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Protein sequence alignment occupies a central role in the field of computational biology as
it enables the study of functional and evolutionary properties of proteins. Traditional
alignment methods depend on sequence similarities, which can be limiting as they overlook
how protein structure contributes to protein function and interactions. To address this
limitation, we propose a novel approach called Structure-based Fingerprint Alignment
(SFA) technique that improves the accuracy of sequence alignment by incorporating
structural information. SFA uses a fingerprint scoring method to capture the structural
similarity of proteins, and it further optimizes the gap penalty to improve the alignment
accuracy. Additionally, SFA utilizes a sparse matrix representation to improve
computational performance. Our analysis of SFA's performance in comparison to
established methodologies underscores its exceptional accuracy and ability to uncover
evolutionary linkages and functional implications in proteins. Integrating both sequence-
based and structure-based alignment methodologies using SFA establishes a path for

understanding protein function, evolution, and interactions.

1. INTRODUCTION

Protein sequences alignment is essential for advancing our
understanding of protein structure, functionality, and
evolutionary connections. Achieving precise alignment is
essential for the identification of conserved regions, the
prediction of structural motifs, and the inference of protein
functions. However, it is important to emphasize that the
current techniques of alignment algorithms face certain
challenges when it comes to aligning sequences that exhibit
diverse structural attributes and significant variations in length
[1]. To address these issues and propose a novel solution, the
Structure-based Fingerprint Alignment (SFA) algorithm has
been developed. This algorithm incorporates the structural
characteristics of proteins into the alignment process. The SFA
algorithm possesses considerable significance due to its
capacity to make valuable contributions to scientific discovery
across various domains. The Structure-based Fingerprint
(SFP) scoring method is introduced, which deviates from
conventional scoring methods employed in alignment
algorithms [2]. The SFP approach encompasses the
comprehensive characterization of amino acids' structural
profiles, encompassing their spatial configuration. This
facilitates a refined and precise alignment procedure. The SFP
approach allows for the detection of small variations and
conservation patterns that may go unnoticed by other scoring
systems, therefore differentiating SFA from currently
available alignment algorithms [3].
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Empirical assessments have provided evidence of the
influence of SFA on the process of scientific discovery. For
example, an initial investigation examining protein sequences
linked to the RB1 gene's retinoblastoma cancer [3] located on
chromosome 13 demonstrated the effectiveness of SFA in
offering significant understandings of protein structure,
functionality, and evolutionary connections Figure 1. Within
the confines of the experimental environment, we propose
ProAlignX, a web-based application that is designed to be
easily accessible to users. This tool makes use of the SFA
algorithm, as depicted in Figure 1. The ProAlignX platform
allows users to enter protein sequences of interest.
Subsequently, ProAlignX use structure-based fingerprinting
techniques to generate alignment results by constructing an
alignment matrix. The programme improves usability by
offering a range of visualisation techniques, such as alignment
matrix heatmaps, scatter plots, consensus sequence, and
alignment tables. These visualisations provide a thorough
understanding of the alignment process and aid in the
examination of protein structural attributes.

In the context of related work in the literature Table 1,
previous alignment algorithms have primarily focused on
sequence similarity and complexity analysis [4], often
neglecting the structural aspects of proteins. We bridge this
gap by introducing the SFA algorithm, which incorporates the
Structure-based Fingerprint scoring method as a pivotal
component of the alignment approach. A comprehensive
analysis of existing literature reveals no prior implementations
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or studies exploring this specific scoring method [5] Tables 1
and 2, underscoring the novelty and pioneering nature of SFA
in incorporating the SFP scoring method into the alignment

computational efficiency. Sparse matrices prove advantageous
when dealing with large-scale protein sequences, as they
reduce memory requirements and accelerate alignment

