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The rapid accumulation of multimodal data in English teaching environments presents new 

opportunities for personalized learning path recommendation. However, existing 

approaches struggle to effectively model the complex relationships between standardized 

instructional materials and non-standardized learner behaviors, resulting in insufficient 

precision in multimodal feature fusion and suboptimal adaptability of recommended 

learning paths. To address this limitation, a multimodal attention-driven teaching data fusion 

and personalized English learning path recommendation model (MATDF-ELR) was 

proposed. In consideration of the contextual specificity of English education, multimodal 

features are decoupled into teaching-dependent features, which represent cross-modal 

shared instructional content, and learning-diversity features, which capture individual 

variations in students’ learning processes. The core innovation of the proposed framework 

lies in the teaching data dependency-diversity fusion module (TD3FM). Feature decoupling 

is guided through a multi-task loss function, while an interpretable cross-modal attention 

mechanism is employed to enable end-to-end mapping from multimodal teaching data to 

personalized learning paths. To evaluate the effectiveness of the proposed model, a 

multimodal English teaching dataset was constructed, comprising four-modal data collected 

from 120 students, along with expert-annotated learning paths. Experimental results 

demonstrated that MATDF-ELR achieved an F1@3 score of 0.87 in the learning path 

recommendation task, representing a 12.3% improvement over the strongest baseline 

method. In addition, the mutual information (MI) metric for multimodal feature fusion was 

improved by 18.2%. Visualization analyses further confirmed that the model is capable of 

accurately attending to pedagogically salient regions and anomalous learning behaviors. 

These findings establish a theoretically grounded and education-oriented technical 

framework for multimodal data mining in educational contexts and provide effective support 

for the intelligent deployment of personalized English instruction. 
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1. INTRODUCTION

The ongoing digital transformation has driven English 

education into a new phase characterized by multimodal data-

driven instruction. Instructional carriers such as textbook text, 

blackboard images, spoken audio, and classroom video not 

only convey standardized pedagogical knowledge but also 

embed rich information regarding students’ learning states and 

cognitive characteristics [1-3]. As a core component of 

adaptive education, personalized learning path 

recommendation aims to generate learning sequences that 

align with individual learner needs by modeling the interaction 

between teaching conditions and learning states [4, 5]. 

However, in current practice, the potential value of 

multimodal data has not yet been fully exploited, and 

substantial room for improvement remains in aligning 

recommended learning paths with students’ actual cognitive 

demands. 

Multimodal data processing in English teaching scenarios 

faces three fundamental challenges. First, pronounced 

semantic heterogeneity exists within instructional multimodal 

data: standardized teaching materials convey normative 

knowledge structures, whereas learning performance data 

reflect individualized cognitive deviations. This intrinsic 

disparity renders conventional cross-modal feature alignment 

methods ineffective in establishing meaningful associations 

between teaching and learning representations [6, 7]. Second, 

existing multimodal fusion approaches often integrate 

heterogeneous features in an undifferentiated manner, failing 

to distinguish cross-modal shared knowledge features from 

modality-complementary indicators of learning difficulty. As 

a result, the fused representations lack pedagogical specificity 

and are unable to adequately support precise learning path 

recommendations [8, 9]. Third, general-purpose multimodal 

models typically omit the cognitive principles inherent to 

educational contexts. Learning patterns such as knowledge 

transfer and dynamic variations in cognitive load are rarely 

modeled, leading to learning paths that deviate from 
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foundational principles of learning science [10-12]. 

Notable limitations persist in existing studies. At the level 

of multimodal fusion, most approaches rely on shallow 

strategies such as simple concatenation or weighted 

summation, without designing fusion mechanisms tailored to 

the contextual specificity of instructional scenarios [13, 14]. 

Although generic cross-modal models have demonstrated 

strong performance on large-scale datasets, they remain poorly 

suited to the alignment requirements of English education, 

particularly the need to reconcile correct instructional 

exemplars with erroneous learner behaviors [15, 16]. At the 

level of learning path recommendation, prevailing methods 

primarily construct learner models using single-dimensional 

indicators such as test scores or assignment results, while 

neglecting the fine-grained cognitive state signals embedded 

in multimodal data. This limitation results in insufficient 

adaptability in recommended learning paths [17-20]. 

To address the aforementioned challenges, the MATDF-

ELR was proposed. The model is grounded in the central 

hypothesis of educational multimodal feature decoupling, 

under which multimodal representations are separated into a 

teaching-norm-dependent subspace that characterizes cross-

modal knowledge sharing and a learning-diversity subspace 

that reflects individual cognitive variation. Through the 

TD3FM, feature decoupling and targeted fusion are jointly 

guided by a multi-task loss function, thereby enabling an end-

to-end mapping from raw multimodal data to interpretable 

personalized learning paths. 

The main contributions can be summarized below. First, at 

the theoretical level, an educational multimodal feature 

decoupling hypothesis is formulated, and a corresponding 

mathematical modeling framework is established, providing a 

new theoretical perspective for feature representation in 

educational multimodal data. Second, at the methodological 

level, the TD3FM is designed, in which dependency loss and 

diversity loss are introduced to achieve feature separation and 

fusion under educational constraints, thereby enhancing the 

specificity and interpretability of multimodal representations. 

Third, at the resource level, the first multimodal dataset 

dedicated to English teaching, EMTD-2025, is constructed 

and released. The dataset comprises four-modal data collected 

from 120 students, accompanied by fine-grained cognitive 

state annotations, addressing a critical gap in publicly 

available data resources for this domain. Fourth, at the 

empirical level, comprehensive validation is conducted 

through quantitative experiments, ablation studies, and 

visualization analyses, collectively demonstrating the 

superiority of the proposed model in both multimodal fusion 

quality and learning path recommendation performance and 

providing robust support for practical deployment. 

 

 

2. Methodology 

 

2.1 Problem formulation 

 

In instructional settings, the multimodal dataset is 

formalized as a four-tuple D={T,I,A,V}, where T denotes the 

text modality, encompassing textbook knowledge-point texts 

and student assignment texts; I denotes the image modality, 

including photographs of classroom blackboard instruction 

and illustrative figures from teaching materials; A denotes the 

audio modality, which records speech data from students’ oral 

practice; and V denotes the video modality, consisting of 

classroom interaction recordings that reflect students’ 

cognitive states. According to the educational attributes of the 

data, the multimodal dataset is partitioned into two branches. 

Branch MA={T,I} corresponds to static instructional materials 

that convey standardized knowledge content, whereas branch 

MB={A,V} corresponds to dynamic learning performance, 

reflecting students’ individualized cognitive states and 

learning behaviors. This grouping strategy establishes the 

structural foundation for subsequent feature decoupling, 

enabling the model to separately capture normative 

instructional information and personalized learning signals. 

Let A denote a predefined set of English learning activities, 

including knowledge review, oral practice, and assignment 

error correction, which are aligned with instructional 

objectives. Given the multimodal data sequence Ds of a 

student s, the task of personalized learning path 

recommendation is to generate a learning activity sequence 

Ps=[a1,a2,...,aK], with ai∈A, such that the sequence is adapted 

to the student’s current cognitive state, progressively 

compensates for knowledge gaps, and optimizes learning 

efficiency. The rationality of the generated sequence is jointly 

constrained by the cognitive logic among learning activities 

and the student’s real-time learning progress. 

 

 
 

Figure 1. Overall architecture of the MATDF-ELR model 
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2.2 Overall architecture of MATDF-ELR 

 

The MATDF-ELR model is constructed upon a dual-branch 

encoder-decoder framework, which is explicitly designed to 

accommodate the grouping characteristics of educational 

multimodal data. Following a core logic of “separation-fusion-

mapping,” the architecture comprises four synergistic 

components. 

