%&T

International Information and
Engineering Technology Association

Traitement du Signal
Vol. 42, No. 6, December, 2025, pp. 3693-3704

Journal homepage: http://iieta.org/journals/ts

A Real-Time System for Athlete Pose Analysis and Feedback Based on Machine Learning N

Xiaogian Peng*®, Xujiang Mao?

, Xiaomin Fang®”

Check for
updates

1 School of Culture and Tourism, Quzhou College of Technology, Quzhou 324000, China
2 Zhejiang Institute of Sports Science (Zhejiang Anti-Doping Center), Hangzhou 30014, China
3 Department of Information Engineering, Quzhou College of Technology, Quzhou, 324000, China

Corresponding Author Email; fxm 1985@126.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.420649

ABSTRACT

Received: 3 April 2025

Revised: 25 September 2025
Accepted: 15 December 2025
Available online: 31 December 2025

Keywords:

sports image processing, real-time 3D pose
estimation, spatiotemporal feature
modeling, self-supervised learning,
lightweight neural networks, dynamic time
warping

Accurate and real-time analysis of athlete posture is an important topic in sports-related
image processing. In practical training environments, pose analysis systems are expected to
operate under strict real-time constraints while remaining robust to occlusion, motion blur,
and scene variation. However, existing approaches face several limitations. 0054hree-
dimensional pose estimation often depends on large amounts of annotated data, which are
expensive and difficult to obtain. Lightweight models designed for real-time inference tend
to sacrifice spatiotemporal feature representation, leading to reduced accuracy. In addition,
current feedback mechanisms are usually loosely connected to the underlying pose features
and therefore provide limited diagnostic value. To address these issues, a real-time pose
analysis and feedback framework based on self-supervised spatiotemporal optimization is
presented. The system adopts a three-stage architecture consisting of a lightweight image
feature extraction and two-dimensional keypoint detection module, a dual-path
spatiotemporal feature refinement module, and a sequence-based feedback generation
module. The refinement stage combines adaptive graph convolution for skeletal topology
modeling with a lightweight spatiotemporal Transformer for learning temporal image
features. Temporal coherence across video frames is exploited to construct self-supervised
constraints for three-dimensional pose learning without manual annotations. Pose sequences
are further matched with standard motion templates using dynamic time warping, and the
resulting deviations are translated into structured feedback. The proposed framework
reduces the dependence on annotated data, maintains real-time performance on edge
devices, and provides interpretable feedback linked directly to pose deviations.
Experimental results demonstrate that the system achieves a balanced trade-off between
efficiency, accuracy, and practical usability in real training scenarios.

1. INTRODUCTION

training assistance. The interference factors commonly present
in real sports scenarios, such as complex lighting, target

Sports image processing, as an intersection of computer
vision and sports engineering [1, 2], is primarily concerned
with accurately extracting human pose features from images
and video data. This area has gradually evolved into an

independent research direction due to the increasing
availability of video sensors, wearable devices, and
computational ~ resources in  sports  environments.

Technological breakthroughs in this field are crucial for
optimizing sports training and preventing sports injuries, and
also serve as a key support for the large-scale implementation
of computer vision technology in the sports domain [3-5].
With the iteration of image processing technology, athlete
pose estimation has made multidimensional advancements:
from single-frame 2D pose detection to multi-frame 3D video
pose modeling [6, 7], from traditional manual feature
extraction to deep image feature learning [8, 9], and from
laboratory-controlled environments to real sports scenarios
[10]. These developments have gradually moved pose analysis
from offline laboratory studies toward online and in-situ
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occlusion, and rapid movement, further highlight the need for
the evolution of pose analysis technology, particularly in terms
of robustness and adaptability.

From the perspective of image processing, current pose
analysis technology still faces three major bottlenecks. First,
there is an inherent contradiction between the demand for real-
time processing and the integrity of feature extraction.
Lightweight models simplify the image feature extraction
process to adapt to edge device inference efficiency, leading
to the loss of key pose information, which ultimately affects
estimation accuracy [11-13]. This trade-off becomes
especially evident in high-speed or occluded motion scenes.
Second, 3D pose modeling heavily relies on large-scale
annotated image and video data. The annotation process for
such data is time-consuming, labor-intensive, and costly,
while the scene limitations of annotated data result in
insufficient model generalization [14, 15]. In many practical
sports applications, collecting and annotating large-scale high-
quality datasets remains infeasible. Third, the pose deviation
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diagnosis process lacks deep exploration of image sequence
temporal features. Current feedback suggestions mainly rely
on empirical rules [16, 17], which are disconnected from the
pose feature deviations in the image processing layer [18],
making it difficult to achieve accurate technical guidance and
limiting their practical value in training support.

The core goal of this study is to build an athlete pose
analysis and improvement framework based on image
processing technology, achieving collaborative optimization
of real-time performance, robustness, and practicality. Rather
than focusing on a single aspect such as accuracy or speed
alone, the intention is to construct a system that can be
deployed in real training environments. The focus is on
overcoming core challenges in image spatiotemporal feature
modeling and unsupervised optimization in complex sports
scenarios. To achieve this goal, three key scientific issues must
be addressed: first, how to design a lightweight image feature
extraction architecture that fully retains key pose features
while ensuring real-time inference performance on edge
devices; second, how to use the temporal coherence of image
and video data to construct effective self-supervised signals,
enabling 3D pose feature optimization and robust modeling
driven by unlabeled data; third, how to establish a fine-grained
feature matching mechanism between pose image sequences
and standard paradigms, enabling accurate diagnosis and
interpretable feedback based on pose feature deviations in the
image processing layer.

