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 Innovative technology and improvements in intelligent systems have revolutionized the way 

data is processed, analyzed, and reconstructed in modern times. With the advancements in 

machine learning and artificial intelligence, it has become possible to reconstruct missing or 

lost information from a given set of data. It is very challenging to reconstruct data that has 

been lost during different processes like image acquisition, and dimension reduction. This 

paper proposed an organized method that has taken a 2D single image of objects and then 

predicts and reconstructs a voxel-based 3D of that object. A multi-layer encoder-decoder 

framework has been employed to estimate image depth, which is then combined with the 

original image to reconstruct the 3D shape of the object. Subsequently, methods such as 

EfficientNet and octree-based techniques are utilized to generate voxel representations of 

the 3D structure. For the experiments, three benchmark datasets were utilized alongside 

state-of-the-art methods for comparison. To evaluate the performance of the proposed 

model, metrics such as Chamfer Distance (CD), Earth Mover’s Distance (EMD), and 

Intersection over Union (IoU) were employed. We have achieved mean CDs of 0.00387, 

0.00317 and 0.00102 on ShapeNetCore, Pascal3D and Pix3D respectively. 
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1. INTRODUCTION 

 

Creating a 3D interpretation from a single RGB image 

entails extracting the 3D structural information of a scene from 

its 2D representation. This process aims to empower robots 

with the ability to perceive and interact with their surroundings 

in a way that mimics human spatial understanding. Recent 

advancements in computer vision have introduced deep 

learning models capable of estimating 3D depth from 2D 

images. These models learn the relationship between images 

and their corresponding depth maps, allowing them to predict 

the depth and distance of objects accurately. 

There are many image-based techniques used in computer 

vision. For example, Zhang et al. [1] proposed a novel 

approach for reconstructing a 3D model of a dynamic 

environment without the use of sensors. The method uses 

monocular video frames and incorporates a deep learning 

model for accurate reconstruction. Different multi-view 

approaches have been used in the past, such as that of Snow 

[2], which was based on a set of noisy depth measurements; 

this problem was resolved using graph cuts. 

Wen et al. [3] have proposed an approach based on multi-

camera views. This method formulates a volumetric fusion 

problem that integrates information from multiple views into 

a single consistent 3D model. Shu et al. [4] proposed a 

generative-model-based approach. The aforementioned 

methods used single or multiple RGB views of objects. 

Wen and Cho [5] proposed a combined deep learning 

approach that used a recurrent neural network (RNN) with a 

3D convolutional neural network (3D-CNN) to reconstruct 

objects in 3D. The RNN was used to generate a volumetric 

representation of the object by sequentially processing the 2D 

images, while the 3D-CNN was used to refine the generated 

3D representation and produce a high-quality 3D model. 

The proposed method in this research relies on a single RGB 

image. Later on, Savkin et al. [6] extracted neural and depth 

features, which contributed to the reconstruction of a 3D 

model that was further represented in the form of 3D voxels 

by Liu et al. [7]. For depth estimation, a deep neural network 

was used, which helped estimate depth maps from RGB 

Traitement du Signal 
Vol. 42, No. 6, December, 2025, pp. 3149-3158 

 

Journal homepage: http://iieta.org/journals/ts 
 

3149

https://orcid.org/0000-0002-4046-602X
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420610&domain=pdf
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420610&domain=pdf


 

images. Finally, depth information was combined with RGB 

inputs in the octree-based neural network [8]. 

The extensive research achievements of this study are as 

follows: 

• 3D visualization of unseen objects from their image data. 

• Automatic 3D reconstruction of objects from a single 

image. 

• An improved learning method compared to previous 

approaches in the field of e-learning and virtual-environment-

based training. 

• Utilization of EfficientNet as a backbone for feature 

extraction, known for its balance between high accuracy and 

low computational cost through compound scaling. 

• An octree-based representation is employed to efficiently 

manage voxel data, reducing memory consumption and 

accelerating computations by focusing on non-empty regions 

of the 3D space. 

• The combination of EfficientNet and octree-based 

representation enables the model to handle large-scale 3D data 

more effectively and at a finer resolution compared with 

traditional voxel grids. 

• Enhanced disease diagnosis using 3D visualization of 

human organs reconstructed from CT scans. 

The structure of this article is organized as follows: the 

paper begins with the introduction, followed by the related 

work section. Next, the proposed system is detailed in the 

materials and methods section, after which the results and 

performance evaluations are presented, including comparisons 

with different state-of-the-art methods. Finally, the paper 

concludes with the conclusion section. 

