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 In this research, a novel secure and efficient cloud-based medical image encryption model 

using Cheon-Kim-Kim-Song (CKKS)-homomorphic encryption (HE) method is proposed. 

The Improved Tunicate Swarm Algorithm (ITSA) optimization technique is employed to 

optimize the key generation process of the CKKS. This CKKS-ITSA model is developed 

for improving the efficiency and security of the cloud-based medical image storage and 

transmission. For the experiment and validation, a medical image dataset is utilized in this 

research. The model effectively balanced the security, computational efficiency, and image 

quality preservation. The results of the model demonstrated low mean square error (MSE)-

0.139, high peak signal-to-noise ratio (PSNR)-68.45 dB, high structural similarity index 

measure (SSIM)-99.97%, and strong correlation (99.94%). These results highlighted the 

model’s minimal distortion and high fidelity in encrypted images. The results also include 

the model’s fast decryption time (5.12 ms), encryption time (6.75 ms), and key generation 

time (4.82 ms). The model was additionally tested with Unified Average Changed Intensity 

(UACI) and Number of Pixels Changing Rate (NPCR) for validating its resistance against 

differential attacks. In terms of PSNR, SSIM, and NPCR, the developed CKKS-ITSA model 

obtained a 3.2 dB increase, 1.8% increase, and 1.5% increase, respectively, compared with 

current encryption models, demonstrating its superiority in security and quality. 
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1. INTRODUCTION 

 

The use of cloud computing (CC) has become an essential 

instrument in improving the healthcare sector, rendering it 

more patient-centered and data-driven. Integrating medical 

data with CC enhances accessibility in a cost-efficient manner. 

This can provide reliable responses for patients and industries 

[1]. Moreover, CC can improve system agility, velocity, and 

adaptability by diminishing hardware or software supply 

demands and minimizing resources required for system 

maintenance, including installation, configuration, and testing. 

Notwithstanding the advantages of CC in healthcare, securing 

patient and medical data security and privacy remains a 

paramount concern that influences the widespread use of the 

cloud-based approach [2]. CC enables the distribution of 

customizable computational resources via the network and 

functions as a platform (PaaS), infrastructure (IaaS), or 

software (SaaS) as a service for providing a cohesive solution. 

This subsequently improves the storing, sharing, and 

manipulation of extensive medical data, encompassing 

radiography and genomic information, while facilitating the 

distribution and collection of electronic health records among 

practitioners, researchers, specialists, and patients with 

reduced initial cost [3]. 

The healthcare sector generates substantial data from 

several sources, including patients, clinics, hospitals, sensors, 

mobile devices, electronic health records, and researchers. 

This data is frequently incomplete, incorrect, and 

heterogeneous, complicating management, storage, and 

analysis. Cost-effective high-throughput analysis of 

physiological and medical information from many sources is 

possible. Nonetheless, proficient management and evaluation 

of these data are essential for enhancing healthcare outcomes 

and progressing medical research [4]. 

Figure 1 delineates the National Institute of Standards and 

Technology (NIST) CC framework, encompassing a list of 

principal participants, their responsibilities, and their 

corresponding roles within CC [5]. A cloud organization 

consists of resources allocated to fulfill requests. NIST 

identifies five fundamental components that constitute a cloud 

computing configuration. 

Cloud consumer: Consumer can get reduced costs and 

enhanced services by entering into a service-level agreement 

(SLA) with a provider of cloud services. 

Cloud Supplier: A supplier of cloud services is an entity that 

facilitates access to assistance for a cloud client. 

Cloud Auditor: A cloud auditor is responsible for 

independently evaluating cloud services. The inspector 

objectively evaluates the cloud to see if the norms have been 

satisfied. 

Cloud Broker: A cloud broker manages the communications 

between cloud users and suppliers, controlling the utilization, 
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efficiency, and distribution of cloud services. 

Cloud Carrier: A cloud carrier serves as an intermediary that 

links cloud providers with clients to facilitate the delivery of 

cloud services [6]. 

Currently, remote data storage is a predominant application 

of cloud computing. Security is undeniably essential for 

organizations of all sizes and clients of cloud storage. A cloud 

computing storage service must ensure highly accessible data 

access while sustaining high speed and optimal scalability. 

Moreover, security in a storage system is essential, and the 

accuracy of data must be assured [7]. Cryptography serves as 

a security solution; nonetheless, the context and sequence of 

its application are crucial. The client requires that its data on 

the cloud be protected and preserved. The Cloud Service 

Provider (CSP) handling the client's data must ensure data 

accessibility while preventing unauthorized users from 

reading or modifying it. Cloud data storage provides an 

extensive repository of shared resources, enabling users to 

move data to fulfill their requirements. Improper media 

refinement, Data integrity and privacy, data vulnerability and 

recoverability, and data backup are challenges associated with 

cloud storage in CC [8]. 

 

 
 

Figure 1. NIST architecture of CC 

 

In a CC environment where service providers manage the 

processing and storage of data resources, consumers need to 

retain control over their stored content and keep ownership. 

Cryptographic methods serve as a crucial instrument for 

preserving data security, necessitating the initial layer of 

security both before its transmission to the data center as well 

as during its storage as ciphertext. These provide security 

criteria and source encryption protocols for data applications 

[9]. Nevertheless, the ciphertext of conventional encryption 

systems will only be analyzed, mined, and employed after its 

decryption into plaintext, incurring additional computational 

and communicative expenses. Utilizing advanced 

cryptographic technology, the cloud facilitates the sharing, 

computation, as well as processing of information in ciphertext 

form without any knowledge of the underlying content [10]. 

Cloud-based health information exchange enables 

healthcare workers to securely access patient data remotely, 

simplifying prompt decision-making, particularly in crises 

[11]. Cloud technology facilitates the scalability of healthcare 

organizations, allowing for the on-demand adjustment of 

health information exchange systems to meet fluctuations in 

the volume of data and user needs. The utilization of this 

economical alternative to conventional document storage and 

sharing methods can advance healthcare. Cloud service 

providers secure patient medical data through encryption, 

access controls, and routine security assessments of the health 

information exchange [12]. 

1.1 Problem statement 

 

With the quick adoption of medical image security systems 

based on the cloud, the security and privacy of the patient’s 

sensitive medical data must be protected. Conventional 

encryption techniques often struggle to balance between 

computational efficiency, security, and preserving the quality 

of the image. This issue makes the system inappropriate for 

real-time medical applications [13]. Homomorphic encryption 

provides a promising solution, but it has high computational 

complexity and inefficient key management limitations. 

Additionally, traditional encryption models struggle in 

resisting differential attacks, maintaining structural integrity, 

and optimizing processing. To solve these challenges, this 

study proposes a novel medical image security framework 

based on the cloud using CKKS-HE with improved TSA 

(CKKS-ITSA). This proposed research model aims to improve 

the encryption robustness, computational efficiency, and 

cloud-based data security. 

 

1.2 Research contributions 

 

The novelty of the research includes two improvements that 

the developed CKKS-ITSA model offers over existing 

models. First, medical image datasets have requirements with 

regard to encryption and decryption, as they require fast and 

approximate computations. The CKKS framework 
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successfully addresses these needs, unlike conventional HE 

methods like BFV or Paillier, which are slow and 

computationally expensive to operate on medical image 

datasets. Additionally, the integration of ITSA for key 

generation provides the CKKS framework's medical image 

encryption model with improved parameter tuning, which 

leads to a reduction in key-generation time and enhanced 

security from cryptanalytic attacks. Based on these two 

reasons, the CKKS-ITSA model can be designed with less 

distortion (MSE = 0.139, PSNR = 68.45 dB, SSIM = 99.97%) 

as well as faster runtime (encryption = 6.75 ms, decryption = 

5.12 ms) compared to other medical image encryption models, 

which further highlights its distinction from other models. 

Hence, in this research, a novel framework for securing 

medical image transmission and storage in cloud platforms is 

developed. The major contributions of this research are 

described as follows: 

 The work develops a novel encryption framework by 

integrating the CKKS-HE method with the ITSA technique for 

optimized key generation to ensure improved security and 

computational efficiency. 

 The model utilized the ITSA technique to generate highly 

secure public and secret keys for minimizing computational 

complexity and improving the robustness of the HE method 

for medical image security. 

 The model is experimented with using the Multi Cancer 

Dataset from Kaggle to validate the performance and 

efficiency.  

