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In this research, a novel secure and efficient cloud-based medical image encryption model
using Cheon-Kim-Kim-Song (CKKS)-homomorphic encryption (HE) method is proposed.
The Improved Tunicate Swarm Algorithm (ITSA) optimization technique is employed to
optimize the key generation process of the CKKS. This CKKS-ITSA model is developed
for improving the efficiency and security of the cloud-based medical image storage and
transmission. For the experiment and validation, a medical image dataset is utilized in this
research. The model effectively balanced the security, computational efficiency, and image
quality preservation. The results of the model demonstrated low mean square error (MSE)-
0.139, high peak signal-to-noise ratio (PSNR)-68.45 dB, high structural similarity index
measure (SSIM)-99.97%, and strong correlation (99.94%). These results highlighted the
model’s minimal distortion and high fidelity in encrypted images. The results also include
the model’s fast decryption time (5.12 ms), encryption time (6.75 ms), and key generation
time (4.82 ms). The model was additionally tested with Unified Average Changed Intensity
(UACI) and Number of Pixels Changing Rate (NPCR) for validating its resistance against
differential attacks. In terms of PSNR, SSIM, and NPCR, the developed CKKS-ITSA model
obtained a 3.2 dB increase, 1.8% increase, and 1.5% increase, respectively, compared with

current encryption models, demonstrating its superiority in security and quality.

1. INTRODUCTION

The use of cloud computing (CC) has become an essential
instrument in improving the healthcare sector, rendering it
more patient-centered and data-driven. Integrating medical
data with CC enhances accessibility in a cost-efficient manner.
This can provide reliable responses for patients and industries
[1]. Moreover, CC can improve system agility, velocity, and
adaptability by diminishing hardware or software supply
demands and minimizing resources required for system
maintenance, including installation, configuration, and testing.
Notwithstanding the advantages of CC in healthcare, securing
patient and medical data security and privacy remains a
paramount concern that influences the widespread use of the
cloud-based approach [2]. CC enables the distribution of
customizable computational resources via the network and
functions as a platform (PaaS), infrastructure (laaS), or
software (SaaS) as a service for providing a cohesive solution.
This subsequently improves the storing, sharing, and
manipulation of extensive medical data, encompassing
radiography and genomic information, while facilitating the
distribution and collection of electronic health records among
practitioners, researchers, specialists, and patients with
reduced initial cost [3].

The healthcare sector generates substantial data from
several sources, including patients, clinics, hospitals, sensors,
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mobile devices, electronic health records, and researchers.

This data is frequently incomplete, incorrect, and
heterogeneous, complicating management, storage, and
analysis. Cost-effective  high-throughput analysis of

physiological and medical information from many sources is
possible. Nonetheless, proficient management and evaluation
of these data are essential for enhancing healthcare outcomes
and progressing medical research [4].

Figure 1 delineates the National Institute of Standards and
Technology (NIST) CC framework, encompassing a list of
principal participants, their responsibilities, and their
corresponding roles within CC [5]. A cloud organization
consists of resources allocated to fulfill requests. NIST
identifies five fundamental components that constitute a cloud
computing configuration.

Cloud consumer: Consumer can get reduced costs and
enhanced services by entering into a service-level agreement
(SLA) with a provider of cloud services.

Cloud Supplier: A supplier of cloud services is an entity that
facilitates access to assistance for a cloud client.

Cloud Auditor: A cloud auditor is responsible for
independently evaluating cloud services. The inspector
objectively evaluates the cloud to see if the norms have been
satisfied.

Cloud Broker: A cloud broker manages the communications
between cloud users and suppliers, controlling the utilization,
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efficiency, and distribution of cloud services.

Cloud Carrier: A cloud carrier serves as an intermediary that
links cloud providers with clients to facilitate the delivery of
cloud services [6].

Currently, remote data storage is a predominant application
of cloud computing. Security is undeniably essential for
organizations of all sizes and clients of cloud storage. A cloud
computing storage service must ensure highly accessible data
access while sustaining high speed and optimal scalability.
Moreover, security in a storage system is essential, and the
accuracy of data must be assured [7]. Cryptography serves as

a security solution; nonetheless, the context and sequence of
its application are crucial. The client requires that its data on
the cloud be protected and preserved. The Cloud Service
Provider (CSP) handling the client's data must ensure data
accessibility while preventing unauthorized users from
reading or modifying it. Cloud data storage provides an
extensive repository of shared resources, enabling users to
move data to fulfill their requirements. Improper media
refinement, Data integrity and privacy, data vulnerability and
recoverability, and data backup are challenges associated with
cloud storage in CC [8].
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Figure 1. NIST architecture of CC

In a CC environment where service providers manage the
processing and storage of data resources, consumers need to
retain control over their stored content and keep ownership.
Cryptographic methods serve as a crucial instrument for
preserving data security, necessitating the initial layer of
security both before its transmission to the data center as well
as during its storage as ciphertext. These provide security
criteria and source encryption protocols for data applications
[9]. Nevertheless, the ciphertext of conventional encryption
systems will only be analyzed, mined, and employed after its
decryption into plaintext, incurring additional computational
and communicative expenses. Utilizing advanced
cryptographic technology, the cloud facilitates the sharing,
computation, as well as processing of information in ciphertext
form without any knowledge of the underlying content [10].

Cloud-based health information exchange enables
healthcare workers to securely access patient data remotely,
simplifying prompt decision-making, particularly in crises
[11]. Cloud technology facilitates the scalability of healthcare
organizations, allowing for the on-demand adjustment of
health information exchange systems to meet fluctuations in
the volume of data and user needs. The utilization of this
economical alternative to conventional document storage and
sharing methods can advance healthcare. Cloud service
providers secure patient medical data through encryption,
access controls, and routine security assessments of the health
information exchange [12].
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1.1 Problem statement

With the quick adoption of medical image security systems
based on the cloud, the security and privacy of the patient’s
sensitive medical data must be protected. Conventional
encryption techniques often struggle to balance between
computational efficiency, security, and preserving the quality
of the image. This issue makes the system inappropriate for
real-time medical applications [13]. Homomorphic encryption
provides a promising solution, but it has high computational
complexity and inefficient key management limitations.
Additionally, traditional encryption models struggle in
resisting differential attacks, maintaining structural integrity,
and optimizing processing. To solve these challenges, this
study proposes a novel medical image security framework
based on the cloud using CKKS-HE with improved TSA
(CKKS-ITSA). This proposed research model aims to improve
the encryption robustness, computational efficiency, and
cloud-based data security.

1.2 Research contributions

The novelty of the research includes two improvements that
the developed CKKS-ITSA model offers over existing
models. First, medical image datasets have requirements with
regard to encryption and decryption, as they require fast and
approximate  computations. The CKKS framework



successfully addresses these needs, unlike conventional HE
methods like BFV or Paillier, which are slow and
computationally expensive to operate on medical image
datasets. Additionally, the integration of ITSA for key
generation provides the CKKS framework's medical image
encryption model with improved parameter tuning, which
leads to a reduction in key-generation time and enhanced
security from cryptanalytic attacks. Based on these two
reasons, the CKKS-ITSA model can be designed with less
distortion (MSE = 0.139, PSNR = 68.45 dB, SSIM = 99.97%)
as well as faster runtime (encryption = 6.75 ms, decryption =
5.12 ms) compared to other medical image encryption models,
which further highlights its distinction from other models.
Hence, in this research, a novel framework for securing
medical image transmission and storage in cloud platforms is
developed. The major contributions of this research are
described as follows:

* The work develops a novel encryption framework by
integrating the CKKS-HE method with the ITSA technique for
optimized key generation to ensure improved security and
computational efficiency.

* The model utilized the ITSA technique to generate highly
secure public and secret keys for minimizing computational
complexity and improving the robustness of the HE method
for medical image security.

