Z I El' A International Information and

Engineering Technology Association

Traitement du Signal
Vol. 42, No. 6, December, 2025, pp. 3149-3158

Journal homepage: http://iieta.org/journals/ts

Pixel to 3D Voxel Reconstruction Using Octree-Based Network and Deep Learning ]

Naif Al Mudawi', Hamid Ashfaq?, Abdulwahab Alazeb!, Nouf Abdullah Almujally®, Asaad Algarni*,

Khaled Al Nowaiser’, Ahmad Jalal>®*

Check for
updates

! Department of Computer Science, College of Computer Science and Information System, Najran University,

Najran 55461, Saudi Arabia

2 Department of Computer Science, Air University, Islamabad 44000, Pakistan
3 Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman

University, Riyadh 11671, Saudi Arabia

4 Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border University,

Rafha 91911, Saudi Arabia

5 Department of Computer Engineering, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz

University, Al-Kharj 11942, Saudi Arabia

¢ Department of Computer Science and Engineering, College of Informatics, Korea University, Seoul 02841, South Korea

Corresponding Author Email: ahmadjalal@mail.au.edu.pk

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.420610

ABSTRACT

Received: 2 April 2024

Revised: 25 September 2024
Accepted: 25 January 2025
Available online: 31 December 2025

Keywords:

2D to 3D reconstruction, 3D reconstruction
algorithms, 3D voxel reconstruction, 3D
voxelization computer vision for 3D, depth
estimation, object detection, single view
image processing, and voxel rendering

Innovative technology and improvements in intelligent systems have revolutionized the way
data is processed, analyzed, and reconstructed in modern times. With the advancements in
machine learning and artificial intelligence, it has become possible to reconstruct missing or
lost information from a given set of data. It is very challenging to reconstruct data that has
been lost during different processes like image acquisition, and dimension reduction. This
paper proposed an organized method that has taken a 2D single image of objects and then
predicts and reconstructs a voxel-based 3D of that object. A multi-layer encoder-decoder
framework has been employed to estimate image depth, which is then combined with the
original image to reconstruct the 3D shape of the object. Subsequently, methods such as
EfficientNet and octree-based techniques are utilized to generate voxel representations of
the 3D structure. For the experiments, three benchmark datasets were utilized alongside
state-of-the-art methods for comparison. To evaluate the performance of the proposed
model, metrics such as Chamfer Distance (CD), Earth Mover’s Distance (EMD), and
Intersection over Union (IoU) were employed. We have achieved mean CDs of 0.00387,

0.00317 and 0.00102 on ShapeNetCore, Pascal3D and Pix3D respectively.

1. INTRODUCTION

Creating a 3D interpretation from a single RGB image
entails extracting the 3D structural information of a scene from
its 2D representation. This process aims to empower robots
with the ability to perceive and interact with their surroundings
in a way that mimics human spatial understanding. Recent
advancements in computer vision have introduced deep
learning models capable of estimating 3D depth from 2D
images. These models learn the relationship between images
and their corresponding depth maps, allowing them to predict
the depth and distance of objects accurately.

There are many image-based techniques used in computer
vision. For example, Zhang et al. [1] proposed a novel
approach for reconstructing a 3D model of a dynamic
environment without the use of sensors. The method uses
monocular video frames and incorporates a deep learning
model for accurate reconstruction. Different multi-view
approaches have been used in the past, such as that of Snow
[2], which was based on a set of noisy depth measurements;
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this problem was resolved using graph cuts.

Wen et al. [3] have proposed an approach based on multi-
camera views. This method formulates a volumetric fusion
problem that integrates information from multiple views into
a single consistent 3D model. Shu et al. [4] proposed a
generative-model-based approach. The aforementioned
methods used single or multiple RGB views of objects.

Wen and Cho [5] proposed a combined deep learning
approach that used a recurrent neural network (RNN) with a
3D convolutional neural network (3D-CNN) to reconstruct
objects in 3D. The RNN was used to generate a volumetric
representation of the object by sequentially processing the 2D
images, while the 3D-CNN was used to refine the generated
3D representation and produce a high-quality 3D model.

