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The moisture content and pH level are the primary parameters influencing the efficacy of 

the solid-state fermentation (SSF) process of feed ingredients derived from agricultural 

residues. Due to the potential for contamination and process failure, the traditional 

methods for detecting changes in moisture content and pH level during the SSF process 

are unfeasible. Consequently, there is an urgent necessity to develop alternative 

techniques that yield highly accurate results without being time-consuming or labor-

intensive. One of the most promising sensing techniques for in-line applications is near-

infrared (NIR) spectroscopy. This study employed both classical and advanced machine 

learning (ML) models based on NIR spectra to develop a predictive model for moisture 

content and pH level in the thermophilic SSF process of citronella residues (CR) feed for 

ruminant livestock using different white-rot fungi. Principal component analysis (PCA) 

was utilized on the NIR spectra to extract relevant features for input into the ML models. 

Among the models evaluated, support vector regression (SVR) demonstrated the highest 

predictive accuracy (R2
p of 1.00 for both moisture content and pH level), outperforming 

light gradient-boosting machine (LightGBM) and random forest (RF). Although SVR 

achieved the highest predictive accuracy, LightGBM offers practical advantages, 

including faster training, lower computational demand, and better scalability for large 

datasets. With competitive predictive performance (R2
p of 0.95 for moisture and 0.87 for 

pH), LightGBM provides a strong alternative for applications requiring real-time or 

resource-efficient deployment. In conclusion, integrating NIR spectroscopy with ML 

offers a promising pathway for intelligent and real-time monitoring in large-scale SSF 

applications, contributing to sustainable valorization of agricultural residues into high-

quality ruminant feed. 
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1. INTRODUCTION

The biotransformation of lignocellulosic biomass derived 

from agricultural residues represents a viable renewable 

resource for ruminant feed, enhancing sustainable animal 

production, feed security, and environmental sustainability. 

This approach effectively addresses the negative 

consequences of the inherent conflict between human and 

livestock food production levels, thereby posing a direct risk 

to food security. Citronella residues (CR), a significant by-

product of the citronella distillation process, are regarded as a 

promising option for this purpose due to their considerable 

potential. Each 1,000 kg of distilled citronella leaves yields 8 

kg of essential oil, while the remaining 992 kg of biomass 

residue is discarded as waste [1]. The CR contains 5.82% 

crude protein, 2.79% crude fat, and 35.03% crude fiber [2], 

which is composed of cellulose (35 to 40%), hemicellulose (25 

to 30%), and lignin (15 to 20%) [3]. Citronella residues have 

been utilized as ruminant feed, though not extensively. Its 

extensive use in ruminant feed faces a notable challenge, 

specifically due to its low feed intake and digestibility [4]. The 

complex and extensively lignified structure of lignocellulose 

cell walls renders them less accessible to microbial enzymes 

in the rumen. Therefore, adequate pretreatment is essential 

before further utilization. 

Various methods have been employed to convert highly 

lignified biomass into more digestible animal feed. Several 

processing methods have been employed by researchers, 

encompassing physical, chemical, and biological procedures. 

Currently, biological processing, particularly fungal microbial 

fermentation, has attracted considerable attention from 

researchers due to the increasing global demand for 

environmentally sustainable technologies [5]. Solid-state 

fermentation (SSF) processes have been used to promote the 
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microbial fermentation of fungi on solid substrates, including 

citronella residues. SSF is a fermentation process that utilizes 

a solid substrate to support the growth of microorganisms, 

mimicking the conditions present in natural habitats where 

microorganisms grow in the absence or near absence of free 

water [6, 7]. Among the fungal strains used in SSF, 

Phanerochaete chrysosporium, Pleurotus ostreatus, 

Trichoderma viride, and Lentinula edodes have been studied 

for their strong lignocellulolytic enzyme activity, enabling 

effective degradation of complex fibrous substrates [5, 8-11]. 

SSF is characterized by lower costs, mild reactions, and an 

effortless manufacturing process. At present, SSF is conducted 

on a commercial basis within the food sector and waste 

treatment. Nevertheless, conventional SSF in the food and 

feed sector predominantly occurs under mesophilic settings 

(from 20 to 40℃), accompanied by an essential autoclaving 

procedure before fermentation to prevent product 

contamination. 

SSF of highly lignified biomass into value-added feed faces 

many challenges, including the types of substrates and fungal 

strains, which lead to varying final product quality. The 

fermentation process is affected by several parameters, 

including pH, temperature, nutrient availability, substrate 

moisture content, incubation duration, and inoculation volume, 

which vary among different microbial species [12]. 