process. Additionally, SFA incorporates sparse matrix computations. This feature enhances the scalability and
representation  [6], optimizing memory usage and practicality of SFA for alignment tasks.
Table 1. A comparison analysis of various algorithms for pairwise protein sequence alignment
Algorithm Objectives Technique Used Specific Characteristics Advantages Disadvantages Drawbacks
Sensitive to gaps, may
not find the global
Finds the optimal Uses a table to store the alignment.
Needleman— © ob Dynamic scores of all possible . Computationally ~ Can be slow for
global alignment of . ; Accurate, efficient. .
Wunsch [2] programming alignments of the two expensive for long  long sequences.
two sequences
sequences sequences.
Memory-intensive for
lengthy sequences.
Finds the optimal Similar to Nggdleman— More accurate than ..
. ; . Wunsch but utilises a more More sensitive to gaps, Can be very
Smith— local alignment Dynamic . . the Needleman—
. sensitive scoring method. . may not find the global slow for long
Waterman [7]  between two programming . . Wunsch algorithm, .
Identifies local regions of alignment sequences
sequences . but also slower
similarity.
Finds the optimal Similar to the Needleman— More efficient than
X . Less accurate than the
local alignment . Wunsch algorithm, but uses  the Needleman— Can be slow for
Gotoh Dynamic . Needleman—Wunsch
. between two ) an affine gap penalty that ~ Wunsch algorithm . long sequences
algorithm [8] . programming .. algorithm for sequences .
sequences, with allows gaps to be extended for sequences with . with many gaps
. . with few gaps
affine gap penalties more easily long gaps
May have
sensitivity
Finds all high- Uses a scoring scheme that is trade-offs.
. Not as accurate as .
scoring local based on the number of .. . . Requires
. .. . Fast and sensitive to dynamic programming
alignments between Heuristic matches, mismatches, and : parameter
BLAST [9] . matches and algorithms. L
a query sequence algorithm gaps between the query . . optimization
mismatches Can miss remote or .
and a database of sequence and the database S Sensitivity
weak similarities. .
sequences sequences decreases with
shorter
sequences.
. Optimal local . Uses a Smith—Waterman-like Not as sensitive as Noisy and
FastAlign . Heuristic . . dynamic programming
alignment between . scoring method with a faster ~Accurate and fast numerous false
[10] algorithm : . methods to matches and o
two sequences implementation. . positives
mismatches
Computationally
Finds the most Probabilistic Incorporates probabilistic Accurate and expensive for large
ProbCons probable global modelling, models for alignment. sensitive to matches datasets. Can be difficult
[11] alignment between hidden Markov Utilizes hidden Markov . Requires careful to interpret
. . and mismatches .
two sequences models models for alignment scoring. parameter selection and

optimization.

Table 2. A comparison analysis of various algorithms for pairwise protein sequence alignment (Continuation of Table 1)

.., Memory - . P P
. Accuracy Speed Scalability Stability Computation Sensitivity Specificity
Algorithm (1 10)”  (1-10)  (1-10) Hs*;%‘)* (1-10)  Time(1-10)  (1-10)  (1-10) Results Features
Needleman— . Alignment score, Positions
Wunsch [2] High 6 > 7 9 O(mn) 8 7 of aligned residues.
Smith Positions of aligned
— . > .
Waterman [7] Very high 5 6 7 9 O(mn?) 9 8 r651du'es, scores of
alignments
Positions of aligned
G.OtOh High 7 6 6 8 O(mn?) 6 7 residues, scores of
algorithm [8] .
alignments
. High-scoring alignment
BLAST [9] High ? 8 7 7 O(mn) 8 7 hits, statistical significance
. . Positions of aligned
2
FastAlign [10] High 8 7 6 8 O(mn?) 7 7 residues and scores
Positions of aligned
ProbCons [11] High 7 8 7 8 O(mn?%) 8 8 residues, probabilities of

alignments
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Figure 1. Retinoblastoma cancer signalling [3]

The Structure-based Fingerprint scoring method, coupled
with the utilization of sparse matrix representation, presents a
significant advancement in protein sequence alignment
techniques. ProAlignX, with its incorporation of the novel
scoring method and user-friendly interface, establishes itself
as a pioneering software tool in the field. The comprehensive
visualization techniques offered by ProAlignX contribute to
its significance and usability for users across various domains.
The subsequent portions of this paper provide an elaborate
exposition of the SFA algorithm, experimental evaluations,
and a concluding statement.

2. PROPOSED ALGORITHM

This section describes the SFA algorithm that we have
developed. The Needleman-Wunsch algorithm is improved by
integrating a structure-based fingerprint scoring technique and
optimizing the gap penalty. The primary objective of the SFA
method is to achieve efficient alignment of protein sequences,
taking into account their distinct structural attributes.

2.1 Structure-based Fingerprint Alignment

The fundamental principle underlying the SFA algorithm is
based on the dynamic programming methodology employed
by the Needleman-Wunsch (NW) algorithm. The NW
algorithm, a pairwise sequence alignment technique, seeks to
achieve optimal global alignment between biological
sequences such as DNA, RNA, and proteins. This process
operates with a time and space complexity of O(MN). The NW
algorithm unfolds across four essential phases: matrix
initialization, computation of similarity scores, traceback, and
outcome generation [2]. However, a significant drawback
surfaces when aligning lengthy sequences, as the algorithm's
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runtime becomes notably extensive (O(MN)). Our research
endeavours to overcome this challenge by focusing on
enhancing algorithmic techniques, expanding sequence length
and accuracy through the incorporation of a structure-based
fingerprint scoring method.

Therefore, the SFA algorithm employs a scoring equation
to quantitatively evaluate the optimal alignment score between
two protein sequences. This equation, rooted in the
Needleman-Wunsch algorithm and fortified by the structure-
based fingerprint scoring method, takes the form of Eq. (1):

F[i][j] = max{F[i —1][j — 1]
+S(ali — 11,b[j — 1), F[i
—UUl =4 Flij - 1] - d,0}

(1)

where, F[i][j] represents the score of the best alignment of the
first sequence up to position "i" with the second sequence up
to position "j". S(a[i — 1], b[j — 1]) represents the score of a
match or mismatch between the characters and a[i — 1] and
b[j —1] . "d" denotes the gap penalty, penalizing the

introduction of gaps during the alignment process.
2.2 Structural fingerprint integration

The SFA algorithm introduces a novel scoring approach
called the structure-based fingerprint scoring method to
enhance alignment precision and effectiveness. This method
uniquely integrates the structural attributes of proteins into the
alignment calculation, contrasting with traditional scoring
methods. Notably, the structure-based fingerprint scoring
method takes into account the distinct spatial arrangements of
amino acids, leveraging their individual structural profiles.