* The model is experimented with using the Multi Cancer
Dataset from Kaggle to validate the performance and
efficiency.

* The model is assessed with various performance metrics
such as decryption time, encryption time, key generation time,
MSE, PSNR, SSIM, CC, NPCR, and UACI. The image quality
metrics are assessed to ensure minimal distortion and high
fidelity in encrypted medical images. The NPCR and UACI
are assessed to ensure the model’s resistance to differential
attacks.

* Finally, the performance results of the proposed CKKS-
ITSA model are compared with the other methodologies
analyzed in the review, and the advantages and limitations of
the model over the compared models in cloud-based data
security.

The research work is structured into the following sections:
Section 2 briefly analyzes the existing models related to the
research work. Section 3 includes the implementation of the
present research methodology. Section 4 presents the
experimental findings of the developed model and compares
them with existing models. Section 5 ends the research by
summarizing the findings and offering recommendations for
future research.

2. LITERATURE REVIEW

This section analyzes existing recent works aimed at
enhancing the security of cloud-based medical images. All
reviewed methodologies are thoroughly evaluated and
displayed in Table 1, highlighting their advantages and
drawbacks. An antlion optimizer (ALO) combined with the
Honey encryption algorithm was proposed in the study by
Prabhu et al. [14] to augment the security of clinical images.
Honey encryption was a security mechanism that complicates
an attacker's ability to ascertain whether they have
successfully obtained a username or encryption key. The
attacker could frequently recognize that their assessment was
erroneous, as the decrypted data would be unreadable. The
ALO employed random keys for the processes of encryption
and decryption. The modified key was further refined by
analyzing each component and developing paths that triggered
the latching and trap mechanisms. The findings indicated a
reduction in the MSE and an increase in the PSNR.

Table 1. Comparative analysis of reviewed current models

Ref. Model Advantages Drawbacks
. Enhanced security, reduced MSE, and Computational complexity and potential
+ . e .
[14] ALO + Honey Encryption increased PSNR. vulnerability in key generation.
. . Strong security and multiple evaluations . .
[15] Lightweight cryptosystem for robustness. High computational overhead.
[16] CML + Modified SSA + WOA Effective encryption and resilience Increased processing time.
against attacks.
[17] Multi-layered encryption and DCT Strong resistance against unauthorized High computational cost.
modifications.
[18] RSA and AES Role-based access co.n.trol and improved Limited scalability for large-scale data.
reliability.
[19] MPVCNet Maintains integrity and privacy. Computationally expensive.
[20] Adaptive 3D-chaotic system + PWLCM High resistance to statistical attacks. Complexity in implementation.
[21] TLCMCML Effective encryption and performance. Limited real-world testing.
Ensures authenticity and integrity using . N
[22] BCAES blockchain. High processing time.
[23] AES + Blockchain + ECC Decentrghzed key management and Blockchain storage overhead.
improved security.
[24]  SCAN-based encryption with chaotic maps Fast encryption and enhanced security. POtemlals\éﬁzie:ﬁElglty in key
[25] EiMOL High robustness against attacks. Complex parameter tuning.
= i + ing + . .

[26] Hyper-chaotic Syssﬁlzz DNA coding Strong randomness and security. Increased computational overhead.

DNA encoding + Content-aware . . . . . .
[27] permutation and diffusion High key sensitivity and strong security. Higher encryption complexity.
[28] ECC + Blum-Goldwasser Cryptosystem High efficiency and security. Requires secure key management.
[29] Blowfish + Signcryption Faster encrypt;;l;rir;(i}? certificateless Not scaled well for large datasets.
[30] Chaos maps + BCOVIDOA Optimized encryption using chaos theory. Sensitivity to initial parameters.
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A lightweight cryptosystem was developed in the study by
Masood et al. [15] utilizing Chen’s chaotic system, Brownian
motion, and Henon chaotic map for the encryption of medical
images with enhanced security. The efficacy of the
cryptosystem was demonstrated through contrast analysis,
histogram analysis, energy analysis, correlation of adjacent
pixels, homogeneity analysis, NIST analysis, information
entropy, mean square error, pixels changing rate, UACI, peak
signal-to-noise ratio, and time complexity. The findings
indicated that the cryptosystem was secure for encrypting
sensitive image-based medical data.

A coupled map lattice (CML) with the salp swarm approach
(SSA) was proposed in the study by Selvi et al. [16]. The
method compressed and encrypted the images via CML. The
CML initially produced the quantity of encrypted images in
the modified SSA population. Subsequent to initialization, the
modified SSA utilizing the whale optimization algorithm
(WOA) was employed to minimize computing time and
optimize entropy in the encryption of images. To augment the
security of medical images, they were encrypted into cipher
images and transmitted over the network. The results indicated
that the method was more effective for encrypting medical
images and possessed the potential to withstand various
attacks.

An enhanced multi-layered encryption method designed in
the study by Odeh and Taleb [17] included feature-based
watermarking, hash code generation, frequency domain
transformation with Discrete Cosine Transforms (DCT),
Advanced Encryption Standards (AES)-based encoding for
data protection, and Rivest-Shamir—Adleman (RSA) for
supplementary security layers. The cryptographic methods,
such as hashing, were applied to generate the distinct digital
fingerprints, watermarking embeds the hash data discreetly,
and frequency domain transformations improved the depiction
of image contents, thus improving the image's resistances to
attacks and unauthorized changes. The method demonstrated
significant robustness and efficacy in maintaining the sensitive
medical data.

A cloud-based hybridized access control architecture was
developed in the study by Alabdulatif et al. [18] for securing
large medical data in healthcare companies. A hybrid
encryption technique utilizing RSA and AES algorithms was
developed to ensure a robust degree of security. The AES
technique was utilized for encrypting and decrypting data
saved in the cloud, and the RSA method was utilized for
encrypting the secret keys generated by AES, along with
related metadata. This role-based encryption facilitated the
implementation of role-based access controls for public
storage employing this model, which inherently guaranteed
enhanced reliability and security.

A privacy-preserving recognition network for medical
images, named MPVCNet was proposed in the study by Zhang
et al. [19]. MPVCNet employed visual cryptography for the
transmission of images through sharing. To address the issue
of cryptography, the trusted execution environments (TEE)
with blind watermarking technologies were integrated to insert
verification data within shared images. The transfer learning
technology was applied to mitigate the adverse effects
associated with visual cryptography. The findings indicated
that this methodology preserved the integrity and recognition
efficacy while securing the medical image's privacy.

An adaptive framework was designed in the study by Sarosh
et al. [20] to preserve the confidentiality and security of images
transferred over an e-healthcare system. The framework
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employed a 3D-chaotic system to produce a keystream utilized
for executing 8-bit and 2-bit permutations of the images. The
pixel diffusions were executed by the key-images produced by
the Piecewise Linear Chaotic Maps (PWLCM). The parameter
of the image was computed utilizing the pixels and executed
crisscross diffusions to augment security. The findings
indicated that the framework could withstand statistical attacks
and serve as a security framework in Al-driven healthcare.

A chaotic system called the Tent-Logistics Cross Mixed
Coupled Maps Lattices (TLCMCML) was developed in the
study by Xu et al. [21] as multi-images medical images
encryptions technique. Initially, the region of interests (ROIs)
in specific images were delineated, followed by the
implementation of an independent scrambling method
utilizing an odd-even interleaving arrangement. All the images
were combined via horizontal concatenations, creating a
comprehensive large-scale image, on which the synchronous
bits-level permutations-diffusions encryption process was
used. This technique has exhibited significant encryption
efficacy and demonstrated better performance.

A Blockchain-based Chaotic Arnold's Cat Maps Encryption
System (BCAES) was developed in the study by Inam et al.
[22]. The system encrypted the images via Arnold’s cat maps
encoding, thereafter, transmitting the encoded image to the
Cloud Server while saving the signed file of the plain images
on the blockchains. With the use of blockchains, the data
recipient will verify the authenticity and integrity of the image
post-decoding by utilizing the signed documents saved on the
blockchain. The findings demonstrated that the system was an
effective encryption method.