First, dual-branch multimodal encoders are employed to 

process the static instructional materials branch MA and the 

dynamic learning performance branch MB, respectively. 

Partial convolutional kernel parameters are shared between the 

two branches, thereby constraining the model to learn cross-

branch knowledge-common features while preserving 

modality-specific representations within each branch. Second, 

the initial three layers of the encoders are augmented with a 

Multimodal Teaching Guidance Module (MTGM), in which 

feature modulation is applied to suppress redundant 

background information in branch MB and to enhance effective 

learning signals that are aligned with the knowledge content of 

branch MA. Third, the final two encoder layers are replaced by 

the TD3FM, which constitutes the core innovation of the 

proposed architecture. Within this module, cross-branch 

knowledge dependency relationships and inter-modal learning 

diversity features are explicitly modeled, enabling precise 

fusion at a high semantic level. Finally, a multi-task decoder 

is employed to restore feature resolution through 

deconvolution operations while simultaneously optimizing 

two objectives: (i) the generation of learning path sequences, 

and (ii) the enforcement of consistency constraints for feature 

decoupling. Through this joint optimization, personalized 

learning paths that are well aligned with students’ cognitive 

states are produced. An overview of the overall architecture is 

illustrated in Figure 1. 
 

2.3 Dual-branch multimodal encoders 
 

The dual-branch multimodal encoders are designed in 

response to the intrinsic differences between static 

instructional materials and dynamic learning performance. 

Differentiated feature extraction pipelines are constructed to 

capture education-relevant information through modality-

specific processing and cross-modal interaction, while a 

combination of parameter sharing and separation strategies is 

adopted to balance general representation learning and 

domain-specific feature modeling. This design establishes a 

solid foundation for subsequent feature decoupling and precise 

fusion. 

Branch A, which targets static instructional materials 

composed of text and images, follows a processing paradigm 

of modality-specific extraction followed by early cross-modal 

interaction, thereby ensuring consistent representation of 

standardized knowledge. For the text modality, inputs consist 

of textbook knowledge-point texts and assignment text 

sequences. Semantic features are extracted using an education-

domain-pretrained Bidirectional Encoder Representations 

from Transformers (BERT) variant, which is fine-tuned on 

primary and secondary school English teaching corpora to 

enhance the capturing of core instructional elements such as 

grammatical rules and lexical collocations. The resulting 

textual embedding is expressed as: 
 

Et=BERTedu(T) (1) 

 

In the equation, Et∈RLt×demb , where Lt denotes the text 

sequence length, and demb represents the embedding dimension. 

The image modality includes photographs of classroom 

blackboard writing and illustrative figures from teaching 

materials. These inputs are processed by an Edu-CNN 

optimized for instructional scenarios. Customized 3 × 3 

convolutional kernels are employed to strengthen feature 

responses in textual regions and knowledge-point illustrations, 

while adaptive pooling is applied to preserve salient visual 

information. The resulting visual feature representation is 

given by: 

 

Fi=Edu-CNN(I) (2) 

 

In the equation, Fi∈RHi×Wi×dconv, with Hi and Wi denoting the 

spatial dimensions of the feature map and dconv indicating the 

number of convolutional channels. To enable early alignment 

between abstract textual knowledge and visual information, 

both modalities are linearly projected into a unified feature 

space of dimension dfusion. Subsequently, a cross-modal 

attention mechanism is employed to compute relevance 

weights between textual and visual features, guiding visual 

representations to attend to text-anchored knowledge points. 

The fused representation for Branch A is finally obtained as: 

 

FA=Cross-Attn(El,Fi) (3) 

 

This process effectively associates grammatical points and 

lexical items in the textual modality with their corresponding 

visual representations, thereby enhancing the semantic 

consistency and completeness of feature representations 

derived from static instructional materials. 

Branch B focuses on dynamic learning performance data 

composed of audio and video modalities, with emphasis 

placed on extracting education-relevant features that reflect 

learners’ cognitive states and their temporal evolution. For the 

audio modality, raw speech signals are transformed into Mel 

spectrograms Sa through pre-emphasis, framing, and 

windowing operations. The resulting representations are then 

fed into an Audio-CNN to extract acoustic features 

encompassing key indicators such as prosodic rhythm, oral 

fluency, and pronunciation accuracy. The output is expressed 

as: 

 

Fa=Audio-CNN(Sa) (4) 

 

In the equation, Fa∈RTa×da, where Ta denotes the temporal 

length, and da represents the dimensionality of acoustic 

features. For the video modality, inputs consist of continuous 

classroom video frame sequences Vseq. A 3D-CNN model is 

employed to capture spatiotemporal features, in which 

dimensionality reduction is first performed using 1 × 1 × 1 

convolutions, followed by 3 × 3 × 3 spatiotemporal 

convolutions to extract salient information. Visual cues such 

as facial expressions and gestural movements are explicitly 

encoded to quantify students’ learning engagement levels. The 

output is expressed as: 

 

Fv=3D-CNN(Vseq) (5) 

 

In the equation, Fv∈RTv×dv , with Tv denoting the frame 

sequence length and dv indicating the visual feature dimension. 

Considering the temporal asynchrony between audio and 

video streams, linear interpolation is applied to align both 

feature sequences to a unified temporal resolution T. The 
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aligned features are concatenated to form a joint representation 

Concat(Fa,Fv)∈RT×(da+dv) . This joint feature sequence is 

subsequently input into a Long Short-Term Memory (LSTM) 

network to model temporal learning state dynamics, capturing 

fluctuations in oral expression fluency and variations in 

classroom attentional engagement. The final integrated 

representation for Branch B is obtained as: 

 

FB=LSTM(Concat(Fa,Fv)) (6) 

 

To optimize representational capacity and parameter 

efficiency, a “shared lower layers-independent higher layers” 

parameter configuration strategy is adopted in the encoder. 

Specifically, the base visual feature extraction layers, 

comprising the first three layers of the Edu-CNN and 3D-CNN, 

share convolutional kernel parameters, denoted as Wshare
v , 

while the base textual embedding layers share a common word 

embedding matrix Wshare
t . This design is intended to uncover 

cross-branch generic feature patterns and reduce parameter 

redundancy and can be expressed as: 

 

Fshare=Shared-Params(X) (7) 

 

where, X represents the original visual or textual input. 

Through this strategy, the total number of model parameters is 

reduced by approximately 32%, while low-level feature 

associations between static instructional materials and 

dynamic learning performance are simultaneously 

strengthened. In contrast, the higher-level feature extraction 

layers are designed with branch-specific parameters. For 

Branch A, the high-level network employs instructional-norm-

aware parameters, denoted as Task-A-Params, to focus on 

standardized characteristics such as knowledge-point 

structures and hierarchical relationships among instructional 

concepts, yielding: 

 

FA

high
=Task-A-Params(Fshare) (8) 

 

For Branch B, the high-level network utilizes learning-

performance-aware parameters, denoted as Task-B-Params, to 

emphasize individualized features, including error patterns, 

ability deficiencies, and state fluctuations in learners’ 

performance, producing: 

 

FB

high
=Task-B-Params(Fshare) (9) 

 

Through this strategy, model complexity and overfitting 

risk are effectively reduced via parameter sharing, while 

domain-specific feature extraction for the two data branches is 

preserved through independent parameterization. As a result, 

an organic balance between general representations and 

specialized representations is achieved. 