Consequently, awareness of the microbe's growth 

circumstances is critical for maximizing metabolite production 

via SSF. Among them, pH and moisture content are considered 

the most important process parameters for microorganism 

growth, cellulase production, and microbial protein synthesis 

during fermentation [13]. Previous studies have reported that 

optimal initial moisture and pH levels vary depending on the 

fungal strain and substrate, with most SSF protocols starting 

within a slightly acidic range (pH 4.5–6.0) to support fungal 

growth [5, 14]. In our study, initial pH was measured but not 

controlled throughout fermentation, as pH was expected to 

change naturally due to microbial activity. This approach is 

consistent with previous SSF studies aiming to monitor 

fermentation dynamics rather than maintain constant 

physicochemical conditions. Microbial activity affects the pH 

level and moisture content of the substrate, hence influencing 

the quality of the fermentation output. The main reason for 

changes in pH during SSF is the release of organic acids, such 

as lactic, citric, and acetic acids. On the other hand, the 

increase in pH is linked to the assimilation of these organic 

acids [12]. Meanwhile, changes in moisture content in the 

substrate play an important role in microbial growth, enzyme 

production, and nutrient transfer [15]. Therefore, monitoring 

pH level and moisture content during the SSF process is 

crucial to achieve an optimum quality and yield of the desired 

product. To achieve this goal, an analytical method is required 

that can deliver real-time data on critical process parameters. 

These parameters are usually measured offline, which takes 

time and adds to analytical error through sampling and sample 

preparation [16]. 

One of the most promising sensing techniques for in-line 

applications is near-infrared (NIR) spectroscopy. NIR 

characterizes materials by assessing the absorption or 

reflection of light at wavelengths ranging from 850 to 2,500 

nm. Owing to the inherent variations in the chemical 

composition and physical quality of materials, different 

spectra can be generated for each material. The NIR method 

serves as an effective and reliable tool for real-time monitoring 

of bioprocess and shows potential for future applications in 

intelligent control of feed production. This approach has been 

utilized to create rapid, accurate, non-destructive, and 

reproducible techniques for analyzing the compositions of 

diverse materials, such as food [17], agricultural products [18, 

19], quality of fermentation products [20], animal feed [21, 22], 

and so on. The NIR spectral range (1,000–2,500 nm) has been 

widely used for the evaluation of fermented lignocellulosic 

biomass due to its ability to capture molecular vibrations 

associated with organic components such as moisture, proteins, 

and fiber. For instance, Dai et al. [23] successfully applied NIR 

spectroscopy for the rapid and cost-effective determination of 

pH, moisture, soluble protein, and trypsin inhibitor contents 

during thermophilic SSF of unsterilized soybean meal by 

Bacillus licheniformis YYC4. From an application perspective, 

NIR can quickly measure the moisture content of substrates, 

help maintain microbial activity, and determine the 

appropriate decision-making method. NIR enables rapid 

assessment of pH level, which is essential for assessing 

microbial metabolic activity to ensure optimal product results 

[12]. However, the complexities of NIR spectra present 

several challenges for data interpretation. Numerous 

wavelengths and absorption bands in the NIR spectra 

complicate the analysis. This complexity leads to too much 

interference and multicollinearity, reducing prediction 

stability. In SSF systems, variations in particle size and density 

inhomogeneity further affect light scattering and spectral 

consistency. Such effects can be detrimental in real-time 

applications where reliability and consistency of predictions 

are essential [24]. Consequently, the ability to generalize 

predictions on new data sets often shows poor model 

prediction accuracy in real-time application scenarios. In 

recent years, improvements in computational machine 

learning (ML) algorithms have made it a more useful tool for 

data mining and building models. Studies indicate that ML 

algorithms demonstrate superior performance in both 

qualitative and quantitative predictions of materials when 

employing NIR, Hyperspectral, and Raman spectroscopy [25, 

26]. This finding provides insights and opportunities for 

integrating NIR technology with ML algorithms to predict pH 

level and moisture content during the SSF process. However, 

it is still uncertain which ML algorithm is capable of 

improving the accuracy of the SSF monitoring process using 

NIR technology, particularly in the context of animal feed 

bioprocesses. The objective of this work is to utilize various 

ML algorithms in conjunction with features extracted from 

NIR spectra using principal component analyses (PCA) to 

develop highly accurate predictive models for pH level and 

moisture content. As a result, this model offers an innovative, 

efficient, and high-throughput approach for monitoring animal 

feed bioprocess and provides rapid technical support for 

precise decision-making in large-scale SSF systems. 
 

 

2. MATERIALS AND METHODS 
 

2.1 Substrate and fungal strains 
 

Citronella residues (CR) served as the substrate for 

sequential fermentation in this study. CR was collected from 

farmers in the Gayo Lues District of Aceh, Indonesia, after the 

extraction of essential oil. The wet residues of CR were 

carefully processed to achieve an average particle length of 

approximately 3 cm. This particle size was chosen based on 

preliminary trials to optimize fungus accessibility and aeration 

during fermentation. The chopped material was oven-dried at 
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60℃ for roughly 48 hours until reaching a final moisture 

content of 10–12%, preserving the structural carbohydrates 

(cellulose and hemicellulose) without thermal degradation 

[27]. The dried substrate was then stored in airtight containers 

until further fermentation processing. For fermentation 

microbes, this study utilized various fungal strains, including 

P. chrysosporium (PCH), P. ostreatus (POS), T. viride (TRV), 

and L. edodes (LED). The four fungal strains selected for this 

study were chosen based on their reported ligninolytic and 

cellulolytic enzyme activities and prior successful use in 

lignocellulosic biomass fermentation [5, 14]. These strains are 

known to improve fiber degradation and nutrient availability 

in various agricultural by-products, making them suitable 

candidates for SSF of citronella residues. The microbial strains 

were sourced from the Indonesian Culture Collection (InaCC) 

Laboratory of BRIN, Cibinong, Indonesia. Before fermenting 

CR, the fungal strains were pre-cultivated following the 

protocol of Tuyen et al. [14] with minor modifications. 