Shakor et al. [23] utilized a hybrid dynamic encryption
methodology that integrates components of AES, Blockchain,
and Elliptic Curve Cryptography (ECC) to improve file
storage security in cloud infrastructure. Initially, unique AES
keys were produced, guaranteeing that each file was encrypted
with a distinct and continuously evolving key. Blockchain
securely stored keys together with associated metadata,
enhancing security and data integrity. ECC public key
encryption augmented security throughout storage and
transmission, as well as enabling safe file sharing. This method
improved cloud security with decentralized key management,
strong encryption, and secured against illegal access.

An effective image encryption mechanism based on SCAN
and chaotic maps was developed in the study by Gururaj et al.
[24]. The work elucidated the modification of pixel value and
position through SCAN and chaos theory. The SCAN
approach entailed transforming an image's pixel values to
alternative pixel values and reorganizing pixels in the
sequence. The chaotic map was employed to alter the
placements of the pixels in the block. Decryption was the
inverse process of encryption. Results indicated that this
method exhibited both accelerated encryption and enhanced
security.

A secured medical image encryption technique, termed
EiMOL developed based on the Lorenz system and
optimization was proposed in the study by Singh et al. [25] for
smart healthcare applications. An optimized random sequence
was produced by a direct weight complex network particles
swarm optimizer utilizing the genetic algorithm (GDWCN-
PSO). The Lorenz system and random number matrix were
utilized to encrypt unprocessed medical images, resulting in
ciphered messages that correspond to the original images. The
findings indicated that this technique was effective and
resilient against different attacks.



A medical image encryption approach utilizing hyper-
chaotic systems and DNA coding techniques was developed in
the study by Li et al. [26]. The method initially expanded the
secret key space by employing the SHA-3 algorithm and DNA
encoding principles. The method enhanced randomness and
unpredictability by employing four-dimensional hyperchaotic
sequences characterized by complicated behavior. Global Bit
Scrambling (GBS), DNA augmentation, and binary operations
obliterated the correlation of the image matrix, hence
enhancing the robustness of the approach. The results
illustrated the efficacy of encryption and the elevated security
against clipping and noise attacks.

A cryptosystem for secure healthcare was proposed in the
study by Wu et al. [27] with two effective modules such as the
random DNA encryption, and a content-aware permutations
and diffusions unit. The initial method constructed the random
encryption rules selectors during the DNA encryption,
enhancing security by producing numerous random mappings
from image pixels to computations and crucially augmenting
key sensitivity. The latter unit generated the permutation
sequences that encapsulated pixel value data while disrupting
the strong association between neighboring pixels within the
patches.

A medical image encryption technique combining ECC
with the Blum-Goldwasser Cryptosystem was proposed in the
study by Ningthoukhongjam et al. [28], which demonstrated
superior security and efficiency in computation. The
combination of ECC's mathematical ability and the stochastic
characteristics of Blum-Goldwasser provided a formidable
protection for digital images, addressing the modern demand
for rapid and dependable data transmission. The findings
illustrated its sensitivity to encryption keys, extensive security,
and robustness against attacks.

A secure framework for medical images security via a dual
encoding methodology incorporating both the signcryption
and Blowfish techniques was developed in the study by
Nampalle et al. [29]. The implementation of a certificateless
signcryption method enhanced the overall computational
efficiency, significantly accelerating the signcryption process.
Consequently, the image confidentiality was preserved over
time, and the resultant image was nearly identical, without any
degradation in quality. This method markedly decreased
computational expenses and required processing time by
employing a certificateless approach and the Blowfish
algorithm.

Encrypted Image

Key Generation

An effective solution for medical image encryption was
proposed in the study by Alsahafi et al. [30] by integrating
chaos maps with the Binary COVID Optimization Algorithm
(BCOVIDOA). Chaos maps were employed for their superior
efficacy in image cryptography relative to conventional
encryption methods, whereas BCOVIDOA was utilized to
optimize the initial sequences of the chaos maps. The
acquisition of appropriate beginning sequences required by
chaos maps in encryption and decryption procedures markedly
enhanced the efficacy of the encryption technique due to the
sensitivity of chaotic maps to initial parameters.

3. RESEARCH METHODOLOGY

This research presents a novel medical image security
framework based on the cloud for secure transmission and
storage. The proposed research utilized a new homomorphic
encryption method called CKKS-HE for medical image
encryption and decryption. This CKKS-HE method was
originally developed to perform arithmetic calculations on
encrypted complex and real numbers. However, in this work,
it is implemented to perform encryption and decryption for
images. The workflow of the proposed research methodology
is depicted in Figure 2. The figure represents the CKKS-based
homomorphic encryption model for securing medical images
in cloud environments. As seen in the workflow, the process
starts from the hospital or healthcare center, where the medical
images of the patients are collected for storing in the cloud
securely. The collected images are processed using the CKKS-
HE method, which ensures privacy while allowing
computations on encrypted data. The ITSA technique is
applied for optimal key generation, in which the technique
optimally generates the encryption keys for improving the
security and computational efficiency. The encrypted images
are then transmitted to the cloud for remote storage and
processing. If the authorized users, like doctors or medical
staff, need access, the encrypted images are downloaded or
extracted from the cloud. Then, the images are decrypted using
the CKKS decryption with the secret key. Finally, the
decrypted images are restored to their original form for
healthcare diagnosis. This proposed research model ensures
privacy and security throughout the transmission and storage
process in the cloud.

CKKS-Decryption

E :
’ a O
Secret Key O

Figure 2. Workflow of the research methodology



3.1 Data collection

From the Kaggle repository, a multi-cancer dataset is
obtained to validate the proposed methodology. This dataset
consists of images of various cancer types, compiled for
scientific and research uses. It includes eight forms of cancer:
Acute Lymphoblastic Leukemia (ALL), Brain Cancer, Breast

Cancer, Cervical Cancer, Kidney Cancer, Lung Cancer, Colon
Cancer, Lymphoma, and Oral Cancer. This dataset contains
130,000 images as shown in Table 2. Figure 3 depicts these
cancer images collected from the dataset. This dataset is
publicly available and downloadable from the Kaggle
repository [31].

Table 2. Multicancer dataset

Cancer Type Source (Kaggle/Figshare) Total Images  Subclasses Description
Acute g:;lllgrll, lifalthy iells
Lymphoblastic Mehrad Aria (Kaggle) 20,000 4 y leuxemia stage
Leukemia (ALL) Pre-stage abnormgl cells
Advanced leukemia cells
Glioma — common brain tumor
Brain Cancer Figshare dataset 15,000 3 Meningioma — tumors affecting membranes
Pituitary tumors
Benign breast tissues
Breast Cancer Anas Elmasry (Kaggle) 10,000 2 Malignant breast tissues
Dyskeratotic — abnormal growth
Koilocytotic — HPV-related
Cervical Cancer Prahlad Mehandiratta (Kaggle) 25,000 5 Metaplastic — precancerous
Parabasal — immature cells
Superficial-Intermediate cells
Kidney Cancer CT Kidney dataset (Kaggle) 10,000 2 Healthy kidney tissues
’ Tumor-affected kidney tissues
Colon adenocarcinoma
Colon benign tissues
Lung & Colon Biplob Dey (Kaggle) 25,000 5 Lung adenocarcinoma
Cancer ..
Lung benign tissues
Lung squamous cell carcinoma
Chronic Lymphocytic Leukemia
Lymphoma Andrew MvD (Kaggle) 15,000 3 Follicular Lymphoma
Mantle Cell Lymphoma
Oral Cancer Ashenafi Fasil Kebede (Kaggle) 10,000 2 Healthy oral tissues

Oral Squamous Cell Carcinoma

Kidney Cancer

Lung & Colon Cancer

Lymphoma Oral Cancer

Figure 3. Cancer images from the dataset

Within each class of the dataset, the model is exposed to
normal, benign, and varying stages of malignant images that
allow the model to better learn the heterogeneity of image
representation. This enables the CKKS-ITSA model to better
address varying complex medical imaging conditions as
opposed to models designed only for specific cancers.
Although the issues of class imbalance among the different
types of cancer and the use of images from a well-known
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Kaggle dataset rather than real clinical workflows are well
known. These issues might affect the dataset’s representative
portrayal of medical imagery in the real world. To correct for
these issues, DSIHE and Z-score normalization were utilized
as preprocessing methods to dualistically balance quality and
distribution, mitigating bias. Additionally, through the
evaluation of the model on various types of cancer images, the
study substantiates that the encryption method proposed can



robustly work with diverse medical datasets, which further
proves the validity of the experiments in real-world conditions.