 

 

2. RELATED WORK 

 

Many researchers have proposed methods for 3D 

reconstruction from single-view images. Shu et al. [4] 

introduced Pix2Vox, a framework capable of handling both 

single-view and multi-view 3D reconstruction. This approach 

incorporates an encoder-decoder architecture, a context-aware 

fusion module, and a refinement stage, achieving higher 

accuracy and consistency than many existing methods. 

Additionally, it offers faster inference times and exhibits 

strong generalization capabilities. The task of recovering 3D 

representations of objects from single-view or multi-view 

RGB images using deep neural networks has gained 

significant attention in recent research. Traditional approaches, 

such as 3D-R2N2, rely on recurrent neural networks (RNNs) 

to sequentially integrate feature maps extracted from input 

images. However, these methods often face challenges such as 

inconsistent results and memory limitations. Renat and 

Imangali [9] proposed an end-to-end network for efficient 3D 

model generation from a single image. This network consists 

of an encoder, a 2D–3D fusion module, and a decoder, which 

together produce detailed point clouds from single-object 

images and retrieve the most similar shapes from the 

ShapeNetCore dataset. The method demonstrates state-of-the-

art performance when compared to volumetric and point-set 

generation techniques, particularly excelling in capturing 

intricate details. Additionally, it performs well in 

environments with complex backgrounds and across diverse 

viewpoints. 

Bae et al. [10] proposed a GAN-based approach for 

predicting voxel models from a single view. Their method 

utilizes the alignment of 2D silhouettes and slices within a 

camera frustum to reconstruct voxel representations of scenes 

containing multiple object instances. This approach 

demonstrates excellent performance in reconstructing 

complex scenes with non-rigid and multi-object 

configurations. 

Reconstructing 3D objects from multiple 2D images has 

been a common focus in computer vision research. However, 

Huang et al. [11] addressed a more challenging problem: 

estimating 3D locations and shapes of multiple objects from 

just a single 2D image. Unlike prior approaches that either 

predict a single 3D property or focus exclusively on individual 

objects, their method employs a comprehensive framework. 

This includes learning a 3D voxel grid from the input image, 

utilizing CenterNet-3D for keypoint detection, and applying a 

coarse-to-fine reconstruction module to achieve efficient and 

detailed 3D reconstructions. Their approach proved effective 

for both single- and multi-object scenarios. In another 

advancement, Yuan et al. [12] presented the Voxel 

Transformer (VoTr), a novel voxel-based Transformer 

backbone for 3D object detection using point clouds. By 

incorporating self-attention mechanisms, VoTr overcomes the 

limitations of conventional 3D convolutional backbones, such 

as constrained receptive fields, thereby enabling the modeling 

of long-range voxel relationships. 

Some research studies are based on images captured with 

sensors such as Light Detection and Ranging (LiDAR) and 

depth cameras. Kuang et al. [13] proposed a Voxel-CRF model 

for 3D scene understanding by integrating a voxel-based 

representation with a conditional random field model to infer 

semantic labels and object instances in indoor scenes. Shi et al. 

[14] employed an automated approach for large-scale 3D 

scene reconstruction of urban areas using LiDAR sensors. 

They created a meshed representation of a 3.7 km-long area 

with high detail and no user intervention, and investigated the 

effects of sensor models on reconstruction quality. 

Visualization of 3D objects can be represented in various 

forms, including volumetric representations using voxels (Liu 

et al. [7]), mesh representations (Tahir et al. [15]), and point 

clouds (Ji et al. [16]). Yasir and Ahn [17] investigated different 

approaches to 3D object shape representation, focusing on 

surface-based and volumetric methods, as well as viewer-

centered versus object-centered reference frames in single-

view 3D shape prediction. Their analysis revealed that surface-

based techniques perform better than voxel-based 

representations for novel objects, whereas voxel 

representations are more effective for familiar objects. 

Gbadago et al. [18] introduced a framework known as 

Hierarchical Surface Prediction (HSP), which utilizes 

convolutional neural networks (CNNs) to generate high-

resolution voxel grids. Their findings indicated that HSP 

produces more accurate results compared to low-resolution 

predictions, regardless of the input format. 

