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Protein sequence alignment occupies a central role in the field of computational biology as 

it enables the study of functional and evolutionary properties of proteins. Traditional 

alignment methods depend on sequence similarities, which can be limiting as they overlook 

how protein structure contributes to protein function and interactions. To address this 

limitation, we propose a novel approach called Structure-based Fingerprint Alignment 

(SFA) technique that improves the accuracy of sequence alignment by incorporating 

structural information. SFA uses a fingerprint scoring method to capture the structural 

similarity of proteins, and it further optimizes the gap penalty to improve the alignment 

accuracy. Additionally, SFA utilizes a sparse matrix representation to improve 

computational performance. Our analysis of SFA's performance in comparison to 

established methodologies underscores its exceptional accuracy and ability to uncover 

evolutionary linkages and functional implications in proteins. Integrating both sequence-

based and structure-based alignment methodologies using SFA establishes a path for 

understanding protein function, evolution, and interactions. 
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1. INTRODUCTION

Protein sequences alignment is essential for advancing our 

understanding of protein structure, functionality, and 

evolutionary connections. Achieving precise alignment is 

essential for the identification of conserved regions, the 

prediction of structural motifs, and the inference of protein 

functions. However, it is important to emphasize that the 

current techniques of alignment algorithms face certain 

challenges when it comes to aligning sequences that exhibit 

diverse structural attributes and significant variations in length 

[1]. To address these issues and propose a novel solution, the 

Structure-based Fingerprint Alignment (SFA) algorithm has 

been developed. This algorithm incorporates the structural 

characteristics of proteins into the alignment process. The SFA 

algorithm possesses considerable significance due to its 

capacity to make valuable contributions to scientific discovery 

across various domains. The Structure-based Fingerprint 

(SFP) scoring method is introduced, which deviates from 

conventional scoring methods employed in alignment 

algorithms [2]. The SFP approach encompasses the 

comprehensive characterization of amino acids' structural 

profiles, encompassing their spatial configuration. This 

facilitates a refined and precise alignment procedure. The SFP 

approach allows for the detection of small variations and 

conservation patterns that may go unnoticed by other scoring 

systems, therefore differentiating SFA from currently 

available alignment algorithms [3]. 

Empirical assessments have provided evidence of the 

influence of SFA on the process of scientific discovery. For 

example, an initial investigation examining protein sequences 

linked to the RB1 gene's retinoblastoma cancer [3] located on 

chromosome 13 demonstrated the effectiveness of SFA in 

offering significant understandings of protein structure, 

functionality, and evolutionary connections Figure 1. Within 

the confines of the experimental environment, we propose 

ProAlignX, a web-based application that is designed to be 

easily accessible to users. This tool makes use of the SFA 

algorithm, as depicted in Figure 1. The ProAlignX platform 

allows users to enter protein sequences of interest. 

Subsequently, ProAlignX use structure-based fingerprinting 

techniques to generate alignment results by constructing an 

alignment matrix. The programme improves usability by 

offering a range of visualisation techniques, such as alignment 

matrix heatmaps, scatter plots, consensus sequence, and 

alignment tables. These visualisations provide a thorough 

understanding of the alignment process and aid in the 

examination of protein structural attributes. 

In the context of related work in the literature Table 1, 

previous alignment algorithms have primarily focused on 

sequence similarity and complexity analysis [4], often 

neglecting the structural aspects of proteins. We bridge this 

gap by introducing the SFA algorithm, which incorporates the 

Structure-based Fingerprint scoring method as a pivotal 

component of the alignment approach. A comprehensive 

analysis of existing literature reveals no prior implementations 
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or studies exploring this specific scoring method [5] Tables 1 

and 2, underscoring the novelty and pioneering nature of SFA 

in incorporating the SFP scoring method into the alignment 

process. Additionally, SFA incorporates sparse matrix 

representation [6], optimizing memory usage and 

computational efficiency. Sparse matrices prove advantageous 

when dealing with large-scale protein sequences, as they 

reduce memory requirements and accelerate alignment 

computations. This feature enhances the scalability and 

practicality of SFA for alignment tasks. 

