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The rapid accumulation of multimodal data in English teaching environments presents new
opportunities for personalized learning path recommendation. However, existing
approaches struggle to effectively model the complex relationships between standardized
instructional materials and non-standardized learner behaviors, resulting in insufficient
precision in multimodal feature fusion and suboptimal adaptability of recommended
learning paths. To address this limitation, a multimodal attention-driven teaching data fusion
and personalized English learning path recommendation model (MATDF-ELR) was
proposed. In consideration of the contextual specificity of English education, multimodal
features are decoupled into teaching-dependent features, which represent cross-modal
shared instructional content, and learning-diversity features, which capture individual
variations in students’ learning processes. The core innovation of the proposed framework
lies in the teaching data dependency-diversity fusion module (TD3FM). Feature decoupling
is guided through a multi-task loss function, while an interpretable cross-modal attention
mechanism is employed to enable end-to-end mapping from multimodal teaching data to
personalized learning paths. To evaluate the effectiveness of the proposed model, a
multimodal English teaching dataset was constructed, comprising four-modal data collected
from 120 students, along with expert-annotated learning paths. Experimental results
demonstrated that MATDF-ELR achieved an F1@3 score of 0.87 in the learning path
recommendation task, representing a 12.3% improvement over the strongest baseline
method. In addition, the mutual information (MI) metric for multimodal feature fusion was
improved by 18.2%. Visualization analyses further confirmed that the model is capable of
accurately attending to pedagogically salient regions and anomalous learning behaviors.
These findings establish a theoretically grounded and education-oriented technical
framework for multimodal data mining in educational contexts and provide effective support
for the intelligent deployment of personalized English instruction.

1. INTRODUCTION

faces three fundamental challenges. First, pronounced
semantic heterogeneity exists within instructional multimodal

The ongoing digital transformation has driven English
education into a new phase characterized by multimodal data-
driven instruction. Instructional carriers such as textbook text,
blackboard images, spoken audio, and classroom video not
only convey standardized pedagogical knowledge but also
embed rich information regarding students’ learning states and
cognitive characteristics [1-3]. As a core component of
adaptive education, personalized learning  path
recommendation aims to generate learning sequences that
align with individual learner needs by modeling the interaction
between teaching conditions and learning states [4, 5].
However, in current practice, the potential value of
multimodal data has not yet been fully exploited, and
substantial room for improvement remains in aligning
recommended learning paths with students’ actual cognitive
demands.

Multimodal data processing in English teaching scenarios
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data: standardized teaching materials convey normative
knowledge structures, whereas learning performance data
reflect individualized cognitive deviations. This intrinsic
disparity renders conventional cross-modal feature alignment
methods ineffective in establishing meaningful associations
between teaching and learning representations [6, 7]. Second,
existing multimodal fusion approaches often integrate
heterogeneous features in an undifferentiated manner, failing
to distinguish cross-modal shared knowledge features from
modality-complementary indicators of learning difficulty. As
a result, the fused representations lack pedagogical specificity
and are unable to adequately support precise learning path
recommendations [8, 9]. Third, general-purpose multimodal
models typically omit the cognitive principles inherent to
educational contexts. Learning patterns such as knowledge
transfer and dynamic variations in cognitive load are rarely
modeled, leading to learning paths that deviate from
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foundational principles of learning science [10-12].

Notable limitations persist in existing studies. At the level
of multimodal fusion, most approaches rely on shallow
strategies such as simple concatenation or weighted
summation, without designing fusion mechanisms tailored to
the contextual specificity of instructional scenarios [13, 14].
Although generic cross-modal models have demonstrated
strong performance on large-scale datasets, they remain poorly
suited to the alignment requirements of English education,
particularly the need to reconcile correct instructional
exemplars with erroneous learner behaviors [15, 16]. At the
level of learning path recommendation, prevailing methods
primarily construct learner models using single-dimensional
indicators such as test scores or assignment results, while
neglecting the fine-grained cognitive state signals embedded
in multimodal data. This limitation results in insufficient
adaptability in recommended learning paths [17-20].

To address the aforementioned challenges, the MATDEF-
ELR was proposed. The model is grounded in the central
hypothesis of educational multimodal feature decoupling,
under which multimodal representations are separated into a
teaching-norm-dependent subspace that characterizes cross-
modal knowledge sharing and a learning-diversity subspace
that reflects individual cognitive variation. Through the
TD3FM, feature decoupling and targeted fusion are jointly
guided by a multi-task loss function, thereby enabling an end-
to-end mapping from raw multimodal data to interpretable
personalized learning paths.

The main contributions can be summarized below. First, at
the theoretical level, an educational multimodal feature
decoupling hypothesis is formulated, and a corresponding
mathematical modeling framework is established, providing a
new theoretical perspective for feature representation in
educational multimodal data. Second, at the methodological
level, the TD3FM is designed, in which dependency loss and
diversity loss are introduced to achieve feature separation and
fusion under educational constraints, thereby enhancing the
specificity and interpretability of multimodal representations.
Third, at the resource level, the first multimodal dataset
dedicated to English teaching, EMTD-2025, is constructed
and released. The dataset comprises four-modal data collected
from 120 students, accompanied by fine-grained cognitive
state annotations, addressing a critical gap in publicly
available data resources for this domain. Fourth, at the
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empirical level, comprehensive validation is conducted
through quantitative experiments, ablation studies, and
visualization analyses, collectively demonstrating the
superiority of the proposed model in both multimodal fusion
quality and learning path recommendation performance and
providing robust support for practical deployment.

2. Methodology
2.1 Problem formulation

In instructional settings, the multimodal dataset is
formalized as a four-tuple D={T,I,4,V’}, where T denotes the
text modality, encompassing textbook knowledge-point texts
and student assignment texts; / denotes the image modality,
including photographs of classroom blackboard instruction
and illustrative figures from teaching materials; 4 denotes the
audio modality, which records speech data from students’ oral
practice; and V denotes the video modality, consisting of
classroom interaction recordings that reflect students’
cognitive states. According to the educational attributes of the
data, the multimodal dataset is partitioned into two branches.
Branch M,={T.,I} corresponds to static instructional materials
that convey standardized knowledge content, whereas branch
Mp={A,V} corresponds to dynamic learning performance,
reflecting students’ individualized cognitive states and
learning behaviors. This grouping strategy establishes the
structural foundation for subsequent feature decoupling,
enabling the model to separately capture normative
instructional information and personalized learning signals.

Let 4 denote a predefined set of English learning activities,
including knowledge review, oral practice, and assignment
error correction, which are aligned with instructional
objectives. Given the multimodal data sequence Ds of a
student s, the task of personalized learning path
recommendation is to generate a learning activity sequence
P=lai,a,...,ak], with a;€4, such that the sequence is adapted
to the student’s current cognitive state, progressively
compensates for knowledge gaps, and optimizes learning
efficiency. The rationality of the generated sequence is jointly
constrained by the cognitive logic among learning activities
and the student’s real-time learning progress.
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Figure 1. Overall architecture of the MATDF-ELR model



2.2 Overall architecture of MATDF-ELR

The MATDF-ELR model is constructed upon a dual-branch
encoder-decoder framework, which is explicitly designed to
accommodate the grouping characteristics of educational
multimodal data. Following a core logic of “separation-fusion-
mapping,” the architecture comprises four synergistic
components.