Traditional methods often use convolutional neural 

networks (CNNs) such as ResNet, VGG, or other backbone 

architectures that might not be as parameter-efficient as 

EfficientNet. Many state-of-the-art approaches rely on regular 

voxel grids or point-cloud representations. Voxel grids suffer 

from substantial memory consumption at higher resolutions, 

while point-cloud methods might lack the explicit structure 

required for detailed 3D reconstruction. Methods such as 3D-

R2N2 or AtlasNet employ RNNs or mesh-based approaches 

that focus on sequential data processing or direct mesh 

generation but might not be as efficient in capturing high-

resolution details as octree-based approaches. 
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3. PROPOSED SYSTEM METHODOLOGY 

 

In this section, a discussion about the main idea of our 

hypothetical methodology has been done for the 3D 

reconstruction of an object from its RGB image using depth 

feature predictor and 3D volumetric representation in the form 

of voxels. Figure 1 represents our method's main flow 

architecture diagram. The input of this system is in the form of 

an RGB image and the output is in the form of a voxels 3D 

model. The first applied deep learning neural network was to 

estimate the depth of the respective object in the image and 

also applied background removal preprocessing on the image. 

Later on, used the depth feature with RGB image to generate 

an octree-based 3D mesh and then voxelization of that mesh 

using EfficientNet to reconstruct 3D voxel representation. 

This system is the alternative to the RGBD input-based system 

that works using RGB images. 

Algorithm 1 outlines a robust method employed in our 

research for estimating object depth, which plays a crucial role 

in 3D reconstruction. While depth sensors are traditionally 

required to capture depth information, this algorithm leverages 

training on the NYUv2 dataset to predict object depth directly 

from images. This predictive capability enables accurate 

estimation of the z-axis, significantly enhancing the 3D 

reconstruction process by eliminating the dependency on 

external depth-sensing hardware. The approach demonstrates 

efficiency and reliability, making it a valuable tool for depth 

estimation in diverse scenarios. 

 

 
 

Figure 1. The main system architecture of our proposed system 

 

3.1 Preprocessing of the data 

 

For the generation of the 3D model using deep learning 

model. We need to preprocess RGB data is usually required to 

segment the object from the image. Moreover, object 

segmentation of images also dramatically reduced the 

computational cost. Hence, generally, it’s easy for a model to 

map the 3D of the object. For background removal. Deng et al. 

[19] described research on image content-based indexing and 

retrieval for digital image libraries. Existing techniques also 

used global image features, leading to background features 

being mistaken as object features. The proposed approach 

analyzed background regions using colour clusters 

and removed them from the indexing process to avoid 

interfering with the retrieval of meaningful image content. The 

goal is to improve the accuracy of image retrieval based on 

colour features. We used a similar technique to remove the 

background of the image using colour histogram fuzzy 

clustering. Approaches using regular voxel grids often suffer 

from the curse of dimensionality, requiring significant 

computational resources to process high-resolution data. 

Point-based methods, while efficient in representing sparse 

data, can struggle to maintain accurate reconstruction details 

due to their lack of inherent spatial organization. 

Mesh-based approaches directly predict 3D surfaces but are 

often more computationally expensive and require post-

processing steps to ensure smoothness and connectivity of the 

mesh. 

Figure 2 shows the original image which was employed as 

input for the 3D reconstruction. Figure 3 shows the image with 

its background noise removed, alongside its corresponding 

original image. The octree structure inherently adapts to the 

density of the object, refining the representation only in areas 

where details are required. This leads to efficient memory use 
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and faster processing times. Leveraging EfficientNet's 

compound scaling strategy ensures that the features are 

extracted with optimized accuracy and efficiency, which is not 

always the focus of traditional backbone networks. 

(a)  (b)  (c) 

Figure 2. Original images of objects (a) aeroplane, (b) bottle and (c) sofa 

(a)  (b)  (c) 

Figure 3. Original images without background (a) aeroplane, (b) bottle and (c) sofa 

3.2 Feature extraction 

In this subsection, a deep learning algorithm helped in 

the extraction of depth prediction using a deep learning 

method based on generative modelling. 

3.2.1 Depth prediction 

In order to obtain the depth information from the image, the 

approach proposed by Khan et al. [20] and Alzahrani et al. [21] 

has been adopted in this work. This research presented two 

enhancements for single-picture depth estimation, first a 

convolutional neural network (CNN) for efficiently fusing 

information at different scales and secondly used the use of 

three loss terms to assess errors in depth, gradients, and surface 

normal. The results show that these enhancements have 

improved accuracy, particularly when reconstructing small 

objects and object borders with finer precision. 