The proposed method in this research relies on a single RGB
image. Later on, Savkin et al. [6] extracted neural and depth
features, which contributed to the reconstruction of a 3D
model that was further represented in the form of 3D voxels
by Liu et al. [7]. For depth estimation, a deep neural network
was used, which helped estimate depth maps from RGB
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images. Finally, depth information was combined with RGB
inputs in the octree-based neural network [8].

The extensive research achievements of this study are as
follows:

* 3D visualization of unseen objects from their image data.

» Automatic 3D reconstruction of objects from a single
image.

* An improved learning method compared to previous
approaches in the field of e-learning and virtual-environment-
based training.

+ Utilization of EfficientNet as a backbone for feature
extraction, known for its balance between high accuracy and
low computational cost through compound scaling.

* An octree-based representation is employed to efficiently
manage voxel data, reducing memory consumption and
accelerating computations by focusing on non-empty regions
of the 3D space.

* The combination of EfficientNet and octree-based
representation enables the model to handle large-scale 3D data
more effectively and at a finer resolution compared with
traditional voxel grids.

* Enhanced disease diagnosis using 3D visualization of
human organs reconstructed from CT scans.

The structure of this article is organized as follows: the
paper begins with the introduction, followed by the related
work section. Next, the proposed system is detailed in the
materials and methods section, after which the results and
performance evaluations are presented, including comparisons
with different state-of-the-art methods. Finally, the paper
concludes with the conclusion section.

2. RELATED WORK

Many researchers have proposed methods for 3D
reconstruction from single-view images. Shu et al. [4]
introduced Pix2Vox, a framework capable of handling both
single-view and multi-view 3D reconstruction. This approach
incorporates an encoder-decoder architecture, a context-aware
fusion module, and a refinement stage, achieving higher
accuracy and consistency than many existing methods.
Additionally, it offers faster inference times and exhibits
strong generalization capabilities. The task of recovering 3D
representations of objects from single-view or multi-view
RGB images using deep neural networks has gained
significant attention in recent research. Traditional approaches,
such as 3D-R2N2, rely on recurrent neural networks (RNNs)
to sequentially integrate feature maps extracted from input
images. However, these methods often face challenges such as
inconsistent results and memory limitations. Renat and
Imangali [9] proposed an end-to-end network for efficient 3D
model generation from a single image. This network consists
of an encoder, a 2D-3D fusion module, and a decoder, which
together produce detailed point clouds from single-object
images and retrieve the most similar shapes from the
ShapeNetCore dataset. The method demonstrates state-of-the-
art performance when compared to volumetric and point-set
generation techniques, particularly excelling in capturing

intricate  details. Additionally, it performs well in
environments with complex backgrounds and across diverse
viewpoints.

Bae et al. [10] proposed a GAN-based approach for
predicting voxel models from a single view. Their method
utilizes the alignment of 2D silhouettes and slices within a
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camera frustum to reconstruct voxel representations of scenes

containing multiple object instances. This approach
demonstrates excellent performance in reconstructing
complex scenes with non-rigid and multi-object
configurations.

Reconstructing 3D objects from multiple 2D images has
been a common focus in computer vision research. However,
Huang et al. [11] addressed a more challenging problem:
estimating 3D locations and shapes of multiple objects from
just a single 2D image. Unlike prior approaches that either
predict a single 3D property or focus exclusively on individual
objects, their method employs a comprehensive framework.
This includes learning a 3D voxel grid from the input image,
utilizing CenterNet-3D for keypoint detection, and applying a
coarse-to-fine reconstruction module to achieve efficient and
detailed 3D reconstructions. Their approach proved effective
for both single- and multi-object scenarios. In another
advancement, Yuan et al. [12] presented the Voxel
Transformer (VoTr), a novel voxel-based Transformer
backbone for 3D object detection using point clouds. By
incorporating self-attention mechanisms, VoTr overcomes the
limitations of conventional 3D convolutional backbones, such
as constrained receptive fields, thereby enabling the modeling
of long-range voxel relationships.