3.2 Preprocessing

Preprocessing and normalization of medical images can
significantly enhance the efficiency of the proposed
decryption and encryption process for cloud-based security.
For this work, the Dualistic Sub-Image Histogram
Equalization (DSIHE) is implemented for enhancing the
images and Z-score normalization is applied to standardize the
image data. The DSIHE is an advanced histogram equalization
technique, which provides better contrast enhancement while
reducing the over-enhancement issues. This can lead to
achieving higher SSIM and PSNR results in encryption and
decryption.

The DSIHE technique divides the image histogram into two
equal parts based on the median gray level and applies the
equalization individually to each part to maintain the original
brightness. Subsequently, conventional histogram
equalization is applied independently to each sub-histogram.
Upon completion of the equalization process, all the parts are
combined to produce the final output. The DSIHE technique
decomposes the image according to the gray level with a
cumulative distribution function (CDF) value of 0.5.
Assuming the image that is input be X, which will be divided
into two parts, X; and X, with the median values Xj
determined as stated in the following expressions Egs. (1) and

).

X:XLUXU (1)

where, X, = {x(i,))|x(j) < Xpvx(i,j) € X} and X, =

Xo
_odf (Xo)+edf (X))

2 |

2

arg Ming_,, , [cdf (X,)

The outcome of the DSIHE method is evaluated when the
two equalized parts are merged into a single image. When
Y(i,j) represent the processed image in Eq. (3), then the
output image is expressed in Eq. (4):

Sy Xo+(xm_X0)CL(Xk)
Y(I'J)_{Xm+1+(XL—1_Xm+1)ClJ(Xk) (3)
Y =000} = £ (X0 fy (X,) @

Additionally, observe that sub-image X, is equalized by a
function f; (X;) within the range (X,, Xp_,), whereas X is
equalized by a function f;(Xy) within the range (Xp, X, _1)
[32].

The Z-score normalization ensures that the pixel intensity
values have zero as the mean and one as the standard deviation,
which helps to minimize the intensity variations and
standardize the image distributions. It also enhances the
encryption consistency by maintaining a uniform pixel
distribution, which improves the security against noise
artifacts. This normalization avoids bias during processing,
ensures better feature preservation for encryption and
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decryption. Eq. (5) represents the Z-score normalization.

7= (X—/U)
o

)

Here, p and ¢ are the mean and standard deviation values of
non-zero pixels, correspondingly. Furthermore, x denotes the
current pixel’s intensity [33].

3.3 Improved TSA for optimal key generation

The TSA technique has been developed by emulating the
swarm intelligence and jet propulsion behaviours of tunicates
in their search for food sources, which is their optimal
behaviors. Therefore, a tunicate must satisfy the following
requirements: avoid problems among search operators, shift
towards the location of the most effective search operator, and
keep proximity to the optimal search operator to develop jet
propulsion behaviour mathematically, while the swarm
behaviour adjusts the position of remaining search operators
according to the optimum solutions.

This research employed an improved version of the TSA
method by incorporating a novel search equation into the
tunicate position. Using ITSA, the keys are enhanced to
encrypt confidential medical data. Optimization procedures
have been generally executed utilizing a fitness function (FF),
to which the optimization issue converges to yield the optimal
solution. The FF is the PSNR value’s minimization function
computed among the decoded images and the actual plaintext
image. In each iteration, the value of PSNR was assessed, and
the optimal keys that preserve the quality of the decoded
images were chosen. Hence, the developed CKKS-Based
Homomorphic Encryption could encrypt images without
compromising the quality of the decrypted images and
simultaneously reduce the computation time necessary for
encryption. Figure 4 depicts the flowchart of the ITSA. Based
on this flowchart, the function of ITSA is discussed in the
following for this research for key optimization [34].

In this ITSA, the population (set of key values) (N,,;, where
k=12,..,a and m = 1,2,...,c) of tunicates is chosen at
random during initialization. After generating the initial key
values, the FF of the input solution was evaluated, and the
optimal solution was chosen during the assessment of the
fitness phase. The FF is expressed by the following Eq. (6).

FF (N, ) = max(PSNR) (6)

If the PSNR = Threshold , the present solution is
preserved, and the ITSA seeks to enhance or sustain the best
fitness value.

The following step seeks to improve the TSA's search
procedure. A dynamic perturbation has been added to enhance
the exploitation patterns and search neighboring solutions in
the exploration space. In the search equation, all the positions
are adjusted with a dynamic step, and these positions are
considered viable if they surpass the previous ones. The
parameters of the search space are adjusted dynamically. The
updated position of ITSA could be presented as given in the
following Eq. (7).

a
P (t+1) =P, () £rand" x > 7



In this equation, P,,, (t + 1) indicates the tunicate’s update
position, t indicates the number of iterations, and @ denotes a
dynamic step that diminishes as the optimization process
advances, hence enhancing neighborhood search and
facilitating exploitation capability. It is presented as follows in
the given Eq. (8).

a=0xo+(1-0)xa, (3)
Here, 6 is a random variable that adheres to a uniform

distribution ranging from zero to one, a; and a, delineate the
dynamic boundaries, which are computed using Eq. (9).

P

pop (9)

pop

o :min( ),a2 :max(f)

The calculation of the position of new search agent (newer
keys) uses the vectors 'K' to prevent issues among search
operators (other tunicates) according to the subsequent Eq.
(10):

K= (10)

| O

In this equation, G represents the gravitational force,

whereas § signifies the social force among search operators,
which could be expressed as given in Egs. (11) and (12).

G=h,+h,+W (11)

W =2-h (12)

In addition, W signifies the advection of water flow in the
deep ocean, while hy, ... h; are random variables within the
interval [0; 1]. Furthermore, the social dynamics among search

agents § are structured as given in the following Eq. (13).

S= [Vmin + h Vmax _Vmin] (13)

In this equation, V,,;, and V,,,, denote the primary and
secondary velocities for initiating a social connection. The
next step involves directing search agents towards the optimal
neighbor. The distance across the food supply and the search
agent is determined using Eq. (14) to identify the optimal
neighbor:

D =[N, —h-N(q)| (14)

Here, ﬁ(q) is the tunicate positioning at the gth iterations,

IVU signifies the optimality (food location), and h is a random
value within the interval [0,1].

Upon acquiring the optimal neighbor, the search operators
descend towards the location of the most effective search
operator (food sources). Thus, the revised positions of the

tunicates N (g) are as follows in Eq. (15).
N'(a) ={ ° (15)

The initial two optimal solutions were retained, and the
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placements of the remaining search operators were adjusted
based on the positions of the top search operators to emulate
tunicate swarm behaviour, as articulated in the following Eq.

(16).

N'(q+1)=%::(q) (16)

The previous steps are reiterated till the maximum repetition
is achieved. Additionally, during all the iterations, the
generated keys were assessed for efficacy and updated in
accordance with the previously best keys [35]. The best
optimal keys acquired were only utilized to decode the images.
Following the acquisition of the optimal keys, the cloud server
simultaneously stores the encrypted sensitive medical images.