The innovations and core contributions of this study can be
summarized in three aspects: at the technical architecture level,
a self-supervised spatiotemporal optimization-based real-time
pose analysis and feedback network is developed with a three-
level cascaded image processing framework. This framework
achieves end-to-end optimization of fast image feature
extraction, spatiotemporal feature refinement, and sequence
feature matching, effectively balancing real-time inference
efficiency and pose estimation accuracy. At the method design
level, a dual-path feature learning architecture is constructed
using adaptive graph convolution and a spatiotemporal
Transformer, respectively extracting skeletal topology image
features and raw video temporal image features, improving the
robustness of pose modeling in complex scenarios. A self-
supervised fusion strategy based on temporal coherence is also
introduced, achieving spatiotemporal optimization of image
features without 3D annotated data. At the application level, a
mechanism linking image sequence feature matching with
natural language feedback is established, transforming the
quantized results of pose deviations in image processing into
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understandable, structured improvement suggestions, which
supports more practical and interpretable training assistance.

The subsequent chapters of this paper are organized as
follows: Chapter 2 provides a detailed explanation of the core
design of the proposed three-level cascaded framework,
including the structural details, parameter settings, and
collaborative mechanisms of each image processing module;
Chapter 3 verifies the framework's performance through
experiments on multiple datasets, conducting an evaluation of
image processing performance in terms of real-time
performance, accuracy, and robustness, and verifying the
effectiveness of core modules through ablation experiments;
Chapter 4 discusses the academic value of the research, its
comparative advantages over existing studies, as well as
current limitations and future research directions; the final
chapter summarizes the research content and core conclusions
of the entire study.

2. ATHLETE POSE ANALYSIS AND IMPROVEMENT
FRAMEWORK USING SSTO-RAFN

2.1 Framework architecture and image processing flow

The SSTO-RAFN framework is driven by image processing
and adopts a "coarse to fine" three-level cascaded architecture
design. The core goal is to achieve end-to-end processing from
video frame input to structured improvement suggestion
output, while balancing real-time performance, robustness,
and estimation accuracy. This design is motivated by the
practical requirement that the system should operate reliably
under real training conditions rather than in controlled
laboratory environments alone. The framework architecture is
shown in Figure 1. This architecture design follows the
progressive optimization logic of image processing: the
frontend completes rapid image feature extraction and coarse
localization through lightweight modules, the middle layer
achieves precise pose modeling through spatiotemporal
feature refinement, and the backend performs deviation
diagnosis and feedback generation through sequence matching.
The three-level modules form a closed loop through feature
transmission and collaborative training, effectively avoiding
extreme trade-offs between real-time performance and
accuracy in a single module. Compared to traditional
segmented processing architectures, this end-to-end design
reduces information loss during feature transmission and
enables cross-module joint optimization.
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Figure 1. SSTO-RAFN framework overall architecture and image processing flow



The complete image processing flow of the framework can
be summarized in seven key steps, forming a continuous data
processing chain: first, the input video stream undergoes frame
decoding and preprocessing, completing image normalization
and format conversion; then, the lightweight image feature
extraction module encodes the preprocessed video frames,
simultaneously outputting 2D keypoint initial localization
results; based on the initial localization of 2D keypoint
coordinates and original image features, the spatiotemporal
feature refinement module suppresses noise and enhances
features, thereby enabling implicit 3D pose modeling and
coordinate regression; the generated 3D pose sequence is
converted into a standardized image sequence feature
representation, which is finely matched with the preset motion
mode standard paradigm; finally, through deviation
quantification analysis and causal language model decoding,
structured improvement suggestions are generated. In the
entire process, the flow of image data and feature
transformation revolves around the precise extraction and
efficient utilization of pose information, ensuring that the
processing delay and accuracy requirements of each step are
met. This pipeline is designed to support both single-subject
and multi-subject scenarios without altering the underlying
processing structure.

To achieve collaborative optimization of the three-level
modules, the framework uses an end-to-end training strategy
and designs a multi-task fusion loss function set. This training
strategy allows the parameters of each module to be updated
jointly, thereby improving global consistency across the
pipeline. Its core expression is as follows:

Ltotal :aLféatJrﬁLposeerLlemp ( 1 )

where, Lps 1s the image feature matching loss, which
constrains the feature alignment between different modules. It
uses cosine similarity loss to measure the difference between
extracted features and real pose features; L. is the pose
consistency loss, which uses mean squared error to constrain
the deviation between the 3D pose coordinates and the
reference values; Ly, is the temporal smoothing loss, which

is constructed based on the first-order differences of adjacent
frame poses and is used to suppress abnormal fluctuations in
motion sequences. a, 5, y are the loss weight coefficients, set
as 0.2, 0.6, and 0.2, respectively, through cross-validation,
ensuring a balance between accuracy goals and temporal
stability during training.

2.2 Lightweight feature extraction and 2D keypoint
detection

The lightweight image feature extraction and 2D keypoint
detection module serves as the frontend component of the
SSTO-RAFN framework. Its primary objective is to extract
discriminative pose-related image features under strict real-
time constraints imposed by edge devices, while
simultaneously providing reliable initial localization of key
joints for subsequent three-dimensional pose estimation. The
specific framework structure is shown in Figure 2. The
performance of this module directly affects the overall
inference speed of the framework and also sets an upper bound
on the accuracy achievable by the subsequent refinement
stages. Therefore, the design emphasizes a careful balance
between feature completeness and computational efficiency in
order to avoid the loss of critical pose information caused by
excessive model simplification.

The module is based on YOLO-Pose and is further
optimized through lightweight architectural modifications.
The main optimizations are conducted along three aspects:
backbone network design, multi-scale feature fusion, and input
resolution  adaptation. For backbone optimization,
MobileNetV4 is adopted as the feature extraction network,
where standard convolutions are replaced by depthwise
separable convolutions, reducing computational complexity to
approximately one third of the original design. In addition, a
channel attention mechanism is introduced to strengthen the
response of channels associated with key joints by adaptively
reweighting feature maps. The channel weighting is
formulated as w,=0(F,,(x.)), where o denotes the Sigmoid
activation function, F.., represents global average pooling,
and x. is the feature map of the c-th channel.
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For multi-scale feature fusion, a lightweight feature
pyramid network is employed. Features from layers C3, C4,
and C5 are combined through top-down pathways and lateral
connections, corresponding to small-, medium-, and large-
scale joint representations. This design improves the detection
of small joints such as wrists and ankles. During fusion, 1x1
convolutions are applied for channel reduction to prevent an
increase in computational cost. For input adaptation, a motion
blur estimation mechanism is introduced. The blur level is
quantified by computing the variance of image gradient
magnitudes. When the estimated blur exceeds a predefined
threshold, the input resolution is reduced from 640x640 to
320%320 to improve efficiency; when blur is low, higher
resolution is used to maintain accuracy.