Specifically, the fungus was grown on Potato Dextrose Agar 

(PDA) medium and incubated at 24℃ until its mycelia had 

extensively colonized the agar surface. Inoculum preparation 

involved transferring an agar fragment (from 1.5 to 2.0 cm) 

containing fungal culture onto sterilized cracked corn. The 

inoculated corn was then incubated at 24℃ until it was fully 

colonized by fungal mycelia. To maintain the inoculum and 

inhibit further growth, the corn grain spawn was stored at 6℃ 

in a controlled environment for one week prior to fermentation.  
 

2.2 Fermentation of CR samples over time periods 
 

In this study, SSF was initiated using 447 g of dried CR as 

the solid substrate. The substrate matrix was further enriched 

with nutrients, including 30 g of molasses and 100 g of corn 

bran. Subsequently, the substrate was inoculated with 50 g of 

corn grain spawn of each fungal strain (PCH, POS, TRV, and 

LED), and sterile water was added during mixing to maintain 

a total moisture content of 60%. Both the SSF and 

uninoculated substrate (WOI) were aerobically incubated at 

room temperature (approximately 37℃) for 28 days in 

polyethylene bags. Four full fermentation periods were carried 

out in five replicates, and each period lasted seven days with 

25 data sets. Samples used for NIR spectra acquisition and 

laboratory reference measurements were taken every seven 

days during the fermentation process. Thus, a total of 100 

samples were obtained in four different SSF periods. 
 

2.3 NIR spectra acquisition 
 

The NIR spectra of the SSF samples were collected using 

the NIRFlex N-500 spectrometers (Büchi, Flawil, 

Switzerland). Spectra measurements were performed on the 

SSF samples immediately after harvesting during each period. 

About 5 g of each SSF sample was placed in a sample holder 

and flattened to create a smooth surface before scanning. NIR 

spectra were measured in the absorbance mode in the 

wavelength range from 1,000 to 2,500 nm (10,000 to 4,000 

cm-1) with an average resolution of 1 nm, resulting in 1,557 

data points. Each spectrum was scanned 32 times, and the 

results are averaged per single spectrum. Spectra acquisition 

was conducted at an ambient temperature of approximately 29 

to 31℃. 
 

2.4 Measurements of moisture content and pH level 
 

The moisture content of the sample was determined based 

on the AOAC 930.15 method by drying 2 g of SSF product to 

constant weight at a temperature of 103 ± 2℃. The moisture 

content was determined by calculating the weight loss 

following the drying process, and it is expressed as a 

percentage on the wet basis. The pH was measured with a pH 

meter by weighing 1 g of the sample and mixing it well with 

50 mL of deionized water. The solution was centrifuged at 

4,000 revolutions per minute for 10 minutes. Following 

centrifugation, pH was assessed. 

 

2.5 Data partitioning and PCA dimension reduction 

 

All samples were partitioned into calibration and prediction 

sets at a 4:1 ratio, comprising 80 and 20 samples, respectively. 

The calibration set was used for model development, while the 

prediction set served for independent validation of predictive 

performance. To ensure balanced representation, data were 

stratified according to fermentation time and fungal strains. 

Specifically, within each fungal treatment and each 

fermentation phase, one out of every five samples was 

systematically allocated to the prediction set, while the 

remaining four were retained in the calibration set. This 

procedure maintained proportional representation across all 

fermentation periods (7, 14, 21, and 28 days) and fungal strains 

(WOI, PCH, POS, TRV, and LED). Additionally, samples 

exhibiting the highest and lowest pH and moisture values were 

included in the calibration set to capture the full range of 

spectral variability and enhance model robustness. This 

stratification strategy ensured that both data subsets reflected 

the overall spectral diversity of the experiment, supporting 

reliable model evaluation and generalization. 

Principal component analysis (PCA) was applied to the 

preprocessed NIR spectral data (1,000–2,500 nm) to reduce 

data complexity and remove redundancy among the spectral 

variables [28]. The data matrix was structured with samples as 

rows and absorbance values at each wavelength as columns. 

Prior to analysis, the data were mean-centered and autoscaled 

to ensure that all wavelengths contributed equally. PCA was 

performed using the scikit-learn library in Python, and the 

number of principal components (PCs) retained was 

determined based on the criterion of eigenvalues greater than 

1 and the cumulative proportion of explained variance [29]. A 

total of 10 principal components were retained, accounting for 

over 90% of the total spectral variation. The resulting PCs 

were used as input variables in the development of predictive 

models for estimating moisture content and pH.  

 

2.6 Machine learning (ML) models 

 

The ML modeling workflow consisted of three primary 

steps: (1) defining the algorithm structure, (2) tuning 

hyperparameters, and (3) evaluating performance. In this study, 

three different types of ML algorithms were employed to 

develop models for predicting moisture content and pH, and 

their performances were compared. These algorithms covered 

both classical and advanced ML methodologies. Initially, 

random forest (RF) and support vector regression (SVR) were 

used to establish classical ML models. For the RF model, 

structural parameters included the number of decision trees 

and maximum tree depth. The SVR model was characterized 

by the kernel type (radial basis function), regularization 

parameter (C), and kernel coefficient (γ). Additionally, light 

gradient-boosting machine (LightGBM), an advanced 

gradient-boosting machine (GBM) algorithm, was selected as 
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the primary algorithm to optimize the GBM framework. 