Algorithm 1: Depth Prediction Algorithm 

Input: RGB Image 

Output: Depth Image 

//NYU v2 Dataset for training 

Model: SENet-154 

  No_of_features = 2048 

  Block_Channel = [256, 512, 1024, 2048] 

Transformation: 

  //Scale and normalize to reduce computational cost 

        Scale (Image, 320, 240) 

  Normalize (Image, Self.Mean, Self.SD): -SD: Standard 

Deviation 

Block 1: 

C1=Conv2d(Input) 

/* 

//DownSampling/EnCoding Block: 

E1=DownSampling(1/4, C1) 

E2=DownSampling(1/8, E1) 

E3=DownSampling(1/16, E2) 

E4=DownSampling(1/32, E3) 

Block 2: 

C2=Conv2d(E4) 

//UpSampling/DeCoding Block: 

D1=UpScale(1/2, C2) 

D2=UpScale(1/2, D1) 

D3=UpScale(1/2, D2) 

D4=UpScale(1/2, D3) 

Block 3: 

//Concatenation Features: 

F1=Upscale(1/16,E1) 

F2=Upscale(1/16,E2) 

F3=Upscale(1/16,E3) 

F4=Upscale(1/16,E4) 

Concatenate: 

//Concatenation and Convolution: 

F=F1+F2+F3+f4 

C3=Conv2d(D4) 

FN=F+C3 

C4=Conv2d(FN) 

C5=Conv2d(C4) 

C6=Conv2d(C5) 

Output: Depth Imagev 

𝐶𝑜𝑛𝑣2𝑑 = 𝑤 ∗ 𝐹(𝑥, 𝑦) = (∑ ∑ 𝑤(𝛿𝑥, 𝛿𝑦). 𝐹(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦

𝑊

𝑗

)

𝐻

𝑖

 (1) 
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where, 𝐶𝑜𝑛𝑣2𝑑 is convolutional function that extracts features 

using weight 𝑤 on image dimension x, y. Figure 4 shows the 

depth results. 

 

 
(a)                             (b)                      (c) 

 

Figure 4. Depth results on (a) aeroplane, (b) bottle and (c) 

sofa 

 

3.2.2 3D shape features extraction using EfficientNet 

To predict 3D shape points from RGB images and their 

depth, our proposed system utilizes a CNN model, specifically 

EfficientNet. Reconstructing 3D shapes from a single RGB 

image poses significant challenges due to potential variations 

in object configurations and the inherent ambiguity of depth 

information. Traditional methods for accurate 3D 

reconstruction from monocular images often depend on 

extensive 3D annotations during training, which are costly and 

labor-intensive to produce. To overcome this limitation, a self-

supervised 3D reconstruction network, S2HAND, has been 

developed to estimate pose, shape, texture, and camera 

viewpoint without the need for labeled data. In this work, 2D 

key points detected in the input image are used to extract 

geometric information, and the consistency between 2D and 

3D representations is leveraged to train a precise 3D 

reconstruction model. Additionally, a novel set of loss 

functions was introduced to enhance the neural network's 

outputs. This approach demonstrates the feasibility of training 

accurate 3D reconstruction models without manual 

annotations and has proven valuable for extracting 3D shape 

features, which are integral to generating 3D voxels. A typical 

efficient model consists of different layers of convolutional 

layers and fully connected layers, pooling layer and shortcut 

layers. The shortcut connections are what make this neural 

network model unique, as they allow the network to learn 

residual functions that can be added to the input. This helps to 

alleviate the vanishing gradients problem and allows 

EfficientNet models to be trained effectively even when they 

have hundreds of layers. Figure 5 shows the detailed 

architecture of the EfficientNet model used in this suggested 

system. EfficientNet, due to its scaled architecture, provides a 

more computationally efficient solution compared to older 

architectures, maintaining accuracy even with fewer 

parameters. 

 

3.2.3 Octree-based network for 3D voxel reconstruction 

To generate the 3D in the form of voxels in this research 

octree-based network has been used. Octree-based networks 

[22] are a type of deep neural network that makes use of 

octrees, a data structure for efficiently storing 3D volumetric 

data. Octrees are used to represent 3D space as a hierarchy of 

cubic cells, with each cell being subdivided into eight child 

cells until a certain depth is reached. The speciality of octree-

based networks lies in their ability to efficiently process 3D 

data, such as point clouds or voxel grids while maintaining 

high spatial resolution. By using octrees, these networks 

selectively processed only the parts of the input that contained 

relevant information, which significantly reduced the 

computational cost and memory requirements of the network. 

