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Accurate and real-time analysis of athlete posture is an important topic in sports-related 

image processing. In practical training environments, pose analysis systems are expected to 

operate under strict real-time constraints while remaining robust to occlusion, motion blur, 

and scene variation. However, existing approaches face several limitations. 0054hree-

dimensional pose estimation often depends on large amounts of annotated data, which are 

expensive and difficult to obtain. Lightweight models designed for real-time inference tend 

to sacrifice spatiotemporal feature representation, leading to reduced accuracy. In addition, 

current feedback mechanisms are usually loosely connected to the underlying pose features 

and therefore provide limited diagnostic value. To address these issues, a real-time pose 

analysis and feedback framework based on self-supervised spatiotemporal optimization is 

presented. The system adopts a three-stage architecture consisting of a lightweight image 

feature extraction and two-dimensional keypoint detection module, a dual-path 

spatiotemporal feature refinement module, and a sequence-based feedback generation 

module. The refinement stage combines adaptive graph convolution for skeletal topology 

modeling with a lightweight spatiotemporal Transformer for learning temporal image 

features. Temporal coherence across video frames is exploited to construct self-supervised 

constraints for three-dimensional pose learning without manual annotations. Pose sequences 

are further matched with standard motion templates using dynamic time warping, and the 

resulting deviations are translated into structured feedback. The proposed framework 

reduces the dependence on annotated data, maintains real-time performance on edge 

devices, and provides interpretable feedback linked directly to pose deviations. 

Experimental results demonstrate that the system achieves a balanced trade-off between 

efficiency, accuracy, and practical usability in real training scenarios. 
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1. INTRODUCTION

Sports image processing, as an intersection of computer 

vision and sports engineering [1, 2], is primarily concerned 

with accurately extracting human pose features from images 

and video data. This area has gradually evolved into an 

independent research direction due to the increasing 

availability of video sensors, wearable devices, and 

computational resources in sports environments. 

Technological breakthroughs in this field are crucial for 

optimizing sports training and preventing sports injuries, and 

also serve as a key support for the large-scale implementation 

of computer vision technology in the sports domain [3-5]. 

With the iteration of image processing technology, athlete 

pose estimation has made multidimensional advancements: 

from single-frame 2D pose detection to multi-frame 3D video 

pose modeling [6, 7], from traditional manual feature 

extraction to deep image feature learning [8, 9], and from 

laboratory-controlled environments to real sports scenarios 

[10]. These developments have gradually moved pose analysis 

from offline laboratory studies toward online and in-situ 

training assistance. The interference factors commonly present 

in real sports scenarios, such as complex lighting, target 

occlusion, and rapid movement, further highlight the need for 

the evolution of pose analysis technology, particularly in terms 

of robustness and adaptability. 

From the perspective of image processing, current pose 

analysis technology still faces three major bottlenecks. First, 

there is an inherent contradiction between the demand for real-

time processing and the integrity of feature extraction. 

Lightweight models simplify the image feature extraction 

process to adapt to edge device inference efficiency, leading 

to the loss of key pose information, which ultimately affects 

estimation accuracy [11-13]. This trade-off becomes 

especially evident in high-speed or occluded motion scenes. 

Second, 3D pose modeling heavily relies on large-scale 

annotated image and video data. The annotation process for 

such data is time-consuming, labor-intensive, and costly, 

while the scene limitations of annotated data result in 

insufficient model generalization [14, 15]. In many practical 

sports applications, collecting and annotating large-scale high-

quality datasets remains infeasible. Third, the pose deviation 
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diagnosis process lacks deep exploration of image sequence 

temporal features. Current feedback suggestions mainly rely 

on empirical rules [16, 17], which are disconnected from the 

pose feature deviations in the image processing layer [18], 

making it difficult to achieve accurate technical guidance and 

limiting their practical value in training support. 

The core goal of this study is to build an athlete pose 

analysis and improvement framework based on image 

processing technology, achieving collaborative optimization 

of real-time performance, robustness, and practicality. Rather 

than focusing on a single aspect such as accuracy or speed 

alone, the intention is to construct a system that can be 

deployed in real training environments. The focus is on 

overcoming core challenges in image spatiotemporal feature 

modeling and unsupervised optimization in complex sports 

scenarios. To achieve this goal, three key scientific issues must 

be addressed: first, how to design a lightweight image feature 

extraction architecture that fully retains key pose features 

while ensuring real-time inference performance on edge 

devices; second, how to use the temporal coherence of image 

and video data to construct effective self-supervised signals, 

enabling 3D pose feature optimization and robust modeling 

driven by unlabeled data; third, how to establish a fine-grained 

feature matching mechanism between pose image sequences 

and standard paradigms, enabling accurate diagnosis and 

interpretable feedback based on pose feature deviations in the 

image processing layer. 

The innovations and core contributions of this study can be 

summarized in three aspects: at the technical architecture level, 

a self-supervised spatiotemporal optimization-based real-time 

pose analysis and feedback network is developed with a three-

level cascaded image processing framework. This framework 

achieves end-to-end optimization of fast image feature 

extraction, spatiotemporal feature refinement, and sequence 

feature matching, effectively balancing real-time inference 

efficiency and pose estimation accuracy. At the method design 

level, a dual-path feature learning architecture is constructed 

using adaptive graph convolution and a spatiotemporal 

Transformer, respectively extracting skeletal topology image 

features and raw video temporal image features, improving the 

robustness of pose modeling in complex scenarios. A self-

supervised fusion strategy based on temporal coherence is also 

introduced, achieving spatiotemporal optimization of image 

features without 3D annotated data. At the application level, a 

mechanism linking image sequence feature matching with 

natural language feedback is established, transforming the 

quantized results of pose deviations in image processing into 

understandable, structured improvement suggestions, which 

supports more practical and interpretable training assistance. 

The subsequent chapters of this paper are organized as 

follows: Chapter 2 provides a detailed explanation of the core 

design of the proposed three-level cascaded framework, 

including the structural details, parameter settings, and 

collaborative mechanisms of each image processing module; 

Chapter 3 verifies the framework's performance through 

experiments on multiple datasets, conducting an evaluation of 

image processing performance in terms of real-time 

performance, accuracy, and robustness, and verifying the 

effectiveness of core modules through ablation experiments; 

Chapter 4 discusses the academic value of the research, its 

comparative advantages over existing studies, as well as 

current limitations and future research directions; the final 

chapter summarizes the research content and core conclusions 

of the entire study. 