The initial step in deploying the structure-based fingerprint
scoring method is the computation of fingerprints for each
sequence involved in the alignment. A fingerprint, essentially



a numerical vector, encapsulates the structural information of
the sequence. The fingerprint calculation process unfolds
through three integral steps:

(1) Atom identification: Identify the atoms that constitute
the protein sequence. Each atom contributes vitally to the
sequence's overall structure and is imperative for successful
alignment.

(2) Weight assignment: Assign weights to the identified
atoms based on their structural significance. These weights
reflect the atoms' importance in shaping the sequence's
structure.

(3) Fingerprint vector calculation: Leverage the assigned
weights to compute the fingerprint vector, an intricate
numerical representation that encapsulates the protein's
structural characteristics.

2.3 Fingerprint comparison and alignment score
calculation
Once the fingerprints are computed, they undergo

comparison to ascertain the score of matches or mismatches.
This involves calculating the distance between fingerprint
vectors, often employing standard metrics like the Euclidean
distance [12]. Smaller distances denote higher sequence
similarity. The calculation of scores through fingerprint
comparison follows:

Score(a,b) = wy, * D(a,b) + wy (2)
where, “a” and “b” represent the sequences of two proteins.
Signifies the distance between the proteins, while w,, and wy
represent the weights assigned to matches and mismatches,
respectively.

n
'_1d(ai. b;)

A

D(a,b) = 3)

where, signifies the dissimilarity metric between the
sequences "a" and "b." It quantifies the extent of difference or
dissimilarity between the two sequences. Denotes a
summation operation that iterates over the variable "i" from 1
to "n," where "n" represents the length of the sequences under
consideration. d (ai, bi) represents the dissimilarity function
applied to the elements at position "i" in the sequences "a" and
"b." This function computes the dissimilarity or difference
between the two elements.

S(alil, b[jD) = win

*d(F[i—l][j 4
—1)Plali — 1], P[pli - 1]]) + wg P
+g

where, S(a[i], b[j]) denotes the alignment score between the
characters "a[i]" and "b[;]." This score assesses the degree of
match or mismatch between the characters. Wm is the weight
assigned to a successful match, signifying the reward for
aligning identical characters. d(F[i - 1][j - 1], Pla[i - 1]], P[b[j
- 11]) computes the distance between the structural fingerprints
of characters "a[i - 1]" and "b[j - 1]." This encapsulates the
unique structural properties of the characters. Pla[i - 1]]
represents the fingerprint of the character "a[i - 1]," capturing
its structural features. P[b[j - 1]] corresponds to the fingerprint
of the character "b[j - 1]," similarly encapsulating its structural
attributes. W, signifies the weight assigned to a mismatch,
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reflecting the penalty incurred for aligning differing
characters. F[i-1][j-1] represents the alignment score obtained
by aligning the first sequence up to position "i - 1" with the
second sequence up to position "j - 1". “g” represents the gap
penalty, encouraging the alignment algorithm to minimize the
introduction of gaps in the alignment.

The Eq. (4) computes the alignment score between
characters "a[i]" and "b[j]" by taking into account their
structural fingerprints and incorporating weights that consider
matches, mismatches, and gaps. Scoring parameters match =
+1, mismatch =—1, gap =2 was selected based on established
practices in sequence alignment and were further optimized
using grid search on benchmark datasets to maximize
alignment accuracy and biological relevance in the context of
the SFA algorithm. This scoring mechanism is pivotal in
determining the quality of sequence alignment within the
proposed SFA algorithm.

Vingron and Waterman's work supported the selection of
scoring parameters (match weight w,, = 1, mismatch penalty
wa = —1, gap penalty g = —2), which strike a balance between
rewarding sequence conservation and penalizing gaps and
mismatches. To validate these parameters for SFA, we used
systematic grid search optimization across benchmark protein
alignment datasets in addition to these literature-supported
values. Grid search parameters included match weights (0.5-
2.0), mismatch penalties (-0.5-2.0), and the gap penalties (-
1.0-4.0). Validating their applicability for structure-based
fingerprint matching, the values w,, = 1, wg=—1, and g = -2
consistently maximized alignment accuracy measures,
including sensitivity, specificity, and F1-score across multiple
protein families via empirical optimization.

2.4 Gap penalty and sparse matrix representation

In addition to the structure-based fingerprint scoring
method, the SFA algorithm addresses the gap penalty and
utilizes a sparse matrix representation for the alignment
matrix. The gap penalty favors gap-minimized alignments,
preserving conserved regions and minimizing insertions or
deletions. Our approach employs a linear gap penalty approach
[13], ensuring a constant penalty for each introduced gap.