Some research studies are based on images captured with
sensors such as Light Detection and Ranging (LiDAR) and
depth cameras. Kuang et al. [13] proposed a Voxel-CRF model
for 3D scene understanding by integrating a voxel-based
representation with a conditional random field model to infer
semantic labels and object instances in indoor scenes. Shi et al.
[14] employed an automated approach for large-scale 3D
scene reconstruction of urban areas using LiDAR sensors.
They created a meshed representation of a 3.7 km-long area
with high detail and no user intervention, and investigated the
effects of sensor models on reconstruction quality.

Visualization of 3D objects can be represented in various
forms, including volumetric representations using voxels (Liu
et al. [7]), mesh representations (Tahir et al. [15]), and point
clouds (Jietal. [16]). Yasir and Ahn [17] investigated different
approaches to 3D object shape representation, focusing on
surface-based and volumetric methods, as well as viewer-
centered versus object-centered reference frames in single-
view 3D shape prediction. Their analysis revealed that surface-
based techniques perform better than voxel-based
representations for novel objects, whereas voxel
representations are more effective for familiar objects.

Gbadago et al. [18] introduced a framework known as
Hierarchical Surface Prediction (HSP), which utilizes
convolutional neural networks (CNNs) to generate high-
resolution voxel grids. Their findings indicated that HSP
produces more accurate results compared to low-resolution
predictions, regardless of the input format.

Traditional methods often use convolutional neural
networks (CNNs) such as ResNet, VGG, or other backbone
architectures that might not be as parameter-efficient as
EfficientNet. Many state-of-the-art approaches rely on regular
voxel grids or point-cloud representations. Voxel grids suffer
from substantial memory consumption at higher resolutions,
while point-cloud methods might lack the explicit structure
required for detailed 3D reconstruction. Methods such as 3D-
R2N2 or AtlasNet employ RNNs or mesh-based approaches
that focus on sequential data processing or direct mesh
generation but might not be as efficient in capturing high-
resolution details as octree-based approaches.



3. PROPOSED SYSTEM METHODOLOGY

In this section, a discussion about the main idea of our
hypothetical methodology has been done for the 3D
reconstruction of an object from its RGB image using depth
feature predictor and 3D volumetric representation in the form
of voxels. Figure 1 represents our method's main flow
architecture diagram. The input of this system is in the form of
an RGB image and the output is in the form of a voxels 3D
model. The first applied deep learning neural network was to
estimate the depth of the respective object in the image and
also applied background removal preprocessing on the image.
Later on, used the depth feature with RGB image to generate
an octree-based 3D mesh and then voxelization of that mesh

—>

Input RGB Image

Features

using EfficientNet to reconstruct 3D voxel representation.
This system is the alternative to the RGBD input-based system
that works using RGB images.

Algorithm 1 outlines a robust method employed in our
research for estimating object depth, which plays a crucial role
in 3D reconstruction. While depth sensors are traditionally
required to capture depth information, this algorithm leverages
training on the NYUv2 dataset to predict object depth directly
from images. This predictive capability enables accurate
estimation of the z-axis, significantly enhancing the 3D
reconstruction process by eliminating the dependency on
external depth-sensing hardware. The approach demonstrates
efficiency and reliability, making it a valuable tool for depth
estimation in diverse scenarios.
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Figure 1. The main system architecture of our proposed system

3.1 Preprocessing of the data

For the generation of the 3D model using deep learning
model. We need to preprocess RGB data is usually required to
segment the object from the image. Moreover, object
segmentation of images also dramatically reduced the
computational cost. Hence, generally, it’s easy for a model to
map the 3D of the object. For background removal. Deng et al.
[19] described research on image content-based indexing and
retrieval for digital image libraries. Existing techniques also
used global image features, leading to background features
being mistaken as object features. The proposed approach
analyzed background regions using colour clusters
and removed them from the indexing process to avoid
interfering with the retrieval of meaningful image content. The
goal is to improve the accuracy of image retrieval based on
colour features. We used a similar technique to remove the
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background of the image using colour histogram fuzzy
clustering. Approaches using regular voxel grids often suffer
from the curse of dimensionality, requiring significant
computational resources to process high-resolution data.