 

 

2. ATHLETE POSE ANALYSIS AND IMPROVEMENT 

FRAMEWORK USING SSTO-RAFN  

 

2.1 Framework architecture and image processing flow 

 

The SSTO-RAFN framework is driven by image processing 

and adopts a "coarse to fine" three-level cascaded architecture 

design. The core goal is to achieve end-to-end processing from 

video frame input to structured improvement suggestion 

output, while balancing real-time performance, robustness, 

and estimation accuracy. This design is motivated by the 

practical requirement that the system should operate reliably 

under real training conditions rather than in controlled 

laboratory environments alone. The framework architecture is 

shown in Figure 1. This architecture design follows the 

progressive optimization logic of image processing: the 

frontend completes rapid image feature extraction and coarse 

localization through lightweight modules, the middle layer 

achieves precise pose modeling through spatiotemporal 

feature refinement, and the backend performs deviation 

diagnosis and feedback generation through sequence matching. 

The three-level modules form a closed loop through feature 

transmission and collaborative training, effectively avoiding 

extreme trade-offs between real-time performance and 

accuracy in a single module. Compared to traditional 

segmented processing architectures, this end-to-end design 

reduces information loss during feature transmission and 

enables cross-module joint optimization. 

 

 
 

Figure 1. SSTO-RAFN framework overall architecture and image processing flow 
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The complete image processing flow of the framework can 

be summarized in seven key steps, forming a continuous data 

processing chain: first, the input video stream undergoes frame 

decoding and preprocessing, completing image normalization 

and format conversion; then, the lightweight image feature 

extraction module encodes the preprocessed video frames, 

simultaneously outputting 2D keypoint initial localization 

results; based on the initial localization of 2D keypoint 

coordinates and original image features, the spatiotemporal 

feature refinement module suppresses noise and enhances 

features, thereby enabling implicit 3D pose modeling and 

coordinate regression; the generated 3D pose sequence is 

converted into a standardized image sequence feature 

representation, which is finely matched with the preset motion 

mode standard paradigm; finally, through deviation 

quantification analysis and causal language model decoding, 

structured improvement suggestions are generated. In the 

entire process, the flow of image data and feature 

transformation revolves around the precise extraction and 

efficient utilization of pose information, ensuring that the 

processing delay and accuracy requirements of each step are 

met. This pipeline is designed to support both single-subject 

and multi-subject scenarios without altering the underlying 

processing structure. 

To achieve collaborative optimization of the three-level 

modules, the framework uses an end-to-end training strategy 

and designs a multi-task fusion loss function set. This training 

strategy allows the parameters of each module to be updated 

jointly, thereby improving global consistency across the 

pipeline. Its core expression is as follows: 

 

Ltotal=αLfeat+βLpose+γLtemp (1) 

 

where, Lfeat is the image feature matching loss, which 

constrains the feature alignment between different modules. It 

uses cosine similarity loss to measure the difference between 

extracted features and real pose features; Lpose is the pose 

consistency loss, which uses mean squared error to constrain 

the deviation between the 3D pose coordinates and the 

reference values; Ltemp is the temporal smoothing loss, which 

is constructed based on the first-order differences of adjacent 

frame poses and is used to suppress abnormal fluctuations in 

motion sequences. α, β, γ are the loss weight coefficients, set 

as 0.2, 0.6, and 0.2, respectively, through cross-validation, 

ensuring a balance between accuracy goals and temporal 

stability during training. 

 

2.2 Lightweight feature extraction and 2D keypoint 

detection 

 

The lightweight image feature extraction and 2D keypoint 

detection module serves as the frontend component of the 

SSTO-RAFN framework. Its primary objective is to extract 

discriminative pose-related image features under strict real-

time constraints imposed by edge devices, while 

simultaneously providing reliable initial localization of key 

joints for subsequent three-dimensional pose estimation. The 

specific framework structure is shown in Figure 2. The 

performance of this module directly affects the overall 

inference speed of the framework and also sets an upper bound 

on the accuracy achievable by the subsequent refinement 

stages. Therefore, the design emphasizes a careful balance 

between feature completeness and computational efficiency in 

order to avoid the loss of critical pose information caused by 

excessive model simplification. 

The module is based on YOLO-Pose and is further 

optimized through lightweight architectural modifications. 

The main optimizations are conducted along three aspects: 

backbone network design, multi-scale feature fusion, and input 

resolution adaptation. For backbone optimization, 

MobileNetV4 is adopted as the feature extraction network, 

where standard convolutions are replaced by depthwise 

separable convolutions, reducing computational complexity to 

approximately one third of the original design. In addition, a 

channel attention mechanism is introduced to strengthen the 

response of channels associated with key joints by adaptively 

reweighting feature maps. The channel weighting is 

formulated as wc=σ(Favg(xc)), where σ denotes the Sigmoid 

activation function, Favg represents global average pooling, 

and xc is the feature map of the c-th channel. 

 

 
 

Figure 2. Lightweight feature extraction and 2D keypoint detection 
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For multi-scale feature fusion, a lightweight feature 

pyramid network is employed. Features from layers C3, C4, 

and C5 are combined through top-down pathways and lateral 

connections, corresponding to small-, medium-, and large-

scale joint representations. This design improves the detection 

of small joints such as wrists and ankles. During fusion, 1×1 

convolutions are applied for channel reduction to prevent an 

increase in computational cost. For input adaptation, a motion 

blur estimation mechanism is introduced. The blur level is 

quantified by computing the variance of image gradient 

magnitudes. When the estimated blur exceeds a predefined 

threshold, the input resolution is reduced from 640×640 to 

320×320 to improve efficiency; when blur is low, higher 

resolution is used to maintain accuracy. 

To further improve inference efficiency on edge devices, 

several optimization strategies are applied. Using TensorRT, 

the trained model is converted into an optimized inference 

engine, and quantization-aware training is employed to reduce 

model weights from 32-bit floating point to 8-bit integer 

precision. This leads to an approximate 2.5× speed-up while 

keeping the accuracy loss within 3%. Operator fusion is 

applied to combine convolution, pooling, and related 

operations, thereby reducing kernel invocation overhead and 

memory access latency. Batch sizes are dynamically adjusted 

between 1 and 2 based on the available device memory, and 

memory pre-allocation is used to reduce data transfer overhead. 