To further improve inference efficiency on edge devices,
several optimization strategies are applied. Using TensorRT,
the trained model is converted into an optimized inference
engine, and quantization-aware training is employed to reduce
model weights from 32-bit floating point to 8-bit integer
precision. This leads to an approximate 2.5x speed-up while
keeping the accuracy loss within 3%. Operator fusion is
applied to combine convolution, pooling, and related
operations, thereby reducing kernel invocation overhead and
memory access latency. Batch sizes are dynamically adjusted
between 1 and 2 based on the available device memory, and

memory pre-allocation is used to reduce data transfer overhead.
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improve GPU utilization. Experimental results indicate that
the single-frame processing latency on the Jetson Xavier NX
is approximately 3.2 ms, and the average 2D keypoint
detection accuracy reaches 78.6%, satisfying the requirements
of both real-time performance and practical accuracy.

2.3 Dual-path spatiotemporal feature refinement

The dual-path spatiotemporal image feature refinement
module constitutes a central component of the SSTO-RAFN
framework. It is designed to mitigate the effects of occlusion
and motion blur in complex motion scenarios, while enabling
three-dimensional pose refinement using unlabeled data. The
specific framework structure is shown in Figure 3. The module
adopts a parallel dual-branch architecture that extracts pose-
related information from two complementary perspectives:
skeletal topology and temporal image context. This
complementary representation improves robustness under
challenging visual conditions.

A self-supervised fusion stage integrates the features from
both branches and produces a refined three-dimensional pose
representation that balances spatial accuracy and temporal
stability. Compared with single-branch modeling strategies,
the dual-path design allows information from different feature
domains to compensate for each other, thereby reducing the
sensitivity of pose estimation to missing or degraded
observations in complex scenes.
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Figure 3. Dual-path spatiotemporal feature refinement architecture

2.3.1 Adaptive graph convolution for skeletal topology feature
modeling branch

The adaptive graph convolution branch focuses on dynamic
feature modeling of the human skeletal topology structure. The
core innovation lies in constructing a graph structure and
convolution kernel parameters that dynamically adjust based
on the positional relationships of the keypoints in the image,
overcoming the robustness limitations of traditional fixed
topology graph convolution in occlusion scenarios. This
branch is based on the 2D keypoint coordinates output from
the lightweight module. First, a dynamic human skeleton
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graph is constructed: each keypoint is defined as a node in the
graph, and edges are adaptively constructed based on
anatomical constraints and inter-frame keypoint distances.
The edge weights are jointly determined by the Euclidean
distance between nodes and the pose confidence, as expressed
by the following formula:

_exp( -d3 1) (c; ¢;)
Y Skenn exp (-dila) (e cp)

)

where, d;; is the Euclidean distance between keypoints i and j,



o is the distance decay coefficient, ¢; is the confidence of
keypoint i, and N(i) is the neighborhood set of node i. The
dynamic edge weights effectively weaken the interference of
occluded keypoints on the overall topology feature, enhancing
the graph structure's adaptability to pose changes.

Based on the dynamic skeleton graph, an adaptive graph
convolution operator is designed to aggregate features. The
core idea is to dynamically adjust the convolution kernel
parameters based on the local topology structure. Traditional
graph convolutions use fixed weight matrices, which struggle
to adapt to topological changes under different poses. In this
study, we introduce a topology-aware parameter generator,
mapping the local neighborhood's topological features into
convolution kernel weights, as expressed by the following
formula:

Wi=Fy(x;") 3)
x;'= Z wy Wi 4)
JENG)
where, x/7 is the local topological feature vector of node 7, Fy

is the parameter generator, W; is the adaptively generated
convolution kernel weight, and x; is the aggregated node
feature. To enhance the stability of features in the temporal
dimension, a temporal sliding window of length 5 frames is
introduced. A temporal attention mechanism aggregates multi-
frame skeletal features. The temporal attention weights are
determined by the pose similarity between frames and image
clarity, giving higher weights to clear frames and consecutive
pose frames, effectively suppressing motion blur and frame-
to-frame abrupt noise interference, completing and smoothing
the features of occluded keypoints.

2.3.2 Lightweight spatiotemporal transformer for raw image
feature learning branch

The lightweight spatiotemporal Transformer branch aims to
extract deep contextual features from the temporal sequence
of raw images, directly learning the 3D spatial constraints
between keypoints, thus avoiding the information loss in the
traditional 2D-to-3D conversion process. To meet the real-
time requirements of edge devices, this branch adopts multiple
lightweight optimization strategies to reduce computational
complexity while ensuring feature representation capability.
First, ROI (Region of Interest) alignment is performed to crop
the human body region from the raw image feature map,
processing only the body region's features, which reduces
computation by more than 60% compared to full image
processing. Then, 1x1 convolution is used to reduce the
feature channel count from 256 to 64, further compressing the
computational cost.

In terms of attention mechanism design, a hierarchical
spatiotemporal attention architecture is used, divided into
spatial attention sub-layers and temporal attention sub-layers.
The spatial attention sub-layer focuses on modeling the spatial
correlation of human keypoints within a single frame. Through
self-attention mechanisms, long-range dependencies between
keypoints are captured, enhancing the feature response of key
joints. The temporal attention sub-layer focuses on modeling
the temporal correlation between multiple frames. Through
cross-attention mechanisms, adjacent frames' human features
are aligned, and the temporal regularities of pose changes are
extracted. The core computations for hierarchical attention are
as follows:

3697

T
Aspatial:SOﬁmax ( — > (5)
Nea
KT
Atemporal:SOﬁmax (Qt t ) (6)
Nee

where, QOs, K, are the query and key matrices for spatial
attention, Q,, K, are the query and key matrices for temporal
attention, and di is the feature dimension. Through the
hierarchical attention mechanism, the module can
simultaneously capture the spatial constraints of keypoints and
the temporal motion trends, enabling implicit modeling of 3D
poses. Compared to traditional 3D pose estimation methods,
this branch does not rely on 2D keypoint dimensionality
conversion. Instead, it directly learns 3D spatial relationships
from the raw image temporal features, effectively preserving
depth information and contextual constraints in the image.