Table 1. A comparison analysis of various algorithms for pairwise protein sequence alignment 

Algorithm Objectives Technique Used Specific Characteristics Advantages Disadvantages Drawbacks 

Needleman–

Wunsch [2] 

Finds the optimal 

global alignment of 

two sequences 

Dynamic 

programming 

Uses a table to store the 

scores of all possible 

alignments of the two 

sequences 

Accurate, efficient. 

Sensitive to gaps, may 

not find the global 

alignment. 

Computationally 

expensive for long 

sequences. 

Memory-intensive for 

lengthy sequences. 

Can be slow for 

long sequences. 

Smith–

Waterman [7] 

Finds the optimal 

local alignment 

between two 

sequences 

Dynamic 

programming 

Similar to Needleman–

Wunsch but utilises a more 

sensitive scoring method. 

Identifies local regions of 

similarity. 

More accurate than 

the Needleman–

Wunsch algorithm, 

but also slower 

More sensitive to gaps, 

may not find the global 

alignment 

Can be very 

slow for long 

sequences 

Gotoh 

algorithm [8] 

Finds the optimal 

local alignment 

between two 

sequences, with 

affine gap penalties 

Dynamic 

programming 

Similar to the Needleman–

Wunsch algorithm, but uses 

an affine gap penalty that 

allows gaps to be extended 

more easily 

More efficient than 

the Needleman–

Wunsch algorithm 

for sequences with 

long gaps 

Less accurate than the 

Needleman–Wunsch 

algorithm for sequences 

with few gaps 

Can be slow for 

long sequences 

with many gaps 

BLAST [9] 

Finds all high-

scoring local 

alignments between 

a query sequence 

and a database of 

sequences 

Heuristic 

algorithm 

Uses a scoring scheme that is 

based on the number of 

matches, mismatches, and 

gaps between the query 

sequence and the database 

sequences 

Fast and sensitive to 

matches and 

mismatches 

Not as accurate as 

dynamic programming 

algorithms. 

Can miss remote or 

weak similarities. 

May have 

sensitivity 

trade-offs. 

Requires 

parameter 

optimization 

Sensitivity 

decreases with 

shorter 

sequences. 

FastAlign 

[10] 

Optimal local 

alignment between 

two sequences 

Heuristic 

algorithm 

Uses a Smith–Waterman-like 

scoring method with a faster 

implementation. 

Accurate and fast 

Not as sensitive as 

dynamic programming 

methods to matches and 

mismatches 

Noisy and 

numerous false 

positives 

ProbCons 

[11] 

Finds the most 

probable global 

alignment between 

two sequences 

Probabilistic 

modelling, 

hidden Markov 

models 

Incorporates probabilistic 

models for alignment. 

Utilizes hidden Markov 

models for alignment scoring. 

Accurate and 

sensitive to matches 

and mismatches 

Computationally 

expensive for large 

datasets. 

Requires careful 

parameter selection and 

optimization. 

Can be difficult 

to interpret 

Table 2. A comparison analysis of various algorithms for pairwise protein sequence alignment (Continuation of Table 1) 

Algorithm 
Accuracy 

(1-10) 

Speed 

(1-10) 

Scalability 

(1-10) 

Memory 

Usage 

(1-10) 

Stability 

(1-10) 

Computation 

Time (1-10) 

Sensitivity 

(1-10) 

Specificity 

(1-10) 
Results Features 

Needleman–

Wunsch [2] 
High 6 5 7 9 O(mn) 8 7 

Alignment score, Positions 

of aligned residues. 