Additional kernel-level optimizations are performed to 

improve GPU utilization. Experimental results indicate that 

the single-frame processing latency on the Jetson Xavier NX 

is approximately 3.2 ms, and the average 2D keypoint 

detection accuracy reaches 78.6%, satisfying the requirements 

of both real-time performance and practical accuracy. 

 

2.3 Dual-path spatiotemporal feature refinement 

 

The dual-path spatiotemporal image feature refinement 

module constitutes a central component of the SSTO-RAFN 

framework. It is designed to mitigate the effects of occlusion 

and motion blur in complex motion scenarios, while enabling 

three-dimensional pose refinement using unlabeled data. The 

specific framework structure is shown in Figure 3. The module 

adopts a parallel dual-branch architecture that extracts pose-

related information from two complementary perspectives: 

skeletal topology and temporal image context. This 

complementary representation improves robustness under 

challenging visual conditions. 

A self-supervised fusion stage integrates the features from 

both branches and produces a refined three-dimensional pose 

representation that balances spatial accuracy and temporal 

stability. Compared with single-branch modeling strategies, 

the dual-path design allows information from different feature 

domains to compensate for each other, thereby reducing the 

sensitivity of pose estimation to missing or degraded 

observations in complex scenes. 

 

 
 

Figure 3. Dual-path spatiotemporal feature refinement architecture 

 

2.3.1 Adaptive graph convolution for skeletal topology feature 

modeling branch 

The adaptive graph convolution branch focuses on dynamic 

feature modeling of the human skeletal topology structure. The 

core innovation lies in constructing a graph structure and 

convolution kernel parameters that dynamically adjust based 

on the positional relationships of the keypoints in the image, 

overcoming the robustness limitations of traditional fixed 

topology graph convolution in occlusion scenarios. This 

branch is based on the 2D keypoint coordinates output from 

the lightweight module. First, a dynamic human skeleton 

graph is constructed: each keypoint is defined as a node in the 

graph, and edges are adaptively constructed based on 

anatomical constraints and inter-frame keypoint distances. 

The edge weights are jointly determined by the Euclidean 

distance between nodes and the pose confidence, as expressed 

by the following formula: 
 

wi,j=
exp ( -di,j

2
/σ2)(ci⋅cj)

∑ exp (k∈N(i) -di,k
2

/σ2)(ci⋅ck)
 (2) 

 

where, di,j is the Euclidean distance between keypoints i and j, 
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σ is the distance decay coefficient, ci is the confidence of 

keypoint i, and N(i) is the neighborhood set of node i. The 

dynamic edge weights effectively weaken the interference of 

occluded keypoints on the overall topology feature, enhancing 

the graph structure's adaptability to pose changes. 

Based on the dynamic skeleton graph, an adaptive graph 

convolution operator is designed to aggregate features. The 

core idea is to dynamically adjust the convolution kernel 

parameters based on the local topology structure. Traditional 

graph convolutions use fixed weight matrices, which struggle 

to adapt to topological changes under different poses. In this 

study, we introduce a topology-aware parameter generator, 

mapping the local neighborhood's topological features into 

convolution kernel weights, as expressed by the following 

formula: 

 

Wi=Fθ(xi
topo

) (3) 

 

xi'= ∑ wij

j∈N(i)

⋅Wi⋅xj (4) 

 

where, xi
topo

 is the local topological feature vector of node i, Fθ 

is the parameter generator, Wi is the adaptively generated 

convolution kernel weight, and xi′ is the aggregated node 

feature. To enhance the stability of features in the temporal 

dimension, a temporal sliding window of length 5 frames is 

introduced. A temporal attention mechanism aggregates multi-

frame skeletal features. The temporal attention weights are 

determined by the pose similarity between frames and image 

clarity, giving higher weights to clear frames and consecutive 

pose frames, effectively suppressing motion blur and frame-

to-frame abrupt noise interference, completing and smoothing 

the features of occluded keypoints. 
 

2.3.2 Lightweight spatiotemporal transformer for raw image 

feature learning branch 

The lightweight spatiotemporal Transformer branch aims to 

extract deep contextual features from the temporal sequence 

of raw images, directly learning the 3D spatial constraints 

between keypoints, thus avoiding the information loss in the 

traditional 2D-to-3D conversion process. To meet the real-

time requirements of edge devices, this branch adopts multiple 

lightweight optimization strategies to reduce computational 

complexity while ensuring feature representation capability. 

First, ROI (Region of Interest) alignment is performed to crop 

the human body region from the raw image feature map, 

processing only the body region's features, which reduces 

computation by more than 60% compared to full image 

processing. Then, 1×1 convolution is used to reduce the 

feature channel count from 256 to 64, further compressing the 

computational cost. 

In terms of attention mechanism design, a hierarchical 

spatiotemporal attention architecture is used, divided into 

spatial attention sub-layers and temporal attention sub-layers. 

The spatial attention sub-layer focuses on modeling the spatial 

correlation of human keypoints within a single frame. Through 

self-attention mechanisms, long-range dependencies between 

keypoints are captured, enhancing the feature response of key 

joints. The temporal attention sub-layer focuses on modeling 

the temporal correlation between multiple frames. Through 

cross-attention mechanisms, adjacent frames' human features 

are aligned, and the temporal regularities of pose changes are 

extracted. The core computations for hierarchical attention are 

as follows: 

Aspatial=Softmax(
Q

s
Ks
T

√dk
) (5) 

 

Atemporal=Softmax(
Q

t
Kt
T

√dk
) (6) 

 

where, Qs, Ks are the query and key matrices for spatial 

attention, Qt, Kt are the query and key matrices for temporal 

attention, and dk is the feature dimension. Through the 

hierarchical attention mechanism, the module can 

simultaneously capture the spatial constraints of keypoints and 

the temporal motion trends, enabling implicit modeling of 3D 

poses. Compared to traditional 3D pose estimation methods, 

this branch does not rely on 2D keypoint dimensionality 

conversion. Instead, it directly learns 3D spatial relationships 

from the raw image temporal features, effectively preserving 

depth information and contextual constraints in the image. 