2.3.3 Self-supervised spatiotemporal fusion module

The core function of the self-supervised spatiotemporal
fusion module is to achieve collaborative optimization of the
dual-path features while utilizing the temporal coherence of
video data to construct self-supervised signals, reducing
reliance on 3D labeled data. This module mainly consists of
two core units: self-supervised signal construction and
adaptive feature fusion, which enhance the dual-path features
through loss constraints and dynamic weight allocation.

In the construction of self-supervised signals, two
constraints are designed based on the temporal coherence of
video sequences: pose consistency constraint and motion
smoothness regularization. The pose consistency constraint is
achieved by calculating the cosine similarity of the dual-path
features between adjacent frames, requiring the pose features
to remain stable in consecutive frames. The loss function is:

7-1
1
L consis= 1- H Z cos (ftthH) (7)
=1

where, T is the number of frames in the temporal window, f; is
the fused feature at frame ¢, and cos( ) is the cosine similarity
function. Motion smoothness regularization is implemented
by constraining the first-order differences of pose features
between adjacent frames, avoiding abnormal jumps in pose
changes. The loss function is:

T-1
1
Lsmooth: H Z ”f;_‘f;+] ”% (8)
=1

The final self-supervised loss is the weighted sum of the two
losses: Lsej=A1LconsisttA2Lsmoorn, Where A1 and A, are set to 0.6
and 0.4, respectively, based on cross-validation to balance
stability and flexibility.

In terms of adaptive feature fusion, a dynamic weight
allocation mechanism based on image quality assessment is
designed, adjusting the weight ratio of dual-path features
according to the clarity and occlusion degree of the current
frame. Image clarity is quantified by the variance of the
gradient magnitude calculated by the Laplacian operator, and
occlusion degree is assessed by the confidence distribution of
2D keypoint detection. Both are normalized and weighted to
obtain the image quality score g. The fusion weight calculation



for the dual-path features is:

&t
a_2+€:ﬁ_1_a (9)
J;"usion:a .Jfgen—i_ﬂ .ftrans ( 1 0)

where, € is the smoothing coefficient, « and f are the weights
of the adaptive graph convolution branch and the
spatiotemporal Transformer branch, fsc, and fi...s are the output
features of the dual-path branches, and fjision is the final fused
feature. This mechanism can increase the weight of raw image
features when the image quality is good and enhance the
weight of skeletal topology features in occluded or blurred
scenes, ensuring the robustness of the fused features. The
fused features are then mapped to 3D pose coordinates using a
three-layer fully connected network, completing the
transformation from image features to 3D pose modeling.

2.4 Intelligent feedback generation module based on image
sequence matching

The intelligent feedback generation module based on image
sequence matching is a key unit of the SSTO-RAFN
framework for practical application. Its core goal is to convert
the 3D pose feature sequence output by the dual-path
refinement module into precise, understandable, and
structured improvement suggestions. The specific framework
structure is shown in Figure 4. This module constructs a
motion pattern image sequence knowledge base to achieve
fine-grained feature matching between the current pose and
the standard paradigm, and combines the quantified deviation
information to drive the language model to generate feedback,
forming a complete "feature matching - deviation
quantification - feedback generation" link. Compared to
traditional rule-driven feedback mechanisms, this module
better adapts to pose variations in complex motion scenarios,
improving feedback precision and generalization.
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Figure 4. Intelligent feedback generation module based on image sequence matching
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2.4.1 Construction of motion pattern image sequence

knowledge base

The core function of the motion pattern image sequence
knowledge base is to provide standardized pose feature
templates and deviation-suggestion mapping benchmarks. Its
construction must balance the representativeness of the
templates with the efficiency of subsequent matching. The
knowledge base uses a "standard template + deviation sample"
dual-library architecture: the standard template library is
constructed by collecting videos of professional athletes
performing different sports motions. After frame decoding and
pose normalization, 3D pose features output by the SSTO-
RAFN dual-path fusion module are extracted as standard
templates, with each motion corresponding to 10-15 sequences
from different athletes to cover individual differences. The
deviation sample library is constructed by collecting common
error motion videos from novice athletes, annotating key
deviation types, and establishing a correspondence between
deviation types and 3D pose feature differences. At the same
time, motion training experts annotate corresponding
improvement suggestions, forming a structured "deviation
feature - improvement suggestion" mapping table.
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To improve the efficiency of subsequent sequence matching,
the image sequence features in the knowledge base are
clustered. The K-means clustering algorithm is used to group
the feature sequences in the standard template library, with
cosine similarity between sequences as the clustering criterion.
The number of clusters is determined by the elbow method.
After clustering, an index is established for each group, storing
the mean and variance of the features within the group as
representative templates. In subsequent matching, the most
similar feature group is first located through fast indexing, and
fine-grained matching is performed within the group, reducing
the matching time complexity from O(N) to O(logN). At the
same time, a dynamic update mechanism for the knowledge
base is established, integrating new motion templates and
deviation samples through incremental learning, ensuring the
knowledge base's adaptability to different motion scenarios.
During the update process, feature alignment strategies are
used to ensure the consistency of new and old samples.

2.4.2 Fine-grained image sequence feature matching based on
DTW
DTW is a classic method for matching sequences of unequal



lengths. This module optimizes the distance calculation of
DTW and the feature preprocessing strategy to achieve fine-
grained matching between the current pose sequence and the
knowledge base template, accurately quantifying pose
deviations. Feature preprocessing is the premise for improving
matching accuracy. First, the current pose sequence and
knowledge base template sequence are length-normalized,
with linear interpolation used to standardize the sequence
length to L. Then, Principal Component Analysis is applied to
reduce the dimensionality of each frame’s 3D pose feature,
retaining 95% of the feature variance, and removing redundant
information to reduce computational complexity. After
dimensionality reduction, the feature dimension is compressed
from 128 to 32.