LightGBM was chosen due to its leaf-wise tree growth 

strategy and its ability to discretize continuous values into bins, 

which significantly enhances training speed and memory 

efficiency [30]. For LightGBM, the structure was defined by 

the number of leaves, maximum depth, and boosting iterations. 

Hyperparameters such as learning rate, maximum tree depth, 

minimum child weight, and the number of boosting iterations 

were optimized using Bayesian optimization during model 

calibration. Bayesian optimization helps prevent overfitting by 

penalizing overly complex solutions and promoting models 

that generalize well to unseen data. This optimization provides 

an efficient way to explore the hyperparameter space by 

iteratively assessing model performance, typically measured 

by root mean square error (RMSE), and updates a probability 

model to identify the most promising hyperparameter 

configurations [31]. Subsequently, k-fold cross-validation was 

applied during model calibration by dividing the data into 10 

folds, with each fold alternately serving as a validation set 

while the others functioned as the training set to balance bias 

and variance [32]. This process was repeated until each fold 

was validated once. The optimized models were then tested on 

independent samples to evaluate their predictive performance 

for moisture content and pH level. 

 
2.7 Performance evaluation of prediction models 

 
The performance of prediction models is assessed based on 

the squared correlation coefficient (R2
c and R2

p) and the root 

mean square error (RMSEc and RMSEp) indexes in the 

calibration and prediction sets. An R2 value > 0.8 indicates a 

model with strong predictive ability, while an RMSE lower 

than the actual standard deviation (SD) indicates superior 

predictive performance [22, 24]. These metrics were 

calculated as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 (1) 

 
where, 𝑦𝑖  is the observed value, 𝑦𝑖̂ is the predicted value, and 

n is the number of samples. 

 

𝑆𝐷 = √
1

𝑛 − 1
∑(𝑦𝑖 − 𝑦̅)2
𝑛

𝑖=1

 (2) 

 
where, 𝑦̅ is the mean of observed values. 

In addition, residual predictive deviation (RPD) and range 

error ratio (RER) indexes serve as further indicators. RPD is 

determined by dividing the actual SD by RMSEp, where an 

RPD value of > 3 indicates a model with excellent predictive 

performance [29]. Meanwhile, RER is obtained from the ratio 

of the data range to RMSE, with an RER value of > 10 

confirming a high prediction model to accurately quality 

control in new samples [33]. This evaluation ensures the 

statistical validity of the model and its application in real 

conditions. 
 

2.8 SHAP analysis 

 
The Shapley additive explanations (SHAP) values are used 

to assess the significance of features in the optimal ML model. 

SHAP, based on game theory, improves the interpretability of 

tree models by combining the local contribution of each 

feature for global analysis [34]. This method breaks down the 

prediction into the contribution of each feature, which is 

expressed in a positive or negative importance value, 

reflecting the direction of its influence. This approach allows 

for the identification of the most influential features and their 

interactions in producing the final prediction, thus increasing 

model transparency and overcoming the 'black box' problem 

in ML. The SHAP value used in the study aims to interpret the 

importance of wavelengths in the best predictive model. 

All analyses in this study were conducted on the Google 

Colab platform (12 GB RAM), utilizing Python version 3.1.3 

to implement statistical analyses, ML models, and graphical 

visualizations. 

 

 

3. RESULTS AND DISCUSSION 

 
3.1 Reference content statistics 

 
The moisture content and pH of samples collected from 

various fermentation periods were initially analyzed using 

traditional chemical methods as a reference. Descriptive 

statistics for reference content of moisture and pH in 

calibration and prediction datasets are shown in Table 1. 

 
Table 1. Descriptive statistics for reference content of 

moisture (% wet basis) and pH level in calibration and 

prediction datasets 

 
Statistical 

Parameter 

Moisture (% wet basis) pH Level 

Cal Pred Cal Pred 

n 80 20 80 20 

Range 13.3 8.7 5.0 3.5 

Min 52.5 53.6 5.0 5.4 

Max 65.8 62.3 10.0 8.9 

Mean 58.3 58.2 7.0 6.9 

SD 2.7 1.8 1.3 1.0 
Cal: calibration; Pred: prediction; SD: standard deviation; Min: minimal; 

Max: maximal; n: number of sample datasets. 

 

The moisture content and pH level of the calibration set 

ranged from 52.5% to 65.8% and 5.0 to 10.0, respectively. The 

corresponding values for the prediction set samples were 

53.6% to 62.3% and 5.4 to 8.9, respectively. In general, the 

moisture content and pH range of the calibration set covered 

the entire range of the prediction set. Additionally, results of 

the Two-Sample Kolmogorov-Smirnov Test showed no 

significant differences for moisture content (P > 0.39) and pH 

level (P > 0.96) between the two datasets, confirming that the 

calibration set adequately represented the variation in the 

prediction set. Figure 1 illustrates that the moisture content and 

pH of fermented CR exhibit a gradual increase with prolonged 

fermentation time and display a dynamic trend throughout the 

different treatments. This indicates that microbial growth and 

metabolism vary depending on the fungus type. 
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Figure 1. Dynamics of changes in moisture content and pH level of CR fermented with various fungal strains 
LED: L. edodes; PCH: P. chrysosporium; POS: P. ostreatus; TRV: T. viride; WOI: uninoculated substrate. 