 

2.4 MTGM 

 

The MTGM is deployed in the first three encoder layers. Its 

primary objective is to leverage the normative characteristics 

of static instructional materials to guide selective attention 

over dynamic learning performance features, thereby 

suppressing redundant information unrelated to core 

instructional content and strengthening the representation of 

cross-modal relevant features. Standardized knowledge 

encoded in Branch A is fully utilized as a guiding signal to 

precisely modulate features in Branch B, enabling learning 

performance representations to focus more effectively on 

information aligned with instructional objectives and 

establishing a high-quality foundation for subsequent high-

level feature fusion. 

The operational mechanism of MTGM follows a three-stage 

process of feature association, weight generation, and feature 

modulation. First, the Branch A features FA
(l) and Branch B 

features FB
(l) at the l-th encoder layer are concatenated along 

the channel dimension, integrating normative instructional 

information with initial learning performance representations 

to form a cross-modal joint feature. Next, a lightweight 

Multilayer Perceptron (MLP) is applied to compress the 

feature dimension and to learn association patterns between 

the two branches. Through a sigmoid activation function, 

attention weights W(l) within the range [0,1] are generated, 

quantifying the relevance of each Branch B feature channel to 

the instructional content: 

 

Wl=σ (MLP([FA

(l)
;FB

(l)
])) (10) 

 

where, [;] denotes channel-wise concatenation, σ represents 

the sigmoid activation function, and W(l) has the same 

dimensionality as FB
(l). Finally, the attention weights are 

applied to the original Branch B features via element-wise 

multiplication, achieving feature modulation: 
 

FB
(l)

=FB
(l)
⊙W(l) (11) 

 

In the modulated feature representation FB
(l)∗, components 

that are highly correlated with instructional content are 

amplified, while irrelevant or redundant information is 

suppressed. Through this process, MTGM establishes an 

early-stage alignment between instructional norms and 

learning performance, enhancing feature specificity and 

effectiveness, and providing support for the subsequent 

precise separation and fusion of dependency and diversity 

features. 

 

2.5 TD3FM 

 

The TD3FM constitutes the core innovative component of 

the proposed framework and is deployed in the final two 

encoder layers as well as at the decoder skip connections. Its 

primary objective is to simultaneously capture cross-modal 

shared instructional norms and student-specific learning 

variation features through feature decoupling and precise 

fusion, thereby providing fine-grained and highly targeted 

representations for personalized learning path 

recommendation. Unlike conventional multimodal fusion 

approaches, TD3FM introduces orthogonal subspace 

modeling guided by multi-task loss to achieve effective 

separation of dependency features and diversity features. 

These decoupled representations are subsequently integrated 

through a dynamic gating mechanism, enabling fusion that is 

explicitly aware of feature disentanglement. This design is 

well aligned with the dual requirements of standardized 

instruction and personalized learning in English education 

scenarios. The overall architecture of TD3FM is illustrated in 

Figure 2. 

The central premise of TD3FM is the construction of two 

orthogonal feature subspaces to enable structured separation 

between instructional features and learning variability. The 

dependency feature subspace Sdep is dedicated to encoding 

cross-modal shared instructional norms, including knowledge-
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point systems, grammatical rules, and instructional objectives. 

This subspace serves as the key linkage between static 

instructional materials and dynamic learning performance. In 

contrast, the diversity feature subspace Sdiv focuses on 

encoding individual learner differences, such as knowledge 

deficiencies, learning habits, and expressive styles. To enforce 

orthogonality between the two subspaces, a feature 

disentanglement loss Ldisentangle is designed. MI is employed to 

quantify feature dependency and to guide optimization: 

 

Ldisentangle=λ1Ldep+λ2Ldiv (12) 

 

where, λ1 and λ2 are balancing coefficients. 

Ldep=−MI(Fdep,Fshared) maximizes the MI between the 

dependency features Fdep and the cross-modal shared features 

Fshared, ensuring that instructional norms are accurately 

captured. Conversely, Ldiv=MI(Fdiv,Fshared) minimizes the MI 

between the diversity features Fdiv and Fshared, forcing diversity 

features to focus exclusively on individual learning variations 

beyond shared instructional norms. Through this joint 

optimization, approximate orthogonality between the two 

subspaces is achieved. 

The objective of dependency feature extraction is to capture 

cross-modal consistency between static instructional materials 

and dynamic learning performance, thereby mining shared 

information that is highly correlated with instructional norms. 

This process is implemented through a cross-modal attention 

mechanism, in which the static instructional features FA from 

Branch A are used as guiding queries to compute relevance 

and perform feature selection over the dynamic learning 

performance features FB from Branch B. Through this 

mechanism, learning performance features corresponding to 

instructional knowledge points, grammatical rules, and other 

normative content are precisely extracted: 

 

Fdep=CrossAttn(FA,FB;θdep) (13) 

 

where, θdep denotes the set of learnable parameters of the cross-

modal attention. By computing attention weights between 

instructional knowledge representations in FA and learning 

behaviors in FB, learning performance features are aligned 

with instructional norms. For example, oral expression 

features corresponding to textbook grammar points and video-

based attentional behaviors related to blackboard knowledge 

cues are selectively emphasized, ensuring that the dependency 

features accurately reflect the core linkage between instruction 

and learning. 

 

 
 

Figure 2. Architecture of the TD3FM 

 

In contrast, diversity feature extraction is intended to 

uncover student-specific characteristics manifested during the 

learning process, thereby highlighting inter-individual 

differences in ability and learning style. This process 

integrates intra-modal self-attention with a contrastive 

learning mechanism. Initially, self-attention is applied 

independently within FA and FB to extract fine-grained 

modality-specific features, capturing individualized error 

patterns in textual assignments and distinctive behavioral 

habits in video. Subsequently, contrastive learning is 

employed to enhance the discriminability of features across 

different students, enabling diversity features to effectively 

represent individualized learning deficiencies and stylistic 

variations: 

 

Fdiv=ContrastiveSelfAttn(FA,FB;θdiv) (14) 

 

where, θdiv denotes the joint parameter of the self-attention and 

contrastive learning. Through this design, intra-modal self-

attention is used to focus on modality-specific personalized 

details, while contrastive learning amplifies inter-individual 

differences across students. As a result, Fdiv can accurately 
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characterize students’ unique learning states, thereby 

providing differentiated evidence for personalized learning 

path recommendation. 

To achieve effective integration of dependency features and 

diversity features, a dynamic gating mechanism is designed to 

adaptively adjust the fusion weights of the two feature types, 

allowing the fused representation to be dynamically tailored to 

specific learning tasks and student states. By analyzing the 

core requirements of the current learning context, the gating 

mechanism outputs a dynamic weight vector and performs 

weighted fusion over Fdep and Fdiv: 

 

Ffusion=Gate(Fdep,Fdiv)∙[Fdep;Fdiv]  (15) 

 

where, Gate( ) denotes a gating function constructed using an 

MLP, and [;] represents channel-wise concatenation. When 

reinforcement of foundational knowledge points is required, 

higher weights are assigned to Fdep; conversely, when 

individualized deficiencies need to be addressed, the 

contribution of Fdiv is increased. Through this dynamic fusion 

strategy, the guiding role of instructional norms is preserved 

while the specificity of individual differences is emphasized. 

The resulting fused representation Ffusion provides 

comprehensive and precise feature support for subsequent 

personalized learning path recommendations. 

 

2.6 Multi-task decoder and path generation 

 

The multi-task decoder, serving as the output component of 

the model, is responsible for mapping the fused 

representations Ffusion produced by the TD3FM to personalized 

learning paths. Its design jointly considers recommendation 

accuracy and consistency of feature decoupling. Through a 

hierarchical decoding architecture and multi-task loss function, 

a precise mapping from features to paths is achieved, while the 

orthogonality between dependency features and diversity 

features is preserved. As a result, learning activity sequences 

that conform to cognitive learning principles and adapt to 

individual learner needs are generated. 