Smith–

Waterman [7] 
Very high 5 6 7 9 O(mn2) 9 8 

Positions of aligned 

residues, scores of 

alignments 

Gotoh 

algorithm [8] 
High 7 6 6 8 O(mn2) 6 7 

Positions of aligned 

residues, scores of 

alignments 

BLAST [9] High 9 8 7 7 O(mn) 8 7 
High-scoring alignment 

hits, statistical significance 

FastAlign [10] High 8 7 6 8 O(mn2) 7 7 
Positions of aligned 

residues and scores 

ProbCons [11] High 7 8 7 8 O(mn3) 8 8 

Positions of aligned 

residues, probabilities of 

alignments 
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Figure 1. Retinoblastoma cancer signalling [3] 

The Structure-based Fingerprint scoring method, coupled 

with the utilization of sparse matrix representation, presents a 

significant advancement in protein sequence alignment 

techniques. ProAlignX, with its incorporation of the novel 

scoring method and user-friendly interface, establishes itself 

as a pioneering software tool in the field. The comprehensive 

visualization techniques offered by ProAlignX contribute to 

its significance and usability for users across various domains. 

The subsequent portions of this paper provide an elaborate 

exposition of the SFA algorithm, experimental evaluations, 

and a concluding statement. 

2. PROPOSED ALGORITHM

This section describes the SFA algorithm that we have 

developed. The Needleman-Wunsch algorithm is improved by 

integrating a structure-based fingerprint scoring technique and 

optimizing the gap penalty. The primary objective of the SFA 

method is to achieve efficient alignment of protein sequences, 

taking into account their distinct structural attributes. 

2.1 Structure-based Fingerprint Alignment 

The fundamental principle underlying the SFA algorithm is 

based on the dynamic programming methodology employed 

by the Needleman-Wunsch (NW) algorithm. The NW 

algorithm, a pairwise sequence alignment technique, seeks to 

achieve optimal global alignment between biological 

sequences such as DNA, RNA, and proteins. This process 

operates with a time and space complexity of O(MN). The NW 

algorithm unfolds across four essential phases: matrix 

initialization, computation of similarity scores, traceback, and 

outcome generation [2]. However, a significant drawback 

surfaces when aligning lengthy sequences, as the algorithm's 

runtime becomes notably extensive (O(MN)). Our research 

endeavours to overcome this challenge by focusing on 

enhancing algorithmic techniques, expanding sequence length 

and accuracy through the incorporation of a structure-based 

fingerprint scoring method. 

Therefore, the SFA algorithm employs a scoring equation 

to quantitatively evaluate the optimal alignment score between 

two protein sequences. This equation, rooted in the 

Needleman-Wunsch algorithm and fortified by the structure-

based fingerprint scoring method, takes the form of Eq. (1): 

𝐹[𝑖][𝑗] = 𝑚𝑎𝑥{𝐹[𝑖 − 1][𝑗 − 1]
+ 𝑆(𝑎[𝑖 − 1], 𝑏[𝑗 − 1]), 𝐹[𝑖
− 1][𝑗] − 𝑑, 𝐹[𝑖][𝑗 − 1] − 𝑑, 0}

(1) 

where, 𝐹[𝑖][𝑗] represents the score of the best alignment of the 

first sequence up to position "i" with the second sequence up 

to position "j". 𝑆(𝑎[𝑖 − 1], 𝑏[𝑗 − 1]) represents the score of a 

match or mismatch between the characters and 𝑎[𝑖 − 1] and 

𝑏[𝑗 − 1] . "d" denotes the gap penalty, penalizing the 

introduction of gaps during the alignment process. 

2.2 Structural fingerprint integration 

The SFA algorithm introduces a novel scoring approach 

called the structure-based fingerprint scoring method to 

enhance alignment precision and effectiveness. This method 

uniquely integrates the structural attributes of proteins into the 

alignment calculation, contrasting with traditional scoring 

methods. Notably, the structure-based fingerprint scoring 

method takes into account the distinct spatial arrangements of 

amino acids, leveraging their individual structural profiles. 

The initial step in deploying the structure-based fingerprint 

scoring method is the computation of fingerprints for each 

sequence involved in the alignment. A fingerprint, essentially 
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a numerical vector, encapsulates the structural information of 

the sequence. The fingerprint calculation process unfolds 

through three integral steps: 

(1) Atom identification: Identify the atoms that constitute

the protein sequence. Each atom contributes vitally to the 

sequence's overall structure and is imperative for successful 

alignment. 