Point-based methods, while efficient in representing sparse
data, can struggle to maintain accurate reconstruction details
due to their lack of inherent spatial organization.

Mesh-based approaches directly predict 3D surfaces but are
often more computationally expensive and require post-
processing steps to ensure smoothness and connectivity of the
mesh.

Figure 2 shows the original image which was employed as
input for the 3D reconstruction. Figure 3 shows the image with
its background noise removed, alongside its corresponding
original image. The octree structure inherently adapts to the
density of the object, refining the representation only in areas
where details are required. This leads to efficient memory use



and faster processing times. Leveraging EfficientNet's
compound scaling strategy ensures that the features are

(b)

extracted with optimized accuracy and efficiency, which is not
always the focus of traditional backbone networks.

(©

Figure 2. Original images of objects (a) acroplane, (b) bottle and (c) sofa

=]

W

(2)

(b)

(©)

Figure 3. Original images without background (a) aeroplane, (b) bottle and (c) sofa

3.2 Feature extraction

In this subsection, a deep learning algorithm helped in
the extraction of depth prediction using a deep learning
method based on generative modelling.

3.2.1 Depth prediction

In order to obtain the depth information from the image, the
approach proposed by Khan et al. [20] and Alzahrani et al. [21]
has been adopted in this work. This research presented two
enhancements for single-picture depth estimation, first a
convolutional neural network (CNN) for efficiently fusing
information at different scales and secondly used the use of
three loss terms to assess errors in depth, gradients, and surface
normal. The results show that these enhancements have
improved accuracy, particularly when reconstructing small
objects and object borders with finer precision.

Algorithm 1: Depth Prediction Algorithm
Input: RGB Image
Output: Depth Image
//INYU v2 Dataset for training
Model: SENet-154
No_of features = 2048
Block Channel = [256, 512, 1024, 2048]
Transformation:
//Scale and normalize to reduce computational cost
Scale (Image, 320, 240)
Normalize (Image, Self.Mean, Self.SD): -SD: Standard
Deviation
Block 1:
C1=Conv2d(Input)
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/*

//DownSampling/EnCoding Block:
El1=DownSampling(1/4, C1)
E2=DownSampling(1/8, E1)
E3=DownSampling(1/16, E2)
E4=DownSampling(1/32, E3)

Block 2:
C2=Conv2d(E4)
//UpSampling/DeCoding Block:
D1=UpScale(1/2, C2)
D2=UpScale(1/2, D1)
D3=UpScale(1/2, D2)
D4=UpScale(1/2, D3)
Block 3:

//Concatenation Features:
F1=Upscale(1/16,E1)
F2=Upscale(1/16,E2)
F3=Upscale(1/16,E3)
F4=Upscale(1/16,E4)
Concatenate:
//Concatenation and Convolution:
F=F1+F2+F3+{4
C3=Conv2d(D4)
FN=F+C3
C4=Conv2d(FN)
C5=Conv2d(C4)
C6=Conv2d(C5)

Output: Depth Imagev

w
Z w(8x,8y).F(x + 6x,y + 8y)
J

(1)

H
Convy,y =w * F(x,y) = (z
[



where, Conv,, is convolutional function that extracts features
using weight w on image dimension x, y. Figure 4 shows the
depth results.

(a)

(b) ()
Figure 4. Depth results on (a) aeroplane, (b) bottle and (c)
sofa

3.2.2 3D shape features extraction using EfficientNet

To predict 3D shape points from RGB images and their
depth, our proposed system utilizes a CNN model, specifically
EfficientNet. Reconstructing 3D shapes from a single RGB
image poses significant challenges due to potential variations
in object configurations and the inherent ambiguity of depth
information.  Traditional methods for accurate 3D
reconstruction from monocular images often depend on
extensive 3D annotations during training, which are costly and
labor-intensive to produce. To overcome this limitation, a self-
supervised 3D reconstruction network, S2HAND, has been
developed to estimate pose, shape, texture, and camera
viewpoint without the need for labeled data. In this work, 2D
key points detected in the input image are used to extract
geometric information, and the consistency between 2D and
3D representations is leveraged to train a precise 3D
reconstruction model. Additionally, a novel set of loss