 

 
 

Figure 5. Detailed architecture of EfficientNet for 3D features extraction 
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Figure 6. Octree based network for 3D visualization in voxels 

 

 

(a)                             (b)                                             (c) 

 

Figure 7. Visualization of 3D voxel models 

 

In addition, octree-based networks incorporated specialized 

layers and operations that have been tailored to 3D data, such 

as octree convolution and max pooling, which further 

enhanced their performance on tasks such as 3D object 

recognition and Segmentation. The octree-based approach is 

highly scalable, making it suitable for high-resolution 

reconstructions with lower memory requirements. This allows 

it to handle larger and more complex datasets like 

ShapeNetCore and Pix3D without a significant increase in 

computational cost [23]. Figure 6 shows the octree-based 

network conceptual model that processed the information to 

generate 3D voxels. 

Figure 7 shows a 3D representation of reconstructed voxel 

models using the intended system. The 3D voxel model has 

been segmented into different colour ranges from yellow to 

green and in the dark blue intensity voxels the inner layer starts 

from yellow to the external layer till dark blue. 

 

 

4. EXPERIMENTAL SETUP AND RESULTS 

 

This section shows the experimental setup, dataset details, 

testing and validation performed on our proposed architecture. 

For Experimentation 3 Benchmark datasets have been used. A 

description of these datasets is given below and then Different 

types of evaluation have been performed. 

 

4.1 Datasets description 

 

4.1.1 ShapeNet dataset 

The experimentation for 3D voxel reconstruction has been 

done using the ShapeNetCore dataset [7]. ShapeNetCore is a 

large repository of 3D CAD models that are annotated with 

semantic information like consistent alignments, parts, and 

sizes. It is organized by the WordNet taxonomy and contains 

over 3 million models with more than 220,000 models 

classified into 3,135 categories. ShapeNetCore provides a 

web-based interface for data visualization and serves as a 

benchmark for computer graphics and vision research. Our 

proposed system achieves high accuracy and detail in 

reconstruction due to the octree's ability to focus on relevant 

areas, effectively handling the variety of object geometries. 

The SOTA methods Perform well in capturing general object 

shapes but often struggle with fine details due to voxel 

resolution limits or inefficient use of mesh structures. 

 

4.1.2 Pix3D sun dataset 

The Pix3D sun dataset consists of 395 3D models spanning 

nine item categories, with each model paired with real-world 

photographs taken in diverse settings. This dataset includes 

10,069 image-shape pairs, all of which are annotated with 

precise 3D data, enabling accurate pixel-level alignment 

between object shapes and their silhouettes in the images. Our 

proposed system utilizes the octree structure to enhance 

reconstruction quality, excelling in capturing fine details, 

particularly in complex indoor scenes and furniture models. 

While state-of-the-art methods based on mesh and point-based 

approaches achieve good results, they often struggle to 

preserve intricate details or require post-processing steps to 

mitigate noise in the data.4.1.3 PASCAL3D+Silberman 

Dataset. 

PASCAL3D+Silberman, is a novel and difficult dataset for 

3D object detection and pose estimation. PASCAL3D+adds 

3D annotations to the PASCAL VOC 2012's 12 rigid 
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categories. Additionally, new photographs from ImageNet are 

added to each category. PASCAL3D+images are substantially 

more variable than previous 3D datasets, with more than 3,000 

object occurrences per category on average. Our proposed 

system excels in reconstructing real-world objects with 

occlusions and complex surfaces thanks to the efficient feature 

extraction of EfficientNet and the octree’s adaptability. The 

other methods typically have issues with occluded or partially 

visible objects, leading to lower reconstruction accuracy when 

compared to the octree-based approach. 

In this article, the ShapeNetCore dataset has been used for 

the training purposes of the proposed system. For testing and 

evaluation purposes Pix3D and PasCAL3D+datasets have 

been used. 

 

4.2 Results 

 

Experiment I: Loss functions CD and earth movers 

distance (EMD) 

To evaluate the reconstructed 3D models, two loss functions 

were applied for point-to-point comparisons with the ground 

truth data. The first metric, CD, was computed using three 

benchmark datasets, with the corresponding results presented 

in Table 1.  

The second metric, Earth Mover’s Distance (EMD), was 

employed to measure the dissimilarity between the 

reconstructed models and the ground truth. EMD was 

calculated using the Sinkhorn and Wasserstein distances, with 

the results illustrated in Figure 8. The mathematical equations 

used for calculating CD and EMD are provided. 