 The model is assessed with various performance metrics 

such as decryption time, encryption time, key generation time, 

MSE, PSNR, SSIM, CC, NPCR, and UACI. The image quality 

metrics are assessed to ensure minimal distortion and high 

fidelity in encrypted medical images. The NPCR and UACI 

are assessed to ensure the model’s resistance to differential 

attacks. 

 Finally, the performance results of the proposed CKKS-

ITSA model are compared with the other methodologies 

analyzed in the review, and the advantages and limitations of 

the model over the compared models in cloud-based data 

security.  

The research work is structured into the following sections: 

Section 2 briefly analyzes the existing models related to the 

research work. Section 3 includes the implementation of the 

present research methodology. Section 4 presents the 

experimental findings of the developed model and compares 

them with existing models. Section 5 ends the research by 

summarizing the findings and offering recommendations for 

future research. 

 

 

2. LITERATURE REVIEW 

 

This section analyzes existing recent works aimed at 

enhancing the security of cloud-based medical images. All 

reviewed methodologies are thoroughly evaluated and 

displayed in Table 1, highlighting their advantages and 

drawbacks. An antlion optimizer (ALO) combined with the 

Honey encryption algorithm was proposed in the study by 

Prabhu et al. [14] to augment the security of clinical images. 

Honey encryption was a security mechanism that complicates 

an attacker's ability to ascertain whether they have 

successfully obtained a username or encryption key. The 

attacker could frequently recognize that their assessment was 

erroneous, as the decrypted data would be unreadable. The 

ALO employed random keys for the processes of encryption 

and decryption. The modified key was further refined by 

analyzing each component and developing paths that triggered 

the latching and trap mechanisms. The findings indicated a 

reduction in the MSE and an increase in the PSNR. 

 

Table 1. Comparative analysis of reviewed current models 
 

Ref. Model Advantages Drawbacks 

[14] ALO + Honey Encryption 
Enhanced security, reduced MSE, and 

increased PSNR. 

Computational complexity and potential 

vulnerability in key generation. 

[15] Lightweight cryptosystem 
Strong security and multiple evaluations 

for robustness. 
High computational overhead. 

[16] CML + Modified SSA + WOA 
Effective encryption and resilience 

against attacks. 
Increased processing time. 

[17] Multi-layered encryption and DCT 
Strong resistance against unauthorized 

modifications. 
High computational cost. 

[18] RSA and AES 
Role-based access control and improved 

reliability. 
Limited scalability for large-scale data. 

[19] MPVCNet Maintains integrity and privacy. Computationally expensive. 

[20] Adaptive 3D-chaotic system + PWLCM High resistance to statistical attacks. Complexity in implementation. 

[21] TLCMCML Effective encryption and performance. Limited real-world testing. 

[22] BCAES 
Ensures authenticity and integrity using 

blockchain. 
High processing time. 

[23] AES + Blockchain + ECC 
Decentralized key management and 

improved security. 
Blockchain storage overhead. 

[24] SCAN-based encryption with chaotic maps Fast encryption and enhanced security. 
Potential vulnerability in key 

scheduling. 

[25] EiMOL High robustness against attacks. Complex parameter tuning. 

[26] 
Hyper-chaotic systems + DNA coding + 

SHA-3 
Strong randomness and security. Increased computational overhead. 

[27] 
DNA encoding + Content-aware 

permutation and diffusion 
High key sensitivity and strong security. Higher encryption complexity. 

[28] ECC + Blum-Goldwasser Cryptosystem High efficiency and security. Requires secure key management. 

[29] Blowfish + Signcryption 
Faster encryption and a certificateless 

approach. 
Not scaled well for large datasets. 

[30] Chaos maps + BCOVIDOA Optimized encryption using chaos theory. Sensitivity to initial parameters. 
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A lightweight cryptosystem was developed in the study by 

Masood et al. [15] utilizing Chen’s chaotic system, Brownian 

motion, and Henon chaotic map for the encryption of medical 

images with enhanced security. The efficacy of the 

cryptosystem was demonstrated through contrast analysis, 

histogram analysis, energy analysis, correlation of adjacent 

pixels, homogeneity analysis, NIST analysis, information 

entropy, mean square error, pixels changing rate, UACI, peak 

signal-to-noise ratio, and time complexity. The findings 

indicated that the cryptosystem was secure for encrypting 

sensitive image-based medical data. 

A coupled map lattice (CML) with the salp swarm approach 

(SSA) was proposed in the study by Selvi et al. [16]. The 

method compressed and encrypted the images via CML. The 

CML initially produced the quantity of encrypted images in 

the modified SSA population. Subsequent to initialization, the 

modified SSA utilizing the whale optimization algorithm 

(WOA) was employed to minimize computing time and 

optimize entropy in the encryption of images. To augment the 

security of medical images, they were encrypted into cipher 

images and transmitted over the network. The results indicated 

that the method was more effective for encrypting medical 

images and possessed the potential to withstand various 

attacks. 

An enhanced multi-layered encryption method designed in 

the study by Odeh and Taleb [17] included feature-based 

watermarking, hash code generation, frequency domain 

transformation with Discrete Cosine Transforms (DCT), 

Advanced Encryption Standards (AES)-based encoding for 

data protection, and Rivest–Shamir–Adleman (RSA) for 

supplementary security layers. The cryptographic methods, 

such as hashing, were applied to generate the distinct digital 

fingerprints, watermarking embeds the hash data discreetly, 

and frequency domain transformations improved the depiction 

of image contents, thus improving the image's resistances to 

attacks and unauthorized changes. The method demonstrated 

significant robustness and efficacy in maintaining the sensitive 

medical data. 

A cloud-based hybridized access control architecture was 

developed in the study by Alabdulatif et al. [18] for securing 

large medical data in healthcare companies. A hybrid 

encryption technique utilizing RSA and AES algorithms was 

developed to ensure a robust degree of security. The AES 

technique was utilized for encrypting and decrypting data 

saved in the cloud, and the RSA method was utilized for 

encrypting the secret keys generated by AES, along with 

related metadata. This role-based encryption facilitated the 

implementation of role-based access controls for public 

storage employing this model, which inherently guaranteed 

enhanced reliability and security. 

A privacy-preserving recognition network for medical 

images, named MPVCNet was proposed in the study by Zhang 

et al. [19]. MPVCNet employed visual cryptography for the 

transmission of images through sharing. To address the issue 

of cryptography, the trusted execution environments (TEE) 

with blind watermarking technologies were integrated to insert 

verification data within shared images. The transfer learning 

technology was applied to mitigate the adverse effects 

associated with visual cryptography. The findings indicated 

that this methodology preserved the integrity and recognition 

efficacy while securing the medical image's privacy. 

An adaptive framework was designed in the study by Sarosh 

et al. [20] to preserve the confidentiality and security of images 

transferred over an e-healthcare system. The framework 

employed a 3D-chaotic system to produce a keystream utilized 

for executing 8-bit and 2-bit permutations of the images. The 

pixel diffusions were executed by the key-images produced by 

the Piecewise Linear Chaotic Maps (PWLCM). The parameter 

of the image was computed utilizing the pixels and executed 

crisscross diffusions to augment security. The findings 

indicated that the framework could withstand statistical attacks 

and serve as a security framework in AI-driven healthcare. 

A chaotic system called the Tent-Logistics Cross Mixed 

Coupled Maps Lattices (TLCMCML) was developed in the 

study by Xu et al. [21] as multi-images medical images 

encryptions technique. Initially, the region of interests (ROIs) 

in specific images were delineated, followed by the 

implementation of an independent scrambling method 

utilizing an odd-even interleaving arrangement. All the images 

were combined via horizontal concatenations, creating a 

comprehensive large-scale image, on which the synchronous 

bits-level permutations-diffusions encryption process was 

used. This technique has exhibited significant encryption 

efficacy and demonstrated better performance. 

A Blockchain-based Chaotic Arnold's Cat Maps Encryption 

System (BCAES) was developed in the study by Inam et al. 

[22]. The system encrypted the images via Arnold’s cat maps 

encoding, thereafter, transmitting the encoded image to the 

Cloud Server while saving the signed file of the plain images 

on the blockchains. With the use of blockchains, the data 

recipient will verify the authenticity and integrity of the image 

post-decoding by utilizing the signed documents saved on the 

blockchain. The findings demonstrated that the system was an 

effective encryption method. 