First, dual-branch multimodal encoders are employed to
process the static instructional materials branch M, and the
dynamic learning performance branch Mp, respectively.
Partial convolutional kernel parameters are shared between the
two branches, thereby constraining the model to learn cross-
branch knowledge-common features while preserving
modality-specific representations within each branch. Second,
the initial three layers of the encoders are augmented with a
Multimodal Teaching Guidance Module (MTGM), in which
feature modulation is applied to suppress redundant
background information in branch Mp and to enhance effective
learning signals that are aligned with the knowledge content of
branch M. Third, the final two encoder layers are replaced by
the TD3FM, which constitutes the core innovation of the
proposed architecture. Within this module, cross-branch
knowledge dependency relationships and inter-modal learning
diversity features are explicitly modeled, enabling precise
fusion at a high semantic level. Finally, a multi-task decoder
is employed to restore feature resolution through
deconvolution operations while simultaneously optimizing
two objectives: (i) the generation of learning path sequences,
and (ii) the enforcement of consistency constraints for feature
decoupling. Through this joint optimization, personalized
learning paths that are well aligned with students’ cognitive
states are produced. An overview of the overall architecture is
illustrated in Figure 1.

2.3 Dual-branch multimodal encoders

The dual-branch multimodal encoders are designed in
response to the intrinsic differences between static
instructional materials and dynamic learning performance.
Differentiated feature extraction pipelines are constructed to
capture education-relevant information through modality-
specific processing and cross-modal interaction, while a
combination of parameter sharing and separation strategies is
adopted to balance general representation learning and
domain-specific feature modeling. This design establishes a
solid foundation for subsequent feature decoupling and precise
fusion.

Branch A, which targets static instructional materials
composed of text and images, follows a processing paradigm
of modality-specific extraction followed by early cross-modal
interaction, thereby ensuring consistent representation of
standardized knowledge. For the text modality, inputs consist
of textbook knowledge-point texts and assignment text
sequences. Semantic features are extracted using an education-
domain-pretrained Bidirectional Encoder Representations
from Transformers (BERT) variant, which is fine-tuned on
primary and secondary school English teaching corpora to
enhance the capturing of core instructional elements such as
grammatical rules and lexical collocations. The resulting
textual embedding is expressed as:

E=BERT,;(T) (1

In the equation, E,€R*nb where L, denotes the text
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sequence length, and d..» represents the embedding dimension.
The image modality includes photographs of classroom
blackboard writing and illustrative figures from teaching
materials. These inputs are processed by an Edu-CNN
optimized for instructional scenarios. Customized 3 X 3
convolutional kernels are employed to strengthen feature
responses in textual regions and knowledge-point illustrations,
while adaptive pooling is applied to preserve salient visual
information. The resulting visual feature representation is
given by:

F=Edu-CNN(I) 2)

In the equation, F,€R"*dcom wyith H; and W; denoting the
spatial dimensions of the feature map and dcon indicating the
number of convolutional channels. To enable early alignment
between abstract textual knowledge and visual information,
both modalities are linearly projected into a unified feature
space of dimension djson. Subsequently, a cross-modal
attention mechanism is employed to compute relevance
weights between textual and visual features, guiding visual
representations to attend to text-anchored knowledge points.
The fused representation for Branch A is finally obtained as:

F =Cross-Attn(E.F;) 3)

This process effectively associates grammatical points and
lexical items in the textual modality with their corresponding
visual representations, thereby enhancing the semantic
consistency and completeness of feature representations
derived from static instructional materials.

Branch B focuses on dynamic learning performance data
composed of audio and video modalities, with emphasis
placed on extracting education-relevant features that reflect
learners’ cognitive states and their temporal evolution. For the
audio modality, raw speech signals are transformed into Mel
spectrograms S, through pre-emphasis, framing, and
windowing operations. The resulting representations are then
fed into an Audio-CNN to extract acoustic features
encompassing key indicators such as prosodic rhythm, oral
fluency, and pronunciation accuracy. The output is expressed
as:

F =Audio-CNN(S,) @)

In the equation, F,ER’*%_ where T, denotes the temporal
length, and d, represents the dimensionality of acoustic
features. For the video modality, inputs consist of continuous
classroom video frame sequences V. A 3D-CNN model is
employed to capture spatiotemporal features, in which
dimensionality reduction is first performed using 1 x 1 x 1
convolutions, followed by 3 x 3 x 3 spatiotemporal
convolutions to extract salient information. Visual cues such
as facial expressions and gestural movements are explicitly
encoded to quantify students’ learning engagement levels. The
output is expressed as:

Fv:3D'CNN(Vseq) (5)

In the equation, F,€R"*%  with T, denoting the frame
sequence length and d, indicating the visual feature dimension.
Considering the temporal asynchrony between audio and
video streams, linear interpolation is applied to align both
feature sequences to a unified temporal resolution 7. The



aligned features are concatenated to form a joint representation
Concat(F,.F,)eRT @) This joint feature sequence is
subsequently input into a Long Short-Term Memory (LSTM)
network to model temporal learning state dynamics, capturing
fluctuations in oral expression fluency and variations in
classroom attentional engagement. The final integrated
representation for Branch B is obtained as:
Fp=LSTM(Concat(F,,F,)) (6)
To optimize representational capacity and parameter
efficiency, a “shared lower layers-independent higher layers”
parameter configuration strategy is adopted in the encoder.
Specifically, the base visual feature extraction layers,
comprising the first three layers of the Edu-CNN and 3D-CNN,
share convolutional kernel parameters, denoted as Wiu.
while the base textual embedding layers share a common word
embedding matrix W¥,,,.. This design is intended to uncover
cross-branch generic feature patterns and reduce parameter
redundancy and can be expressed as:

F,,..=Shared-Params(X) 7
where, X represents the original visual or textual input.
Through this strategy, the total number of model parameters is
reduced by approximately 32%, while low-level feature
associations between static instructional materials and
dynamic learning performance are simultaneously
strengthened. In contrast, the higher-level feature extraction
layers are designed with branch-specific parameters. For
Branch A, the high-level network employs instructional-norm-
aware parameters, denoted as Task-A-Params, to focus on
standardized characteristics such as knowledge-point
structures and hierarchical relationships among instructional
concepts, yielding:
legh=T ask-A-Params(F y,,) ()
For Branch B, the high-level network utilizes learning-
performance-aware parameters, denoted as Task-B-Params, to
emphasize individualized features, including error patterns,
ability deficiencies, and state fluctuations in learners’
performance, producing:
Fggh:Task-B-Pamms(Fsha,e) )
Through this strategy, model complexity and overfitting
risk are effectively reduced via parameter sharing, while
domain-specific feature extraction for the two data branches is
preserved through independent parameterization. As a result,
an organic balance between general representations and
specialized representations is achieved.