To improve the robustness of matching in complex
scenarios, an image quality weight is introduced to optimize
the DTW distance calculation function. Based on the image
clarity score from the previous section, each frame feature is
assigned a weight. Higher weights are given to clear frames,
while lower weights are assigned to blurry or occluded frames.
These weights are normalized and integrated into the
cumulative distance calculation of DTW. The optimized DTW
cumulative distance formula is:

D(ij)=w; w_,-'llfl.-fl.'||2+ min { D(i-1,/),D(i,j-1),D(i-1,j-1)}  (11)
where, f; is the feature of the i-th frame in the current sequence,
[ is the feature of the j-th frame in the template sequence, w;
and w;" are the quality weights for the current and template
frames, and D(i,j) is the cumulative matching distance for the
first i frames and j frames.

After matching, the frame-by-frame feature deviations
between the current sequence and the template sequence are
calculated based on the optimal alignment path corresponding
to the minimum cumulative distance, which is further
quantified into joint angle and position deviations. The joint
angle deviation is calculated using the vector dot product. For
example, the angle deviation A8 of the elbow joint is the angle
difference between the current pose elbow vector and the
template vector:

where, Ve, and v, are the elbow vectors of the current pose
and the template. The position deviation is quantified by the
Euclidean distance of the joint’s 3D coordinates. The final
output contains the deviation location, angle deviation value,
and position deviation value as structured deviation
information.

vcur ' vt@m

AB=arccos ( (12)

o 11V o]

2.4.3 Structured feedback generation based on causal language
model

The core function of the causal language model is to convert
the quantified pose deviation information into structured
improvement suggestions that align with the motion training
standards. This requires prompt engineering and lightweight
optimization to ensure feedback accuracy and real-time
processing. The design of prompt engineering is the key to
improving feedback quality. A structured prompt template is
used to encode the deviation quantification information into an
input understandable by the model. The template format is:
"Sport: {Sport Name}; Deviation Location: {List of
Locations}; Angle Deviation: {List of Deviation Values};
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Position Deviation: {List of Deviation Values}; Output
Requirement: Generate structured suggestions in the format
‘Deviation Description - Improvement Measures’ with concise
and professional language.” This template guides the model to
focus on the core deviation information through explicit
semantic constraints, avoiding redundant content and ensuring
consistent output format.

To adapt to the real-time requirements of edge devices, the
base causal language model is lightweight-optimized. A small
language model is selected as the base model. Redundant
attention heads and fully connected neurons are pruned using
structured pruning, with a pruning rate of 30%. Additionally,
INTS quantization is used to convert the model weights from
32-bit floating-point to 8-bit integers. This reduces the model
parameter size from 1.2B to 400M while controlling accuracy
loss within 5%. The model inference process is further
optimized by using batch inference to process multi-frame
deviation information. At the same time, the model inference
engine is coordinated with the front-end image processing
module, using the multi-core CPU of the edge device to
parallel-process both image feature matching and language
model inference tasks, thereby reducing overall latency.

The optimized feedback generation module has a single-
sequence feedback generation delay of only 4.8ms on the
Jetson Xavier NX edge device. The output improvement
suggestions include two core parts: “Deviation Description”
and “Improvement Measures,” such as: “Right elbow
elevation angle is insufficient by 15°; Improvement measure:
Adjust shoulder force application and use resistance bands
during training to help increase elbow elevation height.”
According to evaluations by sports experts, the accuracy of the
feedback suggestions is 91%, and the matching degree
between the deviation descriptions and the actual image
feature deviations is 93%, providing precise guidance for
motion training.

3. EXPERIMENTAL EVALUATION
3.1 Experimental setup

The experimental setup is designed to comprehensively
evaluate the image processing performance of the SSTO-
RAFN framework. The design follows three main dimensions:
dataset construction, evaluation metric definition, and
experimental environment configuration, in order to ensure the
reliability, comparability, and reproducibility of the results.
This structured design allows performance to be examined
consistently across different scenarios and hardware platforms.
The dataset adopts a combination of public benchmark
datasets and self-built specialized datasets. The public
benchmarks include Human3.6M, 3DPW, MPII, and
UCF101-Sports, which are used to evaluate three-dimensional
pose estimation accuracy, robustness in real-world scenes,
two-dimensional keypoint detection performance, and
adaptability to different motion scenarios, respectively.

The self-built datasets focus on athletics sprinting and
basketball shooting. High-definition videos are collected from
20 athletes with different skill levels and converted into image
sequences. These datasets include two-dimensional and three-
dimensional keypoints as well as annotated pose deviation
types. In addition, a robustness subset is constructed by
varying lighting conditions, introducing partial occlusions,
and adjusting shutter speed in order to simulate common



sources of visual disturbance in real training environments. All
data undergo unified preprocessing, including normalization
of image resolution to 640%640 and the removal of brightness
offsets. During training, data augmentation techniques such as
random cropping, horizontal flipping, and lighting adjustment
are applied to increase data diversity. During testing, optical
flow-based temporal alignment is used to improve the stability
of temporal feature representations.

The evaluation metrics focus on the core aspects of image

processing performance and are organized into four categories:

real-time performance, accuracy, robustness, and feedback
quality. Real-time performance is measured on two edge
devices, Jetson Xavier NX and NVIDIA Jetson Orin, by
recording full-pipeline latency, frame rate, and the relative
time consumption of each processing module. Accuracy
metrics include average precision for two-dimensional
keypoint detection, mean joint position error for three-
dimensional pose estimation, and average pose error. In
addition, recall rates under occlusion and motion blur
conditions are reported. Robustness is assessed using peak
signal-to-noise ratio, structural similarity, and correlation
analysis of accuracy, as well as by quantifying performance
changes after adding Gaussian noise. Feedback quality is
evaluated through sequence matching accuracy and
consistency scores obtained from expert blind reviews.
Baseline methods are selected from representative state-of-
the-art approaches in lightweight pose estimation, self-

supervised pose estimation, and sequence matching, and their
official recommended parameter settings are used to ensure
fair comparison.