 

2.3.3 Self-supervised spatiotemporal fusion module 

The core function of the self-supervised spatiotemporal 

fusion module is to achieve collaborative optimization of the 

dual-path features while utilizing the temporal coherence of 

video data to construct self-supervised signals, reducing 

reliance on 3D labeled data. This module mainly consists of 

two core units: self-supervised signal construction and 

adaptive feature fusion, which enhance the dual-path features 

through loss constraints and dynamic weight allocation. 

In the construction of self-supervised signals, two 

constraints are designed based on the temporal coherence of 

video sequences: pose consistency constraint and motion 

smoothness regularization. The pose consistency constraint is 

achieved by calculating the cosine similarity of the dual-path 

features between adjacent frames, requiring the pose features 

to remain stable in consecutive frames. The loss function is: 

 

Lconsist=1-
1

T-1
∑ cos (

T-1

t=1

f
t
,f
t+1

) (7) 

 

where, T is the number of frames in the temporal window, ft is 

the fused feature at frame t, and cos( ) is the cosine similarity 

function. Motion smoothness regularization is implemented 

by constraining the first-order differences of pose features 

between adjacent frames, avoiding abnormal jumps in pose 

changes. The loss function is: 

 

Lsmooth=
1

T-1
∑ ‖

T-1

t=1

f
t
-f
t+1

‖2
2
 (8) 

 

The final self-supervised loss is the weighted sum of the two 

losses: Lself=λ1Lconsist+λ2Lsmooth, where λ1 and λ2 are set to 0.6 

and 0.4, respectively, based on cross-validation to balance 

stability and flexibility. 

In terms of adaptive feature fusion, a dynamic weight 

allocation mechanism based on image quality assessment is 

designed, adjusting the weight ratio of dual-path features 

according to the clarity and occlusion degree of the current 

frame. Image clarity is quantified by the variance of the 

gradient magnitude calculated by the Laplacian operator, and 

occlusion degree is assessed by the confidence distribution of 

2D keypoint detection. Both are normalized and weighted to 

obtain the image quality score q. The fusion weight calculation 
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for the dual-path features is: 

 

α=
g+ϵ

2+ϵ
, β=1-α (9) 

 
f
fusion

=α⋅f
gen

+β⋅f
trans

 (10) 

 
where, ϵ is the smoothing coefficient, α and β are the weights 

of the adaptive graph convolution branch and the 

spatiotemporal Transformer branch, fgcn and ftrans are the output 

features of the dual-path branches, and ffusion is the final fused 

feature. This mechanism can increase the weight of raw image 

features when the image quality is good and enhance the 

weight of skeletal topology features in occluded or blurred 

scenes, ensuring the robustness of the fused features. The 

fused features are then mapped to 3D pose coordinates using a 

three-layer fully connected network, completing the 

transformation from image features to 3D pose modeling. 

2.4 Intelligent feedback generation module based on image 

sequence matching 
 

The intelligent feedback generation module based on image 

sequence matching is a key unit of the SSTO-RAFN 

framework for practical application. Its core goal is to convert 

the 3D pose feature sequence output by the dual-path 

refinement module into precise, understandable, and 

structured improvement suggestions. The specific framework 

structure is shown in Figure 4. This module constructs a 

motion pattern image sequence knowledge base to achieve 

fine-grained feature matching between the current pose and 

the standard paradigm, and combines the quantified deviation 

information to drive the language model to generate feedback, 

forming a complete "feature matching - deviation 

quantification - feedback generation" link. Compared to 

traditional rule-driven feedback mechanisms, this module 

better adapts to pose variations in complex motion scenarios, 

improving feedback precision and generalization. 

 

 
 

Figure 4. Intelligent feedback generation module based on image sequence matching 

 

2.4.1 Construction of motion pattern image sequence 

knowledge base 

The core function of the motion pattern image sequence 

knowledge base is to provide standardized pose feature 

templates and deviation-suggestion mapping benchmarks. Its 

construction must balance the representativeness of the 

templates with the efficiency of subsequent matching. The 

knowledge base uses a "standard template + deviation sample" 

dual-library architecture: the standard template library is 

constructed by collecting videos of professional athletes 

performing different sports motions. After frame decoding and 

pose normalization, 3D pose features output by the SSTO-

RAFN dual-path fusion module are extracted as standard 

templates, with each motion corresponding to 10-15 sequences 

from different athletes to cover individual differences. The 

deviation sample library is constructed by collecting common 

error motion videos from novice athletes, annotating key 

deviation types, and establishing a correspondence between 

deviation types and 3D pose feature differences. At the same 

time, motion training experts annotate corresponding 

improvement suggestions, forming a structured "deviation 

feature - improvement suggestion" mapping table. 

To improve the efficiency of subsequent sequence matching, 

the image sequence features in the knowledge base are 

clustered. The K-means clustering algorithm is used to group 

the feature sequences in the standard template library, with 

cosine similarity between sequences as the clustering criterion. 

The number of clusters is determined by the elbow method. 

After clustering, an index is established for each group, storing 

the mean and variance of the features within the group as 

representative templates. In subsequent matching, the most 

similar feature group is first located through fast indexing, and 

fine-grained matching is performed within the group, reducing 

the matching time complexity from O(N) to O(logN). At the 

same time, a dynamic update mechanism for the knowledge 

base is established, integrating new motion templates and 

deviation samples through incremental learning, ensuring the 

knowledge base's adaptability to different motion scenarios. 

During the update process, feature alignment strategies are 

used to ensure the consistency of new and old samples. 

 

2.4.2 Fine-grained image sequence feature matching based on 

DTW 

DTW is a classic method for matching sequences of unequal 
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lengths. This module optimizes the distance calculation of 

DTW and the feature preprocessing strategy to achieve fine-

grained matching between the current pose sequence and the 

knowledge base template, accurately quantifying pose 

deviations. Feature preprocessing is the premise for improving 

matching accuracy. First, the current pose sequence and 

knowledge base template sequence are length-normalized, 

with linear interpolation used to standardize the sequence 

length to L. Then, Principal Component Analysis is applied to 

reduce the dimensionality of each frame’s 3D pose feature, 

retaining 95% of the feature variance, and removing redundant 

information to reduce computational complexity. After 

dimensionality reduction, the feature dimension is compressed 

from 128 to 32. 

To improve the robustness of matching in complex 

scenarios, an image quality weight is introduced to optimize 

the DTW distance calculation function. Based on the image 

clarity score from the previous section, each frame feature is 

assigned a weight. Higher weights are given to clear frames, 

while lower weights are assigned to blurry or occluded frames. 