To optimize computational efficiency and memory usage,
the SFA algorithm introduces a sparse matrix representation
for the alignment matrix. This representation selectively stores
non-zero elements and their positions, enabling efficient
alignment calculations by excluding zero elements. This
adoption optimizes memory utilization and enhances the
algorithm's capacity to handle substantial protein sequence
alignments. The Pseudocode outlined in Algorithm 1 is the
pseudocode of the SFA algorithm. It details the algorithmic
steps required for the alignment process and highlights the
critical roles of sequences, weights, and penalty values in the
procedure.

Algorithm 1: Pseudocode of SFA algorithm

a: The sequence of the first protein

b: The sequence of the second protein

wm: The weight of a match

wa: The weight of a mismatch

g: The gap penalty

Procedure:

Step 1: Calculate the SFA of proteins a and b.

Step 2: Initialize the alignment matrix S with dimensions (len(a)
+ 1) x (len(b) + 1).

Step 3: Fill in the alignment matrix S using the SFA:




for i =1 to len(a):
forj =1 to len(d):

if a[i] equals b[/]:
S[A[] = S[i-11j-11 + wam
else:

S[i10/] = max(STi-11[j-11 + wa, STi- 1171 + g, STG-11+ )
Step 4: Traceback through the alignment matrix S to find the
alignment:
Initialize i = len(a), j = len(b)
Initialize an empty alignment list
while i >0 orj > 0:
if a[i] equals b[j]:
alignment.prepend((a[i], 'match'))
i-=1
j-=1
else if S[i-1][j-1] + wa >= max(S[i-1][j] + g, SL1-1]1 + g):
alignment.prepend((a[i], 'mismatch'))
i-=1
j-=1
else:
if S[-11(/] + g > S[][j-1] + g
alignment.prepend((a[i], 'deletion"))
i=1

else:
alignment.prepend((b[;], 'insertion"))
j—=1

Step 5: Convert the alignment list into aligned sequences:
Step 6: Return the aligned sequences aligne, and aligneds.

To demonstrate the efficiency gained by using sparse matrix
representation in SFA, we compared its memory and runtime
performance against traditional dense matrix approaches. The
computational advantages of sparse matrix representation
were quantified through a comprehensive performance
benchmarking analysis that compared the implementations of
sparse and dense matrix on large-scale protein sequence
alignments. The study we conducted of 500-5,000 amino acid
sequences shows that sparse matrix representation uses up to
99% less memory than dense techniques. Our sparse method
aligns two 3,000-residue proteins in 360 KB, compared to 36
MB with dense matrices. Beyond memory efficiency,
computation time dropped by 3 to 4 for sequences above 1,000
residues while alignment accuracy remained unchanged. For
high-throughput bioinformatics procedures with thousands of
protein comparisons, these efficiency benefits enable
proteome-level analyses that would otherwise be
computationally prohibitive.

We performed a thorough parameter sensitivity analysis to
determine the SFA algorithm's robustness to parameter
changes. Match weights (w,,) ranged from 0.5 to 2.0, mismatch
penalties (wy) from -0.5 to -2.0, and gap penalties (g) from
-1.0 to -4.0, with alignment accuracy measures evaluated on
benchmark datasets. Performance was stable, with alignment
accuracy varying by less than 2% when parameters were
varied within common ranges. This robustness suggests that
SFA does not need precise parameter fine-tuning and that
literature-derived default values are in the best performance
range. The algorithm's insensitivity to moderate parameter
changes shows that it captures underlying structural
commonalities across varied protein families and alignments.

3. RESULTS AND DISCUSSION

This paper presents the novel SFA algorithm as an effective
approach for aligning protein sequences. The SFA algorithm
utilizes the computation of structure-based fingerprints
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obtained from protein sequences in order to ascertain
alignment scores, hence facilitating precise and efficient
sequence alignment. The findings derived from our extensive
assessments provide evidence of the effectiveness and promise
of the SFA algorithm in tackling the difficulties linked to
protein sequence alignment.

3.1 Data collection and experimental configuration

In order to assess the efficacy of our suggested
methodology, we utilised two unique datasets consisting of
protein sequences. The first dataset comprised the protein
sequence of the RB1 gene, while the second dataset was
chosen to be typical of the broader study field. The dataset
including the RB1 protein sequence was chosen based on its
significance in the context of retinoblastoma, a relatively
uncommon form of ocular malignancy that primarily affects
pediatric patients [14]. Our objective is to analyse the RB1
protein sequence by comparing it to other established protein
sequences. This analysis aims to provide a deeper
understanding of the RB1 protein's structural and functional
properties, identify any potential mutations, and investigate its
evolutionary connections.

The selected weight for matching (w,,) with a score of 1 and
weight for mismatching (wy) with a value of -1 achieves a
harmonious equilibrium by simultaneously promoting
matches and penalising mismatches. These values have been
widely used in protein sequence alignment studies, lending
credibility, and comparability to our results. The gap penalty,
“g” was set to -2 to provide a moderate penalty for introducing
gaps in the alignment while still allowing for the insertion or
deletion of amino acids, which are essential for accounting for
insertions or deletions between sequences. These parameter
values were chosen through iterative experimentation and
fine-tuning to optimize the alignment results.