(2) Weight assignment: Assign weights to the identified

atoms based on their structural significance. These weights 

reflect the atoms' importance in shaping the sequence's 

structure. 

(3) Fingerprint vector calculation: Leverage the assigned

weights to compute the fingerprint vector, an intricate 

numerical representation that encapsulates the protein's 

structural characteristics.  

2.3 Fingerprint comparison and alignment score 

calculation 

Once the fingerprints are computed, they undergo 

comparison to ascertain the score of matches or mismatches. 

This involves calculating the distance between fingerprint 

vectors, often employing standard metrics like the Euclidean 

distance [12]. Smaller distances denote higher sequence 

similarity. The calculation of scores through fingerprint 

comparison follows: 

𝑆𝑐𝑜𝑟𝑒(𝑎, 𝑏) = 𝑤𝑚 ∗ 𝐷(𝑎, 𝑏) + 𝑤𝑑 (2) 

where, “a” and “b” represent the sequences of two proteins. 

Signifies the distance between the proteins, while wm and wd
represent the weights assigned to matches and mismatches, 

respectively. 

𝐷(𝑎, 𝑏) = ∑ 𝑑(𝑎𝑖 , 𝑏𝑖)
𝑛

𝑖=1
(3) 

where, signifies the dissimilarity metric between the 

sequences "a" and "b." It quantifies the extent of difference or 

dissimilarity between the two sequences. Denotes a 

summation operation that iterates over the variable "i" from 1 

to "n," where "n" represents the length of the sequences under 

consideration. d (ai, bi) represents the dissimilarity function 

applied to the elements at position "i" in the sequences "a" and 

"b." This function computes the dissimilarity or difference 

between the two elements. 

𝑆(𝑎[𝑖], 𝑏[𝑗]) = 𝑤𝑚
∗ 𝑑(𝐹[𝑖 − 1][𝑗

− 1], 𝑃[𝑎[𝑖 − 1]], 𝑃[𝑏[𝑗 − 1]]) + 𝑤𝑑

+ 𝑔

(4) 

where, S(a[i], b[j]) denotes the alignment score between the 

characters "a[i]" and "b[j]." This score assesses the degree of 

match or mismatch between the characters. Wm is the weight 

assigned to a successful match, signifying the reward for 

aligning identical characters. d(F[i - 1][j - 1], P[a[i - 1]], P[b[j 

- 1]]) computes the distance between the structural fingerprints

of characters "a[i - 1]" and "b[j - 1]." This encapsulates the

unique structural properties of the characters. P[a[i - 1]]

represents the fingerprint of the character "a[i - 1]," capturing

its structural features. P[b[j - 1]] corresponds to the fingerprint

of the character "b[j - 1]," similarly encapsulating its structural

attributes. Wd signifies the weight assigned to a mismatch,

reflecting the penalty incurred for aligning differing 

characters. F[i-1][j-1] represents the alignment score obtained 

by aligning the first sequence up to position "i - 1" with the 

second sequence up to position "j - 1". “g” represents the gap 

penalty, encouraging the alignment algorithm to minimize the 

introduction of gaps in the alignment. 

The Eq. (4) computes the alignment score between 

characters "a[i]" and "b[j]" by taking into account their 

structural fingerprints and incorporating weights that consider 

matches, mismatches, and gaps. Scoring parameters match = 

+1, mismatch = –1, gap = –2 was selected based on established

practices in sequence alignment and were further optimized

using grid search on benchmark datasets to maximize

alignment accuracy and biological relevance in the context of

the SFA algorithm. This scoring mechanism is pivotal in

determining the quality of sequence alignment within the

proposed SFA algorithm.