START

v

Initialization of initial population, each
parameter and max. no. of generations

‘4

Calculate each tunicate’s fitness

v

Apply the parameters 6, @, @,
and update all positions

v

Calculate each tunicate’s fitness
for the best one

v

Update the positions and FF of
all tunicates

v

Check the boundary of update
tunicates

v

Is the iteration
maxed?

‘Yes

Return the optimal solution

v

END

No

Figure 4. Flowchart of ITSA



3.3.1 Parameter optimization

In this study, the ITSA relies on key parameters like fitness
function as well as the dynamic random variables and
perturbation factors. A fitness function was used to maximize
the PSNR and minimize the MSE, which ensures that the
optimized keys preserve high image quality after decryption.
The random variable 6 allows the key formation to have
exploitation and exploration balancing, where the smaller
values initiate fine-tuned local search, while larger values
enable global exploration of the key space. Perturbation was
integrated to avoid premature convergence and ensure
diversity of solutions.

3.3.2 Integration of ITSA with CKKS-HE

The use of CKKS-ITSA as a framework includes the ITSA
in the key generation phase of the CKKS scheme. In CKKS,
encryption keys are made with predetermined polynomial
degrees and modulus chain parameters that often do not
provide the best balance of security, calculation efficiency,
and ciphertext noise. In contrast, ITSA fills out this parameter
space by setting the fitness function to be the image
reconstruction quality (high PSNR and SSIM) and the
efficiency (low encryption and decryption time) to be
maximized together. The evaluation of the candidate
parameter sets is done iteratively with small-scale encryption
and decryption cycles, and the best configuration is kept for
usage.

3.4 CKKS-homomorphic encryption

The CKKS Homomorphic Encryption technique facilitates
arithmetic operations on encrypted real as well as complex
integers. The framework includes four primary homomorphic
processes: encryption, key generation, decryption, and
evaluation; whilst the evaluation phase was generally executed
by the cloud servers, the majority of the other operations were
conducted on the user's side. The CKKS technique functions
on a quotient ring as given in Eq. (17), with Q denoting the
modulus integer and N representing the power-of-two
polynomial degree.

Z
Ro=< . (17)

xN+Q

Specifically, key generation entails the formulation of the
secret key for encryption-decryption operations executed by a
trustworthy entity (e.g., an end user). Furthermore, one or
many public keys could be produced for encryption reasons or
additional public functional keys that can be utilized
throughout evaluation. Each of these keys was generated from
the fundamental secret keys. The encryption of the CKKS
system was non-deterministic and could be classified as either
asymmetric or symmetric, based upon certain requirements.
Evaluation involves conducting calculations on encrypted
data, typically conducted by an unauthorized entity, yielding
encoded results. At last, decryption was executed by an
authorized entity in possession of the secret key, facilitating
the recovery of the original raw content.

Typically, HE systems utilizing the quotient ring, R,
necessitate a substantial modulus integer, @, to facilitate
extensive homomorphic operations. An effective method
called the Chinese Remainder Theorem (CRT) was suggested
to resolve this problem. The CRT facilitates the reduction of
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the huge modulus, @, into small pairwise coprime moduli,
represented as q;, resulting in the following Eq. (18):

(18)

This decomposition allows for the modeling of a
polynomial, a in the RNS domain and supports effective
computation on each of its elements. Using the residue number
system (RNS) representations, the polynomial ‘a’ could be
represented as a collection of three polynomials, ag, a4, a,,
when adopting three pairwise co-prime moduli, qg, g4, 9>,
correspondingly. In this context, each a; denotes a polynomial
within the corresponding RNS channel, Rq;. This strategy is
beneficial as it decreases the size of coefficients and markedly
improves the effectiveness of computations within the
homomorphic encryption. The subsequent polynomial
components are specified as follows [36]:

L
a=([al,..[al, ) e[ [Ra (19)
i=0
In this context, in a ring field Rq; = (xilq;) is given as:
[a], =3 +aX+--+a,,X"" eRqg (20)

Consequently, executing arithmetic computations on the
large integer coefficients could be conducted separately for
every smaller modulus without affecting accuracy. The
discussed CKKS-HE method is applied for medical image
decryption and encryption for securing medical images in a
cloud environment. The CKKS-HE method has three main
stages like key generation, encryption, and decryption.

3.4.1 Key generation process

The key generation in CKKS is significant to encrypt the
medical images and perform secure computations. The key
generation process includes the generation of the public key
(Py), secret key (Si), and evaluation keys. The public key is
used for encryption, the secret key is used for decryption, and
evaluation keys are used for homomorphic operations. The
CKKS model is based on the ring learning with errors (RLWE)
problem for security. The key generation process includes the
following steps.

Step 1: Secret Key Generation

The client (hospital) generates a random polynomial s from
a predefined distribution. The secret key is used to decrypt the
medical images. The representation of secret key S, was
defined as given in the following Eq. (21).

S~u(Ro) 1)

Here, the variable R, denotes the quotient ring utilized in
CKKS.

Step 2: Public Key Generation

It is derived from the secret key. A polynomial a randomly
and the error polynomial e were sampled. The public key is
computed using the following Eq. (22).

R =(b,a),whereb=—(a-S +e) (22)



The public key Py is utilized for encrypting the medical
images.

Step 3: Evaluation Keys

Furthermore, to facilitate key transitions in homomorphic
functions (including conjugation, permutation, and
multiplication), evaluation keys were initially produced by the
clients and subsequently transmitted to the cloud servers for
additional processing. The following presents the pseudocode
for the key generation process based on ITSA.

Algorithm 1: ITSO-Optimized Key Generation for
CKKS

Input: Population size (N), Maximum iterations (MaXier),
Search space (O, N, o)
Output: Optimized CKKS Key Parameters (Secret Key,
Public Key, Modulus Size)
Initialize ITSO parameters
Set the number of tunicates (agents) in the population
)
Define the search space: @ (modulus size); N
(polynomial degree); o (error variance)
Randomly initialize each tunicate’s position (candidate
encryption parameters)
Compute encryption performance using CKKS with
current parameters
Evaluate fitness function
Use adaptive position update strategies based on
tunicate behavior
Adjust positions using the best tunicate’s knowledge
If max iterations are reached or no improvement,
terminate
Else, go to fitness function evaluation
Return the best-found CKKS encryption parameters
Use the optimized parameters for key generation in
CKKS
Generate secret key S and public key P
Compute error and modulus polynomials
Output the final optimal CKKS key parameters

3.4.2 Encryption process

In CKKS, the medical images in grayscale and RGB images
are represented as pixel intensity values. The CKKS method
could encrypt these values and enable secure processing
without decryption. The images are converted into a format
appropriate for CKKS encryption before encryption. The
images are flattened into a one-dimensional array of pixel
values. Next, the pixel values are normalized by scaling the
pixel intensities in the range [0, 1] or [-1, 1] to fit in the
numerical encrypting range of CKKS. For example, the
medical images from the dataset are in a resolution of 512 x
512. So, the 512 x 512 has 262144 pixels. The CKKS can store
8192 values per ciphertext, hence the entire image is divided
into 32 blocks, resulting in 8192 x 32 = 262144-pixel values.
Each block is individually encrypted into a unique ciphertext.
The CKKS indicates the encrypted data as polynomials, where
all the pixel intensity values are encrypted as the coefficients
of the polynomials. The RNS decomposition was utilized for
dividing the large polynomials into small modulus
components for enhancing efficiency.

If the pixel intensity values were py, py, ..., Dy, the plaintext
polynomial is expressed as given in the following Eq. (23).

m(X):p1+p2X+p3X2+"'+pNXN71 (23)
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This polynomial is then encrypted using the CKKS method.
For encryption, the public key P, = (b, a) is utilized and the
ciphertext pair ct = (ct® ct') is generated. Finally, the
encrypted image blocks are secure for cloud computing.