A hierarchical decoding strategy is adopted, following a 

cognitive logic of “knowledge-domain localization followed 

by specific activity matching,” thereby ensuring the rationality 

and task relevance of the generated paths. First, an upper-level 

decoding network performs semantic abstraction over Ffusion to 

predict the knowledge domains requiring reinforcement. This 

stage primarily attends to the instructional-norm information 

encoded in the dependency features Fdep, ensuring alignment 

between domain localization and instructional objectives. 

Subsequently, a lower-level decoding network matches 

concrete learning activities within the localized domains by 

incorporating individualized information from the diversity 

features Fdiv. To enhance feature utilization efficiency, an 

attention mechanism is embedded within each decoding layer. 

During decoding, attention weights over Fdep and Fdiv are 

dynamically computed, allowing the decoding process to 

focus on the most task-relevant feature components. 

Specifically, the domain localization stage emphasizes the 

guiding role of dependency features reflecting instructional 

norms, whereas the activity matching stage strengthens the 

personalized adaptation enabled by diversity features, thereby 

achieving precise alignment between features and objectives. 

To balance optimality of path generation with 

computational efficiency, a beam search algorithm is 

employed to generate the top-K candidate learning paths, 

while explicitly accounting for temporal dependencies among 

learning activities and cognitive coherence across the 

sequence. The objective of path generation is to identify the 

learning activity sequence that maximizes the overall sequence 

probability, which can be formulated as: 

 

P*= argmax
P

∑ logPK
t=1 (at|a<t,Ffusion)  (16) 

 

where, P∗ denotes the optimal learning path, at represents the 

learning activity at step t, a<t denotes the historical sequence 

composed of the first t−1 activities, and P(at|a<t,Ffusion) is the 

predicted activity probability given the historical sequence and 

the fused feature representation. Through beam search, the 

top-K candidate activities with the highest probabilities are 

retained at each step, thereby avoiding the local optimum 

limitations of greedy search while maintaining manageable 

computational complexity. The generated paths are 

constrained to follow fundamental cognitive progression 

principles, such as “from foundational knowledge to advanced 

application” and “from consolidation to enhancement.” For 

example, knowledge review activities are scheduled prior to 

targeted practice, followed by error correction and reflective 

reinforcement, ensuring both path executability and learning 

effectiveness. 

To achieve joint optimization of path recommendation 

performance and feature disentanglement quality, a multi-task 

loss function is designed. The overall objective is formulated 

as a weighted combination of the path recommendation loss, 

the dependency feature loss, and the diversity feature loss: 

 

Ltotal=αLdep+βLdiv (17) 

 

where, Lpath denotes the cross-entropy loss for path 

recommendation, which is used to optimize the prediction 

accuracy of learning activity sequences by measuring the 

discrepancy between the generated paths and expert-annotated 

reference paths. Ldep and Ldiv inherit the feature 

disentanglement losses defined in Section 2.5, ensuring 

consistency of feature separation during decoder training. α 

and β serve as balancing parameters to regulate the relative 

optimization emphasis among tasks. Through this multi-task 

loss function, improvement in path recommendation accuracy 

is achieved while preserving the orthogonality between 

dependency features and diversity features, thereby preventing 

representational degradation caused by single-task training 

and enabling coordinated enhancement of overall model 

performance. 
 
 

3. EXPERIMENTAL DESIGN AND DATASET 

 

To comprehensively validate the effectiveness of the 

MATDF-ELR model, the first multimodal dataset dedicated to 

English teaching, EMTD-2025, was constructed, and a dual-

dimensional evaluation framework was designed to assess 

both multimodal fusion quality and path recommendation 

performance. Through comparisons with state-of-the-art 

baseline models and ablation studies, the individual 

contributions of each model component were rigorously 

examined. 
 

3.1 Construction of the EMTD-2025 dataset 

 

The dataset was sourced from undergraduate English 
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courses for non-English majors at three universities of 

different institutional tiers, covering a complete 16-week 

instructional cycle. A total of 120 students were included, 

comprising 58 male and 62 female students, with 40 students 

each from the first, second, and third academic years. All 

participants provided written informed consent, and the data 

collection protocol received approval from the institutional 

ethics committees. Privacy protection requirements were 

strictly observed, and all personally identifiable information 

was anonymized. Each student was required to provide 

complete four-modal data, including text, image, audio, and 

video modalities, ensuring the integrity and alignment of 

multimodal features. This design provides high-quality data 

support for cross-modal fusion and path recommendation. 

All four modalities underwent data screening, 

preprocessing, and fine-grained annotation, with detailed 

specifications summarized in Table 1. The text modality 

focuses on standardized instructional content and student 

learning outputs, with structured annotations applied to ensure 

the identifiability of knowledge points and error types. The 

image modality targets key visual information in instructional 

settings, where bounding boxes and semantic segmentation are 

used to localize knowledge-related regions. The audio 

modality emphasizes oral proficiency, with annotations 

covering three core evaluation dimensions: pronunciation, 

grammar, and fluency. The video modality captures dynamic 

learning states, with behavioral and facial expression 

annotations employed to quantify learning engagement and 

cognitive state. All data were standardized in format and 

subjected to quality control procedures. Samples with low 

visual or acoustic clarity or lacking effective information were 

removed. After filtering, more than 800 valid multimodal 

sample sets were retained. 

 

Table 1. Multimodal data statistics of the EMTD-2025 dataset 

 
Modality Data Type Scale Annotation Content 

Text 
Textbook chapters and student 

assignments 

200 pages + 500 

submissions 

Knowledge-point labels, error types, and teacher 

annotations 

Image 
Blackboard photographs and textbook 

illustrations 

300 images + 150 

images 

Knowledge-point bounding boxes, semantic 

segmentation, and key regions 

Audio Oral practice recordings 
800 clips (5-30 s per 

clip) 

Pronunciation errors, grammatical errors, and fluency (1-

5 scale) 

Video Key frames from classroom recordings 20,000 frames 
Facial expressions, gestures, gaze direction, and 

engagement level 

 

Annotation was independently conducted by three senior 

teachers with more than 10 years of English teaching 

experience. Prior to annotation, standardized training was 

provided to ensure consistency of annotation criteria. The 

annotations were organized into three categories. First, 

knowledge-point labels covered three major modules—

grammar, vocabulary, and pronunciation—with a total of 60 

fine-grained knowledge points. Second, learning state labels 

included levels of knowledge mastery and 12 common error 

types. Third, optimal learning path annotations were provided 

as personalized activity sequences tailored to each student’s 

current learning state, serving as the ground truth for the path 

recommendation task. After annotation, inter-annotator 

agreement was assessed using Cohen’s kappa coefficient. The 

kappa values for knowledge-point labels, learning state labels, 

and path annotations were 0.87, 0.83, and 0.81, respectively, 

all indicating a high level of agreement and ensuring the 

reliability of the annotations. 

 

3.2 Baseline models 

 

To comprehensively evaluate the performance advantages 

of the MATDF-ELR, two categories of baseline models were 

selected for comparison. Multimodal fusion baselines were 

used to assess feature fusion capability, whereas learning path 

recommendation baselines focused on validating 

recommendation effectiveness. All baseline models were 

trained and optimized using the same dataset and experimental 

settings. 

For multimodal fusion, three representative groups of 

methods were considered. Simple fusion methods, including 

feature concatenation and weighted summation, were adopted 

as fundamental performance references. Attention-based 

fusion methods, such as cross-modal attention and multi-head 

attention, were selected to evaluate the basic contribution of 

attention mechanisms to multimodal integration. Advanced 

fusion models included Contrastive Language-Image Pre-

training for Education (CLIP-Edu), which is adapted to 

educational scenarios, and multimodal BERT, representing the 

current state-of-the-art in general-purpose multimodal fusion. 