2.4 MTGM

The MTGM is deployed in the first three encoder layers. Its
primary objective is to leverage the normative characteristics
of static instructional materials to guide selective attention
over dynamic learning performance features, thereby
suppressing redundant information unrelated to core
instructional content and strengthening the representation of
cross-modal relevant features. Standardized knowledge
encoded in Branch A is fully utilized as a guiding signal to
precisely modulate features in Branch B, enabling learning
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performance representations to focus more effectively on
information aligned with instructional objectives and
establishing a high-quality foundation for subsequent high-
level feature fusion.

The operational mechanism of MTGM follows a three-stage
process of feature association, weight generation, and feature
modulation. First, the Branch A features F,” and Branch B
features F3 at the I-th encoder layer are concatenated along
the channel dimension, integrating normative instructional
information with initial learning performance representations
to form a cross-modal joint feature. Next, a lightweight
Multilayer Perceptron (MLP) is applied to compress the
feature dimension and to learn association patterns between
the two branches. Through a sigmoid activation function,
attention weights W within the range [0,1] are generated,
quantifying the relevance of each Branch B feature channel to
the instructional content:

W= (MLP([Ffj) ;F‘B”])) (10)

where, [;] denotes channel-wise concatenation, o represents
the sigmoid activation function, and W has the same
dimensionality as F?. Finally, the attention weights are
applied to the original Branch B features via element-wise
multiplication, achieving feature modulation:
Fy=Fow® (11)
In the modulated feature representation F5*, components
that are highly correlated with instructional content are
amplified, while irrelevant or redundant information is
suppressed. Through this process, MTGM establishes an
carly-stage alignment between instructional norms and
learning performance, enhancing feature specificity and
effectiveness, and providing support for the subsequent
precise separation and fusion of dependency and diversity
features.

2.5 TD3FM

The TD3FM constitutes the core innovative component of
the proposed framework and is deployed in the final two
encoder layers as well as at the decoder skip connections. Its
primary objective is to simultaneously capture cross-modal
shared instructional norms and student-specific learning
variation features through feature decoupling and precise
fusion, thereby providing fine-grained and highly targeted

representations for personalized learning path
recommendation. Unlike conventional multimodal fusion
approaches, TD3FM introduces orthogonal subspace

modeling guided by multi-task loss to achieve effective
separation of dependency features and diversity features.
These decoupled representations are subsequently integrated
through a dynamic gating mechanism, enabling fusion that is
explicitly aware of feature disentanglement. This design is
well aligned with the dual requirements of standardized
instruction and personalized learning in English education
scenarios. The overall architecture of TD3FM is illustrated in
Figure 2.

The central premise of TD3FM is the construction of two
orthogonal feature subspaces to enable structured separation
between instructional features and learning variability. The
dependency feature subspace Ss, is dedicated to encoding
cross-modal shared instructional norms, including knowledge-



point systems, grammatical rules, and instructional objectives.
This subspace serves as the key linkage between static
instructional materials and dynamic learning performance. In
contrast, the diversity feature subspace Suv focuses on
encoding individual learner differences, such as knowledge
deficiencies, learning habits, and expressive styles. To enforce
orthogonality between the two subspaces, a feature
disentanglement 10sS Laisentangie 1S designed. MI is employed to
quantify feature dependency and to guide optimization:
La’isentangle:/1 1 Ldep+/12Ldiv ( 1 2)
where, A1 and A are Dbalancing coefficients.
Lioy=—MI(Faep,Fsharea) maximizes the MI between the
dependency features Fy., and the cross-modal shared features
Fiharea, ensuring that instructional norms are accurately
captured. Conversely, Lai=MI(Fiv,Fsharea) minimizes the MI
between the diversity features Fa;, and Fiared, forcing diversity
features to focus exclusively on individual learning variations
beyond shared instructional norms. Through this joint
optimization, approximate orthogonality between the two
subspaces is achieved.
The objective of dependency feature extraction is to capture
cross-modal consistency between static instructional materials

and dynamic learning performance, thereby mining shared
information that is highly correlated with instructional norms.
This process is implemented through a cross-modal attention
mechanism, in which the static instructional features F4 from
Branch A are used as guiding queries to compute relevance
and perform feature selection over the dynamic learning
performance features Fp from Branch B. Through this
mechanism, learning performance features corresponding to
instructional knowledge points, grammatical rules, and other
normative content are precisely extracted:

Fiep=CrossAttn(F 4,F ;0 4,,) (13)
where, 04, denotes the set of learnable parameters of the cross-
modal attention. By computing attention weights between
instructional knowledge representations in F, and learning
behaviors in Fj, learning performance features are aligned
with instructional norms. For example, oral expression
features corresponding to textbook grammar points and video-
based attentional behaviors related to blackboard knowledge
cues are selectively emphasized, ensuring that the dependency
features accurately reflect the core linkage between instruction
and learning.

Cross-branch knowledge dependency feature extraction

Fusion of dependency features and diversity features
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Figure 2. Architecture of the TD3FM

In contrast, diversity feature extraction is intended to
uncover student-specific characteristics manifested during the
learning process, thereby highlighting inter-individual
differences in ability and learning style. This process
integrates intra-modal self-attention with a contrastive
learning mechanism. Initially, self-attention is applied
independently within F, and Fp to extract fine-grained
modality-specific features, capturing individualized error
patterns in textual assignments and distinctive behavioral
habits in video. Subsequently, contrastive learning is
employed to enhance the discriminability of features across
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different students, enabling diversity features to effectively
represent individualized learning deficiencies and stylistic
variations:

F si,=ContrastiveSelfAttn(F 4,Fg;0,:,) (14)
where, 64 denotes the joint parameter of the self-attention and
contrastive learning. Through this design, intra-modal self-
attention is used to focus on modality-specific personalized
details, while contrastive learning amplifies inter-individual
differences across students. As a result, Fy, can accurately



characterize students’ unique learning states, thereby
providing differentiated evidence for personalized learning
path recommendation.

To achieve effective integration of dependency features and
diversity features, a dynamic gating mechanism is designed to
adaptively adjust the fusion weights of the two feature types,
allowing the fused representation to be dynamically tailored to
specific learning tasks and student states. By analyzing the
core requirements of the current learning context, the gating
mechanism outputs a dynamic weight vector and performs
weighted fusion over Fye, and Fip:

Ffusion:Gate(Fdep:Fdiv)'[Fdep;Fdiv] (15)
where, Gate( ) denotes a gating function constructed using an
MLP, and [;] represents channel-wise concatenation. When
reinforcement of foundational knowledge points is required,
higher weights are assigned to Fgp; conversely, when
individualized deficiencies need to be addressed, the
contribution of Fy;, is increased. Through this dynamic fusion
strategy, the guiding role of instructional norms is preserved
while the specificity of individual differences is emphasized.
The resulting fused representation  Ffion provides
comprehensive and precise feature support for subsequent
personalized learning path recommendations.