Algorithm 2: CKKS Medical Image Encryption
Input: Medical Image I (size 512 x 512), Public Key (px),
Scaling Factor (A), Context Parameters (N, Q)
Output: Encrypted Image Ciphertexts {C1, C2, ..., C32}
Convert image | into a grayscale matrix.
Normalize pixel values to range [0,1].
Flatten image into a 1D vector P of length L =H x W.
Set block size B = 8192.
Split P into 32 blocks {B1, B2, ..., B32} where:
Bk={P[(k-1)* B+ 1], ..., P[k* B] } fork=1 to 32.
For each block Bk (k=1 to 32):
Encode Bk into a CKKS plaintext format:
plaintext, = Encode (Bk, A, N)
Encrypt plaintext:
ciphertexty = Encrypt (plaintexty, Py )
Store ciphertexty
Output the Encrypted Blocks {C1, C2, ..., C32}

3.4.3 Decryption process

When the encrypted medical image is retrieved or
downloaded, the decryption process is performed to decrypt
the medical image to its original form. In this decryption
process, the secret key Sy, is utilized to retrieve the plaintext
polynomial. The pixel intensity values from the polynomial
representation are extracted. The one-dimensional pixel array
is converted into a medical image. The mathematical
representation of the decrypted polynomial is expressed as
given in the following Eq. (24).

M =p, + Py X + Py X2+t p XN (24)

Algorithm 3: CKKS Medical Image Decryption
Input: Encrypted Image Ciphertexts {C1, C2, ..., C32},
Secret Key (Sy), Scaling Factor (A), Context Parameters (N,
0)
Output: Reconstructed Image I'
For each ciphertext C, (k=1 to 32):
Decrypt ciphertext to obtain plaintext:
plaintexty = Decrypt (Cy, S)
Decode plaintext to recover pixel values:
By = Decode (plaintexty, A, N)
Concatenate decrypted blocks {B1', B2', ..., B32'} into
a single vector P'.
Reshape P' into original image dimensions (512 x 512).
De-normalize pixel values back to the original range
(e.g., 0-255).
Output the Reconstructed Image I'

The retrieval of data or decryption is executed with this
equation. The m’ is converted back to an image format. The
32 ciphertexts are decrypted individually using CKKS
decryption process. All the decrypted blocks recover the
original pixel values. The blocks are arranged to reconstruct
the original image [37].

The CKKS-HE method relies on the RLWE problem, which
makes the method resistant to quantum attacks. Different from
AES or RSA, the CKKS method enables encrypted
computations to prevent data leaks. This CKKS method
ensures secure medical image encryption and cloud storage.



4. EXPERIMENTAL RESULTS AND DISCUSSION
4.1 Experimental setup

This section presents the experimental computations to
evaluate the performance of the developed research model.
The research experiments are executed utilizing Python 3.8,
Keras APIs, and TensorFlow 2.8. Furthermore, cryptographic
libraries like PyCryptodome, TenSEAL, PySEAL are applied
for the implementation of the CKKS method, while SciPy,
NumPy, and SEAL are utilized for key generation
optimization utilizing the ITSA. The CKKS-ITSA
methodology was implemented on a Google Collaboratory
with an NVIDIA GTX 1050 4GB GPU. The experimental
setup has 16GB of RAM, a 256GB solid-state drive, and a 1TB
hard disk drive. This comprehensive analysis examines the
efficacy of the developed model, evaluating performance
metrics like decryption time, encryption time, SSIM, MSE,
Correlation Coefficient, and PSNR.

4.2 Evaluation metrics

The assessment of the CKKS-ITSA methodology in the
proposed medical image security framework is assessed using
the following metrics [20]:

Encryption Time: This calculates the time necessary to
encrypt the medical image with the CKKS-ITSA model.

ENC =T,

el

nd —T.

start (25)
Here, the variables T4+ and T,,4 indicates the encryption
process's beginning time and end time. Lower values represent
faster encryption.
Decryption Times: This calculates the time necessary to
decrypt the encrypted images to their original state.

DEC =T,

el

nd —T

start (26)
Here, the variables T4+ and T,,4 indicates the decryption
process's beginning time and end time. Lower values represent
effective decryption.
MSE: This calculates the pixel-wise difference between the

original image and the decrypted image.

l M N L. Y
W;Z(m,n—l (. J))

j=0

MSE = (27)

Here, N and M were the dimensions of the image. Lower
MSE values signify effective reconstruction.

SSIM: It assesses the perceptual variations between the
decrypted and original images.

(2t 14, +C,)(20,. +C,)
(,u,2+,u|2, +C1)(a,2+0'|2, +C2)

SSIM(1,1') = (28)

where, ¢ and p are the variance and mean of image [ and
image I', and C, and C; were constants. SSIM varies from
zero to one, where values close to one indicate effective
quality.

PSNR: It determines the decrypted image’s quality by
comparing signal intensity to noise levels.

|

Here, MAX; signifies the maximal possible intensity of
pixels. Maximum PSNR represents best quality of quality.

Correlation Coefficient (CC): It evaluates the correlation
between the decrypted and original images.

20D -m)(1 6D -s)
\/Z('(i, D-a SV -n)

4.3 Performance assessment

MAX ?

MSE 29)

PSNR =10log,, (

CC

(30)

Using the above-discussed performance metrics, the
decryption time (ms), encryption time (ms), key generation
time (ms), mean squared error (MSE), peak signal-to-noise
ratio (dB), SSIM, and correlation coefficient (CC), the
following presents the result values of the developed CKKS-
ITSA model that was examined.

Table 3. CKKS-ITSA in processing time

Images  Encryption Time (ms) Decryption Time (ms) Key Generation Time (ms)
Image-1 6.92 5.25 4.98
Image-2 7.05 5.30 5.02
Image-3 6.87 5.15 4.89
Image-4 7.12 5.40 5.10
Image-5 6.95 5.28 4.95
Image-6 7.08 5.35 5.06
Image-7 6.80 5.12 4.85
Image-8 7.20 5.45 5.15
Image-9 6.75 5.08 4.82
Image-10 7.15 5.38 5.08
Table 3 presents the performance analysis of the proposed computational complexity. The decryption time varies

CKKS-ITSA model in terms of key generation time,
decryption time, and encryption time. The analysis was
conducted for ten different medical images from the dataset
utilized for this research. The encryption time of encrypting
the medical images varies between 6.75 ms to 7.20 ms. This
indicates the CKKS-ITSA model’s capability in securely
transforming images into the encrypted format with minimum
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between 5.08 ms to 5.45 ms for all the experimented images.
This decryption process indicates that the model ensures a fast
recovery of medical images with improved security. The
ITSA-based key generation process attained consistent lower
values, which varies between 4.82 ms to 5.15 ms. This key
generation process showcases effectiveness in minimizing
computational complexity. Overall, the proposed CKKS-



ITSA provides an efficient processing performance in
encrypting, decrypting, and key generation. This performance
will be crucial for real-time cloud-based medical image
security. There are few variations in time, which is due to the

image size and structural complexity. However, the model
ensured a fast and effective process in encryption, decryption,
and key generation. Figure 5 illustrates the graphical view of
the CKKS-ITSA model with processing time.