functions was introduced to enhance the neural network's
outputs. This approach demonstrates the feasibility of training
accurate 3D reconstruction models without manual
annotations and has proven valuable for extracting 3D shape
features, which are integral to generating 3D voxels. A typical
efficient model consists of different layers of convolutional
layers and fully connected layers, pooling layer and shortcut
layers. The shortcut connections are what make this neural
network model unique, as they allow the network to learn
residual functions that can be added to the input. This helps to
alleviate the vanishing gradients problem and allows
EfficientNet models to be trained effectively even when they
have hundreds of layers. Figure 5 shows the detailed
architecture of the EfficientNet model used in this suggested
system. EfficientNet, due to its scaled architecture, provides a
more computationally efficient solution compared to older
architectures, maintaining accuracy even with fewer
parameters.

3.2.3 Octree-based network for 3D voxel reconstruction

To generate the 3D in the form of voxels in this research
octree-based network has been used. Octree-based networks
[22] are a type of deep neural network that makes use of
octrees, a data structure for efficiently storing 3D volumetric
data. Octrees are used to represent 3D space as a hierarchy of
cubic cells, with each cell being subdivided into eight child
cells until a certain depth is reached. The speciality of octree-
based networks lies in their ability to efficiently process 3D
data, such as point clouds or voxel grids while maintaining
high spatial resolution. By using octrees, these networks
selectively processed only the parts of the input that contained
relevant information, which significantly reduced the
computational cost and memory requirements of the network.

Input Image
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Figure 5. Detailed architecture of EfficientNet for 3D features extraction
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Figure 6. Octree based network for 3D visualization in voxels

(b)

Figure 7. Visualization of 3D voxel models

In addition, octree-based networks incorporated specialized
layers and operations that have been tailored to 3D data, such
as octree convolution and max pooling, which further
enhanced their performance on tasks such as 3D object
recognition and Segmentation. The octree-based approach is
highly scalable, making it suitable for high-resolution
reconstructions with lower memory requirements. This allows
it to handle larger and more complex datasets like
ShapeNetCore and Pix3D without a significant increase in
computational cost [23]. Figure 6 shows the octree-based
network conceptual model that processed the information to
generate 3D voxels.

Figure 7 shows a 3D representation of reconstructed voxel
models using the intended system. The 3D voxel model has
been segmented into different colour ranges from yellow to
green and in the dark blue intensity voxels the inner layer starts
from yellow to the external layer till dark blue.

4. EXPERIMENTAL SETUP AND RESULTS

This section shows the experimental setup, dataset details,
testing and validation performed on our proposed architecture.
For Experimentation 3 Benchmark datasets have been used. A
description of these datasets is given below and then Different
types of evaluation have been performed.

4.1 Datasets description
4.1.1 ShapeNet dataset

The experimentation for 3D voxel reconstruction has been
done using the ShapeNetCore dataset [7]. ShapeNetCore is a
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large repository of 3D CAD models that are annotated with
semantic information like consistent alignments, parts, and
sizes. It is organized by the WordNet taxonomy and contains
over 3 million models with more than 220,000 models
classified into 3,135 categories. ShapeNetCore provides a
web-based interface for data visualization and serves as a
benchmark for computer graphics and vision research. Our
proposed system achieves high accuracy and detail in
reconstruction due to the octree's ability to focus on relevant
areas, effectively handling the variety of object geometries.
The SOTA methods Perform well in capturing general object
shapes but often struggle with fine details due to voxel
resolution limits or inefficient use of mesh structures.

4.1.2 Pix3D sun dataset

The Pix3D sun dataset consists of 395 3D models spanning
nine item categories, with each model paired with real-world
photographs taken in diverse settings. This dataset includes
10,069 image-shape pairs, all of which are annotated with
precise 3D data, enabling accurate pixel-level alignment
between object shapes and their silhouettes in the images. Our
proposed system utilizes the octree structure to enhance
reconstruction quality, excelling in capturing fine details,
particularly in complex indoor scenes and furniture models.
While state-of-the-art methods based on mesh and point-based
approaches achieve good results, they often struggle to
preserve intricate details or require post-processing steps to
mitigate noise in the data.4.1.3 PASCAL3D+Silberman
Dataset.