2.6 Multi-task decoder and path generation

The multi-task decoder, serving as the output component of
the model, is responsible for mapping the fused
representations Fjion produced by the TD3FM to personalized
learning paths. Its design jointly considers recommendation
accuracy and consistency of feature decoupling. Through a
hierarchical decoding architecture and multi-task loss function,
a precise mapping from features to paths is achieved, while the
orthogonality between dependency features and diversity
features is preserved. As a result, learning activity sequences
that conform to cognitive learning principles and adapt to
individual learner needs are generated.

A hierarchical decoding strategy is adopted, following a
cognitive logic of “knowledge-domain localization followed
by specific activity matching,” thereby ensuring the rationality
and task relevance of the generated paths. First, an upper-level
decoding network performs semantic abstraction over Fjion to
predict the knowledge domains requiring reinforcement. This
stage primarily attends to the instructional-norm information
encoded in the dependency features Fg,, ensuring alignment
between domain localization and instructional objectives.
Subsequently, a lower-level decoding network matches
concrete learning activities within the localized domains by
incorporating individualized information from the diversity
features Fuy. To enhance feature utilization efficiency, an
attention mechanism is embedded within each decoding layer.
During decoding, attention weights over Fgu, and Fg, are
dynamically computed, allowing the decoding process to
focus on the most task-relevant feature components.
Specifically, the domain localization stage emphasizes the
guiding role of dependency features reflecting instructional
norms, whereas the activity matching stage strengthens the
personalized adaptation enabled by diversity features, thereby
achieving precise alignment between features and objectives.

To balance optimality of path generation with
computational efficiency, a beam search algorithm is
employed to generate the top-K candidate learning paths,
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while explicitly accounting for temporal dependencies among
learning activities and cognitive coherence across the
sequence. The objective of path generation is to identify the
learning activity sequence that maximizes the overall sequence
probability, which can be formulated as:

P*: arg m}gx Zlél 10g P (at‘a<tstuSion) (1 6)

where, P* denotes the optimal learning path, a, represents the
learning activity at step ¢, a<t denotes the historical sequence
composed of the first #—1 activities, and P(a/a<t,Fjsion) is the
predicted activity probability given the historical sequence and
the fused feature representation. Through beam search, the
top-K candidate activities with the highest probabilities are
retained at each step, thereby avoiding the local optimum
limitations of greedy search while maintaining manageable
computational complexity. The generated paths are
constrained to follow fundamental cognitive progression
principles, such as “from foundational knowledge to advanced
application” and “from consolidation to enhancement.” For
example, knowledge review activities are scheduled prior to
targeted practice, followed by error correction and reflective
reinforcement, ensuring both path executability and learning
effectiveness.

To achieve joint optimization of path recommendation
performance and feature disentanglement quality, a multi-task
loss function is designed. The overall objective is formulated
as a weighted combination of the path recommendation loss,
the dependency feature loss, and the diversity feature loss:

Ltotal:a‘Ldep Jr:BLdiv ( 1 7)
where, L,u» denotes the cross-entropy loss for path
recommendation, which is used to optimize the prediction
accuracy of learning activity sequences by measuring the
discrepancy between the generated paths and expert-annotated
reference paths. Lsp, and Lg inherit the feature
disentanglement losses defined in Section 2.5, ensuring
consistency of feature separation during decoder training. a
and £ serve as balancing parameters to regulate the relative
optimization emphasis among tasks. Through this multi-task
loss function, improvement in path recommendation accuracy
is achieved while preserving the orthogonality between
dependency features and diversity features, thereby preventing
representational degradation caused by single-task training
and enabling coordinated enhancement of overall model
performance.

3. EXPERIMENTAL DESIGN AND DATASET

To comprehensively validate the effectiveness of the
MATDF-ELR model, the first multimodal dataset dedicated to
English teaching, EMTD-2025, was constructed, and a dual-
dimensional evaluation framework was designed to assess
both multimodal fusion quality and path recommendation
performance. Through comparisons with state-of-the-art
baseline models and ablation studies, the individual
contributions of each model component were rigorously
examined.

3.1 Construction of the EMTD-2025 dataset

The dataset was sourced from undergraduate English



courses for non-English majors at three universities of focuses on standardized instructional content and student

different institutional tiers, covering a complete 16-week learning outputs, with structured annotations applied to ensure
instructional cycle. A total of 120 students were included, the identifiability of knowledge points and error types. The
comprising 58 male and 62 female students, with 40 students image modality targets key visual information in instructional
each from the first, second, and third academic years. All settings, where bounding boxes and semantic segmentation are
participants provided written informed consent, and the data used to localize knowledge-related regions. The audio
collection protocol received approval from the institutional modality emphasizes oral proficiency, with annotations
ethics committees. Privacy protection requirements were covering three core evaluation dimensions: pronunciation,
strictly observed, and all personally identifiable information grammar, and fluency. The video modality captures dynamic
was anonymized. Each student was required to provide learning states, with behavioral and facial expression
complete four-modal data, including text, image, audio, and annotations employed to quantify learning engagement and
video modalities, ensuring the integrity and alignment of cognitive state. All data were standardized in format and
multimodal features. This design provides high-quality data subjected to quality control procedures. Samples with low
support for cross-modal fusion and path recommendation. visual or acoustic clarity or lacking effective information were

All  four modalities underwent data screening, removed. After filtering, more than 800 valid multimodal
preprocessing, and fine-grained annotation, with detailed sample sets were retained.

specifications summarized in Table 1. The text modality

Table 1. Multimodal data statistics of the EMTD-2025 dataset

Modality Data Type Scale Annotation Content
Text Textbook chapters and student 200 pages + 500 Knowledge-point labels, error types, and teacher
assignments submissions annotations
Tmage Blackboard photographs and textbook 300 images + 150 Knowledge-point bounding boxes, semantic
illustrations images segmentation, and key regions
Audio Oral practice recordings 800 clip(sslgsfo s per Pronunciation errors, gragn;lclz;lc):al errors, and fluency (1-

Facial expressions, gestures, gaze direction, and

Video Key frames from classroom recordings 20,000 frames
engagement level

Annotation was independently conducted by three senior attention mechanisms to multimodal integration. Advanced
teachers with more than 10 years of English teaching fusion models included Contrastive Language-Image Pre-
experience. Prior to annotation, standardized training was training for Education (CLIP-Edu), which is adapted to
provided to ensure consistency of annotation criteria. The educational scenarios, and multimodal BERT, representing the
annotations were organized into three categories. First, current state-of-the-art in general-purpose multimodal fusion.
knowledge-point labels covered three major modules— For all fusion baselines, the feature extraction components
grammar, vocabulary, and pronunciation—with a total of 60 were kept identical to those of the MATDF-ELR, and only the
fine-grained knowledge points. Second, learning state labels fusion modules were replaced, thereby guaranteeing a fair
included levels of knowledge mastery and 12 common error comparison.
types. Third, optimal learning path annotations were provided For learning path recommendation, three mainstream
as personalized activity sequences tailored to each student’s categories of methods were included. Traditional knowledge
current learning state, serving as the ground truth for the path tracing approaches, including Bayesian Knowledge Tracing
recommendation task. After annotation, inter-annotator (BKT) and Deep Knowledge Tracing (DKT), were selected to
agreement was assessed using Cohen’s kappa coefficient. The represent classical recommendation strategies based on single-
kappa values for knowledge-point labels, learning state labels, modality performance data. Sequential recommendation
and path annotations were 0.87, 0.83, and 0.81, respectively, models, such as Gated Recurrent Unit for Recommendation
all indicating a high level of agreement and ensuring the (GRU4Rec), Self-Attentive Sequential Recommendation
reliability of the annotations. (SASRec), and Sequential Recommendation  with