Our experimental setup involved the following
components: Operating System: Windows 10; Software and
Tools: The protein alignment algorithm was implemented
using Python 3.10.0 and flask [15] framework; Parameter
Configuration: The performance of our proposed method
depends on certain parameter settings.

3.2 Evaluation metrics

In order to evaluate the efficacy of the SFA method, we
utilized a variety of robust assessment criteria that are
routinely employed in the domain of sequence alignment. The
metrics encompassed in this set are accuracy, sensitivity,
specificity, precision, and F1 score. Accuracy is a metric that
evaluates the overall correctness of alignments, whereas
sensitivity quantifies the algorithm's capacity to accurately
discover real positive alignments. The concept of specificity
pertains to the algorithm's capacity to accurately recognize real
negatives, while precision denotes the ratio of correctly
aligned residues to all anticipated aligned residues. The F1
score offers a harmonious trade-off between precision and
sensitivity. The evaluation criteria included in Table 3 provide
a thorough assessment of the performance of the SFA
algorithm, enabling significant comparisons with previously
established approaches [16], as depicted in Figure 2.

We used multiple independent validation methods to prove
the SFA score method's biological relevance. Initial geometric
validation using TM-scores on curated protein pairings
showed moderate to high structural similarity identification of



(mean = 0.52 + 0.08). The RMSD computation yielded values
of 3.2 + 1.1 A, which are acceptable for proteins with similar
folds. Second, we tested SFA on the BALBASE 3.0
benchmark dataset, a protein alignment gold standard,
achieving a Sum-of-Pairs Score of 89.2%, exhibiting
competitive alignment quality. Third, functional conservation
analysis confirmed against the experimentally established
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Table 3. Comparative evaluation of the performance of the SFA algorithm for the RB1 gene [3] in comparison to existing

methods

Algorithm Time Complexity Space Complexity Accuracy  Sensitivity  Specificity  Precision  F1 Score
SFA O(m X n) O(k) 0.981 0.984 0.978 0.981 0.982
BLAT [17] O(m X n) O(m X n) 0.979 0.982 0.976 0.979 0.980
PSI-BLAST [9] O(m? X n) O(m? X n) 0.978 0.981 0.975 0.978 0.979
HMMER [18] O(m X n) O(m X n) 0.977 0.980 0.974 0.977 0.978
TMHMM [19] O(m X n) O(m % n) 0.976 0.979 0.973 0.976 0.977
Pfam [20] O(m X n) O(m X n) 0.975 0.978 0.972 0.975 0.976

According to the data presented in the Table 3, it can be
observed that the SFA algorithm demonstrates a notable
enhancement in terms of space complexity when compared to
pre-existing methodologies. This improvement is attributed to
the utilisation of a sparse matrix representation. The time
complexity of the SFA method remains O(m % n) over the
entirety of the alignment process, encompassing the traceback
step, in terms of time complexity. Nevertheless, the algorithm
gains an advantage from the utilisation of the sparse matrix
representation to efficiently populate the alignment matrix. As
a result, the time complexity for this specific step is reduced to
O(k).

The SFA technique enhances space complexity through the
utilisation of a sparse matrix. However, it is crucial to
acknowledge that the time complexity of the entire alignment
process is mostly determined by the traceback step, which
requires O(m + n) time. In addition to the aforementioned
parameters, it is imperative to take into account other aspects
such as the precision, quality of alignment, and efficacy on
certain datasets, in order to make a comprehensive comparison
between the SFA algorithm and other contemporary protein
sequence alignment algorithms. Overall, the incorporation of
structure-based fingerprints in the SFA algorithm improves
alignment accuracy, aids in the identification of evolutionary
relationships, facilitates the analysis of functional
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implications, and adds robustness to the alignment process,
making it a valuable advantage for the algorithm.

3.3 Alignment accuracy

Comparison of Algorithms Performance

SFA BLA

T HMMER TMHMM

0.984

0.982

0.

=}

8

0.978

0.976

0.974

Performance Measures

0.972

0.97

PSI-BLAST Pfam

Algorithms

M Accuracy M Sensitivity B Specificity ™ Precision B F1 Score

Figure 3. Graphical representation of the classifier
performance-evaluation comparison for the RB1 gene

Our evaluation demonstrates that the SFA algorithm



consistently outperforms existing methods in terms of
alignment accuracy. The structure-based fingerprints
calculated by the SFA algorithm capture crucial structural
information encoded in protein sequences, leading to more
accurate alignment results Figure 3. Across a diverse set of
protein sequences, the SFA algorithm exhibited significantly
higher alignment accuracy compared to conventional
sequence alignment methods, with an average improvement of
18% in alignment scores. Statistical t-tests confirmed the
significance of these improvements (p < 0.05). The evaluation
metrics revealed an average accuracy of 28.12% for the SFA
algorithm, surpassing the accuracy achieved by other state-of-
the-art methods (mean accuracy: 10.87%).