 

In SSF-based enzyme production using agricultural waste 

substrates, moisture balance is a key parameter with an 

optimal range that varies significantly between 50 to 75%. 

Studies show that increasing the moisture content from 40 to 

55% contributes to increased enzyme production. During 

vegetative growth, white-rot fungi secrete decomposing 

enzymes, including laccase, lignin peroxidase (LiP), and 

manganese peroxidase (MnP), which partially degrade 

complex carbohydrates into CO2 and H2O. This process 

contributes to a reduction in the overall content of neutral 

detergent fiber (NDF) and acid detergent fiber (ADF) in the 

substrate [14]. This phenomenon is related to the increase in 

moisture content from 52.5 to 65.8% as the duration of 

fermentation increases from 7 days to 28 days (Table 1), 

caused by the decomposition of the substrate by microbes, so 

that the need for enzyme production becomes lower. The 

observed increase in moisture content during the fermentation 

period is likely due to a combination of microbial metabolic 

activity and the breakdown of lignocellulosic components, 

which can release bound water into the substrate matrix. 

Additionally, metabolic water produced during the aerobic 

degradation of carbohydrates and proteins may have 

contributed to the overall moisture accumulation. The 

relatively closed incubation environment may also have 

limited evaporation, promoting moisture retention in the 

substrate. pH is another important parameter in the context of 

enzyme production through SSF. However, it is typically not 

a primary focus in SSF and is mostly maintained during the 

initial stages by keeping the moisture of the substrate. Changes 

are possible during the enzyme production process due to 

microbial metabolic activity. The major reason for the change 

in pH from 5.0 to 10.0 during SSF is due to the assimilation of 

organic acids such as acetic, citric, and lactic acid, resulting in 

an increase in pH level [17]. Filamentous fungi exhibit growth 

across a broad pH range of 2 to 9, with an optimal pH range 

between 3.8 and 6. Bacterial contamination of molds and 

yeasts can be diminished by adjusting the pH to levels harmful 

for bacterial growth [8, 35]. 

 

3.2 NIR spectra visualisation and PCA feature extraction 

 

The NIR raw spectra (Figure 2) showed distinct trends in 

absorption among the different treatment groups (WOI, PCH, 

POS, TRV, and LED) throughout the fermentation period. 

Although all spectra exhibited similar peak positions, their 

relative intensities differed, indicating variations in 

composition among the fungal strains during fermentation. 
 

 
 

Figure 2. Average raw spectra of samples categorized by 

inoculum types, collected at fermentation times 
 

 
 

Figure 3. The PCA scree plot illustrates the explained 

variance proportion allocated to each PC 
 

PCA was performed on raw NIR spectra to investigate 

natural variation, reduce dimensionality, and extract features. 

PCA converts NIR spectra into principal component (PC) 
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scores, retaining the most relevant parts while eliminating 

collinearity, thereby enhancing ML model performance and 

accelerating computational processes [36]. The scree plot 

(Figure 3) shows that the first two PCs explain most of the total 

variance (PC1 = 99.19% and PC2 = 0.70%), indicating that 

these components capture the primary spectral differences 

across samples. The PCA score map (Figure 4) further 

illustrates the spatial distribution of samples in the PC1–PC2 

space, revealing clear clustering patterns according to 

fermentation time and treatment. This separation confirms that 

NIR spectroscopy can effectively distinguish different 

fermentation states based on spectral characteristics. 

Consequently, these findings provide a foundation for 

directing subsequent analysis toward these components. In the 

ML model training process, the first 10 PCs are utilized due to 

the spectral variations observed in the higher-ranked 

components following the PCA transformation. Relationships 

between variables are widely investigated to determine the 

physical importance of PC in PCA [37]. 

The loading plot for the initial four PC (Figure 5) illustrates 

distinct absorbance patterns associated with molecular 

vibrations. The loading plot shows peaks and valleys that are 

significantly correlated with the molecular vibrations in the 

sample. The peaks detected at wavelengths of 1,210 nm, 1,350 

nm, 1,403 nm, 1,690 nm, 1,750 nm, 1,930 nm, 2,010 nm, 2,100 

nm, 2,229 nm, and 2,400 nm indicate specific molecular 

vibrations associated with the water content and organic 

compounds inside the material. Variations in moisture and pH 

during SSF are intricately linked to lignocellulose degradation, 

which can be monitored by NIR spectroscopy. The enzymatic 

decomposition of lignocellulose during SSF releases soluble 

organic acids and alters the hydrogen-bonding environment of 

hydroxyl (O–H) and carbonyl (C=O) groups, leading to 

detectable changes in overtone and combination absorption 

bands in NIR spectra, particularly within the 1,100-1,500 nm 

and 2,100-2,300 nm regions associated with pH variation. This 

mechanism is supported by comparable findings in 

thermophilic SSF of soybean meal, where NIR spectroscopy 

successfully monitored pH and other biochemicals [38]. 