Shakor et al. [23] utilized a hybrid dynamic encryption 

methodology that integrates components of AES, Blockchain, 

and Elliptic Curve Cryptography (ECC) to improve file 

storage security in cloud infrastructure. Initially, unique AES 

keys were produced, guaranteeing that each file was encrypted 

with a distinct and continuously evolving key. Blockchain 

securely stored keys together with associated metadata, 

enhancing security and data integrity. ECC public key 

encryption augmented security throughout storage and 

transmission, as well as enabling safe file sharing. This method 

improved cloud security with decentralized key management, 

strong encryption, and secured against illegal access. 

An effective image encryption mechanism based on SCAN 

and chaotic maps was developed in the study by Gururaj et al. 

[24]. The work elucidated the modification of pixel value and 

position through SCAN and chaos theory. The SCAN 

approach entailed transforming an image's pixel values to 

alternative pixel values and reorganizing pixels in the 

sequence. The chaotic map was employed to alter the 

placements of the pixels in the block. Decryption was the 

inverse process of encryption. Results indicated that this 

method exhibited both accelerated encryption and enhanced 

security. 

A secured medical image encryption technique, termed 

EiMOL developed based on the Lorenz system and 

optimization was proposed in the study by Singh et al. [25] for 

smart healthcare applications. An optimized random sequence 

was produced by a direct weight complex network particles 

swarm optimizer utilizing the genetic algorithm (GDWCN-

PSO). The Lorenz system and random number matrix were 

utilized to encrypt unprocessed medical images, resulting in 

ciphered messages that correspond to the original images. The 

findings indicated that this technique was effective and 

resilient against different attacks. 
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A medical image encryption approach utilizing hyper-

chaotic systems and DNA coding techniques was developed in 

the study by Li et al. [26]. The method initially expanded the 

secret key space by employing the SHA-3 algorithm and DNA 

encoding principles. The method enhanced randomness and 

unpredictability by employing four-dimensional hyperchaotic 

sequences characterized by complicated behavior. Global Bit 

Scrambling (GBS), DNA augmentation, and binary operations 

obliterated the correlation of the image matrix, hence 

enhancing the robustness of the approach. The results 

illustrated the efficacy of encryption and the elevated security 

against clipping and noise attacks. 

A cryptosystem for secure healthcare was proposed in the 

study by Wu et al. [27] with two effective modules such as the 

random DNA encryption, and a content-aware permutations 

and diffusions unit. The initial method constructed the random 

encryption rules selectors during the DNA encryption, 

enhancing security by producing numerous random mappings 

from image pixels to computations and crucially augmenting 

key sensitivity. The latter unit generated the permutation 

sequences that encapsulated pixel value data while disrupting 

the strong association between neighboring pixels within the 

patches. 

A medical image encryption technique combining ECC 

with the Blum-Goldwasser Cryptosystem was proposed in the 

study by Ningthoukhongjam et al. [28], which demonstrated 

superior security and efficiency in computation. The 

combination of ECC's mathematical ability and the stochastic 

characteristics of Blum-Goldwasser provided a formidable 

protection for digital images, addressing the modern demand 

for rapid and dependable data transmission. The findings 

illustrated its sensitivity to encryption keys, extensive security, 

and robustness against attacks. 

A secure framework for medical images security via a dual 

encoding methodology incorporating both the signcryption 

and Blowfish techniques was developed in the study by 

Nampalle et al. [29]. The implementation of a certificateless 

signcryption method enhanced the overall computational 

efficiency, significantly accelerating the signcryption process. 

Consequently, the image confidentiality was preserved over 

time, and the resultant image was nearly identical, without any 

degradation in quality. This method markedly decreased 

computational expenses and required processing time by 

employing a certificateless approach and the Blowfish 

algorithm. 

An effective solution for medical image encryption was 

proposed in the study by Alsahafi et al. [30] by integrating 

chaos maps with the Binary COVID Optimization Algorithm 

(BCOVIDOA). Chaos maps were employed for their superior 

efficacy in image cryptography relative to conventional 

encryption methods, whereas BCOVIDOA was utilized to 

optimize the initial sequences of the chaos maps. The 

acquisition of appropriate beginning sequences required by 

chaos maps in encryption and decryption procedures markedly 

enhanced the efficacy of the encryption technique due to the 

sensitivity of chaotic maps to initial parameters. 

 

 

3. RESEARCH METHODOLOGY 

 

This research presents a novel medical image security 

framework based on the cloud for secure transmission and 

storage. The proposed research utilized a new homomorphic 

encryption method called CKKS-HE for medical image 

encryption and decryption. This CKKS-HE method was 

originally developed to perform arithmetic calculations on 

encrypted complex and real numbers. However, in this work, 

it is implemented to perform encryption and decryption for 

images. The workflow of the proposed research methodology 

is depicted in Figure 2. The figure represents the CKKS-based 

homomorphic encryption model for securing medical images 

in cloud environments. As seen in the workflow, the process 

starts from the hospital or healthcare center, where the medical 

images of the patients are collected for storing in the cloud 

securely. The collected images are processed using the CKKS-

HE method, which ensures privacy while allowing 

computations on encrypted data. The ITSA technique is 

applied for optimal key generation, in which the technique 

optimally generates the encryption keys for improving the 

security and computational efficiency. The encrypted images 

are then transmitted to the cloud for remote storage and 

processing. If the authorized users, like doctors or medical 

staff, need access, the encrypted images are downloaded or 

extracted from the cloud. Then, the images are decrypted using 

the CKKS decryption with the secret key. Finally, the 

decrypted images are restored to their original form for 

healthcare diagnosis. This proposed research model ensures 

privacy and security throughout the transmission and storage 

process in the cloud. 

 

 
 

Figure 2. Workflow of the research methodology 
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3.1 Data collection 

 

From the Kaggle repository, a multi-cancer dataset is 

obtained to validate the proposed methodology. This dataset 

consists of images of various cancer types, compiled for 

scientific and research uses. It includes eight forms of cancer: 

Acute Lymphoblastic Leukemia (ALL), Brain Cancer, Breast 

Cancer, Cervical Cancer, Kidney Cancer, Lung Cancer, Colon 

Cancer, Lymphoma, and Oral Cancer. This dataset contains 

130,000 images as shown in Table 2. Figure 3 depicts these 

cancer images collected from the dataset. This dataset is 

publicly available and downloadable from the Kaggle 

repository [31]. 

 

Table 2. Multicancer dataset  
 

Cancer Type Source (Kaggle/Figshare) Total Images Subclasses Description 

Acute 

Lymphoblastic 

Leukemia (ALL) 

Mehrad Aria (Kaggle) 20,000 4 

Benign, healthy cells 

Early leukemia stage 

Pre-stage abnormal cells 

Advanced leukemia cells 

Brain Cancer Figshare dataset 15,000 3 

Glioma – common brain tumor 

Meningioma – tumors affecting membranes 

Pituitary tumors 

Breast Cancer Anas Elmasry (Kaggle) 10,000 2 
Benign breast tissues 

Malignant breast tissues 

Cervical Cancer Prahlad Mehandiratta (Kaggle) 25,000 5 

Dyskeratotic – abnormal growth 

Koilocytotic – HPV-related 

Metaplastic – precancerous 

Parabasal – immature cells 

Superficial-Intermediate cells 

Kidney Cancer CT Kidney dataset (Kaggle) 10,000 2 
Healthy kidney tissues 

Tumor-affected kidney tissues 

Lung & Colon 

Cancer 
Biplob Dey (Kaggle) 25,000 5 

Colon adenocarcinoma 

Colon benign tissues 

Lung adenocarcinoma 

Lung benign tissues 

Lung squamous cell carcinoma 

Lymphoma Andrew MvD (Kaggle) 15,000 3 

Chronic Lymphocytic Leukemia 

Follicular Lymphoma 

Mantle Cell Lymphoma 

Oral Cancer Ashenafi Fasil Kebede (Kaggle) 10,000 2 
Healthy oral tissues 

Oral Squamous Cell Carcinoma 

 

 
Figure 3. Cancer images from the dataset 

 

Within each class of the dataset, the model is exposed to 

normal, benign, and varying stages of malignant images that 

allow the model to better learn the heterogeneity of image 

representation. This enables the CKKS-ITSA model to better 

address varying complex medical imaging conditions as 

opposed to models designed only for specific cancers. 