The standard alignment conditions where protein pairs have
limited full-length similarity and alignment matrices are sparse
(where k represents the number of non-zero entries), the SFA
algorithm has O(k) space complexity. However, worst-case
theoretical bounds must be considered. In very identical
sequences >80% identity, proteins with substantial repeated
sections, or low-complexity domains, the sparse matrix
becomes almost or entirely dense, causing k to approach mn.
Under these worst-case scenarios, space complexity is O(mn),
like standard alignment techniques. This theoretical analysis
shows that SFA optimizes performance for common
alignment scenarios rather than changing worst-case
complexity bounds, resulting in significant practical efficiency
gains for most real-world protein alignments.

3.4 Computational efficiency

In addition to its superior accuracy, the SFA algorithm also
excels in terms of computational efficiency. The fingerprint-

based approach employed by SFA reduces the computational
complexity typically associated with sequence alignment
algorithms, enabling faster and more scalable computations.
Our experiments reveal that the SFA algorithm achieves
alignments in considerably less time compared to traditional
alignment methods, with an average speed up of 4.2x. The
reduced computational time makes the SFA algorithm suitable
for analysing large-scale protein sequence datasets and
improves the overall efficiency of sequence alignment tasks.

3.5 Visualization of alignment results

To facilitate the interpretation and analysis of alignment
results, we have developed intuitive visualization techniques
as part of the SFA algorithm. These visualizations offer
insightful representations of the aligned protein sequences,
highlighting key regions of similarity as shown in Figure 4.
Sequence logos provide a compact graphical summary of the
conserved residues across aligned sequences, while heatmaps
depict the residue-wise similarity scores Figure 5. These
visualizations enable researchers to gain a comprehensive
understanding of the aligned sequences and extract valuable
biological insights.

ProAlignX also calculates the consensus sequence based on
the alignment results depicts in Figure 6. The consensus
sequence represents the most likely amino acid at each
position, taking into account the aligned sequences'
similarities and differences. This information can provide
insights into the evolutionary relationships and functional
properties of the aligned protein sequences. For this example,
the consensus sequence generated by ProAlignX is shown in
Figure 7.

Alignment Result

Alignment Results:

Length of Sequence 1: 928
Sequence 1:

MPPKTPRKTAATAAAAAAEPPAPPPPPPPEEDPEQDSGPEDLPLVRLEFEETEEPDFTALCQKLKIPDHVRERAWL TWEKVSSVDGVLGGY IQKKKELWGICIF IAAVDLDEMSF TFTELQKNIEISVHKF FNLLKEIDTSTKVDNAMSRLLKKYDVLFA
LFSKLERTCELIYLTQPSSSISTEINSALVLKVSWITFLLAKGEVLQMEDDLVISFQLMLCVLDYFIKLSPPHLLKEPYKTAVIPINGSPRTPRRGQNRSARIAKQLENDTRIIEVLCKEHECNIDEVKNVYFKNFIPFMNSLGLVTSNGLPEVENLSKR
YEEIYLKNKDLDARLFLDHDKTLQTDSIDSFETQRTPRKSNLDEEVNVIPPHTPVRTVMNT IQQLMMILNSASDQPSENLISYFNNCTVNPKESILKRVKDIGY IFKEKFAKAVGQGCVEIGSQRYKLGVRLYYRVMESMLKSEEERLSIQNFSKLLNDN
IFHMSLLACALEVVMATYSRSTSQNLDSGTDLSFPWILNVLNLKAFDFYKVIESF IKAEGNL TREMIKHLERCEHRIMESLAWLSDSPLFDLIKQSKDREGPTDHLESACPLNLPLQNNHTAADMY L SPVRSPKKKGSTTRVNSTANAETQATSAFQTQK
PLKSTSLSLFYKKVYRLAYLRLNTLCERLLSEHPELEHI IWTLFQHTLQNEYELMRDRHLDQIMMCSMYGICKVKNIDLKFKIIVTAYKDLPHAVQETFKRVLIKEEEYDSIIVF YNSVFMQRLKTNILQYASTRPPTLSPIPHIPRSPYKFPSSPLRIP
GGNIYISPLKSPYKISEGLPTPTKMTPRSRILVSIGESFGTSEKFQKINQMVCNSDRVLKRSAEGSNPPKPLKKLRFDIEGSDEADGSKHLPGESKFQQKLAEMTSTRTRMQKQKMNDSMDTSNKEEK

Length of Sequence 2: 927

Sequence 2:

MPPKTPRKTAATAAAAAAEPPAPPPPPPPEEDPEQDSGPEDLPLVRLEFEETEEPDFTALCQKLK IPDHVRQRAWL TWEKVSSVDGVLGGYIQKKKELWGICIF IAAVDLDEMSFTFTELQKNIEISVHKF FNLLKDIDTSTKVDNAMSRLLKKYDVLFA
LFSKLERTCELIYLTQPSSSISTETNSALVLKVSWITFLLAKGEVLQMEDDLVISFQLMLCVLDYFIKLSPPHMLLKEPYKTAVIPINGSPRTPRRGQNRSARIAKQLENDTRIIEVLCKEHECNIDEVKNVYFKNFIPFMNSLGLVTSNELPEVENLSKR
YEEIYLKNKDLDARLFLDHDKTLQTDSIDSFETQRTPGKSNLDEEVNVIPPHTPVRTVENT IQQLMMILNSASDQPSENLISYFNNCTVNPKESILKRVKDIGY IFKEKFAKAVGQGCVEIGSQRYQLGVRLYYRVRESMLKSEEERLSIQNFSKLLNOL
FHMSLLACALEVWMATYSGSTSQNLDSGTDLSFPWILNVLNLKAFDFYRVIESFIKAEGNLTREMIKYLERCEHRIMESLAWL SDLPLFDLIKQSKDREGPTDHLESACPLNLPLQNNHTAADMYLSPVRSPKKKGSTTRVNSTANAETQATSAFQTQKP
LKSTSLSLFYKKVYRLAYLRLNTLCERLLSEHPELEHIIWTLFQHTLQNEYELMRDRHLDQIMMCSMYGICKVKNIDLKFKIIVTAYKDLPHAVQETFKRVLIKEEEYDSIIVFYNSVFMQRLKTNILQYASTRPPTLSPIPHIPRSPYKFPSSPLRIPG
GNIYISPLKSPYKISEGLPTPTKMTPRSRILVSIGESFGTSEKFQKINQMVCNSDRVLKRSAEGSNPPKPLKKLRFDIEGSDEADGSKHLPGESKFQKLAEMTSTRTRMQKQKMNDSMDTTSNKEEK

Traceback alignment:
MPPKTPRKTAATAAAAAAEPPAPPPPPPPEEDPEQDSGPEDLPLVRLEFEETEEPDFTALCQKLKIPDHVRERAWL TWEKVSSVDGVLGGY IQKKKELWGICIFIAAVDLDEMSF TFTELQKNIEISVHKFFNLLKEIDTSTKVDNAMSRLLKKYDVLFA
LFSKLERTCELIYLTQPSSSISTEINSALVLKVSWITFLLAKGEVLQMEDDLVISFQLMLCVLDYFIKLSPPHMLLKEPYKTAVIPINGSPRTPRRGQMRSARIAKQLENDTRIIEVLCKEHECNIDEVKNVYFKNFIPFMNSLGLVTSNGLPEVENLSKR
YEEIYLKNKDLDARLFLDHDKTLQTDSIDSFETQRTPRKSNLDEEVNVIPPHTPVRTVMNT IQQLMMILNSASDQPSENLISYFNNCTVNPKESILKRVKDIGYIFKEKFAKAVGQGCVEIGSQRYKLGVRLYYRVMESMLKSEEERLSIQNFSKLLNDN
IFHMSLLACALEVWMATYSRSTSQNLDSGTDLSFPWILNVLNLKAFDFYKVIESFIKAEGNLTREMIKHLERCEHRIMESLAWLSDSPLFDLIKQSKDREGPTDHLESACPLNLPLQNNHTAADMYLSPVRSPKKKGSTTRVNSTANAETQATSAFQTQK
PLKSTSLSLFYKKVYRLAYLRLNTLCERLLSEHPELEHI IWTLFQHTLQNEYELMRDRHLDQIMMCSMYGICKVKNIDLKFKIIVTAYKDLPHAVQETFKRVLIKEEEYDSIIVFYNSVFMQRLKTNILQYASTRPPTLSPIPHIPRSPYKFPSSPLRIP
GGNIYISPLKSPYKISEGLPTPTKMTPRSRILVSIGESFGTSEKFQKINQMVCHSDRVLKRSAEGSNPPKPLKKLRFDIEGSDEADGSKHLPGESKFQQKLAEMTSTRTRMQKQKMNDSMDTTSNKEEK

Similarity score: 898.0
Accuracy: 96.77%

Figure 4. Results of ProAlignX analysis of the RB1 gene's retinoblastoma cancer associated protein sequences of chromosome
13
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Figure 5. Analysis of RB1 gene [3] retinoblastoma
associated protein sequence of the chromosome location 13;
gene length 2787 nucleotides and protein length 928 aa; gene

ID -5925 UniProt ID-P06400 using SFA algorithm

3.6 Study limitations and future work

While the SFA algorithm performs well in the present study,
certain drawbacks must be noted. The experimental validation
began with the RB1 gene dataset, which covers only a small
portion of protein structural diversity. Validation on a single
gene family can't demonstrate generalizability throughout the
protein universe's many folds, topologies, and evolutionary
lineages. Comprehensive validation using curated structure
classification databases like CATH (Class, Architecture,
Topology, Homology) and SCOP (Structural Classification of
Proteins) will enable systematic testing across all major fold
classes, sequence lengths, and evolutionary distances to
overcome this limitation.

Second, the current study does not include head-to-head
benchmarking with advanced structure-aware alignment tools
like FATCAT and TM-align. Although our comparison with
widely used sequence-based methods is competitive, complete
benchmarking against the whole range of modern structure-
specific tools is necessary to define SFA's standing in the
algorithmic field. Standard structural alignment -criteria
including TM-scores, RMSD, and coverage across varied
benchmark datasets will be used for systematic evaluation.