 

𝐶𝐷(𝑋, 𝑌) =
1

|𝑋|
∗ (∑ 𝑚𝑖𝑛 (||𝑥 − 𝑦||

2
)) +

1

|𝑌|

∗ (∑ 𝑚𝑖𝑛 (||𝑥 − 𝑦||
2

)) 

(2) 

 

In this equation, 𝑋 irepresents the predicted point set of the 

reconstructed 3D model, while denotes the ground truth point 

set. The cardinalities |𝑋| and |𝑌| correspond to the number of 

points in X and 𝑌 respectively. The term ||𝑥 − 𝑦||
2
refers to 

the squared Euclidean distance between a point 𝑥 in 𝑋 and a 

point 𝑦 in 𝑌. This equation calculates the minimum distance 

between the points in the predicted set and those in the ground 

truth set. 

 

𝐸𝑀𝐷(𝑋, 𝑌) = 𝑚𝑖𝑛𝑆𝑔𝑡→𝑆𝑝𝑟
∑ ||𝑥 − ∅(𝑥)|| (3) 

 

where, 𝑥 ∈ 𝑆𝑝𝑟 and ∅(𝑥) ∈ 𝑆𝑝𝑟 .∅(𝑥) is the closest point with 

the ground truth as shown in Table 1. 

 

Table 1. CD on ShapeNetCore, Pascal 3D and Pix3D 

 
Objects ShapeNetCore Pascal3D Pix3D 

Air Plane 0.00070 0.00090 -- 

Bed 0.00240 -- 0.00080 

Boat 0.00480 0.00150 -- 

Bottle 0.00610 0.01050 -- 

Car 0.00130 0.00390 -- 

Chair 0. 00090 0.00080 0.00100 

Sofa 0. 00180 0.00400 0.00140 

Table 0. 00070 0.00100 0.00090 

TV/Monitor 0.00790 0.00280 -- 

Mean 0.00387 0.00317 0.00102 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 8. Graphical representation of EMD values on (a) 

ShapeNetCore, (b) Pascal3D and (c) Pix3D 
 

Experiment II: Evaluation matrix: accuracy, precision, 

recall and F1-Score 

When using machine learning methods and artificial 

intelligence methods precision, recall, F1-Score and accuracy 

are commonly used matrices for evaluation purposes. 

Precision is the fraction of the 3D reconstructions that are 

correct among all the reconstructed 3D models. In other words, 

it measures how many of the reconstructed models are relevant 

to the ground truth. In 3D reconstruction, precision is typically 

used to evaluate the accuracy of shape and pose estimation. 

Recall is the fraction of the ground truth models that are 

correctly reconstructed among all the ground truth models. It 

measures how many of the relevant models were correctly 

identified by the algorithm. In 3D reconstruction, recall is 

0
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often used to evaluate the completeness of the reconstructed 

models [24]. The F1-Score is a performance metric that 

integrates precision and recall into a single value by 

calculating their harmonic mean. Precision reflects the 

proportion of accurately detected objects out of all detected 

objects, whereas recall represents the proportion of correctly 

identified objects relative to the total number of ground truth 

objects. The F1-Score ranges from 0 to 1, with higher values 

signifying improved performance as shown in Tables 2 and 3. 

Accuracy is the overall correctness of the reconstructed 

models. It measures how many of the reconstructed models are 

both relevant and correctly identified. In 3D reconstruction, 

accuracy is a composite metric that considers both precision 

and recall. The following equations are used to calculate 

precision and recall using max distance. 

 

𝐷(𝑎, 𝑏) = √∑(𝑎𝑖 − 𝑏𝑖)2

𝐺𝑡𝑛

𝑖

 (4) 

 

𝑀𝑎𝑥_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑀𝑎𝑥(𝐷1(𝑔𝑡, 𝑝𝑡), 𝐷2(𝑝𝑡, 𝑔𝑡)) (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐷(𝑔𝑡, 𝐷1)/𝑀𝑎𝑥_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝐷(𝑝𝑡, 𝐷2)/𝑀𝑎𝑥_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (7) 

 

where, 𝐷(𝑎, 𝑏) is distance between two different point cloud 

models. Max Distance is the maximum distance computed 

between the gt ground truth and the pt predicted point cloud. 

Precision and Recall are calculated using distances and 

Max_Distance results (See Table 4). To calculate the F1-Score 

the harmonic mean of precision and recall is used in the 

following equation: 

 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (8) 

 

where, 𝐹1𝑆𝑐𝑜𝑟𝑒 is the precision and recall combined matric to 

measure the accuracy of the model? To calculate accuracy, we 

used different loss functions to calculate overall loss and then 

this overall loss has been used to compute accuracy. 