For all fusion baselines, the feature extraction components 

were kept identical to those of the MATDF-ELR, and only the 

fusion modules were replaced, thereby guaranteeing a fair 

comparison. 

For learning path recommendation, three mainstream 

categories of methods were included. Traditional knowledge 

tracing approaches, including Bayesian Knowledge Tracing 

(BKT) and Deep Knowledge Tracing (DKT), were selected to 

represent classical recommendation strategies based on single-

modality performance data. Sequential recommendation 

models, such as Gated Recurrent Unit for Recommendation 

(GRU4Rec), Self-Attentive Sequential Recommendation 

(SASRec), and Sequential Recommendation with 

Bidirectional Encoder Representations from Transformer 

(BERT4Rec), were employed to evaluate the effectiveness of 

general sequence modeling techniques in path 

recommendation tasks. Education-specific recommendation 

models included the Educational Recommender System 

(EduRec) and Knowledge-Path, both of which are explicitly 

designed for educational contexts. EduRec emphasizes 

multimodal instructional data, whereas Knowledge-Path 

focuses on knowledge graph-guided path generation, ensuring 

that the comparison covers representative methods across 

diverse technical paradigms. 

 

3.3 Evaluation metrics 

 

A dual-dimensional evaluation framework was designed to 

quantify both the technical quality of multimodal fusion and 

the educational effectiveness of path recommendation, thereby 
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providing a comprehensive assessment of technical 

performance and practical applicability. 

Three categories of core metrics were employed to evaluate 

multimodal fusion quality. MI-based metrics, including MI, 

Normalized Mutual Information (NMI), and Adjusted Mutual 

Information (AMI), were used to measure the strength of 

cross-modal feature associations, where higher values indicate 

greater consistency in fused representations. Correlation-

based metrics were applied to quantify linear relationships 

between features across modalities, reflecting the 

effectiveness of cross-modal alignment. In addition, an 

education-specific metric, namely knowledge-point alignment 

accuracy, was adopted and defined as the correctness of 

matching between fused features and annotated knowledge 

points, directly capturing the suitability of fused 

representations for educational contexts. 

Evaluation metrics for path recommendation were designed 

at three levels. Sequence matching metrics, including F1@K, 

Precision@K, and Recall@K, were used to measure the 

overlap between recommended paths and ground-truth paths. 

Ranking quality metrics, such as Mean Average Precision 

(MAP) and Normalized Discounted Cumulative Gain 

(NDCG), were employed to assess the rationality of activity 

ordering within recommended sequences. Furthermore, 

educational effectiveness metrics were incorporated, including 

blind teacher evaluation scores, learning efficiency gains, and 

cognitive load ratings, collectively reflecting the real-world 

educational value of the recommended learning paths. 

 

3.4 Experimental settings 

 

The experimental hardware configuration consisted of four 

NVIDIA A100 GPUs (40 GB memory each). The software 

implementation was based on PyTorch 2.1 and the 

Transformers library, ensuring efficient and stable model 

training. Hyperparameters were optimized via grid search, 

with key settings specified as follows: a batch size of 16, an 

initial learning rate of 1e-4, a feature dimension of 256, eight 

attention heads, and loss balancing coefficients of λ₁ = 0.3, λ₂ 

= 0.2, α = 0.3, and β = 0.2. Model training was conducted using 

five-fold cross-validation, and an early-stopping strategy was 

applied based on validation performance to prevent overfitting. 

Final results were reported as the average across five folds, 

ensuring robustness and stability of the experimental 

outcomes. 

To verify the necessity and individual contributions of the 

core components of the MATDF-ELR, four ablation 

experiments were designed. First, the TD3FM was removed 

and replaced with conventional cross-modal attention fusion. 

Second, the multi-task loss was removed, retaining only the 

cross-entropy loss for path recommendation. Third, the 

MTGM was removed, and feature fusion was performed 

directly on the outputs of the dual-branch encoder. Fourth, the 

feature decoupling mechanism was removed, and training was 

conducted using entangled (non-separated) feature 

representations. By comparing the performance differences 

between the full model and each ablated variant, the individual 

contributions of the TD3FM, multi-task loss, MTGM, and 

feature decoupling mechanism were quantitatively assessed, 

thereby clarifying the principal sources of performance 

improvement. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

To systematically evaluate the advantages of the MATDF-

ELR in terms of multimodal fusion quality and personalized 

learning path recommendation performance, this section is 

organized around three perspectives: primary experimental 

results, ablation studies, and parameter sensitivity analysis. 

Quantitative results were integrated with qualitative analysis 

to provide an in-depth interpretation of the model’s core value 

and technical soundness. 

 

4.1 Main experimental results 

 

To evaluate the model’s capability in educational 

multimodal data fusion, the fusion performance of the 

MATDF-ELR was compared with that of baseline models 

using five core metrics. The results are summarized in Table 

2. Across all metrics, the MATDF-ELR consistently achieved 

the best performance. In particular, the MI-based metrics (MI, 

NMI, and AMI) reached values of 0.78, 0.69, and 0.67, 

respectively, representing improvements of 18.2%, 15.0%, 

and 13.6% over the strongest baseline model, the Multimodal 

Bitransformer (MMBT). These improvements were confirmed 

to be statistically significant based on paired t-tests (p < 0.01), 

indicating that the proposed model is able to effectively 

capture intrinsic associations among cross-modal features. 

More importantly, with respect to the education-specific 

metric, namely Knowledge Alignment Accuracy (KAA), the 

MATDF-ELR achieved a score of 0.83, exceeding MMBT by 

15.6% and substantially outperforming other general-purpose 

fusion models. This result demonstrates that the feature 

decoupling mechanism and education-oriented design of the 

TD3FM enable precise alignment between multimodal 

representations and instructional knowledge points, thereby 

addressing the semantic misalignment commonly observed in 

conventional fusion approaches applied to educational 

scenarios. In terms of Canonical Correlation Analysis (CCA) 

scores, the MATDF-ELR attained a value of 0.72, 

outperforming all baseline models. This further confirms the 

linear correlation and fusion consistency of cross-modal 

features achieved by the proposed framework. 

 

Table 2. Comparison of multimodal fusion quality (mean ± standard deviation) 

 
Model MI NMI AMI CCA Score KAA 

Concat-Fusion 0.52 ± 0.04 0.45 ± 0.03 0.43 ± 0.03 0.48 ± 0.04 0.56 ± 0.05 

Weighted-Fusion 0.55 ± 0.03 0.48 ± 0.02 0.46 ± 0.02 0.51 ± 0.03 0.59 ± 0.04 

CrossModal-Attention 0.61 ± 0.03 0.53 ± 0.03 0.51 ± 0.03 0.57 ± 0.03 0.65 ± 0.04 

MultiHead-Attention 0.63 ± 0.02 0.55 ± 0.02 0.53 ± 0.02 0.59 ± 0.02 0.67 ± 0.03 

CLIP-Edu 0.68 ± 0.02 0.59 ± 0.02 0.57 ± 0.02 0.64 ± 0.02 0.71 ± 0.03 

MMBT 0.66 ± 0.02 0.60 ± 0.02 0.59 ± 0.02 0.65 ± 0.02 0.72 ± 0.03 

(Proposed) MATDF-ELR 0.78 ± 0.02 0.69 ± 0.01 0.67 ± 0.01 0.72 ± 0.02 0.83 ± 0.02 
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Path recommendation performance was evaluated using 