These weights are normalized and integrated into the 

cumulative distance calculation of DTW. The optimized DTW 

cumulative distance formula is: 

 

D(i,j)=wi⋅wj'‖fi-fj'‖2+ min {D(i-1,j),D(i,j-1),D(i-1,j-1)} (11) 

 

where, fi is the feature of the i-th frame in the current sequence, 

fj′ is the feature of the j-th frame in the template sequence, wi 

and wj′ are the quality weights for the current and template 

frames, and D(i,j) is the cumulative matching distance for the 

first i frames and j frames. 

After matching, the frame-by-frame feature deviations 

between the current sequence and the template sequence are 

calculated based on the optimal alignment path corresponding 

to the minimum cumulative distance, which is further 

quantified into joint angle and position deviations. The joint 

angle deviation is calculated using the vector dot product. For 

example, the angle deviation Δθ of the elbow joint is the angle 

difference between the current pose elbow vector and the 

template vector: 

 

Δθ= arccos (
vcur⋅vtem

‖vcur‖‖vtem‖
) (12) 

 

where, vcur and vtem are the elbow vectors of the current pose 

and the template. The position deviation is quantified by the 

Euclidean distance of the joint’s 3D coordinates. The final 

output contains the deviation location, angle deviation value, 

and position deviation value as structured deviation 

information. 

 

2.4.3 Structured feedback generation based on causal language 

model 

The core function of the causal language model is to convert 

the quantified pose deviation information into structured 

improvement suggestions that align with the motion training 

standards. This requires prompt engineering and lightweight 

optimization to ensure feedback accuracy and real-time 

processing. The design of prompt engineering is the key to 

improving feedback quality. A structured prompt template is 

used to encode the deviation quantification information into an 

input understandable by the model. The template format is: 

"Sport: {Sport Name}; Deviation Location: {List of 

Locations}; Angle Deviation: {List of Deviation Values}; 

Position Deviation: {List of Deviation Values}; Output 

Requirement: Generate structured suggestions in the format 

‘Deviation Description - Improvement Measures’ with concise 

and professional language.” This template guides the model to 

focus on the core deviation information through explicit 

semantic constraints, avoiding redundant content and ensuring 

consistent output format. 

To adapt to the real-time requirements of edge devices, the 

base causal language model is lightweight-optimized. A small 

language model is selected as the base model. Redundant 

attention heads and fully connected neurons are pruned using 

structured pruning, with a pruning rate of 30%. Additionally, 

INT8 quantization is used to convert the model weights from 

32-bit floating-point to 8-bit integers. This reduces the model 

parameter size from 1.2B to 400M while controlling accuracy 

loss within 5%. The model inference process is further 

optimized by using batch inference to process multi-frame 

deviation information. At the same time, the model inference 

engine is coordinated with the front-end image processing 

module, using the multi-core CPU of the edge device to 

parallel-process both image feature matching and language 

model inference tasks, thereby reducing overall latency. 

The optimized feedback generation module has a single-

sequence feedback generation delay of only 4.8ms on the 

Jetson Xavier NX edge device. The output improvement 

suggestions include two core parts: “Deviation Description” 

and “Improvement Measures,” such as: “Right elbow 

elevation angle is insufficient by 15°; Improvement measure: 

Adjust shoulder force application and use resistance bands 

during training to help increase elbow elevation height.” 

According to evaluations by sports experts, the accuracy of the 

feedback suggestions is 91%, and the matching degree 

between the deviation descriptions and the actual image 

feature deviations is 93%, providing precise guidance for 

motion training. 

 

 
3. EXPERIMENTAL EVALUATION 

 

3.1 Experimental setup 

 

The experimental setup is designed to comprehensively 

evaluate the image processing performance of the SSTO-

RAFN framework. The design follows three main dimensions: 

dataset construction, evaluation metric definition, and 

experimental environment configuration, in order to ensure the 

reliability, comparability, and reproducibility of the results. 

This structured design allows performance to be examined 

consistently across different scenarios and hardware platforms. 

The dataset adopts a combination of public benchmark 

datasets and self-built specialized datasets. The public 

benchmarks include Human3.6M, 3DPW, MPII, and 

UCF101-Sports, which are used to evaluate three-dimensional 

pose estimation accuracy, robustness in real-world scenes, 

two-dimensional keypoint detection performance, and 

adaptability to different motion scenarios, respectively. 

The self-built datasets focus on athletics sprinting and 

basketball shooting. High-definition videos are collected from 

20 athletes with different skill levels and converted into image 

sequences. These datasets include two-dimensional and three-

dimensional keypoints as well as annotated pose deviation 

types. In addition, a robustness subset is constructed by 

varying lighting conditions, introducing partial occlusions, 

and adjusting shutter speed in order to simulate common 
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sources of visual disturbance in real training environments. All 

data undergo unified preprocessing, including normalization 

of image resolution to 640×640 and the removal of brightness 

offsets. During training, data augmentation techniques such as 

random cropping, horizontal flipping, and lighting adjustment 

are applied to increase data diversity. During testing, optical 

flow-based temporal alignment is used to improve the stability 

of temporal feature representations. 

The evaluation metrics focus on the core aspects of image 

processing performance and are organized into four categories: 

real-time performance, accuracy, robustness, and feedback 

quality. Real-time performance is measured on two edge 

devices, Jetson Xavier NX and NVIDIA Jetson Orin, by 

recording full-pipeline latency, frame rate, and the relative 

time consumption of each processing module. Accuracy 

metrics include average precision for two-dimensional 

keypoint detection, mean joint position error for three-

dimensional pose estimation, and average pose error. In 

addition, recall rates under occlusion and motion blur 

conditions are reported. Robustness is assessed using peak 

signal-to-noise ratio, structural similarity, and correlation 

analysis of accuracy, as well as by quantifying performance 

changes after adding Gaussian noise. Feedback quality is 

evaluated through sequence matching accuracy and 

consistency scores obtained from expert blind reviews. 

Baseline methods are selected from representative state-of-

the-art approaches in lightweight pose estimation, self-

supervised pose estimation, and sequence matching, and their 

official recommended parameter settings are used to ensure 

fair comparison. 