The experimental environment is divided into training and
deployment stages. Training is conducted on a workstation
equipped with an NVIDIA RTX 4090 GPU and an Intel Core
19-13900K CPU, running Ubuntu 22.04 with PyTorch 2.0 and
CUDA 11.8. Deployment experiments are performed on edge
devices, where inference acceleration is implemented using
TensorRT 8.6, and trained models are converted to the ONNX
format for deployment. The training process uses the AdamW
optimizer with an initial learning rate of 1e-4, combined with
a cosine annealing schedule and weight decay for parameter
adjustment. The batch size is set to 32, and training is
performed for up to 200 epochs with early stopping to prevent
overfitting, ensuring both convergence and generalization.

3.2 Core experimental results and analysis

3.2.1 Real-time performance and processing efficiency

Real-time performance and processing efficiency are key
requirements for deployment on edge devices. This subsection
examines the real-time behavior of SSTO-RAFN using the
results reported in Table 1, focusing on three aspects: full-
pipeline latency, processing frame rate, and the relative time
consumption of individual modules.

Table 1. Real-time performance comparison on edge devices

Single Frame Frame Image Feature Spatiotemporal Sequence Matching
Device Method Full Process Rate Extraction Refinement and Feedback
Latency (ms) (FPS) Proportion (%) Proportion (%) Proportion (%)
Lightweight 3D 8.7 115 35.6 4.1 23
Jetson Pose
. RT-3D Pose 7.2 139 31.9 38.6 29.5
Xavier NX SSTO
RAFN(Proposed) 5.1 196 25.5 36.8 37.7
Lightweight 3D
NVIDIA Pose 43 233 349 41.5 23.6
Jetson Orin RT-3D Pose 3.5 286 30.8 379 313
SSTO-
RAFN(Proposed) 2.4 417 24.2 35.1 40.7

As shown in Table 1, SSTO-RAFN achieves lower latency
and higher frame rates than the comparison methods on both
edge platforms. On Jetson Xavier NX, the average single-
frame latency is 5.1 ms and the frame rate reaches 196 FPS,
corresponding to a latency reduction 0f 29.2% and a frame rate
increase of 42.0% relative to RT-3D Pose. On Jetson Orin,
latency further decreases to 2.4 ms and the frame rate exceeds
400 FPS, indicating that the system meets the real-time
requirements of dynamic motion analysis.

The breakdown of time consumption across modules shows
that the feature extraction stage accounts for only 24.2%—
25.5% of the total processing time, which is lower than that of
the comparison methods. This reduction is mainly attributed
to the lightweight MobileNetV4 backbone and TensorRT-
based quantization, which reduce computational cost while
preserving essential pose features. The spatiotemporal
refinement stage occupies approximately 35%—-37% of the
total time, reflecting a balance between representational
capacity and efficiency achieved through hierarchical
attention and dynamic graph convolution. Although the
sequence matching and feedback stage has a relatively higher
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proportion, the use of clustering-based indexing and model
pruning ensures that this stage does not become a bottleneck
and does not compromise overall real-time performance.

3.2.2 Pose estimation accuracy and image processing
robustness verification

Pose estimation accuracy and robustness are the core
guarantees of system reliability. This subsection verifies the
performance advantages of SSTO-RAFN in both general and
specialized motion scenes through dataset accuracy
comparisons (Table 2) and robustness tests, with a focus on
the suppression effect of the dual-path spatiotemporal feature
refinement module on complex scene interference.

Table 2 shows that SSTO-RAFN outperforms the
comparison methods on all datasets: on the Human3.6M
dataset, 2D AP reaches 78.6%, and 3D MPJPE drops to 35.7
mm, improving by 4.7 percentage points and 15.6% compared
to RT-3D Pose. On the real-world 3DPW dataset, MPJPE is
39.2 mm, which is 16.2% better than the comparison methods,
demonstrating stronger adaptability to real-world scenes. On
the self-built specialized datasets, SSTO-RAFN's advantage is



further highlighted, with 2D AP for the athletics and basketball
datasets exceeding 78%, and MPJPE controlled between 40-
42 mm, reducing by 17%-20% compared to the comparison
methods. This is due to the precise extraction of specialized
motion pose features by the dual-path spatiotemporal feature

refinement module—Adaptive-GCN  captures  skeletal
topology constraints, while the spatiotemporal Transformer
branch explores the raw image temporal context, and their
fusion effectively improves specialized pose modeling
accuracy.

Table 2. Accuracy metrics comparison on public and self-built datasets

Dataset Method 2D AP (%) 3D MPJPE (mm) 3D MAE (°)

Lightweight 3D Pose 72.3 48.6 5.2
Human3.6M RT-3D Pose 75.1 423 4.8
SSTO-RAFN (Proposed) 78.6 35.7 3.9
Lightweight 3D Pose 69.8 52.1 5.7
3DPW RT-3D Pose 73.5 46.8 5.1
SSTO-RAFN (Proposed) 76.9 39.2 43
Lightweight 3D Pose 68.5 553 6.1
RT-3D Pose 72.4 49.7 5.5
. . SSTO-RAFN (Proposed) 79.2 40.1 4.5
Self-Built Athletics Dataset Lightweight 3D Pose 679 56.8 6.3
RT-3D Pose 71.8 51.2 5.7
SSTO-RAFN (Proposed) 78.5 41.5 4.7
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Figure 5. Robustness test results in complex scenes (MPJPE, mm)

Figure 5 shows the robustness test results, indicating that
SSTO-RAFN maintains excellent performance in complex
scenes such as occlusion, blur, and lighting variation. In heavy
occlusion scenes, the MPJPE is 68.5 mm, 14.2% lower than
RT-3D Pose; in heavy blur scenes, the MPJPE is 63.2 mm,
outperforming the comparison methods by 14.9%; under low
and high light conditions, accuracy loss is controlled within
20%, significantly lower than the 25%-30% of comparison
methods. This advantage stems from the complementarity of
the dual-path features: Adaptive-GCN's dynamic topology
modeling weakens the interference of occluded keypoints, and
the spatiotemporal Transformer's temporal attention
suppresses the feature noise caused by blur and lighting
changes. Meanwhile, the self-supervised fusion module's
temporal smoothing constraint further enhances feature
stability and improves robustness in complex scenes.