Bidirectional Encoder Representations from Transformer
3.2 Baseline models (BERT4Rec), were employed to evaluate the effectiveness of
general  sequence  modeling  techniques in  path

To comprehensively evaluate the performance advantages recommendation tasks. Education-specific recommendation
of the MATDF-ELR, two categories of baseline models were models included the Educational Recommender System
selected for comparison. Multimodal fusion baselines were (EduRec) and Knowledge-Path, both of which are explicitly
used to assess feature fusion capability, whereas learning path designed for educational contexts. EduRec emphasizes
recommendation  baselines  focused ~on  validating multimodal instructional data, whereas Knowledge-Path
recommendation effectiveness. All baseline models were focuses on knowledge graph-guided path generation, ensuring
trained and optimized using the same dataset and experimental that the comparison covers representative methods across
settings. diverse technical paradigms.

For multimodal fusion, three representative groups of
methods were considered. Simple fusion methods, including 3.3 Evaluation metrics
feature concatenation and weighted summation, were adopted
as fundamental performance references. Attention-based A dual-dimensional evaluation framework was designed to
fusion methods, such as cross-modal attention and multi-head quantify both the technical quality of multimodal fusion and
attention, were selected to evaluate the basic contribution of the educational effectiveness of path recommendation, thereby
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providing a comprehensive assessment of technical
performance and practical applicability.

Three categories of core metrics were employed to evaluate
multimodal fusion quality. MI-based metrics, including MI,
Normalized Mutual Information (NMI), and Adjusted Mutual
Information (AMI), were used to measure the strength of
cross-modal feature associations, where higher values indicate
greater consistency in fused representations. Correlation-
based metrics were applied to quantify linear relationships
between features across modalities, reflecting the
effectiveness of cross-modal alignment. In addition, an
education-specific metric, namely knowledge-point alignment
accuracy, was adopted and defined as the correctness of
matching between fused features and annotated knowledge
points, directly capturing the suitability of fused
representations for educational contexts.

Evaluation metrics for path recommendation were designed
at three levels. Sequence matching metrics, including F1@K,
Precision@K, and Recall@K, were used to measure the
overlap between recommended paths and ground-truth paths.
Ranking quality metrics, such as Mean Average Precision
(MAP) and Normalized Discounted Cumulative Gain
(NDCG), were employed to assess the rationality of activity
ordering within recommended sequences. Furthermore,
educational effectiveness metrics were incorporated, including
blind teacher evaluation scores, learning efficiency gains, and
cognitive load ratings, collectively reflecting the real-world
educational value of the recommended learning paths.

3.4 Experimental settings

The experimental hardware configuration consisted of four
NVIDIA A100 GPUs (40 GB memory each). The software
implementation was based on PyTorch 2.1 and the
Transformers library, ensuring efficient and stable model
training. Hyperparameters were optimized via grid search,
with key settings specified as follows: a batch size of 16, an
initial learning rate of 1e-4, a feature dimension of 256, eight
attention heads, and loss balancing coefficients of 41 = 0.3, 12
=0.2,2=0.3,and #=0.2. Model training was conducted using
five-fold cross-validation, and an early-stopping strategy was

applied based on validation performance to prevent overfitting.

Final results were reported as the average across five folds,
ensuring robustness and stability of the experimental
outcomes.

To verify the necessity and individual contributions of the
core components of the MATDF-ELR, four ablation
experiments were designed. First, the TD3FM was removed
and replaced with conventional cross-modal attention fusion.
Second, the multi-task loss was removed, retaining only the
cross-entropy loss for path recommendation. Third, the
MTGM was removed, and feature fusion was performed

directly on the outputs of the dual-branch encoder. Fourth, the
feature decoupling mechanism was removed, and training was
conducted using entangled (non-separated) feature
representations. By comparing the performance differences
between the full model and each ablated variant, the individual
contributions of the TD3FM, multi-task loss, MTGM, and
feature decoupling mechanism were quantitatively assessed,
thereby clarifying the principal sources of performance
improvement.

4. EXPERIMENTAL RESULTS AND ANALYSIS

To systematically evaluate the advantages of the MATDF-
ELR in terms of multimodal fusion quality and personalized
learning path recommendation performance, this section is
organized around three perspectives: primary experimental
results, ablation studies, and parameter sensitivity analysis.
Quantitative results were integrated with qualitative analysis
to provide an in-depth interpretation of the model’s core value
and technical soundness.

4.1 Main experimental results

To evaluate the model’s capability in educational
multimodal data fusion, the fusion performance of the
MATDF-ELR was compared with that of baseline models
using five core metrics. The results are summarized in Table
2. Across all metrics, the MATDF-ELR consistently achieved
the best performance. In particular, the MI-based metrics (MI,
NMI, and AMI) reached values of 0.78, 0.69, and 0.67,
respectively, representing improvements of 18.2%, 15.0%,
and 13.6% over the strongest baseline model, the Multimodal
Bitransformer (MMBT). These improvements were confirmed
to be statistically significant based on paired t-tests (p < 0.01),
indicating that the proposed model is able to effectively
capture intrinsic associations among cross-modal features.
More importantly, with respect to the education-specific
metric, namely Knowledge Alignment Accuracy (KAA), the
MATDF-ELR achieved a score of 0.83, exceeding MMBT by
15.6% and substantially outperforming other general-purpose
fusion models. This result demonstrates that the feature
decoupling mechanism and education-oriented design of the
TD3FM enable precise alignment between multimodal
representations and instructional knowledge points, thereby
addressing the semantic misalignment commonly observed in
conventional fusion approaches applied to educational
scenarios. In terms of Canonical Correlation Analysis (CCA)
scores, the MATDF-ELR attained a value of 0.72,
outperforming all baseline models. This further confirms the
linear correlation and fusion consistency of cross-modal
features achieved by the proposed framework.