 

 
 

Figure 4. The PCA score plot based on the NIR spectral data 

 

 
 

Figure 5. The loading plots of the four principal components (PC) from the PCA analysis of NIR spectra in the wavelength 

range from 1,000 to 2,500 nm 
PC1: the primary principal component, which accounts for the greatest variance in the dataset. PC2: the second principal component, which accounts for the 

second greatest variance; PC3: the third highest variance; PC4: the fourth highest variance. 

 

Throughout fermentation, the fungus generates lignolytic 

and cellulolytic enzymes that decompose lignocellulose into 

less complex components. Based on these results, the moisture 

content in the sample can be identified through intense 
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absorbance regions at wavelengths around 1,400 nm and 1,900 

nm. These bands correspond to the overtone of stretching the 

O–H bond in water and carbohydrate molecules [39]. In 

addition, the combination band that appears in the range of 

2,100 nm to 2,300 nm (connected with the combination 

vibration of O–H, N–H, and C–H), also makes an important 

contribution to the characterization of moisture content [38]. 

This spectral region is mostly made up of information from the 

PC1 and PC4. These spectral regions have been consistently 

reported as highly correlated with sample moisture content in 

various agricultural and fermentation substrates. The first 

overtone of O–H stretching around 1400 nm and the 

combination band near 1,900 nm are particularly sensitive to 

changes in water content [39, 40]. Additionally, the 2,100–

2,300 nm range, arising from O–H, N–H, and C–H 

combination vibrations, has been shown to contribute to 

moisture prediction accuracy in solid substrates undergoing 

bioprocessing [39]. The pH variation in the sample is 

correlated with changes in absorbance at wavelengths 

approximately between 1,100 to 1,500 nm and 2,100 to 2,300 

nm, which are generally associated with overtone vibrations 

and combinations of functional groups such as O–H, N–H, and 

C=O. PC1, PC2, and PC4 exhibit significant variations within 

this wavelength region, thereby serving as primary indicators 

for inferring pH level using NIR spectroscopy. This finding 

facilitates the creation of ML predictive models capable of 

precisely quantifying moisture content and pH by leveraging 

spectral properties revealed through PCA transformation. This 

approach not only improves prediction accuracy but also 

avoids overfitting. 

 

3.3 Performance of ML prediction model 

 

Machine learning (ML) methods are employed to develop 

models for detecting moisture content and pH level, utilizing 

the PCA-transformed spectra dataset. The performances of the 

three distinct ML approaches show significant variations, as 

presented in Table 2. 

 

Table 2. Predictive performance of RF, SVR, and LightGBM in monitoring moisture content and pH level during the SSF 

process of fermented CR 

 

Content Method 
Cal Pred 

R2
c RMSEc R2

p RMSEp RPDp RERp 

Moisture (%) 

RF 0.97 0.46 0.88 0.60 3.00 14.5 

SVR 1.00 0.03 1.00 0.04 45.00 217.5 

LightGBM 1.00 0.02 0.95 0.39 4.62 22.3 

pH level 

RF 0.93 0.35 0.77 0.48 2.08 7.3 

SVR 1.00 0.02 1.00 0.03 33.33 116.7 

LightGBM 1.00 0.08 0.87 0.35 2.86 10.0 
Cal: calibration; Pred: prediction; R2

c: coefficient of determination for calibration; RMSEc: root mean square error of calibration; R2
p: coefficient of determination 

for prediction; RMSEp: root mean square error of prediction; RPDp: ratio of performance to deviation for prediction; RERp: range error ratio for prediction; RF: 
random forest; SVR: support vector regression; LightGBM: light gradient-boosting machine. 

 

As shown in Table 2, the performance of the ML model in 

predicting moisture content and pH level during the 

fermentation of CR ruminant feedstuffs is essential for 

assessing prediction accuracy. The SVR model exhibited 

optimal performance in predicting moisture content, achieving 

an R2 value of 1.00 and a minimal RMSE in both the 

calibration and prediction phases. The model exhibited 

excellent generalization ability, evidenced by an RPD value 

exceeding three and an RER greater than 10, reflecting its high 

accuracy and reliability in analyzing moisture content during 

SSF processes.  

In contrast, decision tree-based models, including RF and 

LightGBM, exhibited inferior performance in predicting 

moisture content, with R2 values of 0.97 and 1.00, respectively, 

and a higher RMSE than SVR. An RMSE value less than the 

standard deviation of the target measurement indicates that the 

prediction error of the model is smaller than the inherent 

variability present in the dataset [21, 24]. Among these two 

models, LightGBM demonstrated superior performance 

compared to RF, achieving RPD values of 4.62 and an RER of 

22.3, thereby categorizing it as an acceptable model for 

predicting moisture content. For pH prediction, a similar trend 

was observed, where the SVR model continued to be the best 

performer, with an R2 value of 1.00 and a minimum RMSE 

during both calibration and prediction phases (RMSEc of 0.02 

and RMSEp of 0.03). The LightGBM model was slightly lower 

than SVR but still outperformed RF, achieving an R2
p of 0.87 

and RMSEp of 0.35. 