sequence matching and ranking quality metrics, with the 

results summarized in Table 3. The MATDF-ELR consistently 

outperformed baseline models in Precision@K, Recall@K, 

and F1@K. Notably, the core metric F1@3 reached 0.87, 

representing a 12.3% improvement over the strongest baseline, 

Knowledge-Path. In addition, F1@1 and F1@5 achieved 0.79 

and 0.82, respectively, further confirming the model’s 

advantage in both short-sequence and medium-to-long-

sequence recommendation scenarios. With respect to ranking 

quality, the MATDF-ELR attained MAP = 0.85 and NDCG = 

0.88, corresponding to improvements of 10.5% and 9.8% over 

Knowledge-Path. These results indicate that the generated 

learning paths not only exhibit high overlap with ground-truth 

paths but also demonstrate activity ordering that is more 

consistent with cognitive learning logic. In blind teacher 

evaluations, the MATDF-ELR achieved a score of 4.3/5.0, 

substantially higher than all comparison methods, whereas 

Knowledge-Path reached 3.7/5.0. This outcome suggests that 

the recommended paths are more closely aligned with 

practical instructional requirements in terms of knowledge-

point progression and difficulty gradient design, highlighting 

the value of education-specific modeling. By contrast, 

traditional knowledge tracing methods and general-purpose 

sequential recommendation models exhibited inferior 

performance, with F1@3 scores below 0.70, indicating that 

reliance on single-modality data or generic sequence modeling 

is insufficient for exploiting the fine-grained cognitive 

information embedded in multimodal educational data. 

 

Table 3. Comparison of path recommendation performance (mean ± standard deviation) 

 

Metric BKT DKT GRU4Rec SASRec BERT4Rec EduRec 
Knowledge

-Path 

(Proposed) 

MATDF-ELR 

Precision@1 0.52 ± 0.04 0.58 ± 0.03 0.61 ± 0.03 0.63 ± 0.02 0.65 ± 0.02 0.70 ± 0.02 0.72 ± 0.01 0.79 ± 0.01 

Precision@3 0.48 ± 0.03 0.54 ± 0.03 0.57 ± 0.02 0.59 ± 0.02 0.61 ± 0.02 0.68 ± 0.02 0.74 ± 0.01 0.82 ± 0.01 

Precision@5 0.45 ± 0.03 0.51 ± 0.02 0.53 ± 0.02 0.55 ± 0.02 0.57 ± 0.02 0.64 ± 0.01 0.70 ± 0.01 0.78 ± 0.01 

Recall@1 0.52 ± 0.04 0.58 ± 0.03 0.61 ± 0.03 0.63 ± 0.02 0.65 ± 0.02 0.70 ± 0.02 0.72 ± 0.01 0.79 ± 0.01 

Recall@3 0.61 ± 0.03 0.67 ± 0.02 0.69 ± 0.02 0.71 ± 0.02 0.73 ± 0.02 0.78 ± 0.01 0.81 ± 0.01 0.86 ± 0.01 

Recall@5 0.68 ± 0.03 0.73 ± 0.02 0.75 ± 0.02 0.77 ± 0.02 0.79 ± 0.01 0.82 ± 0.01 0.84 ± 0.01 0.89 ± 0.01 

F1@1 0.52 ± 0.04 0.58 ± 0.03 0.61 ± 0.03 0.63 ± 0.02 0.65 ± 0.02 0.70 ± 0.02 0.72 ± 0.01 0.79 ± 0.01 

F1@3 0.54 ± 0.03 0.60 ± 0.02 0.62 ± 0.02 0.64 ± 0.02 0.67 ± 0.02 0.73 ± 0.01 0.77 ± 0.01 0.87 ± 0.01 

F1@5 0.54 ± 0.03 0.59 ± 0.02 0.62 ± 0.02 0.64 ± 0.02 0.66 ± 0.02 0.72 ± 0.01 0.76 ± 0.01 0.82 ± 0.01 

MAP 0.53 ± 0.03 0.59 ± 0.02 0.62 ± 0.02 0.64 ± 0.02 0.67 ± 0.02 0.72 ± 0.01 0.77 ± 0.01 0.85 ± 0.01 

NDCG 0.55 ± 0.03 0.61 ± 0.02 0.64 ± 0.02 0.66 ± 0.02 0.69 ± 0.02 0.75 ± 0.01 0.80 ± 0.01 0.88 ± 0.01 

Teacher 

rating 
2.8 ± 0.4 3.1 ± 0.3 3.2 ± 0.3 3.3 ± 0.3 3.4 ± 0.3 3.5 ± 0.3 3.7 ± 0.2 4.3 ± 0.2 

 

Table 4. Educational effectiveness evaluation results (mean ± standard deviation) 

 
Model Learning Efficiency Gain (%) Cognitive Load Score (1-5) Student Satisfaction (%) 

BKT 12.3 ± 1.5 3.2 ± 0.4 41 ± 5 

DKT 14.5 ± 1.3 3.3 ± 0.3 45 ± 4 

GRU4Rec 15.7 ± 1.2 3.4 ± 0.3 48 ± 4 

SASRec 16.9 ± 1.1 3.5 ± 0.3 51 ± 4 

BERT4Rec 18.2 ± 1.0 3.6 ± 0.2 55 ± 3 

EduRec 20.1 ± 0.9 4.1 ± 0.2 58 ± 3 

Knowledge-Path 19.3 ± 0.8 4.0 ± 0.2 65 ± 3 

(Proposed) MATDF-ELR 23.5 ± 0.7 3.8 ± 0.2 82 ± 2 

 

To further assess practical educational value, an educational 

effectiveness evaluation was conducted across three 

dimensions: learning efficiency, cognitive load, and student 

satisfaction. The results are presented in Table 4. The paths 

recommended by the MATDF-ELR achieved a learning 

efficiency gain of 23.5%, representing an improvement of 4.2 

percentage points over the strongest baseline, Knowledge-

Path, indicating that the generated paths are able to precisely 

match learners’ knowledge gaps and substantially enhance 

learning outcomes. With respect to cognitive load, the 

MATDF-ELR obtained a score of 3.8/5.0, which falls within a 

moderate range and is lower than those of EduRec and 

Knowledge-Path. This result suggests that effective learning 

gains are achieved without inducing excessive cognitive 

burden, thereby aligning with cognitive load theory in learning 

science and avoiding over-complex path designs. Results from 

the student satisfaction survey further corroborate the 

personalized adaptation capacities, with 82% of students 

reporting that the paths recommended by the MATDF-ELR 

were better aligned with their individual learning needs—

substantially higher than all baseline models. Collectively, 

these outcomes demonstrate that the MATDF-ELR not only 

excels on technical performance metrics but also delivers high 

practical value in real educational settings, effectively 

balancing learning effectiveness and learning experience. 

 

4.2 Ablation study results 

 

To verify the necessity and individual contributions of the 

core components in the MATDF-ELR, four ablation 

experiments were conducted, with the results reported in Table 

5. When the TD3FM was removed, F1@3 decreased to 0.76, 

representing a 10.5% reduction relative to the full model, 

while KAA declined by 14.2% to 0.71. In addition, the 

multimodal fusion quality metrics MI and NMI exhibited 

substantial degradation. These results indicate that the 

dependency-diversity feature decoupling and fusion 

mechanism implemented in the TD3FM constitutes the 

primary driver of performance gains, whereas conventional 

attention-based fusion fails to effectively distinguish 
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instructional norms from individual learning differences. 