Vingron and Waterman's work supported the selection of 

scoring parameters (match weight wm = 1, mismatch penalty 

wd = −1, gap penalty g = −2), which strike a balance between 

rewarding sequence conservation and penalizing gaps and 

mismatches. To validate these parameters for SFA, we used 

systematic grid search optimization across benchmark protein 

alignment datasets in addition to these literature-supported 

values. Grid search parameters included match weights (0.5-

2.0), mismatch penalties (-0.5-2.0), and the gap penalties (-

1.0-4.0). Validating their applicability for structure-based 

fingerprint matching, the values wm = 1, wd = −1, and g = −2 

consistently maximized alignment accuracy measures, 

including sensitivity, specificity, and F1-score across multiple 

protein families via empirical optimization. 

2.4 Gap penalty and sparse matrix representation 

In addition to the structure-based fingerprint scoring 

method, the SFA algorithm addresses the gap penalty and 

utilizes a sparse matrix representation for the alignment 

matrix. The gap penalty favors gap-minimized alignments, 

preserving conserved regions and minimizing insertions or 

deletions. Our approach employs a linear gap penalty approach 

[13], ensuring a constant penalty for each introduced gap. 

To optimize computational efficiency and memory usage, 

the SFA algorithm introduces a sparse matrix representation 

for the alignment matrix. This representation selectively stores 

non-zero elements and their positions, enabling efficient 

alignment calculations by excluding zero elements. This 

adoption optimizes memory utilization and enhances the 

algorithm's capacity to handle substantial protein sequence 

alignments. The Pseudocode outlined in Algorithm 1 is the 

pseudocode of the SFA algorithm. It details the algorithmic 

steps required for the alignment process and highlights the 

critical roles of sequences, weights, and penalty values in the 

procedure. 

Algorithm 1: Pseudocode of SFA algorithm 
a: The sequence of the first protein 

b: The sequence of the second protein 

wm: The weight of a match 

wd: The weight of a mismatch 

g: The gap penalty 

Procedure: 

Step 1: Calculate the SFA of proteins a and b. 

Step 2: Initialize the alignment matrix S with dimensions (len(a) 

+ 1) x (len(b) + 1).

Step 3: Fill in the alignment matrix S using the SFA:
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    for i = 1 to len(a): 

 for j = 1 to len(b): 

 if a[i] equals b[j]: 

     S[i][j] = S[i-1][j-1] + wm 

 else: 

     S[i][j] = max(S[i-1][j-1] + wd, S[i-1][j] + g, S[i][j-1] + g) 

Step 4: Traceback through the alignment matrix S to find the 

alignment: 

    Initialize i = len(a), j = len(b) 

    Initialize an empty alignment list 

    while i > 0 or j > 0: 

 if a[i] equals b[j]: 

 alignment.prepend((a[i], 'match')) 

i- = 1

j- = 1

 else if S[i-1][j-1] + wd >= max(S[i-1][j] + g, S[i][j-1] + g): 

 alignment.prepend((a[i], 'mismatch')) 

i- = 1

j - = 1

 else: 

 if S[i-1][j] + g > S[i][j-1] + g: 

 alignment.prepend((a[i], 'deletion')) 

 i -= 1 

 else: 

 alignment.prepend((b[j], 'insertion')) 

     j -= 1 

Step 5: Convert the alignment list into aligned sequences: 

Step 6: Return the aligned sequences alignea and alignedb. 

To demonstrate the efficiency gained by using sparse matrix 

representation in SFA, we compared its memory and runtime 

performance against traditional dense matrix approaches. The 

computational advantages of sparse matrix representation 

were quantified through a comprehensive performance 

benchmarking analysis that compared the implementations of 

sparse and dense matrix on large-scale protein sequence 

alignments. The study we conducted of 500–5,000 amino acid 

sequences shows that sparse matrix representation uses up to 

99% less memory than dense techniques. Our sparse method 

aligns two 3,000-residue proteins in 360 KB, compared to 36 

MB with dense matrices. Beyond memory efficiency, 

computation time dropped by 3 to 4 for sequences above 1,000 

residues while alignment accuracy remained unchanged. For 

high-throughput bioinformatics procedures with thousands of 

protein comparisons, these efficiency benefits enable 

proteome-level analyses that would otherwise be 

computationally prohibitive.  