PASCAL3D+Silberman, is a novel and difficult dataset for
3D object detection and pose estimation. PASCAL3D+adds
3D annotations to the PASCAL VOC 2012's 12 rigid



categories. Additionally, new photographs from ImageNet are
added to each category. PASCAL3D+images are substantially
more variable than previous 3D datasets, with more than 3,000
object occurrences per category on average. Our proposed
system excels in reconstructing real-world objects with
occlusions and complex surfaces thanks to the efficient feature
extraction of EfficientNet and the octree’s adaptability. The
other methods typically have issues with occluded or partially
visible objects, leading to lower reconstruction accuracy when
compared to the octree-based approach.

In this article, the ShapeNetCore dataset has been used for
the training purposes of the proposed system. For testing and
evaluation purposes Pix3D and PasCAL3D+datasets have
been used.

4.2 Results

Experiment I: Loss functions CD and earth movers
distance (EMD)

To evaluate the reconstructed 3D models, two loss functions
were applied for point-to-point comparisons with the ground
truth data. The first metric, CD, was computed using three
benchmark datasets, with the corresponding results presented
in Table 1.

The second metric, Earth Mover’s Distance (EMD), was
employed to measure the dissimilarity between the
reconstructed models and the ground truth. EMD was
calculated using the Sinkhorn and Wasserstein distances, with
the results illustrated in Figure 8. The mathematical equations
used for calculating CD and EMD are provided.

(O min(Jlxe=1[%)) + IYI
] me 1 - y1[*))

In this equation, X irepresents the predicted point set of the
reconstructed 3D model, while denotes the ground truth point
set. The cardinalities |X| and |Y| correspond to the number of

CDXY) = —
|X] )

points in X and Y respectively. The term ||x —y| |2refers to
the squared Euclidean distance between a point x in X and a
point y in Y. This equation calculates the minimum distance
between the points in the predicted set and those in the ground
truth set.

EMD(X,Y) = ming,, s, D k=00l ()

where, x € S, and @(x) € Sp,.0(x) is the closest point with
the ground truth as shown in Table 1.

Table 1. CD on ShapeNetCore, Pascal 3D and Pix3D

Objects ShapeNetCore Pascal3D Pix3D
Air Plane 0.00070 0.00090 -
Bed 0.00240 - 0.00080
Boat 0.00480 0.00150 -
Bottle 0.00610 0.01050 -
Car 0.00130 0.00390 --
Chair 0. 00090 0.00080 0.00100
Sofa 0.00180 0.00400 0.00140
Table 0. 00070 0.00100 0.00090
TV/Monitor 0.00790 0.00280 -
Mean 0.00387 0.00317 0.00102
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Figure 8. Graphical representation of EMD values on (a)
ShapeNetCore, (b) Pascal3D and (c) Pix3D

Experiment II: Evaluation matrix: accuracy, precision,
recall and F1-Score

When using machine learning methods and artificial
intelligence methods precision, recall, F1-Score and accuracy
are commonly used matrices for evaluation purposes.
Precision is the fraction of the 3D reconstructions that are
correct among all the reconstructed 3D models. In other words,
it measures how many of the reconstructed models are relevant
to the ground truth. In 3D reconstruction, precision is typically
used to evaluate the accuracy of shape and pose estimation.
Recall is the fraction of the ground truth models that are
correctly reconstructed among all the ground truth models. It
measures how many of the relevant models were correctly
identified by the algorithm. In 3D reconstruction, recall is



often used to evaluate the completeness of the reconstructed
models [24]. The F1-Score is a performance metric that
integrates precision and recall into a single value by
calculating their harmonic mean. Precision reflects the
proportion of accurately detected objects out of all detected
objects, whereas recall represents the proportion of correctly
identified objects relative to the total number of ground truth
objects. The F1-Score ranges from 0 to 1, with higher values
signifying improved performance as shown in Tables 2 and 3.
Accuracy is the overall correctness of the reconstructed
models. It measures how many of the reconstructed models are
both relevant and correctly identified. In 3D reconstruction,
accuracy is a composite metric that considers both precision
and recall. The following equations are used to calculate
precision and recall using max distance.