 

𝐿𝐸𝑑𝑔𝑒(𝑃𝐶 , 𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ) = ∑(𝑖, 𝑗) ||𝑃𝑖 − 𝑃𝑗|| (9) 

 

𝐿𝑁𝑜𝑟𝑚𝑎𝑙(𝑃𝐶,𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ) = ∑(𝑖) (||𝑃𝑖 − 𝑃𝑗||)
2

 (10) 

 

𝐿𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(𝑃𝐶 , 𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ) = ∑(𝑖) (||𝛥2𝑃𝑖||)
2 (11) 

 

where, 𝑃𝐶  is predicted point cloud and 𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ . The 

number of points in the point cloud in this article is set to 1024. 

𝑃𝑖  is the point in the predicted point set and 𝑃𝑗 is the closest 

point in the ground truth point set. Δ2 is the Laplacian operator 

that calculates the 2nd derivative of the position of the point 

(Table 5). 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑙𝑜𝑠𝑠 = 𝜆𝐸 ∗ 𝐿𝐸𝑑𝑔𝑒 + 𝜆𝑁 ∗ 𝐿𝑁𝑜𝑟𝑚𝑎𝑙 + 𝜆𝐿

∗ 𝐿𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 
(12) 

 

where, 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑙𝑜𝑠𝑠 is the loss function calculated using the 

combined effect of different weighted loss functions. 

𝜆𝐸 ,  𝜆𝑁  and 𝜆𝐿 is the weighted value used at the end to control 

the importance of edge, normal and Laplacian loss functions 

respectively in the overall loss function. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑋, 𝑌) = 1 − 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑙𝑜𝑠𝑠 (13) 

 

where, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is the overall evaluation of the proposed 

system. Overall loss has been computed using a combination 

of different types of loss functions with specific weights. 

 

Table 2. Precision, Recall, F1-Score and Accuracy on 3D 

using ShapeNetCore 

 
Objects Precision Recall F1-Score Accuracy (%) 

Air Plane 0.7224  0.8342  0.8311 91.2078 

Bed 0.9772 0.9561 0.9662 94.2341 

Boat 0.6921  0.8352  0.8231 92.1291 

Bottle 0.7941  0.9332  0.8571 95.2978 

Car 0.8972 0.8162 0.7432 91.2822 

Chair 0.7674 0.9361 0.8432 96.0736 

Sofa 0.8547 0.8313 0.8421 93.7224 

Table 0.9921 0.8135 0.8939 95.2635 

TV/Monitor 0.7772 0.8164 0.7867 89.9726 

Mean 0.8440 0.8673 0.8444 93.4969 

 

Table 3. Precision, Recall, F1-Score and Accuracy on 3D 

using Pascal3D 

 
Objects Precision Recall F1-Score Accuracy (%) 

Air Plane 0.7224 0.8342 0.8311 91.2078 

Bed 0.6921 0.8352 0.8231 92.1291 

Boat 0.7941 0.9332 0.8571 95.2978 

Bottle 0.8972 0.8162 0.7432 91.2822 

Car 0.7674 0.9361 0.8432 96.0736 

Chair 0.8547 0.8313 0.8421 93.7224 

Sofa 0.9921 0.8135 0.8939 95.2635 

Table 0.7772 0.8164 0.7867 89.9726 

TV/Monitor 0.8250 0.8546 0.827 93.3916 

Mean 0.7224 0.8342 0.8311 91.2078 

 

Table 4. Precision, Recall, F1-Score and Accuracy on 3D 

using Pix3D 

 
Objects Precision Recall F1-Score Accuracy (%) 

Bed 0.9538 0.9621 0.9575 96.2619 

Chair 0.722 0.832 0.7731 93.7112 

Sofa 0.8738 0.882 0.878 94.0075 

Table 0.9101 0.8016 0.8518 95.0922 

Mean 0.8166 0.8738 0.8409 94.3708 

 

Table 5. IoU on ShapeNetCore, Pascal3D and Pix3D 

 
Objects ShapeNetCore Pascal3D Pix3D 

Air Plane 6.02 5.78 -- 

Bed 5.57 -- 5.40 

Boat 3.22 5.88 -- 

Bottle 2.11 3.41 -- 

Car 7.80 7.84 -- 

Chair 8.72 8.42 9.29 

Sofa 5.42 6.04 5.98 

Table 5.55 5.97 6.20 

TV/Monitor 5.87 5.64 -- 

Mean 5.58 6.13 6.72 
 

Experiment III: Evaluation object overlappling: 

Intersection over Union (IoU). 