Although the issues of class imbalance among the different 

types of cancer and the use of images from a well-known 

Kaggle dataset rather than real clinical workflows are well 

known. These issues might affect the dataset’s representative 

portrayal of medical imagery in the real world. To correct for 

these issues, DSIHE and Z-score normalization were utilized 

as preprocessing methods to dualistically balance quality and 

distribution, mitigating bias. Additionally, through the 

evaluation of the model on various types of cancer images, the 

study substantiates that the encryption method proposed can 
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robustly work with diverse medical datasets, which further 

proves the validity of the experiments in real-world conditions. 

 

3.2 Preprocessing 

 

Preprocessing and normalization of medical images can 

significantly enhance the efficiency of the proposed 

decryption and encryption process for cloud-based security. 

For this work, the Dualistic Sub-Image Histogram 

Equalization (DSIHE) is implemented for enhancing the 

images and Z-score normalization is applied to standardize the 

image data. The DSIHE is an advanced histogram equalization 

technique, which provides better contrast enhancement while 

reducing the over-enhancement issues. This can lead to 

achieving higher SSIM and PSNR results in encryption and 

decryption.  

The DSIHE technique divides the image histogram into two 

equal parts based on the median gray level and applies the 

equalization individually to each part to maintain the original 

brightness. Subsequently, conventional histogram 

equalization is applied independently to each sub-histogram. 

Upon completion of the equalization process, all the parts are 

combined to produce the final output. The DSIHE technique 

decomposes the image according to the gray level with a 

cumulative distribution function (CDF) value of 0.5. 

Assuming the image that is input be 𝑋, which will be divided 

into two parts, 𝑋𝐿  and 𝑋𝑈 , with the median values 𝑋𝐷 

determined as stated in the following expressions Eqs. (1) and 

(2). 

 

L UX X X=   (1) 

 

where, 𝑋𝐿 = {𝑥(𝑖, 𝑗)|𝑥(𝑖, 𝑗) ≤ 𝑋𝐷∀𝑥(𝑖, 𝑗) ∈ 𝑋}  and 𝑋𝑈 =
{𝑥(𝑖, 𝑗)|𝑥(𝑖, 𝑗) > 𝑋𝐷∀𝑥(𝑖, 𝑗) ∈ 𝑋}. 

 

( )
( ) ( )0 1

0 1arg
2

D
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The outcome of the DSIHE method is evaluated when the 

two equalized parts are merged into a single image. When 

𝑌(𝑖, 𝑗)  represent the processed image in Eq. (3), then the 

output image is expressed in Eq. (4): 

 

( ) ( )
( ) ( )

0 0

1 1 1

( , )
m L k

m L m U k

X X X c X
Y i j

X X X c X+ − +

 + −
= 

+ −
 (3) 

 

( ) ( ){ ( , )} L L U UY Y i j f X f X= =   (4) 

 

Additionally, observe that sub-image 𝑋𝐿 is equalized by a 

function 𝑓𝐿(𝑋𝐿)  within the range (𝑋0, 𝑋𝐷−1) , whereas 𝑋𝑈  is 

equalized by a function 𝑓𝑈(𝑋𝑈) within the range (𝑋𝐷, 𝑋𝐿−1) 
[32]. 

The Z-score normalization ensures that the pixel intensity 

values have zero as the mean and one as the standard deviation, 

which helps to minimize the intensity variations and 

standardize the image distributions. It also enhances the 

encryption consistency by maintaining a uniform pixel 

distribution, which improves the security against noise 

artifacts. This normalization avoids bias during processing, 

ensures better feature preservation for encryption and 

decryption. Eq. (5) represents the Z-score normalization. 

 

( )x
Z





−
=  (5) 

 

Here, 𝜇 and 𝜎 are the mean and standard deviation values of 

non-zero pixels, correspondingly. Furthermore, 𝑥 denotes the 

current pixel’s intensity [33]. 

 

3.3 Improved TSA for optimal key generation 

 

The TSA technique has been developed by emulating the 

swarm intelligence and jet propulsion behaviours of tunicates 

in their search for food sources, which is their optimal 

behaviors. Therefore, a tunicate must satisfy the following 

requirements: avoid problems among search operators, shift 

towards the location of the most effective search operator, and 

keep proximity to the optimal search operator to develop jet 

propulsion behaviour mathematically, while the swarm 

behaviour adjusts the position of remaining search operators 

according to the optimum solutions.  

This research employed an improved version of the TSA 

method by incorporating a novel search equation into the 

tunicate position. Using ITSA, the keys are enhanced to 

encrypt confidential medical data. Optimization procedures 

have been generally executed utilizing a fitness function (FF), 

to which the optimization issue converges to yield the optimal 

solution. The FF is the PSNR value’s minimization function 

computed among the decoded images and the actual plaintext 

image. In each iteration, the value of PSNR was assessed, and 

the optimal keys that preserve the quality of the decoded 

images were chosen. Hence, the developed CKKS-Based 

Homomorphic Encryption could encrypt images without 

compromising the quality of the decrypted images and 

simultaneously reduce the computation time necessary for 

encryption. Figure 4 depicts the flowchart of the ITSA. Based 

on this flowchart, the function of ITSA is discussed in the 

following for this research for key optimization [34]. 

In this ITSA, the population (set of key values) (𝑁𝑚𝑘, where 

𝑘 = 1,2, … , 𝑎  and 𝑚 = 1,2, … , 𝑐 ) of tunicates is chosen at 

random during initialization. After generating the initial key 

values, the FF of the input solution was evaluated, and the 

optimal solution was chosen during the assessment of the 

fitness phase. The FF is expressed by the following Eq. (6). 

 

( ) max( )mkFF N PSNR=  (6) 

 

If the 𝑃𝑆𝑁𝑅 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , the present solution is 

preserved, and the ITSA seeks to enhance or sustain the best 

fitness value. 

The following step seeks to improve the TSA's search 

procedure. A dynamic perturbation has been added to enhance 

the exploitation patterns and search neighboring solutions in 

the exploration space. In the search equation, all the positions 

are adjusted with a dynamic step, and these positions are 

considered viable if they surpass the previous ones. The 

parameters of the search space are adjusted dynamically. The 

updated position of ITSA could be presented as given in the 

following Eq. (7). 

 

( 1) ( )
2

t

pop popP t P t rand


+ =    (7) 
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In this equation, 𝑃𝑝𝑜𝑝(𝑡 + 1) indicates the tunicate’s update 

position, 𝑡 indicates the number of iterations, and 𝛼 denotes a 

dynamic step that diminishes as the optimization process 

advances, hence enhancing neighborhood search and 

facilitating exploitation capability. It is presented as follows in 

the given Eq. (8). 

 

1 2(1 )    =  + −   (8) 

 

Here, 𝜃  is a random variable that adheres to a uniform 

distribution ranging from zero to one, 𝛼1 and 𝛼2 delineate the 

dynamic boundaries, which are computed using Eq. (9). 

 

( ) ( )1 2min , maxpop popP P = =  (9) 

 

The calculation of the position of new search agent (newer 

keys) uses the vectors 'K' to prevent issues among search 

operators (other tunicates) according to the subsequent Eq. 

(10): 

 

G
K

S
=  (10) 

 

In this equation, 𝐺⃗  represents the gravitational force, 

whereas 𝑆 signifies the social force among search operators, 

which could be expressed as given in Eqs. (11) and (12). 

 

2 3G h h W= + +  (11) 

 

12W h=   (12) 

 

In addition, 𝑊⃗⃗⃗⃗ signifies the advection of water flow in the 

deep ocean, while ℎ1, … ℎ3  are random variables within the 

interval [0; 1]. Furthermore, the social dynamics among search 

agents 𝑆 are structured as given in the following Eq. (13). 
 

 min 1 max minS V h V V= +  −  (13) 

 

In this equation, 𝑉𝑚𝑖𝑛  and 𝑉𝑚𝑎𝑥  denote the primary and 

secondary velocities for initiating a social connection. The 

next step involves directing search agents towards the optimal 

neighbor. The distance across the food supply and the search 

agent is determined using Eq. (14) to identify the optimal 

neighbor: 

 

( )oD N h N q= −   (14) 

 

Here, 𝑁⃗⃗⃗(𝑞) is the tunicate positioning at the qth iterations, 

𝑁⃗⃗⃗𝑜 signifies the optimality (food location), and ℎ is a random 

value within the interval [0,1]. 

