2.86 10.0

Cal: calibration; Pred: prediction; R%: coefficient of determination for calibration; RMSE_: root mean square error of calibration; R?;: coefficient of determination
for prediction; RMSE,: root mean square error of prediction; RPD,: ratio of performance to deviation for prediction; RER}: range error ratio for prediction; RF:
random forest; SVR: support vector regression; LightGBM: light gradient-boosting machine.

As shown in Table 2, the performance of the ML model in
predicting moisture content and pH level during the
fermentation of CR ruminant feedstuffs is essential for
assessing prediction accuracy. The SVR model exhibited
optimal performance in predicting moisture content, achieving
an R? value of 1.00 and a minimal RMSE in both the
calibration and prediction phases. The model exhibited
excellent generalization ability, evidenced by an RPD value
exceeding three and an RER greater than 10, reflecting its high
accuracy and reliability in analyzing moisture content during
SSF processes.

In contrast, decision tree-based models, including RF and
LightGBM, exhibited inferior performance in predicting
moisture content, with R? values of 0.97 and 1.00, respectively,
and a higher RMSE than SVR. An RMSE value less than the
standard deviation of the target measurement indicates that the
prediction error of the model is smaller than the inherent
variability present in the dataset [21, 24]. Among these two
models, LightGBM demonstrated superior performance
compared to RF, achieving RPD values of 4.62 and an RER of
22.3, thereby categorizing it as an acceptable model for
predicting moisture content. For pH prediction, a similar trend
was observed, where the SVR model continued to be the best
performer, with an R? value of 1.00 and a minimum RMSE
during both calibration and prediction phases (RMSE_ of 0.02
and RMSE, of 0.03). The LightGBM model was slightly lower
than SVR but still outperformed RF, achieving an R?, of 0.87
and RMSE, of 0.35.

However, the exceptionally high R, values obtained by the
SVR model should be interpreted with caution. Such near-
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perfect accuracy is uncommon in practical bioprocess
monitoring and is likely influenced by several experimental
factors. First, the prediction set consisted of 20 samples, and
its entire variability range was fully represented within the
calibration set, which can artificially inflate apparent accuracy.
Second, the fermentation was carried out under controlled
laboratory conditions that minimized sample heterogeneity
and reduced spectral noise. Third, PCA dimensionality
reduction removed most collinearity and baseline variation,
creating a smoother, more linearly separable feature space that
is highly favorable for SVR, particularly when optimized with
an RBF kernel through Bayesian tuning. These factors
collectively contribute to the high R?, values observed in this
study but may limit generalizability to more heterogeneous,
real-world SSF systems. Therefore, future studies should
incorporate completely independent batches with broader
variability to rigorously assess model robustness and mitigate
the risk of overfitting.

The superior performance of SVR over tree-based models
can also be explained by the nature of the feature space after
PCA transformation. PCA extracts orthogonal components
that capture the major sources of spectral variance while
removing noise and nonlinear redundancy. This
transformation often yields a feature space with smoother
gradients and higher linear separability. SVR, particularly
when using an RBF kernel, is designed to exploit such feature
structures by mapping them into a high-dimensional space
where an optimal separating hyperplane can be constructed.
Consequently, SVR is highly sensitive to subtle but
informative variations in the PCA scores. In contrast, tree-



based algorithms such as RF and LightGBM partition the
feature space through axis-aligned splits, making them less
capable of capturing small, continuous changes within PCA-
reduced data. As a result, these models may overlook the finer
spectral differences that contribute to accurate prediction,
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explaining their comparatively lower performance in this
study. The scatter plot depicting the performance of three
different ML algorithms in predicting moisture content and pH
level is presented in Figure 6.
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Figure 6. Scatter plot comparing reference and prediction values of moisture and pH level across all three machine learning
models; (a) RF model for moisture content prediction, (b) RF model for pH level prediction, (¢) SVR model for moisture content
prediction, (d) SVR model for pH level prediction, (e) LightGBM model for moisture content prediction, and (f) LightGBM

model for pH level prediction
The dots represent the data points for calibration and prediction, and the black diagonal line serves as a reference for a perfect fit.

Figures 6(a)-(f) illustrate that a strong linear correlation
exists between the prediction and the reference value, as
evidenced by the symmetrical distribution of data points
around the line. This pattern indicates that the model's
predictions are reliable and free from systematic bias, thereby
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underscoring the model's effectiveness and robustness [41].
Figures 6(c) and 6(d) demonstrate that SVR effectively
handles complex linear relationships within the reduced PCA
data, leading to highly accurate predictions. PCA reduces data
dimensionality and keeps the most significant PC. The



application of PCA for data reduction enhances the efficacy of
SVR on the processed dataset by eliminating irrelevant or
redundant information. SVR is an ML algorithm for linear and
non-linear data that maps data to higher dimensions for linear
separation [42]. SVR searches for an optimal hyperplane to
divide samples with support vectors. This creates a more
favorable environment for SVR to achieve linear separation,
even in cases where the initial data is complex and nonlinear.
However, SVR has the disadvantage of requiring a long
training period. LightGBM is also an attractive alternative,
particularly when a lightweight model with sufficient accuracy
is required [39].