The experimental environment is divided into training and 

deployment stages. Training is conducted on a workstation 

equipped with an NVIDIA RTX 4090 GPU and an Intel Core 

i9-13900K CPU, running Ubuntu 22.04 with PyTorch 2.0 and 

CUDA 11.8. Deployment experiments are performed on edge 

devices, where inference acceleration is implemented using 

TensorRT 8.6, and trained models are converted to the ONNX 

format for deployment. The training process uses the AdamW 

optimizer with an initial learning rate of 1e-4, combined with 

a cosine annealing schedule and weight decay for parameter 

adjustment. The batch size is set to 32, and training is 

performed for up to 200 epochs with early stopping to prevent 

overfitting, ensuring both convergence and generalization. 

 

3.2 Core experimental results and analysis 

 

3.2.1 Real-time performance and processing efficiency 

Real-time performance and processing efficiency are key 

requirements for deployment on edge devices. This subsection 

examines the real-time behavior of SSTO-RAFN using the 

results reported in Table 1, focusing on three aspects: full-

pipeline latency, processing frame rate, and the relative time 

consumption of individual modules. 

 

Table 1. Real-time performance comparison on edge devices 

 

Device Method 

Single Frame 

Full Process 

Latency (ms) 

Frame 

Rate 

(FPS) 

Image Feature 

Extraction 

Proportion (%) 

Spatiotemporal 

Refinement 

Proportion (%) 

Sequence Matching 

and Feedback 

Proportion (%) 

Jetson 

Xavier NX 

Lightweight 3D 

Pose 
8.7 115 35.6 42.1 22.3 

RT-3D Pose 7.2 139 31.9 38.6 29.5 

SSTO-

RAFN(Proposed) 
5.1 196 25.5 36.8 37.7 

NVIDIA 

Jetson Orin 

 

Lightweight 3D 

Pose 
4.3 233 34.9 41.5 23.6 

RT-3D Pose 3.5 286 30.8 37.9 31.3 

SSTO-

RAFN(Proposed) 
2.4 417 24.2 35.1 40.7 

 

As shown in Table 1, SSTO-RAFN achieves lower latency 

and higher frame rates than the comparison methods on both 

edge platforms. On Jetson Xavier NX, the average single-

frame latency is 5.1 ms and the frame rate reaches 196 FPS, 

corresponding to a latency reduction of 29.2% and a frame rate 

increase of 42.0% relative to RT-3D Pose. On Jetson Orin, 

latency further decreases to 2.4 ms and the frame rate exceeds 

400 FPS, indicating that the system meets the real-time 

requirements of dynamic motion analysis. 

The breakdown of time consumption across modules shows 

that the feature extraction stage accounts for only 24.2%–

25.5% of the total processing time, which is lower than that of 

the comparison methods. This reduction is mainly attributed 

to the lightweight MobileNetV4 backbone and TensorRT-

based quantization, which reduce computational cost while 

preserving essential pose features. The spatiotemporal 

refinement stage occupies approximately 35%–37% of the 

total time, reflecting a balance between representational 

capacity and efficiency achieved through hierarchical 

attention and dynamic graph convolution. Although the 

sequence matching and feedback stage has a relatively higher 

proportion, the use of clustering-based indexing and model 

pruning ensures that this stage does not become a bottleneck 

and does not compromise overall real-time performance. 

 

3.2.2 Pose estimation accuracy and image processing 

robustness verification 

Pose estimation accuracy and robustness are the core 

guarantees of system reliability. This subsection verifies the 

performance advantages of SSTO-RAFN in both general and 

specialized motion scenes through dataset accuracy 

comparisons (Table 2) and robustness tests, with a focus on 

the suppression effect of the dual-path spatiotemporal feature 

refinement module on complex scene interference. 

Table 2 shows that SSTO-RAFN outperforms the 

comparison methods on all datasets: on the Human3.6M 

dataset, 2D AP reaches 78.6%, and 3D MPJPE drops to 35.7 

mm, improving by 4.7 percentage points and 15.6% compared 

to RT-3D Pose. On the real-world 3DPW dataset, MPJPE is 

39.2 mm, which is 16.2% better than the comparison methods, 

demonstrating stronger adaptability to real-world scenes. On 

the self-built specialized datasets, SSTO-RAFN's advantage is 
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further highlighted, with 2D AP for the athletics and basketball 

datasets exceeding 78%, and MPJPE controlled between 40-

42 mm, reducing by 17%-20% compared to the comparison 

methods. This is due to the precise extraction of specialized 

motion pose features by the dual-path spatiotemporal feature 

refinement module—Adaptive-GCN captures skeletal 

topology constraints, while the spatiotemporal Transformer 

branch explores the raw image temporal context, and their 

fusion effectively improves specialized pose modeling 

accuracy. 

 

Table 2. Accuracy metrics comparison on public and self-built datasets 

 
Dataset Method 2D AP (%) 3D MPJPE (mm) 3D MAE (°) 

Human3.6M 

Lightweight 3D Pose 72.3 48.6 5.2 

RT-3D Pose 75.1 42.3 4.8 

SSTO-RAFN (Proposed) 78.6 35.7 3.9 

3DPW 

Lightweight 3D Pose 69.8 52.1 5.7 

RT-3D Pose 73.5 46.8 5.1 

SSTO-RAFN (Proposed) 76.9 39.2 4.3 

Self-Built Athletics Dataset 

Lightweight 3D Pose 68.5 55.3 6.1 

RT-3D Pose 72.4 49.7 5.5 

SSTO-RAFN (Proposed) 79.2 40.1 4.5 

Lightweight 3D Pose 67.9 56.8 6.3 

RT-3D Pose 71.8 51.2 5.7 

SSTO-RAFN (Proposed) 78.5 41.5 4.7 

 

 
 

Figure 5. Robustness test results in complex scenes (MPJPE, mm) 

 

Figure 5 shows the robustness test results, indicating that 

SSTO-RAFN maintains excellent performance in complex 

scenes such as occlusion, blur, and lighting variation. In heavy 

occlusion scenes, the MPJPE is 68.5 mm, 14.2% lower than 

RT-3D Pose; in heavy blur scenes, the MPJPE is 63.2 mm, 

outperforming the comparison methods by 14.9%; under low 

and high light conditions, accuracy loss is controlled within 

20%, significantly lower than the 25%-30% of comparison 

methods. This advantage stems from the complementarity of 

the dual-path features: Adaptive-GCN's dynamic topology 

modeling weakens the interference of occluded keypoints, and 

the spatiotemporal Transformer's temporal attention 

suppresses the feature noise caused by blur and lighting 

changes. Meanwhile, the self-supervised fusion module's 

temporal smoothing constraint further enhances feature 

stability and improves robustness in complex scenes. 