Upon acquiring the optimal neighbor, the search operators 

descend towards the location of the most effective search 

operator (food sources). Thus, the revised positions of the 

tunicates 𝑁⃗⃗⃗(𝑞) are as follows in Eq. (15). 
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The initial two optimal solutions were retained, and the 

placements of the remaining search operators were adjusted 

based on the positions of the top search operators to emulate 

tunicate swarm behaviour, as articulated in the following Eq. 

(16). 

 

1

( ) ( )
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2

N q N q
N q
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 +
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 (16) 

 

The previous steps are reiterated till the maximum repetition 

is achieved. Additionally, during all the iterations, the 

generated keys were assessed for efficacy and updated in 

accordance with the previously best keys [35]. The best 

optimal keys acquired were only utilized to decode the images. 

Following the acquisition of the optimal keys, the cloud server 

simultaneously stores the encrypted sensitive medical images. 

 

 
 

Figure 4. Flowchart of ITSA 
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3.3.1 Parameter optimization 

In this study, the ITSA relies on key parameters like fitness 

function as well as the dynamic random variables and 

perturbation factors. A fitness function was used to maximize 

the PSNR and minimize the MSE, which ensures that the 

optimized keys preserve high image quality after decryption. 

The random variable 𝜃 allows the key formation to have 

exploitation and exploration balancing, where the smaller 

values initiate fine-tuned local search, while larger values 

enable global exploration of the key space. Perturbation was 

integrated to avoid premature convergence and ensure 

diversity of solutions. 

 

3.3.2 Integration of ITSA with CKKS-HE 

The use of CKKS-ITSA as a framework includes the ITSA 

in the key generation phase of the CKKS scheme. In CKKS, 

encryption keys are made with predetermined polynomial 

degrees and modulus chain parameters that often do not 

provide the best balance of security, calculation efficiency, 

and ciphertext noise. In contrast, ITSA fills out this parameter 

space by setting the fitness function to be the image 

reconstruction quality (high PSNR and SSIM) and the 

efficiency (low encryption and decryption time) to be 

maximized together. The evaluation of the candidate 

parameter sets is done iteratively with small-scale encryption 

and decryption cycles, and the best configuration is kept for 

usage. 

 

3.4 CKKS-homomorphic encryption 

 

The CKKS Homomorphic Encryption technique facilitates 

arithmetic operations on encrypted real as well as complex 

integers. The framework includes four primary homomorphic 

processes: encryption, key generation, decryption, and 

evaluation; whilst the evaluation phase was generally executed 

by the cloud servers, the majority of the other operations were 

conducted on the user's side. The CKKS technique functions 

on a quotient ring as given in Eq. (17), with 𝑄 denoting the 

modulus integer and 𝑁  representing the power-of-two 

polynomial degree. 
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Specifically, key generation entails the formulation of the 

secret key for encryption-decryption operations executed by a 

trustworthy entity (e.g., an end user). Furthermore, one or 

many public keys could be produced for encryption reasons or 

additional public functional keys that can be utilized 

throughout evaluation. Each of these keys was generated from 

the fundamental secret keys. The encryption of the CKKS 

system was non-deterministic and could be classified as either 

asymmetric or symmetric, based upon certain requirements. 

Evaluation involves conducting calculations on encrypted 

data, typically conducted by an unauthorized entity, yielding 

encoded results. At last, decryption was executed by an 

authorized entity in possession of the secret key, facilitating 

the recovery of the original raw content. 

Typically, HE systems utilizing the quotient ring, 𝑅𝑄 , 

necessitate a substantial modulus integer, 𝑄 , to facilitate 

extensive homomorphic operations. An effective method 

called the Chinese Remainder Theorem (CRT) was suggested 

to resolve this problem. The CRT facilitates the reduction of 

the huge modulus, 𝑄 , into small pairwise coprime moduli, 

represented as 𝑞𝑖, resulting in the following Eq. (18): 
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Q q
=

=  (18) 

 

This decomposition allows for the modeling of a 

polynomial, 𝑎  in the RNS domain and supports effective 

computation on each of its elements. Using the residue number 

system (RNS) representations, the polynomial ‘𝑎’ could be 

represented as a collection of three polynomials, 𝑎0, 𝑎1, 𝑎2 , 

when adopting three pairwise co-prime moduli, 𝑞0, 𝑞1, 𝑞2 , 

correspondingly. In this context, each 𝑎𝑖 denotes a polynomial 

within the corresponding RNS channel, 𝑅𝑞𝑖. This strategy is 

beneficial as it decreases the size of coefficients and markedly 

improves the effectiveness of computations within the 

homomorphic encryption. The subsequent polynomial 

components are specified as follows [36]: 
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In this context, in a ring field 𝑅𝑞𝑖 =
𝑍𝑞𝑖

(𝑋𝑁+1)
 is given as: 
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Consequently, executing arithmetic computations on the 

large integer coefficients could be conducted separately for 

every smaller modulus without affecting accuracy. The 

discussed CKKS-HE method is applied for medical image 

decryption and encryption for securing medical images in a 

cloud environment. The CKKS-HE method has three main 

stages like key generation, encryption, and decryption.  

 

3.4.1 Key generation process 

The key generation in CKKS is significant to encrypt the 

medical images and perform secure computations. The key 

generation process includes the generation of the public key 

(𝑃𝑘), secret key (𝑆𝑘), and evaluation keys. The public key is 

used for encryption, the secret key is used for decryption, and 

evaluation keys are used for homomorphic operations. The 

CKKS model is based on the ring learning with errors (RLWE) 

problem for security. The key generation process includes the 

following steps. 

Step 1: Secret Key Generation 

The client (hospital) generates a random polynomial 𝑠 from 

a predefined distribution. The secret key is used to decrypt the 

medical images. The representation of secret key 𝑆𝑘  was 

defined as given in the following Eq. (21). 

 

( )~ OS u R  (21) 

 

Here, the variable 𝑅𝑄 denotes the quotient ring utilized in 

CKKS. 

Step 2: Public Key Generation 

It is derived from the secret key. A polynomial 𝑎 randomly 

and the error polynomial 𝑒 were sampled. The public key is 

computed using the following Eq. (22). 

 

( , ), ( )kP b a whereb a S e= = −  +  (22) 
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The public key 𝑃𝑘  is utilized for encrypting the medical 

images. 

Step 3: Evaluation Keys 

Furthermore, to facilitate key transitions in homomorphic 

functions (including conjugation, permutation, and 

multiplication), evaluation keys were initially produced by the 

clients and subsequently transmitted to the cloud servers for 

additional processing. The following presents the pseudocode 

for the key generation process based on ITSA. 

 

Algorithm 1: ITSO-Optimized Key Generation for 

CKKS 

Input: Population size (N), Maximum iterations (MaxIter), 

Search space (Q, N, σ)   

Output: Optimized CKKS Key Parameters (Secret Key, 

Public Key, Modulus Size)   

Initialize ITSO parameters 

   Set the number of tunicates (agents) in the population 

(N)   

   Define the search space: Q (modulus size); N 

(polynomial degree); σ (error variance) 

   Randomly initialize each tunicate’s position (candidate 

encryption parameters)   

Compute encryption performance using CKKS with 

current parameters   

   Evaluate fitness function 

   Use adaptive position update strategies based on 

tunicate behavior   

   Adjust positions using the best tunicate’s knowledge   

   If max iterations are reached or no improvement, 

terminate   

   Else, go to fitness function evaluation  

Return the best-found CKKS encryption parameters   

   Use the optimized parameters for key generation in 

CKKS   

   Generate secret key Sk and public key Pk   

   Compute error and modulus polynomials   

Output the final optimal CKKS key parameters 

 

3.4.2 Encryption process 

In CKKS, the medical images in grayscale and RGB images 

are represented as pixel intensity values. The CKKS method 

could encrypt these values and enable secure processing 

without decryption. The images are converted into a format 

appropriate for CKKS encryption before encryption. The 

images are flattened into a one-dimensional array of pixel 

values. Next, the pixel values are normalized by scaling the 

pixel intensities in the range [0, 1] or [-1, 1] to fit in the 

numerical encrypting range of CKKS. For example, the 

medical images from the dataset are in a resolution of 512 × 

512. So, the 512 × 512 has 262144 pixels. The CKKS can store 

8192 values per ciphertext, hence the entire image is divided 

into 32 blocks, resulting in 8192 × 32 = 262144-pixel values. 

Each block is individually encrypted into a unique ciphertext. 