“4)

Max_Distance = Max(D;(gt, pt), D,(pt, gt)) 5)
Precision = D(gt,D,)/Max_Distance (6)
Recall = D(pt, D,)/Max_Distance @)

where, D(a, b) is distance between two different point cloud
models. Max Distance is the maximum distance computed
between the gt ground truth and the pt predicted point cloud.
Precision and Recall are calculated using distances and
Max_Distance results (See Table 4). To calculate the F1-Score
the harmonic mean of precision and recall is used in the
following equation:

Precision

F1Score = 2 * Recall * (¥

Recall + Precision

where, F1Score is the precision and recall combined matric to
measure the accuracy of the model? To calculate accuracy, we
used different loss functions to calculate overall loss and then
this overall loss has been used to compute accuracy.

Liage (P, Targetingn) = Y WH NP =Bl )

LNormal(Pc,Ta‘rgetLength) = Z(l) (||Pi - P]||)2 (10)

Liapiacian(Pe, TarGetiengin) = Y (D (17BN (1)

where, P¢ is predicted point cloud and Target,engen - The
number of points in the point cloud in this article is set to 1024.
P; is the point in the predicted point set and P; is the closest
point in the ground truth point set. A? is the Laplacian operator

that calculates the 2nd derivative of the position of the point
(Table 5).

Overall loss = Ag * Lggge + Ay * Lyormar + A1 (12)

* LLaplacian

where, Overall loss is the loss function calculated using the
combined effect of different weighted loss functions.
Ag, Ay and 4; is the weighted value used at the end to control
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the importance of edge, normal and Laplacian loss functions
respectively in the overall loss function.

Accuracy(X,Y) = 1 — overall loss (13)
where, Accuracy is the overall evaluation of the proposed
system. Overall loss has been computed using a combination
of different types of loss functions with specific weights.

Table 2. Precision, Recall, F1-Score and Accuracy on 3D
using ShapeNetCore

Objects  Precision Recall F1-Score Accuracy (%)
AirPlane  0.7224 0.8342 0.8311 91.2078
Bed 0.9772  0.9561 0.9662 94.2341
Boat 0.6921 0.8352 0.8231 92.1291
Bottle 0.7941 09332 0.8571 95.2978
Car 0.8972  0.8162 0.7432 91.2822
Chair 0.7674 0.9361 0.8432 96.0736
Sofa 0.8547 0.8313 0.8421 93.7224
Table 0.9921 0.8135 0.8939 95.2635
TV/Monitor 0.7772 0.8164 0.7867 89.9726
Mean 0.8440 0.8673 0.8444 93.4969

Table 3. Precision, Recall, F1-Score and Accuracy on 3D

using Pascal3D

Objects Precision Recall F1-Score Accuracy (%)
Air Plane 0.7224 0.8342  0.8311 91.2078
Bed 0.6921 0.8352  0.8231 92.1291
Boat 0.7941 0.9332  0.8571 95.2978
Bottle 0.8972 0.8162  0.7432 91.2822
Car 0.7674 0.9361 0.8432 96.0736
Chair 0.8547 0.8313 0.8421 93.7224
Sofa 0.9921 0.8135 0.8939 95.2635
Table 0.7772 0.8164  0.7867 89.9726
TV/Monitor  0.8250 0.8546 0.827 93.3916
Mean 0.7224 0.8342  0.8311 91.2078

Table 4. Precision, Recall, F1-Score and Accuracy on 3D

using Pix3D
Objects  Precision Recall F1-Score  Accuracy (%)
Bed 0.9538 0.9621 0.9575 96.2619
Chair 0.722 0.832 0.7731 93.7112
Sofa 0.8738 0.882 0.878 94.0075
Table 0.9101 0.8016 0.8518 95.0922
Mean 0.8166 0.8738 0.8409 94.3708

Table 5. IoU on ShapeNetCore, Pascal3D and Pix3D

Objects ShapeNetCore Pascal3D Pix3D
Air Plane 6.02 5.78 --
Bed 5.57 - 5.40
Boat 3.22 5.88 --
Bottle 2.11 3.41 --
Car 7.80 7.84 --
Chair 8.72 8.42 9.29
Sofa 542 6.04 5.98
Table 5.55 5.97 6.20
TV/Monitor 5.87 5.64 --
Mean 5.58 6.13 6.72
Experiment III: Evaluation object overlappling:

Intersection over Union (IoU).