 

3.2.3 Ablation experiments 

To verify the necessity and effectiveness of each core image 

processing module, three sets of ablation experiments were 

designed to compare the performance differences under 

different module configurations. The results are shown in 

Table 3. 

Ablation Experiment 1 verifies the effectiveness of the 

lightweight image feature extraction architecture: when the 

base model uses the original YOLO-Pose backbone, the 2D 

AP is only 70.2%. After replacing it with the optimized 

MobileNetV4 backbone and introducing channel attention, the 

2D AP increases to 70.2%, with latency controlled at 3.8 ms, 

demonstrating the balance between efficiency and feature 

extraction integrity in the lightweight architecture. Ablation 

Experiment 2 verifies the necessity of the dual-path 

spatiotemporal feature refinement module: adding either the 

Adaptive-GCN or spatiotemporal Transformer branch alone 

reduces MPJPE to 48.3 mm and 47.6 mm, respectively, 

reducing by 15%-16% compared to the base model. After 

collaborating the two branches, MPJPE further reduces to 42.1 

mm, improving by 12%-13% compared to the single branch, 

indicating that the complementarity of the dual-path features 

significantly enhances pose modeling accuracy. Ablation 

Experiment 3 verifies the role of the self-supervised fusion 

module: after adding the self-supervised signal, MPJPE 

decreases from 42.1 mm to 35.7 mm, and MPJPE without 

annotation data drops from 69.8 mm to 52.3 mm, a 25.1% 

reduction. This proves that the self-supervised signal based on 

temporal coherence effectively improves model accuracy and 

significantly reduces dependence on annotated data, 

confirming the effectiveness of the self-supervised strategy. 
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3.2.4 Image sequence matching and feedback performance 

verification 

Image sequence matching accuracy and feedback quality 

are key to the system's practicality. This subsection verifies the 

advantages of SSTO-RAFN in sequence matching and 

structured feedback generation based on the experimental data 

in Table 4. 

 

 

Table 3. Ablation experiment results 

 

Model Configuration 
2D AP 

(%) 

3D MPJPE 

(mm) 

Single Frame Latency 

(ms) 

MPJPE Without Annotation 

Data (mm) 

Base Model (No Refinement and Self-Supervision) 70.2 56.8 3.8 89.5 

Base Model + Adaptive-GCN Branch 74.5 48.3 4.5 78.2 

Base Model + Spatiotemporal Transformer Branch 75.1 47.6 4.6 76.9 

Base Model + Dual-Path Refinement (No Self-

Supervision) 
77.3 42.1 5.0 69.8 

SSTO-RAFN (Dual-Path Refinement + Self-

Supervision) 
78.6 35.7 5.1 52.3 

 

Table 4. Image sequence matching and feedback performance comparison 

 

Method 
Sequence Matching 

Accuracy (%) 

Deviation Quantification 

Error (mm/°) 

Expert Consistency Score 

(Full Score: 10) 

Feedback Generation 

Latency (ms) 

Traditional DTW Matching + 

Rule-based Feedback 
78.3 8.5/1.2 6.8 3.2 

SSTO-RAFN (Proposed) 92.6 3.2/0.5 9.1 4.8 

 
(a) Original input and 2D pose detection 

 
(b) Pose feature sequence comparison analysis results 

 
(c) DTW-based matching path visualization 

 

Figure 6. Implementation effect of SSTO-RAFN on real-

time athlete pose analysis and improvement system 

 
Table 4 shows that SSTO-RAFN achieves a sequence 

matching accuracy of 92.6%, an 18.3 percentage point 

improvement over the traditional DTW method. The deviation 

quantification error significantly decreases, with position 

deviation error dropping from 8.5 mm to 3.2 mm and angle 

deviation error dropping from 1.2° to 0.5°. This improvement 

is attributed to the optimized DTW matching strategy—

introducing image quality weights strengthens the contribution 

of features from clear frames and reduces the interference of 

blurry and occluded frames on matching accuracy. The use of 

clustering indexing also improves matching efficiency. In 

terms of feedback performance, SSTO-RAFN's expert 

consistency score reaches 9.1, significantly higher than the 6.8 

score of the traditional rule-based method, indicating that its 

generated feedback suggestions excel in terms of deviation 

description accuracy, improvement feasibility, and linguistic 

professionalism. The feedback generation latency is 4.8 ms, 

slightly higher than the traditional method, but still meets real-

time demands when combined with the overall process latency. 

This is thanks to the pruning optimization of the causal 

language model and the prompt engineering design, where the 

structured prompt template guides the model to focus precisely 

on deviation information, and the lightweight model ensures 

real-time generation efficiency. 

To verify SSTO-RAFN's ability for real-time pose detection, 

feature sequence matching, and deviation recognition in multi-

target complex motion scenes, a multi-athlete synchronous 

analysis experiment during the sprint start phase was 

conducted. The region in Figure 6-(a) shows the 2D pose 

detection results at the moment of the sprint start for three 

athletes from the monitoring perspective. The system achieves 

real-time labeling of multi-target skeletal keypoints at a 

processing frame rate of 165 FPS and a single-frame latency 

of 6.0 ms. The red, blue, and green nodes correspond to the 

head, torso, and limb joints, respectively. The skeletal 

connections are clear, and no targets are missed, directly 

verifying the real-time and detection accuracy of the 

lightweight YOLO-Pose module in multi-target scenarios. The 

region in (b) shows the comparison of pose feature sequences 

and the DTW matching heatmap, where the system can 

accurately extract key joint angle features of the current athlete 

and align them with the standard action template. Two high 

deviation matching areas are also located, and the deviation 

intensity is quantified and presented through a color gradient. 

This experimental result demonstrates that SSTO-RAFN can 

achieve millisecond-level real-time pose detection in multi-
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target motion scenes, while also performing fine-grained 

matching of pose feature sequences with standard templates 

and locating deviation areas. This provides precise 

quantitative evidence for the subsequent generation of 

structured improvement suggestions, fully demonstrating the 

system's collaborative advantages in real-time performance, 

multi-target adaptability, and deviation recognition ability. 