Table 4. Scalability evaluation results of the CKKS-ITSA model for different dataset sizes

Dataset Encryption Time per Image Decryption Time per Image Key Gene-ration Time per Through-put
Size (ms) (ms) Image (ms) (Images/sec)
10 6.75 5.12 4.82 148
100 6.80 5.18 4.85 145
500 6.92 5.27 4.89 140
1000 7.05 5.34 4.93 136
¢ - I Encrypion Time (ms){] Decrypion Time (ms ] ey Generation Time (ms) minimal difference, and such consistency shows that there is
no dependence on computational overhead and batch size, and
that the model can be used in real-time with large real data.
. Further analysis of throughput captures the effectiveness of the
261 approach, as the system maintains more than 130 images per
- second even with 1000 images. Such output confirms that it is
‘© possible to use the CKKS-ITSA model in medical cloud
S . .
= systems where a high number of images need to be encrypted
2 and transmitted in a secure manner with low latency.
§ Table 5 presents the image quality assessment of the
g developed CKKS-ITSA model based on SSIM, PSNR, MSE,
@27 and CC. The values of MSE for all the images experimented
with range between 0.139 to 0.202. This indicates that the
model has a minimal distortion while encrypting and
04 decrypting the images. The PSNR values represent the visual
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Figure 5. Graphical illustration of CKKS-ITSA processing
time

Table 5. Results of the CKKS-ITSA in image quality

assessment
Images MSE PSNR SSIM CC
Image-1  0.152  67.85 99.95 99.92
Image-2  0.181 66.92 99.94 99.90
Image-3  0.148 68.12 99.96 99.93
Image-4 0.165 67.20 99.93 99.89
Image-5 0.158 67.60 99.95 9991
Image-6  0.175 66.85 9992 99.88
Image-7 0.139 6845 99.97 9994
Image-8 0.202 66.50 9991 99.87
Image-9 0.145 68.20 99.96 99.90
Image-10  0.169  67.05 99.94 99.89

Table 6. Sensitivity analysis of ITSA parameters on model

performance
Parameter PSNR (dB) SSIM (%) NPCR (%)
6=02 (low 64.32 97.12 98.25
exploration)
0= 0.5 (balanced) 68.45 99.97 99.61
0=0.9 (high 62.07 97.94 98.72
exploration)
Without perturbation 66.18 98.54 98.39
With perturbation 68.45 99.97 99.61

The results in Table 4 show that the CKKS-ITSA approach
is scalable for medical images of large size. For datasets
ranging between 10 and 1000 images, the encryption,
decryption, and key generation times per image show an
increase of a marginal 0.5 ms. This indicates that there is very
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quality of the reconstructed images, where the obtained values
remain consistent above 66.50 dB. This consistent
performance of PSNR highlights the proposed CKKS-ITSA
model’s higher fidelity. The SSIM values in an average of
above 99% indicate that the decrypted images have retained
their original structural integrity with very minimal loss. The
CC values of the proposed model range between 99.87% to
99.94%. This kind of performance indicates a strong
correlation between the original images and decrypted images.
These results represent the efficiency of the developed CKKS-
ITSA model in preserving image quality while maintaining
security, which is significant for privacy-preserving cloud-
based medical image security. Figures 6 and 7 depict the
graphical chart of MSE and other metrics’ performance.

To study the effect of these parameters effectively, a
sensitivity analysis was performed as shown in Table 6.
Results showed that when the value of 8 was increased to high
values (>0.9), the algorithm exhibited unstable convergence,
leading to a decrease in PSNR (~62 dB). On the other hand,
very small values of 8 (<0.3) restricted exploration and
resulted in a decrease in SSIM (~97%). Introducing a value of
6 at 0.5 offered the best compromise as it was found to handle
PSNR, SSIM, and stability the best at the same time. Also,
shutting down the perturbation caused a drop of approximately
1.2% in NPCR. It further validated the conclusion of the
perturbation being significant towards the enhancement of the
robustness of the algorithm. The initial optimization tests
confirmed that the ITSA parameters are considerably effective
in the encryption processes. The combination of 6 with
perturbation as 0.5 while using the balancing factor is the most
satisfying according to PSNR (68.45 dB), SSIM (99.97%), and
NPCR (99.61%). From this perspective, the perturbation as a
balancing factor is highly advantageous. The extreme values
of 8 have numerous constraints. These findings justify the
optimization process and provide interpretability by linking
parameter settings to performance outcomes.
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Figure 6. Graphical illustration of CKKS-ITSA model’s
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Figure 8. Graphical illustration of CKKS-ITSA model’s
NPCR and UACI analysis

Table 7. NPCR and UACI analysis

Images NPCR  UACI

Image-1  99.6123 33.2145
Image-2  99.5876 32.9854
Image-3  99.6231 33.4120
Image-4 99.6015 33.1058
Image-5 99.6342 33.5403
Image-6  99.5768 32.8742
Image-7  99.6487 33.6751
Image-8  99.5593 32.7456
Image-9  99.6210 33.3982
Image-10  99.5895  32.9607

Table 7 presents the assessment of the developed CKKS-
ITSA model using the NPCR and UACI. These two metrics
are employed to evaluate the resistance of an image encoding
technique against various attacks. The following Egs. (31) to
(33) are employed to compute the NPCR and UACI.

NPCR = (ﬁjii(m ) x100%) (31)
[0 G ) =B )
D("‘)_{l---ifa(i,j)iEz(i,j) 2
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Figure 7. Graphical illustration of CKKS-ITSA model’s
image quality performance

usct =3

Here, the variables E; and E, indicate the two encrypted
images from the plain image and the modified image.
Variables M and N represent the width and height of the
image. These NPCR and UACI analyses are most evaluated
for the model’s resistance towards differential attacks.

S ECDEOD o] s

j=1 =l

Table 8. Results comparison with current models

Models MSE _PSNR_SSIM__ CC
ALO-Honey Enc [14] 0212 5876 97.82 98.65
CML-SSA-WOA [16] 0328 6042 98.85 98.92

RSA-AES [18] 0275 59.89 96.89 97.80
MPVCNet [19] 0.198 6191 9891 99.23
TLCMCML [21] 0.157 5675 9893 99.17
EiMOL [25] 0205 54.55 9790 98.81
Blowfish-Signeryption [20]  0.289 5842  98.87  99.05
Chaos map[sglg]COVIDOA 0.176  62.89 98.94 99.30
Proposed CKKS-ITSA 0.139 6845 99.97 99.94

The NPCR values consistently attained 99.50%, which
demonstrates that the proposed CKKS-ITSA model efficiently
changes the pixel values across the whole image. This ensures
the strong resistance against differential attacks. The UACI
values varies between 32.74% to 33.67%, which highlights
that the intensity variation between the encrypted images and
original images is efficiently balanced. This balance indicates
that no visual information can be obtained from the encrypted
image. Overall, the NPCR and UACI values confirm that the
proposed CKKS-ITSA model provides strong encryption and
it is effective in securing medical images from various attacks
and unauthorized access. Figure 8 depicts the graphical chart
of NPCR and UACI analysis [22].

The SSIM value of the proposed model is 99.97%, which
highlights that the model maintains the structural integrity of
the images better than the other compared models. This will
eventually result in minimal perceptual loss. Finally, the CC
value of the proposed model is 99.94%, which demonstrates
that the encrypted image maintained a strong correlation with
the original and reconstructed image. Overall, these results
confirm that the CKKS-ITSA model provides highly effective



encryption, robustness, and minimal degradation. The
proposed CKKS-ITSA can be a highly efficient solution for
securing medical images in a cloud environment. Table 8,
Figure 9 and Figure 10 illustrate the graphical charts of the
results comparison.
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Figure 9. Graphical illustration of MSE comparison
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Figure 10. Graphical illustration of results comparison

Table 9 reveals that the CKKS-ITSA model excels when
compared to the other current models. It is superior in almost
all evaluation metrics. For instance, the encryption and
decryption times in the scheme were 6.75 ms and 5.12 ms,
which were among the fastest. There was a vast improvement
from current models, like RSA-AES and ALO-Honey, which
required over double the time to encrypt or decrypt. In keeping
with security issues, the adorability of the model to differential
attacks was the highest, with NPCR (99.61%) and UACI
(33.18%) surpassing the numbers of all the other models. It
was quite the opposite of the conventional chaotic sequence
and factorization approaches that were hard to deal with. The
post-quantum resistance of CKKS-ITSA based on the RLWE
hardness assumption makes it more effective compared to the
traditional models. With these results, it is demonstrated that
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CKKS-ITSA is better in every aspect, outperforming similar
models in efficiency and security, and is appropriate for cloud-
based medical imaging systems.