3.2.3 Ablation experiments

To verify the necessity and effectiveness of each core image
processing module, three sets of ablation experiments were
designed to compare the performance differences under
different module configurations. The results are shown in
Table 3.

Ablation Experiment 1 verifies the effectiveness of the
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lightweight image feature extraction architecture: when the
base model uses the original YOLO-Pose backbone, the 2D
AP is only 70.2%. After replacing it with the optimized
MobileNetV4 backbone and introducing channel attention, the
2D AP increases to 70.2%, with latency controlled at 3.8 ms,
demonstrating the balance between efficiency and feature
extraction integrity in the lightweight architecture. Ablation
Experiment 2 verifies the necessity of the dual-path
spatiotemporal feature refinement module: adding either the
Adaptive-GCN or spatiotemporal Transformer branch alone
reduces MPJPE to 48.3 mm and 47.6 mm, respectively,
reducing by 15%-16% compared to the base model. After
collaborating the two branches, MPJPE further reduces to 42.1
mm, improving by 12%-13% compared to the single branch,
indicating that the complementarity of the dual-path features
significantly enhances pose modeling accuracy. Ablation
Experiment 3 verifies the role of the self-supervised fusion
module: after adding the self-supervised signal, MPJPE
decreases from 42.1 mm to 35.7 mm, and MPJPE without
annotation data drops from 69.8 mm to 52.3 mm, a 25.1%
reduction. This proves that the self-supervised signal based on
temporal coherence effectively improves model accuracy and
significantly reduces dependence on annotated data,
confirming the effectiveness of the self-supervised strategy.



3.2.4 Image sequence matching and feedback performance advantages of SSTO-RAFN in sequence matching and

verification structured feedback generation based on the experimental data
Image sequence matching accuracy and feedback quality in Table 4.

are key to the system's practicality. This subsection verifies the

Table 3. Ablation experiment results

Model Configuration 2D AP 3D MPJPE Single Frame Latency MPJPE Without Annotation

(%) (mm) (ms) Data (mm)

Base Model (No Refinement and Self-Supervision) 70.2 56.8 3.8 89.5

Base Model + Adaptive-GCN Branch 74.5 48.3 4.5 78.2

Base Model + Spatiotemporal Transformer Branch 75.1 47.6 4.6 76.9

Base Model + Dual-Path Reﬁnement (No Self- 773 421 50 69.8
Supervision)

SSTO-RAFN (Dual-Pth. Refinement + Self- 786 357 51 573
Supervision)

Table 4. Image sequence matching and feedback performance comparison

Sequence Matching  Deviation Quantification = Expert Consistency Score Feedback Generation

Method Accuracy (%) Error (mm/°) (Full Score: 10) Latency (ms)
Traditional DTW Matching +
Rule-based Feedback 78.3 8.5/1.2 6.8 32
SSTO-RAFN (Proposed) 92.6 3.2/0.5 9.1 4.8

deviation error dropping from 1.2° to 0.5°. This improvement
is attributed to the optimized DTW matching strategy—
introducing image quality weights strengthens the contribution
of features from clear frames and reduces the interference of
blurry and occluded frames on matching accuracy. The use of
clustering indexing also improves matching efficiency. In
terms of feedback performance, SSTO-RAFN's expert
consistency score reaches 9.1, significantly higher than the 6.8
score of the traditional rule-based method, indicating that its
generated feedback suggestions excel in terms of deviation

(a) Original input and 2D pose detection description accuracy, improvement feasibility, and linguistic
Current athlete's posture features (key joint angles) professionalism. The feedback generation latency is 4.8 ms,
4 slightly higher than the traditional method, but still meets real-
time demands when combined with the overall process latency.
2 - o This is thanks to the pruning optimization of the causal

g) 0 Time S'lgl.nhcan.t 6 . . .
2 X Shandard ackion temlile / deviation points language model and the prompt engineering design, where the
4 N\ N\ structured prompt template guides the model to focus precisely
. g \ > L W \ on deviation information, and the lightweight model ensures

= S = NS real-time generation efficiency.
Time 9 To verify SSTO-RAFN's ability for real-time pose detection,
(b) Pose feature sequence comparison analysis results feature sequence matching, and deviation recognition in multi-
. High target complex motion scenes, a multi-athlete synchronous
2 2 deviation analysis experiment during the sprint start phase was
é /Highdwmﬁm matching region conducted. The region in Figure 6-(a) shows the 2D pose
2 l detection results at the moment of the sprint start for three
g athletes from the monitoring perspective. The system achieves
® A e real-time labeling of multi-target skeletal keypoints at a
- lg ievialion matching region . .

g processing frame rate of 165 FPS and a single-frame latency
7 Low of 6.0 ms. The red, blue, and green nodes correspond to the
0 10 20 30 40 deviation head, torso, and limb joints, respectively. The skeletal
Clent sequente frme Hdex connections are clear, and no targets are missed, directly
(c) DTW-based matching path visualization verifying the real-time and detection accuracy of the
lightweight YOLO-Pose module in multi-target scenarios. The
Figure 6. Implementation effect of SSTO-RAFN on real- region in (b) shows the comparison of pose feature sequences
time athlete pose analysis and improvement system and the DTW matching heatmap, where the system can
accurately extract key joint angle features of the current athlete
Table 4 shows that SSTO-RAFN achieves a sequence and align them with the standard action template. Two high
matching accuracy of 92.6%, an 18.3 percentage point deviation matching areas are also located, and the deviation
improvement over the traditional DTW method. The deviation intensity is quantified and presented through a color gradient.
quantification error significantly decreases, with position This experimental result demonstrates that SSTO-RAFN can
deviation error dropping from 8.5 mm to 3.2 mm and angle achieve millisecond-level real-time pose detection in multi-
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target motion scenes, while also performing fine-grained
matching of pose feature sequences with standard templates
and locating deviation areas. This provides precise
quantitative evidence for the subsequent generation of
structured improvement suggestions, fully demonstrating the
system's collaborative advantages in real-time performance,
multi-target adaptability, and deviation recognition ability.