Table 2. Comparison of multimodal fusion quality (mean + standard deviation)

Model MI NMI AMI CCA Score KAA
Concat-Fusion 0.52 +£0.04 045+0.03 0.43+0.03 0.48 £0.04 0.56 = 0.05
Weighted-Fusion 0.55+0.03 048 £0.02 0.46+0.02 0.51 £0.03 0.59 +0.04
CrossModal-Attention 0.61+0.03 0.53+0.03 0.51 +£0.03 0.57+0.03 0.65+0.04
MultiHead-Attention 0.63 £0.02 0.55+0.02 0.53+0.02 0.59 +0.02 0.67 £ 0.03
CLIP-Edu 0.68 +£0.02 0.59+0.02 0.57+0.02 0.64 +0.02 0.71 £0.03
MMBT 0.66 +0.02 0.60+0.02 0.59+0.02 0.65 +0.02 0.72 £ 0.03
(Proposed) MATDF-ELR 0.78 £0.02 0.69+0.01 0.67+0.01 0.72 £ 0.02 0.83 £0.02
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Path recommendation performance was evaluated using
sequence matching and ranking quality metrics, with the
results summarized in Table 3. The MATDF-ELR consistently
outperformed baseline models in Precision@K, Recall@K,
and F1@K. Notably, the core metric F1@3 reached 0.87,
representing a 12.3% improvement over the strongest baseline,
Knowledge-Path. In addition, F1@1 and F1@5 achieved 0.79
and 0.82, respectively, further confirming the model’s
advantage in both short-sequence and medium-to-long-
sequence recommendation scenarios. With respect to ranking
quality, the MATDF-ELR attained MAP = 0.85 and NDCG =
0.88, corresponding to improvements of 10.5% and 9.8% over
Knowledge-Path. These results indicate that the generated
learning paths not only exhibit high overlap with ground-truth
paths but also demonstrate activity ordering that is more

consistent with cognitive learning logic. In blind teacher
evaluations, the MATDF-ELR achieved a score of 4.3/5.0,
substantially higher than all comparison methods, whereas
Knowledge-Path reached 3.7/5.0. This outcome suggests that
the recommended paths are more closely aligned with
practical instructional requirements in terms of knowledge-
point progression and difficulty gradient design, highlighting
the value of education-specific modeling. By contrast,
traditional knowledge tracing methods and general-purpose
sequential recommendation models exhibited inferior
performance, with F1@3 scores below 0.70, indicating that
reliance on single-modality data or generic sequence modeling
is insufficient for exploiting the fine-grained cognitive
information embedded in multimodal educational data.

Table 3. Comparison of path recommendation performance (mean + standard deviation)

. Knowledge (Proposed)
Metric BKT DKT GRU4Rec SASRec BERT4Rec EduRec _Path MATDF-ELR
Precision@l  0.52+0.04 0.58+0.03  0.61+0.03 0.63 £0.02 0.65+0.02 0.70£0.02  0.72+0.01 0.79 £0.01
Precision@3 048+0.03 0.54+0.03 0.57+0.02 0.59 +0.02 0.61+0.02 0.68+0.02 0.74+0.01 0.82 £0.01
Precision@5 045+0.03 0.51+0.02 0.53 +0.02 0.55+0.02 0.57+0.02  0.64 +0.01 0.70 £0.01 0.78 £0.01
Recall@1 0.52+0.04 0.58+0.03 0.61+0.03 0.63 +£0.02 0.65+0.02 0.70£0.02  0.72+0.01 0.79 £0.01
Recall@3 0.61+£0.03 0.67+0.02 0.69+0.02 0.71 £0.02 0.73+0.02  0.78 £0.01 0.81 +£0.01 0.86 +0.01
Recall@5 0.68+0.03 0.73+0.02 0.75+0.02 0.77 £0.02 0.79 £0.01 0.82 +£0.01 0.84 +0.01 0.89 £0.01
Fl@l 0.52+0.04 0.58+0.03 0.61+0.03 0.63 +£0.02 0.65+0.02 0.70+0.02 0.72+0.01 0.79 £0.01
Fl@3 0.54+£0.03 0.60+0.02 0.62+0.02 0.64 +0.02 0.67+0.02  0.73+0.01 0.77 £0.01 0.87 £0.01
Fl@5 0.54+£0.03 0.59+0.02 0.62+0.02 0.64 +0.02 0.66+0.02  0.72+0.01 0.76 +£0.01 0.82+£0.01
MAP 0.53+0.03 0.59+0.02 0.62+0.02 0.64 +0.02 0.67+0.02  0.72+0.01 0.77 £0.01 0.85+0.01
NDCG 0.55+0.03 0.61+0.02 0.64+0.02 0.66 +0.02 0.69+0.02  0.75+0.01 0.80 £0.01 0.88 £0.01
T;‘igllger 2804  3.1+03 32403 33403 34403 35403 3.7+02 43402
Table 4. Educational effectiveness evaluation results (mean =+ standard deviation)
Model Learning Efficiency Gain (%) Cognitive Load Score (1-5) Student Satisfaction (%)
BKT 123+£1.5 32+04 41+5
DKT 145+1.3 33+£03 45+£4
GRU4Rec 157+1.2 3.4+£03 48 £4
SASRec 169 +1.1 3.5+0.3 51+4
BERT4Rec 182+1.0 3.6+0.2 55+3
EduRec 20.1+0.9 41+0.2 58+3
Knowledge-Path 19.3+£0.8 4.0+0.2 65+3
(Proposed) MATDF-ELR 23.5+0.7 3.840.2 82+2

To further assess practical educational value, an educational
effectiveness evaluation was conducted across three
dimensions: learning efficiency, cognitive load, and student
satisfaction. The results are presented in Table 4. The paths
recommended by the MATDF-ELR achieved a learning
efficiency gain of 23.5%, representing an improvement of 4.2
percentage points over the strongest baseline, Knowledge-
Path, indicating that the generated paths are able to precisely
match learners’ knowledge gaps and substantially enhance
learning outcomes. With respect to cognitive load, the
MATDEF-ELR obtained a score of 3.8/5.0, which falls within a
moderate range and is lower than those of EduRec and
Knowledge-Path. This result suggests that effective learning
gains are achieved without inducing excessive cognitive
burden, thereby aligning with cognitive load theory in learning
science and avoiding over-complex path designs. Results from
the student satisfaction survey further corroborate the
personalized adaptation capacities, with 82% of students
reporting that the paths recommended by the MATDF-ELR
were better aligned with their individual learning needs—
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substantially higher than all baseline models. Collectively,
these outcomes demonstrate that the MATDF-ELR not only
excels on technical performance metrics but also delivers high
practical value in real educational settings, effectively
balancing learning effectiveness and learning experience.