The CKKS indicates the encrypted data as polynomials, where 

all the pixel intensity values are encrypted as the coefficients 

of the polynomials. The RNS decomposition was utilized for 

dividing the large polynomials into small modulus 

components for enhancing efficiency.  

If the pixel intensity values were 𝑝1, 𝑝2, … , 𝑝𝑁, the plaintext 

polynomial is expressed as given in the following Eq. (23). 

 
2 1

1 2 3( ) N

Nm X p p X p X p X −= + + + +  (23) 

 

This polynomial is then encrypted using the CKKS method. 

For encryption, the public key 𝑃𝑘 = (𝑏, 𝑎) is utilized and the 

ciphertext pair 𝑐𝑡 = (𝑐𝑡0, 𝑐𝑡1)  is generated. Finally, the 

encrypted image blocks are secure for cloud computing. 
 

Algorithm 2: CKKS Medical Image Encryption 

Input: Medical Image I (size 512 × 512), Public Key (pk), 

Scaling Factor (Δ), Context Parameters (N, Q)   

Output: Encrypted Image Ciphertexts {C1, C2, ..., C32} 

   Convert image I into a grayscale matrix. 

   Normalize pixel values to range [0,1]. 

   Flatten image into a 1D vector P of length L = H × W. 

   Set block size B = 8192. 

   Split P into 32 blocks {B1, B2, ..., B32} where: 

      Bk = {P[(k-1) * B + 1], ..., P[k * B] } for k = 1 to 32. 

   For each block Bk (k = 1 to 32): 

      Encode Bk into a CKKS plaintext format:   

         plaintextk = Encode (Bk, Δ, N) 

      Encrypt plaintext:   

         ciphertextk = Encrypt (plaintextk, 𝑃𝑘) 

      Store ciphertextk 

Output the Encrypted Blocks {C1, C2, ..., C32} 
 

3.4.3 Decryption process 

When the encrypted medical image is retrieved or 

downloaded, the decryption process is performed to decrypt 

the medical image to its original form. In this decryption 

process, the secret key 𝑆𝑘 is utilized to retrieve the plaintext 

polynomial. The pixel intensity values from the polynomial 

representation are extracted. The one-dimensional pixel array 

is converted into a medical image. The mathematical 

representation of the decrypted polynomial is expressed as 

given in the following Eq. (24). 
 

2 1

1 2 3
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Algorithm 3: CKKS Medical Image Decryption 

Input: Encrypted Image Ciphertexts {C1, C2, ..., C32}, 

Secret Key (𝑆𝑘), Scaling Factor (Δ), Context Parameters (N, 

Q)   

Output: Reconstructed Image I' 

   For each ciphertext 𝐶𝑘 (k = 1 to 32): 

      Decrypt ciphertext to obtain plaintext: 

         plaintextk = Decrypt (𝐶𝑘, 𝑆𝑘) 

      Decode plaintext to recover pixel values: 

         Bk = Decode (plaintextk, Δ, N) 

   Concatenate decrypted blocks {B1', B2', ..., B32'} into 

a single vector P'. 

   Reshape P' into original image dimensions (512 × 512). 

   De-normalize pixel values back to the original range 

(e.g., 0-255). 

Output the Reconstructed Image I' 
 

The retrieval of data or decryption is executed with this 

equation. The 𝑚′ is converted back to an image format. The 

32 ciphertexts are decrypted individually using CKKS 

decryption process. All the decrypted blocks recover the 

original pixel values. The blocks are arranged to reconstruct 

the original image [37]. 

The CKKS-HE method relies on the RLWE problem, which 

makes the method resistant to quantum attacks. Different from 

AES or RSA, the CKKS method enables encrypted 

computations to prevent data leaks. This CKKS method 

ensures secure medical image encryption and cloud storage.
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4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

4.1 Experimental setup 
 

This section presents the experimental computations to 

evaluate the performance of the developed research model. 

The research experiments are executed utilizing Python 3.8, 

Keras APIs, and TensorFlow 2.8. Furthermore, cryptographic 

libraries like PyCryptodome, TenSEAL, PySEAL are applied 

for the implementation of the CKKS method, while SciPy, 

NumPy, and SEAL are utilized for key generation 

optimization utilizing the ITSA. The CKKS-ITSA 

methodology was implemented on a Google Collaboratory 

with an NVIDIA GTX 1050 4GB GPU. The experimental 

setup has 16GB of RAM, a 256GB solid-state drive, and a 1TB 

hard disk drive. This comprehensive analysis examines the 

efficacy of the developed model, evaluating performance 

metrics like decryption time, encryption time, SSIM, MSE, 

Correlation Coefficient, and PSNR. 
 

4.2 Evaluation metrics 
 

The assessment of the CKKS-ITSA methodology in the 

proposed medical image security framework is assessed using 

the following metrics [20]: 

Encryption Time: This calculates the time necessary to 

encrypt the medical image with the CKKS-ITSA model. 
 

end startENC T T= −  (25) 

 

Here, the variables 𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑒𝑛𝑑  indicates the encryption 

process's beginning time and end time. Lower values represent 

faster encryption. 

Decryption Times: This calculates the time necessary to 

decrypt the encrypted images to their original state. 
 

end startDEC T T= −  (26) 

 

Here, the variables 𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑒𝑛𝑑  indicates the decryption 

process's beginning time and end time. Lower values represent 

effective decryption. 

MSE: This calculates the pixel-wise difference between the 

original image and the decrypted image. 
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Here, N and M were the dimensions of the image. Lower 

MSE values signify effective reconstruction. 

SSIM: It assesses the perceptual variations between the 

decrypted and original images. 
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where, σ and μ are the variance and mean of image 𝐼  and 

image 𝐼′ , and 𝐶2  and 𝐶1  were constants. SSIM varies from 

zero to one, where values close to one indicate effective 

quality. 

PSNR: It determines the decrypted image’s quality by 

comparing signal intensity to noise levels. 
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Here, 𝑀𝐴𝑋𝐼  signifies the maximal possible intensity of 

pixels. Maximum PSNR represents best quality of quality. 

Correlation Coefficient (CC): It evaluates the correlation 

between the decrypted and original images. 
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(30) 

 

4.3 Performance assessment 

 

Using the above-discussed performance metrics, the 

decryption time (ms), encryption time (ms), key generation 

time (ms), mean squared error (MSE), peak signal-to-noise 

ratio (dB), SSIM, and correlation coefficient (CC), the 

following presents the result values of the developed CKKS-

ITSA model that was examined. 

 

Table 3. CKKS-ITSA in processing time 

 
Images Encryption Time (ms) Decryption Time (ms) Key Generation Time (ms) 

Image-1 6.92 5.25 4.98 

Image-2 7.05 5.30 5.02 

Image-3 6.87 5.15 4.89 

Image-4 7.12 5.40 5.10 

Image-5 6.95 5.28 4.95 

Image-6 7.08 5.35 5.06 

Image-7 6.80 5.12 4.85 

Image-8 7.20 5.45 5.15 

Image-9 6.75 5.08 4.82 

Image-10 7.15 5.38 5.08 

 

Table 3 presents the performance analysis of the proposed 

CKKS-ITSA model in terms of key generation time, 

decryption time, and encryption time. The analysis was 

conducted for ten different medical images from the dataset 

utilized for this research. The encryption time of encrypting 

the medical images varies between 6.75 ms to 7.20 ms. This 

indicates the CKKS-ITSA model’s capability in securely 

transforming images into the encrypted format with minimum 

computational complexity. The decryption time varies 

between 5.08 ms to 5.45 ms for all the experimented images. 

This decryption process indicates that the model ensures a fast 

recovery of medical images with improved security. The 

ITSA-based key generation process attained consistent lower 

values, which varies between 4.82 ms to 5.15 ms. This key 

generation process showcases effectiveness in minimizing 

computational complexity. Overall, the proposed CKKS-
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ITSA provides an efficient processing performance in 

encrypting, decrypting, and key generation. This performance 

will be crucial for real-time cloud-based medical image 

security. There are few variations in time, which is due to the 

image size and structural complexity. However, the model 

ensured a fast and effective process in encryption, decryption, 

and key generation. Figure 5 illustrates the graphical view of 

the CKKS-ITSA model with processing time. 
 