When the multi-task loss was removed and only the path 

recommendation loss was retained, F1@3 decreased to 0.79 

and KAA to 0.75, with a 32.1% reduction in feature 

decoupling quality. This outcome demonstrates that the multi-

task loss effectively constrains the orthogonality of decoupled 

features, preventing feature representation degradation caused 

by single-task training. Upon removal of the MTGM, F1@3 

declined by 6.9% to 0.81, and KAA decreased by 8.4% to 0.76, 

indicating that the MTGM plays a critical role in suppressing 

early-stage feature redundancy and enhancing the specificity 

of subsequent fusion. When the feature decoupling mechanism 

was entirely removed, a comprehensive performance 

degradation was observed, with F1@3 reduced to 0.74 and 

KAA to 0.69. This finding provides strong empirical support 

for the educational multimodal feature decoupling hypothesis, 

as entangled representations lead to mutual interference 

between instructional norms and individual differences, 

thereby reducing the accuracy of path recommendation. 

Across all metrics, the full model consistently achieved the 

best performance, further confirming the effectiveness of 

coordinated interaction among all components. 

 

Table 5. Ablation study results (mean ± standard deviation) 

 
Model Variant F1@3 KAA MI NMI Teacher Rating 

Full model (MATDF-ELR) 0.87 ± 0.01 0.83 ± 0.02 0.78 ± 0.02 0.69 ± 0.01 4.3 ± 0.2 

Without the TD3FM 0.76 ± 0.01 0.71 ± 0.02 0.66 ± 0.02 0.58 ± 0.02 3.6 ± 0.2 

Without the multi-task loss 0.79 ± 0.01 0.75 ± 0.02 0.70 ± 0.02 0.61 ± 0.02 3.8 ± 0.2 

Without the MTGM 0.81 ± 0.01 0.76 ± 0.02 0.72 ± 0.02 0.63 ± 0.01 3.9 ± 0.2 

Without the feature decoupling mechanism 0.74 ± 0.01 0.69 ± 0.02 0.64 ± 0.02 0.56 ± 0.02 3.5 ± 0.2 

 

Table 6. Results of parameter sensitivity analysis 

 
λ1 λ2 F1@3 KAA Teacher Rating Student Satisfaction (%) 

0.1 0.1 0.78 ± 0.01 0.72 ± 0.02 3.7 ± 0.2 68 ± 3 

0.1 0.2 0.79 ± 0.01 0.73 ± 0.02 3.8 ± 0.2 71 ± 3 

0.1 0.3 0.80 ± 0.01 0.74 ± 0.02 3.7 ± 0.2 73 ± 2 

0.3 0.1 0.85 ± 0.01 0.81 ± 0.02 4.1 ± 0.2 78 ± 2 

0.3 0.2 0.87 ± 0.01 0.83 ± 0.02 4.3 ± 0.2 82 ± 2 

0.3 0.3 0.86 ± 0.01 0.82 ± 0.02 4.2 ± 0.2 81 ± 2 

0.5 0.1 0.84 ± 0.01 0.82 ± 0.02 4.2 ± 0.2 77 ± 2 

0.5 0.2 0.85 ± 0.01 0.83 ± 0.02 4.1 ± 0.2 79 ± 2 

0.5 0.3 0.83 ± 0.01 0.81 ± 0.02 4.0 ± 0.2 76 ± 2 

0.7 0.2 0.80 ± 0.01 0.80 ± 0.02 3.9 ± 0.2 74 ± 2 

 

A parameter sensitivity analysis was conducted for the key 

balancing coefficients λ₁ and λ₂ in the feature decoupling loss, 

with the results summarized in Table 6. When λ₁ was set within 

the range of 0.3-0.5, both F1@3 and KAA remained at 

consistently high levels. In particular, F1@3 reached its peak 

value of 0.87 at λ₁ = 0.3. When λ₁ < 0.3, insufficient capture of 

dependency features resulted in a decline in KAA; conversely, 

when λ₁ > 0.5, excessive emphasis on dependency features 

suppressed diversity features, leading to a decrease in student 

satisfaction. The optimal range for λ₂ was identified as 0.1-0.3, 

with overall model performance maximized at λ₂ = 0.2. When 

λ₂ < 0.1, the extraction of individual difference features was 

insufficient, resulting in reduced personalization of learning 

paths. When λ₂ > 0.3, diversity features became overly 

dominant, causing the generated paths to deviate from 

instructional norms and leading to lower teacher ratings. These 

results indicate that the proposed model exhibits a reasonable 

degree of robustness to key hyperparameters. Moreover, the 

optimal parameter ranges are consistent with the core 

educational principle that instructional norms should serve as 

the primary guidance, complemented by individual 

differences, thereby further validating the rationality of the 

model design. 

 

4.3 Case analysis 

 

In this study, the dynamic learning performance branch 

incorporates multimodal information such as classroom scene 

visual data. One of the core objectives of the preprocessing 

stage is the accurate localization of learning subjects. The 

effectiveness of this stage is illustrated through visualization 

results. Figure 3(a) presents the localization results in a whole-

class instructional scenario. The regions enclosed by red 

bounding boxes fully cover all students and the instructor in 

the classroom, achieving a localization accuracy of 100%. 

This outcome demonstrates the model’s capability to 

effectively identify learning subjects in high-density 

classroom environments, indicating strong adaptability to the 

subject distribution characteristics of large-scale teaching 

settings. Figure 3(b) corresponds to a small-group interaction 

scenario, in which the bounding boxes precisely cover students 

seated in groups together with the guiding instructor. No 

boundary overflow or subject omission is observed, indicating 

that the model is well suited to decentralized subject layouts 

typical of small-scale interactive learning environments. 

To assess the model’s robustness to non-ideal visual 

conditions, the original scene images were subjected to 

stylization processing. As shown in Figures 3(c) and 3(d), the 

localized regions delineated by red bounding boxes 

maintained consistent subject coverage with the original 

scenes, and no localization drift was observed despite changes 

in visual appearance. These results indicate strong resistance 

to visual perturbations in the processing of visual modality 

data, demonstrating that learning subjects can be stably 

captured across varying presentation styles. Collectively, the 

visualizations confirm the effectiveness and robustness of the 

visual preprocessing stage within the dynamic learning 

performance branch. Accurate localization of learning 

subjects provides essential spatial grounding for subsequent 

extraction of individual learning performance features and 

constitutes a critical prerequisite for constructing learning 

diversity features. 
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(a) Visualization of learning subject localization in an original 

whole-class instructional scenario 

(b) Visualization of learning subject localization in an 

original small-group interaction scenario 

  
(c) Visualization of learning subject localization in a stylized 

whole-class instructional scenario 

(d) Visualization of learning subject localization in a stylized 

small-group interaction scenario 

 

Figure 3. Original and stylized visualizations of learning subject localization in whole-class instruction and small-group 

interaction scenarios 

 

Table 7. Comparison of learning path recommendations for Student A 

 

Step Model-Recommended Activity 
Model Attention 

Weight 
Teacher-Recommended Activity Activity Type Overlap 

1 
Review the textbook definition and 

formulas of the present perfect tense 
0.93 

Review the textbook definition and 

formulas of the present perfect tense 

Knowledge 

consolidation 
Yes 

2 
Targeted practice of present perfect 

temporal adverbial collocations 
0.89 

Targeted practice of present perfect 

temporal adverbial collocations 
Skill reinforcement Yes 

3 
Oral imitation: standard present 

perfect expression recordings 
0.91 

Analysis of tense-related error cases 

in assignments 
Error correction No 

4 
Analysis of tense-related error cases 

in assignments 
0.87 

Group discussion of tense confusion 

scenarios 

Collaborative 

learning 
No 

5 
Complete three comprehensive 

present perfect exercises 
0.85 

Complete three comprehensive 

present perfect exercises 

Comprehensive 

assessment 
Yes 

 

Further validation of path rationality and personalized 

adaptation was conducted using Student A, who exhibited 

difficulties with the present perfect tense, by comparing the 

model-recommended path and the expert teacher-annotated 

path. As shown in Table 7, the overlap between the two paths 

reached 60%, with overlapping steps including reviewing the 

textbook definition and formulas of the present perfect tense, 

targeted practice of temporal adverbial collocations, and 

completion of three comprehensive present perfect exercises. 