3.3 Experiment discussion

The analysis of the performance bottlenecks of core image
processing modules indicates that there is still room for
optimization of SSTO-RAFN in extreme scenarios: in heavy
occlusion, MPJPE rises to 68.5 mm, with an accuracy loss of
91.9%, mainly due to severe loss of skeletal topology
information, making it difficult for Adaptive-GCN to
construct effective constraints; in high-speed motion scenes,
frame blurring intensifies, and the difficulty of temporal
feature alignment increases, leading to a 15%-20% rise in
MPIJPE. In the future, the robustness of extreme scenes can be
further improved by incorporating multimodal information to
supplement image features.

Parameter sensitivity analysis shows that temporal window
size, feature fusion weight, and DTW matching threshold
significantly impact performance: the performance is optimal
when the temporal window length is 5 frames. If the window
is too short, temporal features are insufficient, resulting in an
8.3% increase in MPJPE. If the window is too long, the
computational load increases, causing a 20% rise in latency;
when the feature fusion weight a is set to 0.6, the accuracy is
optimal. If a is too large or too small, one branch's features
dominate, causing a 5%-7% accuracy drop. When the DTW
matching threshold is set to 0.8, the matching accuracy and
efficiency are balanced optimally. If the threshold is too high,
matching becomes too strict, causing a 4.2% drop in accuracy,
and if too low, matching becomes too loose, increasing the
deviation quantification error by 30%. The sensitivity of these
parameters provides directions for future model optimization
and can enhance the model's generalization ability through
adaptive parameter adjustment strategies.

4. DISCUSSION

The SSTO-RAFN framework is developed to address the
practical requirement for real-time athlete pose analysis in
unconstrained environments. A  three-level cascading
architecture is constructed from the perspective of image
processing, and the experimental results indicate that this
design provides a workable balance between computational
efficiency, modeling accuracy, and system robustness. The
lightweight feature extraction module, based on backbone
optimization and channel attention, makes it possible to
maintain sufficient feature representation while operating
under the computational constraints of edge devices. This
helps to alleviate the common trade-off observed in
lightweight models between inference speed and pose
estimation accuracy.

The dual-path spatiotemporal refinement and self-
supervised fusion strategy further extends existing approaches
to three-dimensional pose estimation. By combining skeletal
topology features with temporal image context and exploiting
temporal coherence in video sequences, the framework
reduces its reliance on large-scale annotated data while
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preserving modeling accuracy. This design is particularly
relevant for sports scenarios, where collecting and annotating
three-dimensional ground truth data is costly and often
impractical. The integration of sequence-level feature
matching with structured feedback generation also provides a
connection between pose deviations measured at the image
processing level and interpretable guidance for training, which
supports more practical use of pose analysis systems in real
training environments.

In comparison with related work, the framework shows
several relative advantages. Compared with lightweight pose
estimation methods, it demonstrates improved robustness
under occlusion and motion blur while maintaining real-time
performance. Compared with existing self-supervised pose
estimation approaches, the use of temporal coherence as a
supervisory signal is better aligned with the characteristics of
continuous motion data and avoids some of the generalization
limitations  associated ~ with  view-consistency-based
constraints in single-view settings. For sequence matching and
deviation analysis, the introduction of image quality weighting
into the DTW process improves matching stability in visually
degraded conditions, reducing sensitivity to blur and occlusion.

Despite these results, several limitations remain. Under
severe occlusion or extreme lighting, pose feature extraction
may still be degraded due to missing skeletal information or
low signal-to-noise ratios, which weakens the effectiveness of
the dual-path fusion strategy. In addition, the current motion
template knowledge base mainly covers common sports such
as athletics and basketball, and the limited coverage of less
common sports restricts generalization across a wider range of
activities.

Future work can address these limitations in several
directions. One direction is the integration of multimodal
sensing, such as combining visible and infrared imagery, to
improve robustness under challenging lighting conditions.
Another direction is collaborative learning across multiple
data sources using privacy-preserving strategies such as
federated learning, which could expand the diversity of motion
templates without requiring centralized data collection. A
further direction is the exploration of generative models for
restoring occluded pose information and for simulating
corrective movements, which may support more informative
feedback in complex scenarios. These directions aim to further
improve the balance between real-time performance,
modeling accuracy, and practical usability in athlete pose
analysis systems.

5. CONCLUSION

This work has presented a real-time pose analysis and
feedback framework based on self-supervised spatiotemporal
optimization to address the requirements of athlete pose
analysis under practical constraints. A three-level cascading
architecture has been introduced from the perspective of image
processing, enabling a coordinated balance among real-time
performance, robustness, and modeling accuracy. The
framework integrates three main components: a lightweight
feature extraction module that maintains essential pose
information while operating on edge devices, a dual-path
spatiotemporal refinement module that combines skeletal
topology modeling with temporal image feature learning, and
a self-supervised fusion and sequence matching module that
reduces dependence on annotated data and links pose



deviations to structured feedback.

Experimental results indicate that the proposed framework
achieves millisecond-level inference latency on edge
platforms while maintaining competitive three-dimensional
pose estimation accuracy and robustness in complex scenes.
The integration of self-supervised temporal coherence and
dual-path feature representation contributes to improved
performance under occlusion and motion blur, and the
sequence-based feedback mechanism supports interpretable
assessment of motion deviations.

The contributions of this work are twofold. First, it provides
a spatiotemporal pose modeling approach that reduces reliance
on large-scale annotated datasets while preserving robustness
and accuracy. Second, it establishes a structured connection
between image-based pose deviation analysis and actionable
feedback, which supports practical deployment in sports
training contexts.

Future developments may extend the framework toward
broader sensing modalities and a wider range of sports
scenarios. The incorporation of multimodal inputs,
collaborative learning strategies, and more diverse motion
templates may further improve generalization and robustness.
These directions are expected to support continued progress
toward efficient, reliable, and practically deployable pose
analysis systems.
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