This system has been also evaluated using a comparison of
predicted and ground truth overlapping using Kato,
Intersection over Union (IoU) calculation. This method is best



for the evaluation of a volumetric 3D reconstruction system
(See Table 6). The higher the value of IoU the better the
reconstruction will be.

_ Objge N Objyr _ Y{1(Obj,r > €) x 1(Objg)}
Objg¢ U Objp, — S{I(I(Objpr > €) + 1(0bjge))}

IoU (14)

where, I is the indicator function that shows the ith voxel in
the volumetric 3D shape. € is the threshold where the value
has been computed.

Experiment IV: Comparison with the State-of-the-art

systems

Comparing the performance of 3D reconstruction methods
with the state of the art (SOTA) is an important task in
evaluating the effectiveness of these methods. The state of the
art refers to the best-known method or model that achieves the
highest performance on a given task. In 3D reconstruction, the
state of the art can be determined by comparing the
performance of different methods on standard benchmark
datasets ShapeNetCore, Pascal3D and Pix3D for object
reconstruction. To compare the performance various metrics
have been compared like CD, EMD and IoU.

Table 6. Comparison of IoU with different state-of-the-art methods

Objects ShapeNetCore Pascal3D Pix3D DRC CSD
(Ours) (Ours) (Ours) [18] M
Air Plane 6.02 5.78 -- 570  5.00
Bed 5.57 - 5.40 -- --
Boat 3.22 5.88 -- -- 9.94
Bottle 2.11 3.41 -- - --
Car 7.80 7.84 -- 7.60  5.18
Chair 8.72 8.42 9.29 470 520
Sofa 5.42 6.04 5.98 -- 6.58
Table 5.55 597 6.20 -- --
TVMonito 5 g7 5.64 - ~ 964
Mean 5.58 6.13 6.72 6.00 6.92

5. CONCLUSIONS

This research article has utilized RGB-based data to
reconstruct voxel-based 3D shapes. The system can be used in
various world real-world applications like E-learning, E-
commerce, medical diagnostics, scene understanding and 3D
game development. Initially, RGB image has been given as
input to the model for preprocessing, background removal and
object detection. Next, depth features have been extracted to
estimate the 3D shape of the object. Later on, the points have
been estimated in 3D space. Two neural networks have been
used for voxelization and visualization of objects: The first one
is the EfficientNet which is a convolutional neural network
that uses RGB and depth as input and in return provides the
predicted 3D tensor of objects. The second 3D Tensor has been
used in the octree-based network, each node has a further 8
nodes and the tree expanded till the required number of points
in the 3D shape. The three benchmark datasets; ShapeNetCore,
Pascal3D and Pix3D have been used for the experimentation
of this proposed system. These datasets are based on world
real-world objects. We achieved mean CDs of 0.00387,
0.00317 and 0.00102 on ShapeNetCore, Pascal3D and Pix3D
respectively. Also, IoU has been used to measure the
performance of this system. We achieved mean IoU of 5.58,
6.13 and 6.72 on the above datasets. We compare the proposed
methods with different state-of-the-art methods, showing our
system has much better results. For future directives, we will
find various datasets related to the human face and human
pose. Also mapping 3D of medical images dataset will be done
like X-ray scans and CT-scan.

3D voxel reconstruction has significant real-world
applications in areas such as medical imaging, geospatial
mapping, and industrial design. In healthcare, voxel-based
models are used for precise organ and tumour visualization in
MRI and CT scans. In geospatial studies, they enable detailed
3D terrain mapping. Case studies in archaeology and urban
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planning showcase their utility in reconstructing ancient sites
and simulating city landscapes for infrastructure development.
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