Compared to traditional methods, this proposed approach
offers a non-destructive alternative, making it a promising
solution for real-time monitoring of fermentation change
patterns during the SSF process, which are important for the
success of CR fermentation in producing value-added products
for ruminant feed. These regulations affect on growth and
metabolic regulation of microorganisms, in this case, white-
rot fungi. During vegetative growth, white rot fungi secrete
enzymes that decompose macromolecular substances to obtain
carbon and nitrogen. Tuyen et al. [14] demonstrate that white
rot fungi partially degrade carbohydrates into CO; and H-0,
resulting in a general decrease in the NDF and ADF content of
the substrate. Simultaneously, during the degradation of
complex carbohydrates, the assimilation of enzymatic by-

products, such as organic acids, alters hydrogen ion
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concentrations, leading to an increase in pH level [8]. This
phenomenon explains the increase in moisture content and pH
level during the fermentation process, as shown in Figure 1.
Research by Pensupa et al. [43] supports this finding,
indicating that spore formation on the substrate surface
correlates positively with increased moisture content. This
indicates that increased humidity is not only related to a higher
rate of fungal growth but also supports the overall proliferation
of mold colonies, which ultimately accelerates the
fermentation process and improves the quality of the final
product.

3.4 SHAP interpretable model

Beyond achieving high predictive accuracy, understanding
the underlying rationale for each prediction is essential in the
development of robust predictive models. The inherent
complexity of machine learning models, often characterized as
‘black box' systems, poses challenges in interpreting their
outputs [44, 45]. To address this, SHAP values (Shapley
Additive exPlanations) are utilized to quantify the contribution
of specific wavelengths to the PC values within the optimal
prediction model, employing the Python SHAP module. This
approach highlights the importance of feature interpretability
in model assessment. The impact of each principal component
in the optimal SVR prediction model is visualized through the
SHAP beeswarm plot in Figure 7.
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Figure 7. SHAP beeswarm plot of the best predictive models of SVR for (a) moisture content and (b) pH level
Data points with positive SHAP values (located to the right of the vertical zero line) indicate that observations with relatively low absorbance (represented by
blue shades) or high absorbance (represented by pink shades) contribute to an increase in the model output. Conversely, data points with negative SHAP values
(positioned to the left of the vertical zero line) correspond to a decrease in the model output.

Based on Figures 5(a) and 5(b), the prediction results for
moisture content and pH level are significantly influenced by
PC1, followed by PC4 and PC3. Although PC2 accounts for
the second largest proportion of variance in the PCA
transformation (0.71%), it does not have a significant impact
on the performance of the prediction model. PC1 and PC4
exhibit a negative influence on the predictions, whereas PC3
has a contrasting positive effect. Referring to Figure 3, PC1
demonstrates strong spectral loading at wavelengths of 1,210
nm, 1,350 nm, 1,690 nm, 1,930 nm, and 2,229 nm, indicating
interactions with hydroxyl (—-OH) groups from water and
carbohydrates, as well as carbonyl (—C=0) groups that
contribute to variations in moisture content [39]. PC4 exhibits
a similar absorption pattern, with additional emphasis at 1,403

nm and 1,750 nm, which are associated with hydrogen
bonding in the lignocellulose matrix [46]. In contrast, PC3
spans a broader spectral range, with dominant absorption
bands at 2,010 nm and 2,100 nm, corresponding to methoxy (—
OCHs) groups in lignin and aromatic structure [47]. In the SSF
process, white-rot fungi, which are lignolytic and cellulolytic
microorganisms,  produce enzymes that hydrolyze
lignocellulose into simpler compounds. A study by Tuyen et
al. [14] demonstrated that white-rot fungi effectively degrade
structural carbohydrate components into CO: and H:O,
leading to a reduction in NDF and ADF content. At the
molecular level, this degradation involves the cleavage of C-
O-C bonds in hemicellulose and lignin, as well as the
hydrolysis of B-1,4-glycosidic bonds in cellulose [48].
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Additionally, this degradation process generates by-products
in the form of organic acids, which alter hydrogen ion
concentrations and subsequently increase the pH level [12].
Consequently, NIR spectroscopy can serve as an effective
indicator of complex carbohydrate degradation during
fermentation, enabling precise and real-time monitoring of
fermentation dynamics.

4. CONCLUSIONS

This study successfully developed a reliable ML prediction
model for intelligent and real-time monitoring of moisture and
pH changes during the SSF process of feedstuffs. PCA-
transformed NIR spectra facilitate the processing of data and
enhance computational efficiency. Overall, the SVR model
demonstrated superior performance compared to LightGBM
and RF. The SVR model for moisture content achieved an R?,
of 1.00, RMSE; of 0.04, RPD, of 45.00, and RER,, of 217.5,
while the pH level model attained an R?, of 1.00, RMSE, of
0.03, RPD, of 33.33, and RER,, of 116.7. These unusually high
R?, values are likely influenced by the balanced calibration—
prediction set composition, controlled measurement
environment, and the use of PCA to minimize noise, and may
not directly translate to larger, more heterogeneous datasets.
Although SVR vyielded superior predictive performance,
LightGBM offered notable practical advantages, particularly
in terms of computational efficiency. Its leaf-wise tree growth
enables rapid training even with high-dimensional spectral
data, making it more suitable for real-time or embedded
monitoring scenarios where computational resources are
limited. Thus, LightGBM provides a balanced trade-off
between accuracy and speed in operational settings. The
observed spectral features linked to moisture content (around
1,400, 1,900, and 2,100-2,300 nm) and pH variation (1,100-
1,500 nm and 2,100-2,300 nm) align with functional group
changes (O-H, N-H, C=0) resulting from lignocellulose
decomposition by white-rot fungi, explaining the observed
increases in both parameters during SSF. This approach
establishes a robust foundation for further applications in
developing microbial growth monitoring systems within
animal feed bioprocesses. Future studies should incorporate
completely independent batch validation sets to rigorously
assess the robustness and generalizability of the predictive
models. Additionally, expanding the model to include further
fermentation-related parameters (such as lignin, NDF, and
ADF degradation) would provide deeper insight into SSF
dynamics and support the development of more
comprehensive and efficient process optimization strategies.
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