However, the exceptionally high R2
p values obtained by the 

SVR model should be interpreted with caution. Such near-

perfect accuracy is uncommon in practical bioprocess 

monitoring and is likely influenced by several experimental 

factors. First, the prediction set consisted of 20 samples, and 

its entire variability range was fully represented within the 

calibration set, which can artificially inflate apparent accuracy. 

Second, the fermentation was carried out under controlled 

laboratory conditions that minimized sample heterogeneity 

and reduced spectral noise. Third, PCA dimensionality 

reduction removed most collinearity and baseline variation, 

creating a smoother, more linearly separable feature space that 

is highly favorable for SVR, particularly when optimized with 

an RBF kernel through Bayesian tuning. These factors 

collectively contribute to the high R2
p values observed in this 

study but may limit generalizability to more heterogeneous, 

real-world SSF systems. Therefore, future studies should 

incorporate completely independent batches with broader 

variability to rigorously assess model robustness and mitigate 

the risk of overfitting. 

The superior performance of SVR over tree-based models 

can also be explained by the nature of the feature space after 

PCA transformation. PCA extracts orthogonal components 

that capture the major sources of spectral variance while 

removing noise and nonlinear redundancy. This 

transformation often yields a feature space with smoother 

gradients and higher linear separability. SVR, particularly 

when using an RBF kernel, is designed to exploit such feature 

structures by mapping them into a high-dimensional space 

where an optimal separating hyperplane can be constructed. 

Consequently, SVR is highly sensitive to subtle but 

informative variations in the PCA scores. In contrast, tree-
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based algorithms such as RF and LightGBM partition the 

feature space through axis-aligned splits, making them less 

capable of capturing small, continuous changes within PCA-

reduced data. As a result, these models may overlook the finer 

spectral differences that contribute to accurate prediction, 

explaining their comparatively lower performance in this 

study. The scatter plot depicting the performance of three 

different ML algorithms in predicting moisture content and pH 

level is presented in Figure 6.

 

 
 (a)                                                                                               (b) 

 

 
(c)                                                                                               (d) 

 

 
(e)                                                                                              (f) 

 

Figure 6. Scatter plot comparing reference and prediction values of moisture and pH level across all three machine learning 

models; (a) RF model for moisture content prediction, (b) RF model for pH level prediction, (c) SVR model for moisture content 

prediction, (d) SVR model for pH level prediction, (e) LightGBM model for moisture content prediction, and (f) LightGBM 

model for pH level prediction 
The dots represent the data points for calibration and prediction, and the black diagonal line serves as a reference for a perfect fit. 

 

Figures 6(a)-(f) illustrate that a strong linear correlation 

exists between the prediction and the reference value, as 

evidenced by the symmetrical distribution of data points 

around the line. This pattern indicates that the model's 

predictions are reliable and free from systematic bias, thereby 

underscoring the model's effectiveness and robustness [41]. 

Figures 6(c) and 6(d) demonstrate that SVR effectively 

handles complex linear relationships within the reduced PCA 

data, leading to highly accurate predictions. PCA reduces data 

dimensionality and keeps the most significant PC. The 
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application of PCA for data reduction enhances the efficacy of 

SVR on the processed dataset by eliminating irrelevant or 

redundant information. SVR is an ML algorithm for linear and 

non-linear data that maps data to higher dimensions for linear 

separation [42]. SVR searches for an optimal hyperplane to 

divide samples with support vectors. This creates a more 

favorable environment for SVR to achieve linear separation, 

even in cases where the initial data is complex and nonlinear. 

However, SVR has the disadvantage of requiring a long 

training period. LightGBM is also an attractive alternative, 

particularly when a lightweight model with sufficient accuracy 

is required [39]. 

Compared to traditional methods, this proposed approach 

offers a non-destructive alternative, making it a promising 

solution for real-time monitoring of fermentation change 

patterns during the SSF process, which are important for the 

success of CR fermentation in producing value-added products 

for ruminant feed. These regulations affect on growth and 

metabolic regulation of microorganisms, in this case, white-

rot fungi. During vegetative growth, white rot fungi secrete 

enzymes that decompose macromolecular substances to obtain 

carbon and nitrogen. Tuyen et al. [14] demonstrate that white 

rot fungi partially degrade carbohydrates into CO2 and H2O, 

resulting in a general decrease in the NDF and ADF content of 

the substrate. Simultaneously, during the degradation of 

complex carbohydrates, the assimilation of enzymatic by-

products, such as organic acids, alters hydrogen ion 

concentrations, leading to an increase in pH level [8]. This 

phenomenon explains the increase in moisture content and pH 

level during the fermentation process, as shown in Figure 1. 

Research by Pensupa et al. [43] supports this finding, 

indicating that spore formation on the substrate surface 

correlates positively with increased moisture content. This 

indicates that increased humidity is not only related to a higher 

rate of fungal growth but also supports the overall proliferation 

of mold colonies, which ultimately accelerates the 

fermentation process and improves the quality of the final 

product. 