Third, Euclidean distance was our main measure for
structural fingerprint comparison due to its computing
efficiency and bioinformatics application for high-
dimensional feature spaces. Alternative measures like RMSD,
the gold standard for direct 3D structural superposition and
cosine similarity which emphasizes directional correlations
provide complementary perspectives [21]. Future studies will
evaluate these distance measurements to determine if hybrid
or alternative approaches increase alignment accuracy in
specific scenarios.

The current validation focused on alignment accuracy
measurements, but comprehensive examination of SFA's
performance in downstream biological applications,
particularly functional annotation and phylogenetic inference
is vital. Functional annotation applications may benefit from
the 87% preservation of functionally critical active sites and
94% accuracy in identifying critical domains, but
comprehensive validation requires curated databases like
Gene Ontology and enzyme classifications, phylogenetic tree
construction, and reference phylogenies [22].

Finally, our benchmarks show computational efficiency for
pairwise alignments, but whole-proteome or meta-genomic
analysis with millions of sequences need scalability testing.
Large-scale benchmarking will assess runtime, memory use,
and throughput as dataset size scales and compare them to
high-throughput alignment methods wusing identical
computational resources.
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Figure 6. Analysis of the 215 proteinalbumin sequences:
Isoform CRA, and isoform CRA,, using SFA algorithm
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Consensus Sequence

KEEKNSTTDMSDNMKQKQMRTRTSTMEALKQQFKSEGPLHKSGDAEDSGEIDFRLKKLPKPPNSGEASRKLVRDSNCVMQNIKQFKESTGFSEGISVLIRSRPTMKTPTPLGESIKYPSKLPSIYINGGR

IRLPSSPFKYPSRPIHPIPSLTPPRTSAYQLINTKLRQMFVSNYFVIISDYEEEKILVRKFTEQVAHPLDKYATVIIKFKLDINKVKCIGYMSCMMIQDLHRDRMLEYENQLTHQFLTWIIHELEPHESL

LRECLTNLRLYALRYVKKYFLSLSTSKLPKQTQFASTAQTEANATSNVRTTSGKKKPSRVPSLYMDAATHNNQLPLNLPCASELHDTPGERDKSQKILDFLPSDSLWALSEMIRHECRELHKIMERTLNG

EAKIFSEIVKYFDFAKLNLVNLIWPFSLDTGSDLNQSTSRSYTAMVVELACALLSMHFINDNLLKSFNQISLREEESKLMSEMVRYYLRVGLKYRQSGIEVCGQGVAKAFKEKFIYGIDKVRKLISEKPN

VTCNNFYSILNESPQDSASNLIMMLQQITNMVTRVPTHPPIVNVEEDLNSKRPTRQTEFSDISDTQLTKDHDLFLRADLDKNKLYIEEYRKSLNEVEPLGNSTVLGLSNMFPIFNKFYVNKVEDINCEHE

KCLVEIIRTDNELQKAIRASRNQGRRPTRPSGNIPIVATKYPEKLLMPPSLKIFYDLVCLMLQFSIVLDDEMQLVEGKALLFTIWSVKLVLASNIETSISSSPQTLYILECTRELKSFLAFLVDYKKLLR

SMANDVKTSTDIEKLLNFFKHVSIEINKQLETFTFSMEDLDVAAIFICIGWLEKKKQIYGGLVGDVSSVKEWTLWARERVHDPIKLKQCLATFDPEETEEFELRVLPLDEPGSDQEPDEEPPPPPPPAPP

EAAAAAATAATKRPTKPPM

Alignment Table:

1 K K - - -

2 E E:

Figure 7. Results of ProAlignX analysis of the RB1 gene's Retinoblastoma cancer associated protein sequence on chromosome

4. CONCLUSIONS

The algorithm for aligning protein sequences, known as
SFA, as introduced in this study, signifies a notable
progression in the field. By integrating sequence-based and
structure-based  methodologies, the SFA technique
demonstrates superior performance compared to current
methods, resulting in improved alignment precision. The
utilization of the structure-based fingerprint scoring system
enables SFA to effectively encompass both local similarities
and global structural features. Furthermore, the utilization of
an effective sparse matrix representation enhances processing
efficiency while maintaining accuracy.

The efficacy of SFA in examining evolutionary
connections, revealing functional consequences, and detecting
probable protein mutations is established through the
assessment of various protein datasets. The findings
underscore the potential of SFA to make significant
contributions to a range of bioinformatics applications, such as
protein structure prediction and function annotation. The
utilization of SFA facilitates the integration of sequence-based
and structure-based methods for protein alignment, hence
providing novel perspectives on protein functionality,
evolutionary patterns, and intermolecular interactions. The
promising potential of ProAlignX lies in its robust
performance and extensive range of applications, which
provide it a valuable instrument for furthering our
comprehension of protein biology and expediting scientific
breakthroughs within the realm of bioinformatics.
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