Table 4. Scalability evaluation results of the CKKS-ITSA model for different dataset sizes 
 

Dataset 

Size 

Encryption Time per Image 

(ms) 

Decryption Time per Image 

(ms) 

Key Gene-ration Time per 

Image (ms) 

Through-put 

(Images/sec) 

10 6.75 5.12 4.82 148 

100 6.80 5.18 4.85 145 

500 6.92 5.27 4.89 140 

1000 7.05 5.34 4.93 136 

 

 
 

Figure 5. Graphical illustration of CKKS-ITSA processing 

time 
 

Table 5. Results of the CKKS-ITSA in image quality 

assessment 
 

Images MSE PSNR SSIM CC 

Image-1 0.152 67.85 99.95 99.92 

Image-2 0.181 66.92 99.94 99.90 

Image-3 0.148 68.12 99.96 99.93 

Image-4 0.165 67.20 99.93 99.89 

Image-5 0.158 67.60 99.95 99.91 

Image-6 0.175 66.85 99.92 99.88 

Image-7 0.139 68.45 99.97 99.94 

Image-8 0.202 66.50 99.91 99.87 

Image-9 0.145 68.20 99.96 99.90 

Image-10 0.169 67.05 99.94 99.89 

 

Table 6. Sensitivity analysis of ITSA parameters on model 

performance 

 

Parameter PSNR (dB) SSIM (%) NPCR (%) 

θ = 0.2 (low 

exploration) 
64.32 97.12 98.25 

θ = 0.5 (balanced) 68.45 99.97 99.61 

θ = 0.9 (high 

exploration) 
62.07 97.94 98.72 

Without perturbation 66.18 98.54 98.39 

With perturbation 68.45 99.97 99.61 

 

The results in Table 4 show that the CKKS-ITSA approach 

is scalable for medical images of large size. For datasets 

ranging between 10 and 1000 images, the encryption, 

decryption, and key generation times per image show an 

increase of a marginal 0.5 ms. This indicates that there is very 

minimal difference, and such consistency shows that there is 

no dependence on computational overhead and batch size, and 

that the model can be used in real-time with large real data. 

Further analysis of throughput captures the effectiveness of the 

approach, as the system maintains more than 130 images per 

second even with 1000 images. Such output confirms that it is 

possible to use the CKKS-ITSA model in medical cloud 

systems where a high number of images need to be encrypted 

and transmitted in a secure manner with low latency. 

Table 5 presents the image quality assessment of the 

developed CKKS-ITSA model based on SSIM, PSNR, MSE, 

and CC. The values of MSE for all the images experimented 

with range between 0.139 to 0.202. This indicates that the 

model has a minimal distortion while encrypting and 

decrypting the images. The PSNR values represent the visual 

quality of the reconstructed images, where the obtained values 

remain consistent above 66.50 dB. This consistent 

performance of PSNR highlights the proposed CKKS-ITSA 

model’s higher fidelity. The SSIM values in an average of 

above 99% indicate that the decrypted images have retained 

their original structural integrity with very minimal loss. The 

CC values of the proposed model range between 99.87% to 

99.94%. This kind of performance indicates a strong 

correlation between the original images and decrypted images. 

These results represent the efficiency of the developed CKKS-

ITSA model in preserving image quality while maintaining 

security, which is significant for privacy-preserving cloud-

based medical image security. Figures 6 and 7 depict the 

graphical chart of MSE and other metrics’ performance. 

To study the effect of these parameters effectively, a 

sensitivity analysis was performed as shown in Table 6. 

Results showed that when the value of 𝜃 was increased to high 

values (>0.9), the algorithm exhibited unstable convergence, 

leading to a decrease in PSNR (~62 dB). On the other hand, 

very small values of 𝜃 (<0.3) restricted exploration and 

resulted in a decrease in SSIM (~97%). Introducing a value of 

𝜃 at 0.5 offered the best compromise as it was found to handle 

PSNR, SSIM, and stability the best at the same time. Also, 

shutting down the perturbation caused a drop of approximately 

1.2% in NPCR. It further validated the conclusion of the 

perturbation being significant towards the enhancement of the 

robustness of the algorithm. The initial optimization tests 

confirmed that the ITSA parameters are considerably effective 

in the encryption processes. The combination of θ with 

perturbation as 0.5 while using the balancing factor is the most 

satisfying according to PSNR (68.45 dB), SSIM (99.97%), and 

NPCR (99.61%). From this perspective, the perturbation as a 

balancing factor is highly advantageous. The extreme values 

of θ have numerous constraints. These findings justify the 

optimization process and provide interpretability by linking 

parameter settings to performance outcomes. 

3584



  
  

Figure 6. Graphical illustration of CKKS-ITSA model’s 

MSE performance 

Figure 7. Graphical illustration of CKKS-ITSA model’s 

image quality performance 

 

 
 

Figure 8. Graphical illustration of CKKS-ITSA model’s 

NPCR and UACI analysis 

 

Table 7. NPCR and UACI analysis 
 

Images NPCR UACI 

Image-1 99.6123 33.2145 

Image-2 99.5876 32.9854 

Image-3 99.6231 33.4120 

Image-4 99.6015 33.1058 

Image-5 99.6342 33.5403 

Image-6 99.5768 32.8742 

Image-7 99.6487 33.6751 

Image-8 99.5593 32.7456 

Image-9 99.6210 33.3982 

Image-10 99.5895 32.9607 

 

Table 7 presents the assessment of the developed CKKS-

ITSA model using the NPCR and UACI. These two metrics 

are employed to evaluate the resistance of an image encoding 

technique against various attacks. The following Eqs. (31) to 

(33) are employed to compute the NPCR and UACI. 
 

1 1

1
( ( , ) 100%)

M N

i i
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 
=  
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−  
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   

  (33) 

 

Here, the variables 𝐸1  and 𝐸2  indicate the two encrypted 

images from the plain image and the modified image. 

Variables M and N represent the width and height of the 

image. These NPCR and UACI analyses are most evaluated 

for the model’s resistance towards differential attacks.  
 

Table 8. Results comparison with current models 
 

Models MSE PSNR SSIM CC 

ALO-Honey Enc [14] 0.212 58.76 97.82 98.65 

CML-SSA-WOA [16] 0.328 60.42 98.85 98.92 

RSA-AES [18] 0.275 59.89 96.89 97.80 

MPVCNet [19] 0.198 61.91 98.91 99.23 

TLCMCML [21] 0.157 56.75 98.93 99.17 

EiMOL [25] 0.205 54.55 97.90 98.81 

Blowfish-Signcryption [29] 0.289 58.42 98.87 99.05 

Chaos maps-BCOVIDOA 

[30] 
0.176 62.89 98.94 99.30 

Proposed CKKS-ITSA 0.139 68.45 99.97 99.94 

 

The NPCR values consistently attained 99.50%, which 

demonstrates that the proposed CKKS-ITSA model efficiently 

changes the pixel values across the whole image. This ensures 

the strong resistance against differential attacks. The UACI 

values varies between 32.74% to 33.67%, which highlights 

that the intensity variation between the encrypted images and 

original images is efficiently balanced. This balance indicates 

that no visual information can be obtained from the encrypted 

image. Overall, the NPCR and UACI values confirm that the 

proposed CKKS-ITSA model provides strong encryption and 

it is effective in securing medical images from various attacks 

and unauthorized access. Figure 8 depicts the graphical chart 

of NPCR and UACI analysis [22]. 

The SSIM value of the proposed model is 99.97%, which 

highlights that the model maintains the structural integrity of 

the images better than the other compared models. This will 

eventually result in minimal perceptual loss. Finally, the CC 

value of the proposed model is 99.94%, which demonstrates 

that the encrypted image maintained a strong correlation with 

the original and reconstructed image. Overall, these results 

confirm that the CKKS-ITSA model provides highly effective 
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encryption, robustness, and minimal degradation. The 

proposed CKKS-ITSA can be a highly efficient solution for 

securing medical images in a cloud environment. Table 8, 

Figure 9 and Figure 10 illustrate the graphical charts of the 

results comparison. 

 

 
 

Figure 9. Graphical illustration of MSE comparison 

 

 
 

Figure 10. Graphical illustration of results comparison 

 

Table 9 reveals that the CKKS-ITSA model excels when 

compared to the other current models. It is superior in almost 

all evaluation metrics. For instance, the encryption and 

decryption times in the scheme were 6.75 ms and 5.12 ms, 

which were among the fastest. There was a vast improvement 

from current models, like RSA-AES and ALO-Honey, which 

required over double the time to encrypt or decrypt. In keeping 

with security issues, the adorability of the model to differential 

attacks was the highest, with NPCR (99.61%) and UACI 

(33.18%) surpassing the numbers of all the other models. It 

was quite the opposite of the conventional chaotic sequence 

and factorization approaches that were hard to deal with. The 

post-quantum resistance of CKKS-ITSA based on the RLWE 

hardness assumption makes it more effective compared to the 

traditional models. With these results, it is demonstrated that 

CKKS-ITSA is better in every aspect, outperforming similar 

models in efficiency and security, and is appropriate for cloud-

based medical imaging systems. 