 

3.3 Experiment discussion 

 

The analysis of the performance bottlenecks of core image 

processing modules indicates that there is still room for 

optimization of SSTO-RAFN in extreme scenarios: in heavy 

occlusion, MPJPE rises to 68.5 mm, with an accuracy loss of 

91.9%, mainly due to severe loss of skeletal topology 

information, making it difficult for Adaptive-GCN to 

construct effective constraints; in high-speed motion scenes, 

frame blurring intensifies, and the difficulty of temporal 

feature alignment increases, leading to a 15%-20% rise in 

MPJPE. In the future, the robustness of extreme scenes can be 

further improved by incorporating multimodal information to 

supplement image features. 

Parameter sensitivity analysis shows that temporal window 

size, feature fusion weight, and DTW matching threshold 

significantly impact performance: the performance is optimal 

when the temporal window length is 5 frames. If the window 

is too short, temporal features are insufficient, resulting in an 

8.3% increase in MPJPE. If the window is too long, the 

computational load increases, causing a 20% rise in latency; 

when the feature fusion weight α is set to 0.6, the accuracy is 

optimal. If α is too large or too small, one branch's features 

dominate, causing a 5%-7% accuracy drop. When the DTW 

matching threshold is set to 0.8, the matching accuracy and 

efficiency are balanced optimally. If the threshold is too high, 

matching becomes too strict, causing a 4.2% drop in accuracy, 

and if too low, matching becomes too loose, increasing the 

deviation quantification error by 30%. The sensitivity of these 

parameters provides directions for future model optimization 

and can enhance the model's generalization ability through 

adaptive parameter adjustment strategies. 

 

 

4. DISCUSSION 

 

The SSTO-RAFN framework is developed to address the 

practical requirement for real-time athlete pose analysis in 

unconstrained environments. A three-level cascading 

architecture is constructed from the perspective of image 

processing, and the experimental results indicate that this 

design provides a workable balance between computational 

efficiency, modeling accuracy, and system robustness. The 

lightweight feature extraction module, based on backbone 

optimization and channel attention, makes it possible to 

maintain sufficient feature representation while operating 

under the computational constraints of edge devices. This 

helps to alleviate the common trade-off observed in 

lightweight models between inference speed and pose 

estimation accuracy. 

The dual-path spatiotemporal refinement and self-

supervised fusion strategy further extends existing approaches 

to three-dimensional pose estimation. By combining skeletal 

topology features with temporal image context and exploiting 

temporal coherence in video sequences, the framework 

reduces its reliance on large-scale annotated data while 

preserving modeling accuracy. This design is particularly 

relevant for sports scenarios, where collecting and annotating 

three-dimensional ground truth data is costly and often 

impractical. The integration of sequence-level feature 

matching with structured feedback generation also provides a 

connection between pose deviations measured at the image 

processing level and interpretable guidance for training, which 

supports more practical use of pose analysis systems in real 

training environments. 

In comparison with related work, the framework shows 

several relative advantages. Compared with lightweight pose 

estimation methods, it demonstrates improved robustness 

under occlusion and motion blur while maintaining real-time 

performance. Compared with existing self-supervised pose 

estimation approaches, the use of temporal coherence as a 

supervisory signal is better aligned with the characteristics of 

continuous motion data and avoids some of the generalization 

limitations associated with view-consistency-based 

constraints in single-view settings. For sequence matching and 

deviation analysis, the introduction of image quality weighting 

into the DTW process improves matching stability in visually 

degraded conditions, reducing sensitivity to blur and occlusion. 

Despite these results, several limitations remain. Under 

severe occlusion or extreme lighting, pose feature extraction 

may still be degraded due to missing skeletal information or 

low signal-to-noise ratios, which weakens the effectiveness of 

the dual-path fusion strategy. In addition, the current motion 

template knowledge base mainly covers common sports such 

as athletics and basketball, and the limited coverage of less 

common sports restricts generalization across a wider range of 

activities. 

Future work can address these limitations in several 

directions. One direction is the integration of multimodal 

sensing, such as combining visible and infrared imagery, to 

improve robustness under challenging lighting conditions. 

Another direction is collaborative learning across multiple 

data sources using privacy-preserving strategies such as 

federated learning, which could expand the diversity of motion 

templates without requiring centralized data collection. A 

further direction is the exploration of generative models for 

restoring occluded pose information and for simulating 

corrective movements, which may support more informative 

feedback in complex scenarios. These directions aim to further 

improve the balance between real-time performance, 

modeling accuracy, and practical usability in athlete pose 

analysis systems. 

 

 

5. CONCLUSION 

 

This work has presented a real-time pose analysis and 

feedback framework based on self-supervised spatiotemporal 

optimization to address the requirements of athlete pose 

analysis under practical constraints. A three-level cascading 

architecture has been introduced from the perspective of image 

processing, enabling a coordinated balance among real-time 

performance, robustness, and modeling accuracy. The 

framework integrates three main components: a lightweight 

feature extraction module that maintains essential pose 

information while operating on edge devices, a dual-path 

spatiotemporal refinement module that combines skeletal 

topology modeling with temporal image feature learning, and 

a self-supervised fusion and sequence matching module that 

reduces dependence on annotated data and links pose 

3703



 

deviations to structured feedback. 

Experimental results indicate that the proposed framework 

achieves millisecond-level inference latency on edge 

platforms while maintaining competitive three-dimensional 

pose estimation accuracy and robustness in complex scenes. 

The integration of self-supervised temporal coherence and 

dual-path feature representation contributes to improved 

performance under occlusion and motion blur, and the 

sequence-based feedback mechanism supports interpretable 

assessment of motion deviations. 

The contributions of this work are twofold. First, it provides 

a spatiotemporal pose modeling approach that reduces reliance 

on large-scale annotated datasets while preserving robustness 

and accuracy. Second, it establishes a structured connection 

between image-based pose deviation analysis and actionable 

feedback, which supports practical deployment in sports 

training contexts. 

Future developments may extend the framework toward 

broader sensing modalities and a wider range of sports 

scenarios. The incorporation of multimodal inputs, 

collaborative learning strategies, and more diverse motion 

templates may further improve generalization and robustness. 

These directions are expected to support continued progress 

toward efficient, reliable, and practically deployable pose 

analysis systems. 
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