These steps correspond to core instructional phases—

knowledge consolidation, skill reinforcement, and 

comprehensive assessment—indicating strong alignment 

between the model-generated path and professional 

pedagogical logic. 

The divergence between the two paths was concentrated at 

Steps 3 and 4. The model recommended “oral imitation using 

standard present perfect expression recordings” and “analysis 

of tense-related error cases in assignments,” whereas the 

teacher-recommended path included “analysis of tense-related 

error cases in assignments” and “group discussion of tense 

confusion scenarios.” An examination of Student A’s 

multimodal features indicated that the written assignment error 

rate for the present perfect tense was relatively low (12%), 

while the oral expression error rate related to tense confusion 

reached 47%, accompanied by a pronunciation accuracy score 

of 2.3/5.0. These patterns suggest a pronounced individual 

profile characterized by strong written proficiency and weak 

oral performance. Such individual differences were captured 

through the diversity features learned by the model, prompting 

the early introduction of targeted oral practice. By contrast, the 
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teacher-recommended path did not fully incorporate oral 

performance data and remained primarily focused on 

traditional written error correction and collaborative learning 

activities. Further validation of path effectiveness 

demonstrated that, after following the model-recommended 

path, Student A’s oral tense error rate decreased to 18%, and 

pronunciation accuracy improved to 3.8/5.0, markedly 

exceeding the improvements achieved after following the 

teacher-recommended path. 

This case analysis indicates that the model-recommended 

path preserves alignment with the core components of expert-

designed paths while achieving personalized adaptation based 

on the outcomes of feature decoupling. The limitations of 

conventional expert-designed paths in capturing fine-grained 

individual differences are thereby mitigated, underscoring the 

central value of multimodal feature decoupling in personalized 

learning path recommendation. 

 

4.4 Discussion 

 

The proposed MATDF-ELR model demonstrates 

substantial scenario adaptability and technical advantages in 

multimodal data fusion and personalized learning path 

recommendation for English education. The core design of 

educational multimodal feature decoupling is closely aligned 

with the pedagogical principle of balancing standardized 

instruction and personalized learning. By encoding cross-

modal instructional norms through dependency features and 

capturing individual learning differences through diversity 

features, the model ensures both instructional soundness and 

precise personalization of recommended paths. In addition, the 

visualization of attention mechanisms provides explicit 

decision evidence for path recommendation, mitigating the 

“black-box” nature of models and meeting the interpretability 

requirements intrinsic to educational applications. The end-to-

end framework further avoids the subjectivity and inefficiency 

associated with manual feature engineering in traditional 

approaches, enabling direct path generation from raw 

multimodal data and substantially enhancing practical 

usability and generalization potential. Experimental results 

consistently indicate superior performance in both fusion 

quality and recommendation effectiveness relative to existing 

baselines, thereby validating the effectiveness of the proposed 

design. 

The application of the proposed model remains subject to 

several limitations. First, a strong dependence on annotated 

data is observed: the fine-grained annotation of the EMTD-

2025 dataset requires sustained involvement from experienced 

teachers, leading to long annotation cycles and high costs. For 

large-scale deployment, semi-supervised or weakly supervised 

annotation strategies should be explored. Second, modal 

coverage remains constrained. The current implementation 

includes four core modalities—text, image, audio, and 

video—while emerging educational data sources such as 

learning notes and digital interaction traces are not yet 

incorporated, potentially omitting certain fine-grained 

cognitive state information. Third, domain generalization 

requires further validation. While extensive evaluation has 

been conducted in English teaching scenarios, differences in 

knowledge structures and learning behavior modalities across 

disciplines may necessitate additional adaptation of the feature 

decoupling subspace definitions. 

From the perspective of educational practice, three key 

implications can be derived. First, the granularity of 

personalized learning can be substantially enhanced. Subtle 

individual differences—such as cases in which written 

knowledge is well mastered while oral expression remains 

weak—can be effectively identified, thereby providing 

technical support for truly individualized instructional 

strategies. Second, path generation is aligned with established 

learning science principles. The recommended paths follow a 

cognitive progression from knowledge consolidation to skill 

reinforcement and ultimately to comprehensive assessment, 

while diversity features are used to adapt to individual learning 

pace, achieving an effective balance between learning 

effectiveness and cognitive load. Third, decision support for 

instructors can be provided. The generated paths can serve as 

references for teachers when designing personalized 

instructional plans, reducing the time required for path 

planning. In addition, insights derived from multimodal data 

analysis can complement teachers’ subjective judgments of 

students’ learning states, facilitating a shift toward an 

integrated decision-making paradigm that combines data-

driven insights with professional expertise. 

 

 

5. CONCLUSION AND OUTLOOK 

 

To address the core demands of multimodal data fusion and 

personalized learning path recommendation in English 

teaching scenarios, the MATDF-ELR model integrating a 

feature decoupling mechanism was introduced. Orthogonal 

subspaces for dependency features and diversity features were 

innovatively constructed, enabling effective separation and 

precise fusion of cross-modal instructional norm knowledge 

and individual student differences. Experimental results 

demonstrated that the proposed model significantly 

outperformed existing baselines in both multimodal fusion 

quality (with MI = 0.78 and KAA = 0.83) and path 

recommendation performance (with F1@3 = 0.87). 

Furthermore, attention visualization and case analyses 

substantiated the model’s interpretability and educational 

suitability. Beyond mitigating the accuracy limitations caused 

by feature entanglement in conventional multimodal fusion 

approaches, this work provides robust technical support for 

personalized English learning path generation, thereby 

validating the feasibility and superiority of feature decoupling 

in educational multimodal data analysis. 

Future research will be pursued along four directions. First, 

semi-supervised and weakly supervised learning strategies 

will be explored, in conjunction with pseudo-label generation, 

to reduce reliance on fine-grained annotations and lower the 

annotation costs associated with practical deployment. Second, 

cross-disciplinary adaptation will be advanced by optimizing 

subspace definitions and fusion mechanisms to accommodate 

the knowledge structures and modality characteristics of 

subjects such as mathematics and science, thereby extending 

applicability. Third, real-time interactive path 

recommendation will be realized by integrating dynamic data 

streams from online learning systems and designing 

incremental learning modules to support adaptive path 

adjustments with improved responsiveness. Fourth, learning 

science theories will be more deeply integrated—such as 

cognitive load theory and constructivist learning theory—to 

guide path generation strategies and further strengthen the 

model’s theoretical educational foundations. 

The practical significance of this study is reflected at three 

levels. At the instructional tool level, the MATDF-ELR model 
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can be deployed as a core recommendation module within 

intelligent education systems, enabling the delivery of 

personalized learning paths and facilitating the realization of 

the pedagogical principle of teaching in accordance with 

individual aptitude. At the educational research level, the 

feature-decoupled multimodal analysis framework provides a 

novel methodological paradigm for the field of learning 

analytics, advancing data-driven educational research based 

on multimodal evidence. At the resource contribution level, 

the EMTD-2025 multimodal dataset constructed in this study, 

together with the corresponding model code, will be openly 

released, thereby supplying foundational resources for 

subsequent research and promoting the collaborative 

advancement of artificial intelligence in education. 
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