4.2 Ablation study results

To verify the necessity and individual contributions of the
core components in the MATDF-ELR, four ablation
experiments were conducted, with the results reported in Table
5. When the TD3FM was removed, F1@3 decreased to 0.76,
representing a 10.5% reduction relative to the full model,
while KAA declined by 14.2% to 0.71. In addition, the
multimodal fusion quality metrics MI and NMI exhibited
substantial degradation. These results indicate that the
dependency-diversity ~ feature decoupling and fusion
mechanism implemented in the TD3FM constitutes the
primary driver of performance gains, whereas conventional
attention-based fusion fails to effectively distinguish



instructional norms from individual learning differences.
When the multi-task loss was removed and only the path
recommendation loss was retained, F1@3 decreased to 0.79
and KAA to 0.75, with a 32.1% reduction in feature
decoupling quality. This outcome demonstrates that the multi-
task loss effectively constrains the orthogonality of decoupled
features, preventing feature representation degradation caused
by single-task training. Upon removal of the MTGM, F1@3
declined by 6.9% to 0.81, and KAA decreased by 8.4% to 0.76,
indicating that the MTGM plays a critical role in suppressing
early-stage feature redundancy and enhancing the specificity

of subsequent fusion. When the feature decoupling mechanism
was entirely removed, a comprehensive performance
degradation was observed, with F1@3 reduced to 0.74 and
KAA to 0.69. This finding provides strong empirical support
for the educational multimodal feature decoupling hypothesis,
as entangled representations lead to mutual interference
between instructional norms and individual differences,
thereby reducing the accuracy of path recommendation.
Across all metrics, the full model consistently achieved the
best performance, further confirming the effectiveness of
coordinated interaction among all components.

Table 5. Ablation study results (mean + standard deviation)

Model Variant Fl@3 KAA MI NMI Teacher Rating
Full model (MATDF-ELR) 0.87+0.01 0.83 £0.02 0.78 £0.02 0.69 £0.01 43+£0.2
Without the TD3FM 0.76 £0.01 0.71 £0.02 0.66 =0.02 0.58 £0.02 3.6£0.2
Without the multi-task loss 0.79 £0.01 0.75 £0.02 0.70 £0.02 0.61 £0.02 3.8+0.2
Without the MTGM 0.81 £0.01 0.76 £ 0.02 0.72 £0.02 0.63 +£0.01 39+0.2
Without the feature decoupling mechanism 0.74 £ 0.01 0.69 +0.02 0.64 +£0.02 0.56 £ 0.02 35+£02

Table 6. Results of parameter sensitivity analysis

M A2 Fl@3 KAA Teacher Rating Student Satisfaction (%)
0.1 0.1 0.78 £ 0.01 0.72 +£0.02 3.7+£0.2 68 £3
0.1 0.2 0.79 +£0.01 0.73 +£0.02 3.8+0.2 71£3
0.1 0.3 0.80+0.01 0.74 +£0.02 3.7+0.2 73£2
0.3 0.1 0.85+0.01 0.81+0.02 4.1+02 78 £2
0.3 0.2 0.87+0.01 0.83 +£0.02 43+0.2 82+2
0.3 0.3 0.86 £0.01 0.82 +0.02 42+02 81+2
0.5 0.1 0.84 +0.01 0.82 +£0.02 42+02 77+2
0.5 0.2 0.85+0.01 0.83 +£0.02 4.1+02 79+£2
0.5 0.3 0.83 £0.01 0.81+0.02 4.0+0.2 76 £2
0.7 0.2 0.80+0.01 0.80 +0.02 39+0.2 74£2

A parameter sensitivity analysis was conducted for the key
balancing coefficients 41 and /2 in the feature decoupling loss,
with the results summarized in Table 6. When 41 was set within
the range of 0.3-0.5, both F1@3 and KAA remained at
consistently high levels. In particular, F1@3 reached its peak
value of 0.87 at 41 = 0.3. When 4 <0.3, insufficient capture of
dependency features resulted in a decline in KAA; conversely,
when A1 > 0.5, excessive emphasis on dependency features
suppressed diversity features, leading to a decrease in student
satisfaction. The optimal range for 4 was identified as 0.1-0.3,
with overall model performance maximized at 1> = 0.2. When
A2 < 0.1, the extraction of individual difference features was
insufficient, resulting in reduced personalization of learning
paths. When A» > 0.3, diversity features became overly
dominant, causing the generated paths to deviate from
instructional norms and leading to lower teacher ratings. These
results indicate that the proposed model exhibits a reasonable
degree of robustness to key hyperparameters. Moreover, the
optimal parameter ranges are consistent with the core
educational principle that instructional norms should serve as
the primary guidance, complemented by individual
differences, thereby further validating the rationality of the
model design.

4.3 Case analysis

In this study, the dynamic learning performance branch
incorporates multimodal information such as classroom scene
visual data. One of the core objectives of the preprocessing
stage is the accurate localization of learning subjects. The
effectiveness of this stage is illustrated through visualization

results. Figure 3(a) presents the localization results in a whole-
class instructional scenario. The regions enclosed by red
bounding boxes fully cover all students and the instructor in
the classroom, achieving a localization accuracy of 100%.
This outcome demonstrates the model’s capability to
effectively identify learning subjects in high-density
classroom environments, indicating strong adaptability to the
subject distribution characteristics of large-scale teaching
settings. Figure 3(b) corresponds to a small-group interaction
scenario, in which the bounding boxes precisely cover students
seated in groups together with the guiding instructor. No
boundary overflow or subject omission is observed, indicating
that the model is well suited to decentralized subject layouts
typical of small-scale interactive learning environments.

To assess the model’s robustness to non-ideal visual
conditions, the original scene images were subjected to
stylization processing. As shown in Figures 3(c) and 3(d), the
localized regions delinecated by red bounding boxes
maintained consistent subject coverage with the original
scenes, and no localization drift was observed despite changes
in visual appearance. These results indicate strong resistance
to visual perturbations in the processing of visual modality
data, demonstrating that learning subjects can be stably
captured across varying presentation styles. Collectively, the
visualizations confirm the effectiveness and robustness of the
visual preprocessing stage within the dynamic learning
performance branch. Accurate localization of learning
subjects provides essential spatial grounding for subsequent
extraction of individual learning performance features and
constitutes a critical prerequisite for constructing learning
diversity features.
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(a) Visualization of learning subject localization in an original

whole-class instructional scenario
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(c) Visualization of learning subject localization in a stylized

whole-class instructional scenario

(b) Visualization of learning subject localization in an
original small-group interaction scenario

(d) Visualization of learning subject localization in a stylized

small-group interaction scenario

Figure 3. Original and stylized visualizations of learning subject localization in whole-class instruction and small-group
interaction scenarios

Table 7. Comparison of learning path recommendations for Student A

Model Attention

Step Model-Recommended Activity Weight Teacher-Recommended Activity Activity Type Overlap
Review the textbook definition and Review the textbook definition and Knowledge
1 0.93 S Yes
formulas of the present perfect tense formulas of the present perfect tense consolidation
Targeted practice Qf present perfect 0.89 Targeted practice (?f present perfect Skill reinforcement Yes
temporal adverbial collocations temporal adverbial collocations
Oral imitation: standard present Analysis of tense-related error cases .
3 . . 0.91 . . Error correction No
perfect expression recordings in assignments
4 Analysis of tense-related error cases 0.87 Group discussion of tense confusion Collaborative No
in assignments ' scenarios learning
5 Complete three comprehensive 085 Complete three comprehensive Comprehensive Yes
present perfect exercises ) present perfect exercises assessment

Further validation of path rationality and personalized
adaptation was conducted using Student A, who exhibited
difficulties with the present perfect tense, by comparing the
model-recommended path and the expert teacher-annotated
path. As shown in Table 7, the overlap between the two paths
reached 60%, with overlapping steps including reviewing the
textbook definition and formulas of the present perfect tense,
targeted practice of temporal adverbial collocations, and
completion of three comprehensive present perfect exercises.
These steps correspond to core instructional phases—
knowledge consolidation, skill reinforcement, and
comprehensive assessment—indicating strong alignment
between the model-generated path and professional
pedagogical logic.