Table 10 clearly shows that the CKKS-ITSA model
maintains its encryption-decryption fidelity even under the
most testing scenarios. Initially, the model was tested under
lower resolutions of 256x256 and 128x128, and the PSNR
values were still over 58 dB, while the SSIM was over 98%.
This indicates that the images kept their structure and
appearance, even with the reduced resolution. The CKKS-
ITSA model also showed its capabilities when tested with
Gaussian noise (62 = 0.01) and salt-and-pepper noise (density
= 0.02). In these two scenarios, the model attained SSIM
values of 98.21% and 97.94%, both with correlation
coefficients higher than 98.6%, proving that the model can
handle noise distortions very well. In addition, tests with
imbalanced data distributions also attained results close to the
original (PSNR of 67.94 dB, SSIM of 99.65%, and CC of
99.71%), which proves that the model’s encryption and
decryption can work effectively even when class
representations are imbalanced. In summary, all these tests
proved that the CKKS-ITSA model is resistant to changes in
resolution, noise, and imbalance in datasets, and this makes it
even more practical for cloud-based medical imaging.

Besides fidelity and differential-attack metrics, additional
experiments were conducted to validate the security strength
of the CKKS-ITSA model as shown in Table 11. The first step
was to conduct tamper-resistance tests, where 10% of pixels in
encrypted images were modified at random before decryption.
The decrypted images had very little similarity to the original
images (average SSIM = 12.4%, CC = 15.7%), demonstrating
that even slight tampering prevents the reconstruction from
being restored and provides strong protection for the integrity.
In the second step, an encryption attack resembling the partial
loss of an image was simulated, which involved losing 25% of
the pixels before the image was decrypted. The image could
no longer be reconstructed because it was incomplete, but the
resulting images were still too distorted to be interpreted
visually, further validating the system’s resistance to partial
pixel loss. In the final step, the CKKS-ITSA framework
leverages the RLWE problem, which, to this date, remains
unsolvable by classical and quantum algorithms. The
frameworks built on RSA or ECC cryptosystems cannot be
alleviated, but CKKS protects the data in the medical cloud for
medical applications for an extended period, ensuring the
data’s integrity for later access needed to comply with
retention policies.

The integration of ITSA-CKKS-HE results in a few
technical challenges and limitations. Initially, the CKKS
parameter space is difficult to navigate due to the
interdependent trade-offs that must be made among the
polynomial degree, the ciphertext modulus, and the scaling
factor. An extensive search is not possible due to the
complexity. ITSA helps solve this problem because it offers
an effective heuristic that helps to converge parameter values
to get close to the optimum values. Also, ITSA's stochastic
nature causes it to converge prematurely if exploration is
limited. To solve this, a dynamic perturbation was created to
enforce solution candidate diversity. Lastly, repeated encoding
and encryption of image data for each candidate set evaluation
adds computational overhead during the optimization phase,
although it does incur a one-time cost at deployment. The
integration still marks a notable improvement in runtime
efficiency and image fidelity over the fixed-parameter CKKS



implementations. As noted earlier, the entire procedure could
be refined further if the ITSA were combined with adaptive
machine learning-based predictors, enabling quick parameter
approximation without the need for repetitive full encryption
trials.

The proposed CKKS-ITSA model demonstrates superior
results for the cloud-based medical image security. The model
obtained low MSE, high PSNR, SSIM and CC, and
outperformed all the current models in image quality

preservation and security. The proposed model also achieves
faster encryption, decryption, and optimal key generation,
which ensured computational efficiency. The NPCR and
UACI results confirm the model’s robustness against
differential attacks. The advantages of the model include
strong security, high efficiency, and optimized key generation
using ITSA. However, the model has a high computational
overhead due to homomorphic encryption, which requires
further optimization for real-time deployment.

Table 9. Extended comparison of CKKS-ITSA with existing models

Model Enc Time (ms) Dec Time (ms) NPCR (%) UACI (%) Quantum Resistance
ALO-Honey Encryption [14] 12.35 10.87 97.82 30.45 No
RSA-AES Hybrid [18] 15.92 13.65 98.11 31.26 No
Chaos-DNA Based [27] 10.21 9.74 98.65 32.18 No
Blockchain-Based [23] 11.89 10.54 98.72 32.40 No
Proposed CKKS-ITSA 6.75 5.12 99.61 33.18 Yes (RLWE-based)

Table 10. Robustness evaluation results of the CKKS-ITSA model under adverse conditions

Condition PSNR (dB) SSIM (%) CC (%)
Original (512x512, no noise) 68.45 99.97 99.94
Low Resolution (256%256) 62.18 98.92 99.21
Very Low Resolution (128%128) 58.74 98.51 98.88
Gaussian Noise (62 =0.01) 61.32 98.21 98.77
Salt & Pepper Noise (density = 0.02) 60.85 97.94 98.69
Imbalanced Data Distribution 67.94 99.65 99.71

Table 11. Additional security evaluation of the CKKS-ITSA model

Attack Scenario Metric Evaluated Result Interpretation
Tampering (10% pixels) SSIM / CC 12.4%/15.7% Decryption fails, and strong integrity
Cropping (25% data loss)  Visual reconstruction  Highly distorted Prevents useful interpretation of medical data
Quantum resistance Security foundation RLWE-based Resistant to Shor’s algorithm and post-quantum safe

5. CONCLUSIONS

This research proposed a novel secure and efficient cloud-
based medical image encryption model using CKKS-HE
method. The improved TSA optimization technique was
furthermore employed for optimizing the process of key
generation of CKKS method. This CKKS-ITSA model was
developed for improving the efficiency and security of the
cloud-based medical image storage and transmission. For the
experiment and validation, a medical image dataset was
utilized in this research. The proposed model effectively
balanced the security, computational efficiency, and image
quality preservation. The results of the proposed model
demonstrated low MSE (0.139), high PSNR (68.45 dB), high
SSIM (99.97%), and strong correlation (99.94%). These
results highlighted the model’s minimal distortion and high
fidelity in encrypted images. The results also include the
model’s fast decryption time (5.12 ms), encryption time (6.75
ms), and key generation time (4.82 ms). The model was
additionally tested with NPCR and UACI for validating its
resistance against differential attacks, and the performed
better. These results highlighted that the CKKS-ITSA model
is highly suitable for real-time cloud-based data security
applications. Consistent with CKKS-ITSA’s results, it
outperforms other models in terms of PSNR by 3-5 dB, SSIM
by nearly 2%, and NPCR by almost 1%, validating its
effectiveness and secure cloud medical imaging application.

In future, this research aims to expand the CKKS-ITSA
framework in the following aspects. Initially, the FPGA-based
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cryptographic processors can be explored to decrease the
homomorphic computation costs associated with large-scale
healthcare implementations. Other benchmark datasets, such
as NIH ChestX-ray14, BraTS brain tumor MRI, and the TCGA
histopathology collection, will be employed to further test the
framework's applicability across different imaging domains.
After that, the framework's security and robustness will be
evaluated against adversarial threats, such as poisoning
attacks, data tampering, and large-scale distributed cloud
computing. One critical issue is the ciphertext expansion factor
of CKKS, which leads to higher memory and computation
overhead; for this, we plan to explore lightweight
homomorphic encryption variants as well as hybrid
compression techniques. The last step will be to combine deep
learning optimizers with ITSA in order to reduce the search
cost of parameter tuning and allow for adaptive, real-time
optimization. This work will guarantee the continued
evolution of the CKKS-ITSA model for medical cloud
ecosystems in terms of scalability, security, and practical
adoption.
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