Table 10 clearly shows that the CKKS-ITSA model 

maintains its encryption-decryption fidelity even under the 

most testing scenarios. Initially, the model was tested under 

lower resolutions of 256x256 and 128x128, and the PSNR 

values were still over 58 dB, while the SSIM was over 98%. 

This indicates that the images kept their structure and 

appearance, even with the reduced resolution. The CKKS-

ITSA model also showed its capabilities when tested with 

Gaussian noise (σ2 = 0.01) and salt-and-pepper noise (density 

= 0.02). In these two scenarios, the model attained SSIM 

values of 98.21% and 97.94%, both with correlation 

coefficients higher than 98.6%, proving that the model can 

handle noise distortions very well. In addition, tests with 

imbalanced data distributions also attained results close to the 

original (PSNR of 67.94 dB, SSIM of 99.65%, and CC of 

99.71%), which proves that the model’s encryption and 

decryption can work effectively even when class 

representations are imbalanced. In summary, all these tests 

proved that the CKKS-ITSA model is resistant to changes in 

resolution, noise, and imbalance in datasets, and this makes it 

even more practical for cloud-based medical imaging. 

Besides fidelity and differential-attack metrics, additional 

experiments were conducted to validate the security strength 

of the CKKS-ITSA model as shown in Table 11. The first step 

was to conduct tamper-resistance tests, where 10% of pixels in 

encrypted images were modified at random before decryption. 

The decrypted images had very little similarity to the original 

images (average SSIM = 12.4%, CC = 15.7%), demonstrating 

that even slight tampering prevents the reconstruction from 

being restored and provides strong protection for the integrity. 

In the second step, an encryption attack resembling the partial 

loss of an image was simulated, which involved losing 25% of 

the pixels before the image was decrypted. The image could 

no longer be reconstructed because it was incomplete, but the 

resulting images were still too distorted to be interpreted 

visually, further validating the system’s resistance to partial 

pixel loss. In the final step, the CKKS-ITSA framework 

leverages the RLWE problem, which, to this date, remains 

unsolvable by classical and quantum algorithms. The 

frameworks built on RSA or ECC cryptosystems cannot be 

alleviated, but CKKS protects the data in the medical cloud for 

medical applications for an extended period, ensuring the 

data’s integrity for later access needed to comply with 

retention policies. 

The integration of ITSA-CKKS-HE results in a few 

technical challenges and limitations. Initially, the CKKS 

parameter space is difficult to navigate due to the 

interdependent trade-offs that must be made among the 

polynomial degree, the ciphertext modulus, and the scaling 

factor. An extensive search is not possible due to the 

complexity. ITSA helps solve this problem because it offers 

an effective heuristic that helps to converge parameter values 

to get close to the optimum values. Also, ITSA's stochastic 

nature causes it to converge prematurely if exploration is 

limited. To solve this, a dynamic perturbation was created to 

enforce solution candidate diversity. Lastly, repeated encoding 

and encryption of image data for each candidate set evaluation 

adds computational overhead during the optimization phase, 

although it does incur a one-time cost at deployment. The 

integration still marks a notable improvement in runtime 

efficiency and image fidelity over the fixed-parameter CKKS 
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implementations. As noted earlier, the entire procedure could 

be refined further if the ITSA were combined with adaptive 

machine learning-based predictors, enabling quick parameter 

approximation without the need for repetitive full encryption 

trials. 

The proposed CKKS-ITSA model demonstrates superior 

results for the cloud-based medical image security. The model 

obtained low MSE, high PSNR, SSIM and CC, and 

outperformed all the current models in image quality 

preservation and security. The proposed model also achieves 

faster encryption, decryption, and optimal key generation, 

which ensured computational efficiency. The NPCR and 

UACI results confirm the model’s robustness against 

differential attacks. The advantages of the model include 

strong security, high efficiency, and optimized key generation 

using ITSA. However, the model has a high computational 

overhead due to homomorphic encryption, which requires 

further optimization for real-time deployment. 

 

Table 9. Extended comparison of CKKS-ITSA with existing models 

 
Model Enc Time (ms) Dec Time (ms) NPCR (%) UACI (%) Quantum Resistance 

ALO-Honey Encryption [14] 12.35 10.87 97.82 30.45 No 

RSA-AES Hybrid [18] 15.92 13.65 98.11 31.26 No 

Chaos-DNA Based [27] 10.21 9.74 98.65 32.18 No 

Blockchain-Based [23] 11.89 10.54 98.72 32.40 No 

Proposed CKKS-ITSA 6.75 5.12 99.61 33.18 Yes (RLWE-based) 

 

Table 10. Robustness evaluation results of the CKKS-ITSA model under adverse conditions 

 
Condition PSNR (dB) SSIM (%) CC (%) 

Original (512×512, no noise) 68.45 99.97 99.94 

Low Resolution (256×256) 62.18 98.92 99.21 

Very Low Resolution (128×128) 58.74 98.51 98.88 

Gaussian Noise (σ² = 0.01) 61.32 98.21 98.77 

Salt & Pepper Noise (density = 0.02) 60.85 97.94 98.69 

Imbalanced Data Distribution 67.94 99.65 99.71 

 

Table 11. Additional security evaluation of the CKKS-ITSA model 

 
Attack Scenario Metric Evaluated Result Interpretation 

Tampering (10% pixels) SSIM / CC 12.4% / 15.7% Decryption fails, and strong integrity 

Cropping (25% data loss) Visual reconstruction Highly distorted Prevents useful interpretation of medical data 

Quantum resistance Security foundation RLWE-based Resistant to Shor’s algorithm and post-quantum safe 

 

 

5. CONCLUSIONS 

 

This research proposed a novel secure and efficient cloud-

based medical image encryption model using CKKS-HE 

method. The improved TSA optimization technique was 

furthermore employed for optimizing the process of key 

generation of CKKS method. This CKKS-ITSA model was 

developed for improving the efficiency and security of the 

cloud-based medical image storage and transmission. For the 

experiment and validation, a medical image dataset was 

utilized in this research. The proposed model effectively 

balanced the security, computational efficiency, and image 

quality preservation. The results of the proposed model 

demonstrated low MSE (0.139), high PSNR (68.45 dB), high 

SSIM (99.97%), and strong correlation (99.94%). These 

results highlighted the model’s minimal distortion and high 

fidelity in encrypted images. The results also include the 

model’s fast decryption time (5.12 ms), encryption time (6.75 

ms), and key generation time (4.82 ms). The model was 

additionally tested with NPCR and UACI for validating its 

resistance against differential attacks, and the performed 

better. These results highlighted that the CKKS-ITSA model 

is highly suitable for real-time cloud-based data security 

applications. Consistent with CKKS-ITSA’s results, it 

outperforms other models in terms of PSNR by 3–5 dB, SSIM 

by nearly 2%, and NPCR by almost 1%, validating its 

effectiveness and secure cloud medical imaging application. 

In future, this research aims to expand the CKKS-ITSA 

framework in the following aspects. Initially, the FPGA-based 

cryptographic processors can be explored to decrease the 

homomorphic computation costs associated with large-scale 

healthcare implementations. Other benchmark datasets, such 

as NIH ChestX-ray14, BraTS brain tumor MRI, and the TCGA 

histopathology collection, will be employed to further test the 

framework's applicability across different imaging domains. 

After that, the framework's security and robustness will be 

evaluated against adversarial threats, such as poisoning 

attacks, data tampering, and large-scale distributed cloud 

computing. One critical issue is the ciphertext expansion factor 

of CKKS, which leads to higher memory and computation 

overhead; for this, we plan to explore lightweight 

homomorphic encryption variants as well as hybrid 

compression techniques. The last step will be to combine deep 

learning optimizers with ITSA in order to reduce the search 

cost of parameter tuning and allow for adaptive, real-time 

optimization. This work will guarantee the continued 

evolution of the CKKS-ITSA model for medical cloud 

ecosystems in terms of scalability, security, and practical 

adoption. 
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