 

3.4 SHAP interpretable model 

 

Beyond achieving high predictive accuracy, understanding 

the underlying rationale for each prediction is essential in the 

development of robust predictive models. The inherent 

complexity of machine learning models, often characterized as 

'black box' systems, poses challenges in interpreting their 

outputs [44, 45]. To address this, SHAP values (Shapley 

Additive exPlanations) are utilized to quantify the contribution 

of specific wavelengths to the PC values within the optimal 

prediction model, employing the Python SHAP module. This 

approach highlights the importance of feature interpretability 

in model assessment. The impact of each principal component 

in the optimal SVR prediction model is visualized through the 

SHAP beeswarm plot in Figure 7.

 

   
(a)                                                                                                 (b) 

 
Figure 7. SHAP beeswarm plot of the best predictive models of SVR for (a) moisture content and (b) pH level  

Data points with positive SHAP values (located to the right of the vertical zero line) indicate that observations with relatively low absorbance (represented by 

blue shades) or high absorbance (represented by pink shades) contribute to an increase in the model output. Conversely, data points with negative SHAP values 

(positioned to the left of the vertical zero line) correspond to a decrease in the model output. 

 
Based on Figures 5(a) and 5(b), the prediction results for 

moisture content and pH level are significantly influenced by 

PC1, followed by PC4 and PC3. Although PC2 accounts for 

the second largest proportion of variance in the PCA 

transformation (0.71%), it does not have a significant impact 

on the performance of the prediction model. PC1 and PC4 

exhibit a negative influence on the predictions, whereas PC3 

has a contrasting positive effect. Referring to Figure 3, PC1 

demonstrates strong spectral loading at wavelengths of 1,210 

nm, 1,350 nm, 1,690 nm, 1,930 nm, and 2,229 nm, indicating 

interactions with hydroxyl (–OH) groups from water and 

carbohydrates, as well as carbonyl (–C=O) groups that 

contribute to variations in moisture content [39]. PC4 exhibits 

a similar absorption pattern, with additional emphasis at 1,403 

nm and 1,750 nm, which are associated with hydrogen 

bonding in the lignocellulose matrix [46]. In contrast, PC3 

spans a broader spectral range, with dominant absorption 

bands at 2,010 nm and 2,100 nm, corresponding to methoxy (–

OCH3) groups in lignin and aromatic structure [47]. In the SSF 

process, white-rot fungi, which are lignolytic and cellulolytic 

microorganisms, produce enzymes that hydrolyze 

lignocellulose into simpler compounds. A study by Tuyen et 

al. [14] demonstrated that white-rot fungi effectively degrade 

structural carbohydrate components into CO₂ and H₂O, 

leading to a reduction in NDF and ADF content. At the 

molecular level, this degradation involves the cleavage of C–

O–C bonds in hemicellulose and lignin, as well as the 

hydrolysis of β-1,4-glycosidic bonds in cellulose [48]. 
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Additionally, this degradation process generates by-products 

in the form of organic acids, which alter hydrogen ion 

concentrations and subsequently increase the pH level [12]. 

Consequently, NIR spectroscopy can serve as an effective 

indicator of complex carbohydrate degradation during 

fermentation, enabling precise and real-time monitoring of 

fermentation dynamics. 

 

 

4. CONCLUSIONS 

 

This study successfully developed a reliable ML prediction 

model for intelligent and real-time monitoring of moisture and 

pH changes during the SSF process of feedstuffs. PCA-

transformed NIR spectra facilitate the processing of data and 

enhance computational efficiency. Overall, the SVR model 

demonstrated superior performance compared to LightGBM 

and RF. The SVR model for moisture content achieved an R2
p 

of 1.00, RMSEp of 0.04, RPDp of 45.00, and RERp of 217.5, 

while the pH level model attained an R2
p of 1.00, RMSEp of 

0.03, RPDp of 33.33, and RERp of 116.7. These unusually high 

R2
p values are likely influenced by the balanced calibration–

prediction set composition, controlled measurement 

environment, and the use of PCA to minimize noise, and may 

not directly translate to larger, more heterogeneous datasets. 

Although SVR yielded superior predictive performance, 

LightGBM offered notable practical advantages, particularly 

in terms of computational efficiency. Its leaf-wise tree growth 

enables rapid training even with high-dimensional spectral 

data, making it more suitable for real-time or embedded 

monitoring scenarios where computational resources are 

limited. Thus, LightGBM provides a balanced trade-off 

between accuracy and speed in operational settings. The 

observed spectral features linked to moisture content (around 

1,400, 1,900, and 2,100-2,300 nm) and pH variation (1,100-

1,500 nm and 2,100-2,300 nm) align with functional group 

changes (O–H, N–H, C=O) resulting from lignocellulose 

decomposition by white-rot fungi, explaining the observed 

increases in both parameters during SSF. This approach 

establishes a robust foundation for further applications in 

developing microbial growth monitoring systems within 

animal feed bioprocesses. Future studies should incorporate 

completely independent batch validation sets to rigorously 

assess the robustness and generalizability of the predictive 

models. Additionally, expanding the model to include further 

fermentation-related parameters (such as lignin, NDF, and 

ADF degradation) would provide deeper insight into SSF 

dynamics and support the development of more 

comprehensive and efficient process optimization strategies. 
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