The divergence between the two paths was concentrated at
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Steps 3 and 4. The model recommended “oral imitation using
standard present perfect expression recordings” and “analysis
of tense-related error cases in assignments,” whereas the
teacher-recommended path included “analysis of tense-related
error cases in assignments” and “group discussion of tense
confusion scenarios.” An examination of Student A’s
multimodal features indicated that the written assignment error
rate for the present perfect tense was relatively low (12%),
while the oral expression error rate related to tense confusion
reached 47%, accompanied by a pronunciation accuracy score
of 2.3/5.0. These patterns suggest a pronounced individual
profile characterized by strong written proficiency and weak
oral performance. Such individual differences were captured
through the diversity features learned by the model, prompting
the early introduction of targeted oral practice. By contrast, the



teacher-recommended path did not fully incorporate oral
performance data and remained primarily focused on
traditional written error correction and collaborative learning
activities. Further validation of path effectiveness
demonstrated that, after following the model-recommended
path, Student A’s oral tense error rate decreased to 18%, and
pronunciation accuracy improved to 3.8/5.0, markedly
exceeding the improvements achieved after following the
teacher-recommended path.

This case analysis indicates that the model-recommended
path preserves alignment with the core components of expert-
designed paths while achieving personalized adaptation based
on the outcomes of feature decoupling. The limitations of
conventional expert-designed paths in capturing fine-grained
individual differences are thereby mitigated, underscoring the
central value of multimodal feature decoupling in personalized
learning path recommendation.

4.4 Discussion

The proposed MATDF-ELR model demonstrates
substantial scenario adaptability and technical advantages in
multimodal data fusion and personalized learning path
recommendation for English education. The core design of
educational multimodal feature decoupling is closely aligned
with the pedagogical principle of balancing standardized
instruction and personalized learning. By encoding cross-
modal instructional norms through dependency features and
capturing individual learning differences through diversity
features, the model ensures both instructional soundness and
precise personalization of recommended paths. In addition, the
visualization of attention mechanisms provides explicit
decision evidence for path recommendation, mitigating the
“black-box” nature of models and meeting the interpretability
requirements intrinsic to educational applications. The end-to-
end framework further avoids the subjectivity and inefficiency
associated with manual feature engineering in traditional
approaches, enabling direct path generation from raw
multimodal data and substantially enhancing practical
usability and generalization potential. Experimental results
consistently indicate superior performance in both fusion
quality and recommendation effectiveness relative to existing
baselines, thereby validating the effectiveness of the proposed
design.

The application of the proposed model remains subject to
several limitations. First, a strong dependence on annotated
data is observed: the fine-grained annotation of the EMTD-
2025 dataset requires sustained involvement from experienced
teachers, leading to long annotation cycles and high costs. For
large-scale deployment, semi-supervised or weakly supervised
annotation strategies should be explored. Second, modal
coverage remains constrained. The current implementation
includes four core modalities—text, image, audio, and
video—while emerging educational data sources such as
learning notes and digital interaction traces are not yet
incorporated, potentially omitting certain fine-grained
cognitive state information. Third, domain generalization
requires further validation. While extensive evaluation has
been conducted in English teaching scenarios, differences in
knowledge structures and learning behavior modalities across
disciplines may necessitate additional adaptation of the feature
decoupling subspace definitions.

From the perspective of educational practice, three key
implications can be derived. First, the granularity of

3146

personalized learning can be substantially enhanced. Subtle
individual differences—such as cases in which written
knowledge is well mastered while oral expression remains
weak—can be effectively identified, thereby providing
technical support for truly individualized instructional
strategies. Second, path generation is aligned with established
learning science principles. The recommended paths follow a
cognitive progression from knowledge consolidation to skill
reinforcement and ultimately to comprehensive assessment,
while diversity features are used to adapt to individual learning
pace, achieving an effective balance between learning
effectiveness and cognitive load. Third, decision support for
instructors can be provided. The generated paths can serve as
references for teachers when designing personalized
instructional plans, reducing the time required for path
planning. In addition, insights derived from multimodal data
analysis can complement teachers’ subjective judgments of
students’ learning states, facilitating a shift toward an
integrated decision-making paradigm that combines data-
driven insights with professional expertise.

5. CONCLUSION AND OUTLOOK

To address the core demands of multimodal data fusion and
personalized learning path recommendation in English
teaching scenarios, the MATDF-ELR model integrating a
feature decoupling mechanism was introduced. Orthogonal
subspaces for dependency features and diversity features were
innovatively constructed, enabling effective separation and
precise fusion of cross-modal instructional norm knowledge
and individual student differences. Experimental results
demonstrated that the proposed model significantly
outperformed existing baselines in both multimodal fusion
quality (with MI 0.78 and KAA 0.83) and path
recommendation performance (with Fl@3 0.87).
Furthermore, attention visualization and case analyses
substantiated the model’s interpretability and educational
suitability. Beyond mitigating the accuracy limitations caused
by feature entanglement in conventional multimodal fusion
approaches, this work provides robust technical support for
personalized English learning path generation, thereby
validating the feasibility and superiority of feature decoupling
in educational multimodal data analysis.

Future research will be pursued along four directions. First,
semi-supervised and weakly supervised learning strategies
will be explored, in conjunction with pseudo-label generation,
to reduce reliance on fine-grained annotations and lower the
annotation costs associated with practical deployment. Second,
cross-disciplinary adaptation will be advanced by optimizing
subspace definitions and fusion mechanisms to accommodate
the knowledge structures and modality characteristics of
subjects such as mathematics and science, thereby extending
applicability. Third, real-time interactive path
recommendation will be realized by integrating dynamic data
streams from online learning systems and designing
incremental learning modules to support adaptive path
adjustments with improved responsiveness. Fourth, learning
science theories will be more deeply integrated—such as
cognitive load theory and constructivist learning theory—to
guide path generation strategies and further strengthen the
model’s theoretical educational foundations.

The practical significance of this study is reflected at three
levels. At the instructional tool level, the MATDF-ELR model



can be deployed as a core recommendation module within
intelligent education systems, enabling the delivery of
personalized learning paths and facilitating the realization of
the pedagogical principle of teaching in accordance with
individual aptitude. At the educational research level, the
feature-decoupled multimodal analysis framework provides a
novel methodological paradigm for the field of learning
analytics, advancing data-driven educational research based
on multimodal evidence. At the resource contribution level,
the EMTD-2025 multimodal dataset constructed in this study,
together with the corresponding model code, will be openly
released, thereby supplying foundational resources for
subsequent research and promoting the collaborative
advancement of artificial intelligence in education.
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