This system has been also evaluated using a comparison of 

predicted and ground truth overlapping using Kato, 

Intersection over Union (IoU) calculation. This method is best 

3156



 

for the evaluation of a volumetric 3D reconstruction system 

(See Table 6). The higher the value of IoU the better the 

reconstruction will be. 

 

𝐼𝑜𝑈 =
𝑂𝑏𝑗𝑔𝑡 ∩ 𝑂𝑏𝑗𝑝𝑟

𝑂𝑏𝑗𝑔𝑡 ∪ 𝑂𝑏𝑗𝑝𝑟
=

∑{𝐼(𝑂𝑏𝑗𝑝𝑟 > 𝜖) ∗ 𝐼(𝑂𝑏𝑗𝑔𝑡)}

∑{𝐼(𝐼(𝑂𝑏𝑗𝑝𝑟 > 𝜖) + 𝐼(𝑂𝑏𝑗𝑔𝑡))}
 (14) 

 

where, 𝐼 is the indicator function that shows the ith voxel in 

the volumetric 3D shape. 𝜖 is the threshold where the value 

has been computed. 

Experiment IV: Comparison with the State-of-the-art 

systems 

Comparing the performance of 3D reconstruction methods 

with the state of the art (SOTA) is an important task in 

evaluating the effectiveness of these methods. The state of the 

art refers to the best-known method or model that achieves the 

highest performance on a given task. In 3D reconstruction, the 

state of the art can be determined by comparing the 

performance of different methods on standard benchmark 

datasets ShapeNetCore, Pascal3D and Pix3D for object 

reconstruction. To compare the performance various metrics 

have been compared like CD, EMD and IoU. 

 

Table 6. Comparison of IoU with different state-of-the-art methods 

 

Objects 
ShapeNetCore

(Ours) 

Pascal3D 

(Ours) 

Pix3D  

(Ours) 

DRC 

[18] 

CSD

M 

Air Plane 6.02 5.78 -- 5.70 5.00 

Bed 5.57 -- 5.40 -- -- 

Boat 3.22 5.88 -- -- 9.94 

Bottle 2.11 3.41 -- --- -- 

Car 7.80 7.84 -- 7.60 5.18 

Chair 8.72 8.42 9.29 4.70 5.20 

Sofa 5.42 6.04 5.98 -- 6.58 

Table 5.55 5.97 6.20 -- -- 

TV/Monito

r 
5.87 5.64 -- -- 9.64 

Mean 5.58 6.13 6.72 6.00 6.92 

 

 

5. CONCLUSIONS 

 

This research article has utilized RGB-based data to 

reconstruct voxel-based 3D shapes. The system can be used in 

various world real-world applications like E-learning, E-

commerce, medical diagnostics, scene understanding and 3D 

game development. Initially, RGB image has been given as 

input to the model for preprocessing, background removal and 

object detection. Next, depth features have been extracted to 

estimate the 3D shape of the object. Later on, the points have 

been estimated in 3D space. Two neural networks have been 

used for voxelization and visualization of objects: The first one 

is the EfficientNet which is a convolutional neural network 

that uses RGB and depth as input and in return provides the 

predicted 3D tensor of objects. The second 3D Tensor has been 

used in the octree-based network, each node has a further 8 

nodes and the tree expanded till the required number of points 

in the 3D shape. The three benchmark datasets; ShapeNetCore, 

Pascal3D and Pix3D have been used for the experimentation 

of this proposed system. These datasets are based on world 

real-world objects. We achieved mean CDs of 0.00387, 

0.00317 and 0.00102 on ShapeNetCore, Pascal3D and Pix3D 

respectively. Also, IoU has been used to measure the 

performance of this system. We achieved mean IoU of 5.58, 

6.13 and 6.72 on the above datasets. We compare the proposed 

methods with different state-of-the-art methods, showing our 

system has much better results. For future directives, we will 

find various datasets related to the human face and human 

pose. Also mapping 3D of medical images dataset will be done 

like X-ray scans and CT-scan. 

3D voxel reconstruction has significant real-world 

applications in areas such as medical imaging, geospatial 

mapping, and industrial design. In healthcare, voxel-based 

models are used for precise organ and tumour visualization in 

MRI and CT scans. In geospatial studies, they enable detailed 

3D terrain mapping. Case studies in archaeology and urban 

planning showcase their utility in reconstructing ancient sites 

and simulating city landscapes for infrastructure development. 
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