We performed a thorough parameter sensitivity analysis to 

determine the SFA algorithm's robustness to parameter 

changes. Match weights (wm) ranged from 0.5 to 2.0, mismatch 

penalties (wd) from -0.5 to -2.0, and gap penalties (g) from 

-1.0 to -4.0, with alignment accuracy measures evaluated on

benchmark datasets. Performance was stable, with alignment

accuracy varying by less than 2% when parameters were

varied within common ranges. This robustness suggests that

SFA does not need precise parameter fine-tuning and that

literature-derived default values are in the best performance

range. The algorithm's insensitivity to moderate parameter

changes shows that it captures underlying structural

commonalities across varied protein families and alignments.

3. RESULTS AND DISCUSSION

This paper presents the novel SFA algorithm as an effective 

approach for aligning protein sequences. The SFA algorithm 

utilizes the computation of structure-based fingerprints 

obtained from protein sequences in order to ascertain 

alignment scores, hence facilitating precise and efficient 

sequence alignment. The findings derived from our extensive 

assessments provide evidence of the effectiveness and promise 

of the SFA algorithm in tackling the difficulties linked to 

protein sequence alignment. 

3.1 Data collection and experimental configuration 

In order to assess the efficacy of our suggested 

methodology, we utilised two unique datasets consisting of 

protein sequences. The first dataset comprised the protein 

sequence of the RB1 gene, while the second dataset was 

chosen to be typical of the broader study field. The dataset 

including the RB1 protein sequence was chosen based on its 

significance in the context of retinoblastoma, a relatively 

uncommon form of ocular malignancy that primarily affects 

pediatric patients [14]. Our objective is to analyse the RB1 

protein sequence by comparing it to other established protein 

sequences. This analysis aims to provide a deeper 

understanding of the RB1 protein's structural and functional 

properties, identify any potential mutations, and investigate its 

evolutionary connections.  

The selected weight for matching (wm) with a score of 1 and 

weight for mismatching (wd) with a value of -1 achieves a 

harmonious equilibrium by simultaneously promoting 

matches and penalising mismatches. These values have been 

widely used in protein sequence alignment studies, lending 

credibility, and comparability to our results. The gap penalty, 

“g”, was set to -2 to provide a moderate penalty for introducing 

gaps in the alignment while still allowing for the insertion or 

deletion of amino acids, which are essential for accounting for 

insertions or deletions between sequences. These parameter 

values were chosen through iterative experimentation and 

fine-tuning to optimize the alignment results. 

Our experimental setup involved the following 

components: Operating System: Windows 10; Software and 

Tools: The protein alignment algorithm was implemented 

using Python 3.10.0 and flask [15] framework; Parameter 

Configuration: The performance of our proposed method 

depends on certain parameter settings. 

3.2 Evaluation metrics 

In order to evaluate the efficacy of the SFA method, we 

utilized a variety of robust assessment criteria that are 

routinely employed in the domain of sequence alignment. The 

metrics encompassed in this set are accuracy, sensitivity, 

specificity, precision, and F1 score. Accuracy is a metric that 

evaluates the overall correctness of alignments, whereas 

sensitivity quantifies the algorithm's capacity to accurately 

discover real positive alignments. The concept of specificity 

pertains to the algorithm's capacity to accurately recognize real 

negatives, while precision denotes the ratio of correctly 

aligned residues to all anticipated aligned residues. The F1 

score offers a harmonious trade-off between precision and 

sensitivity. The evaluation criteria included in Table 3 provide 

a thorough assessment of the performance of the SFA 

algorithm, enabling significant comparisons with previously 

established approaches [16], as depicted in Figure 2. 

We used multiple independent validation methods to prove 

the SFA score method's biological relevance. Initial geometric 

validation using TM-scores on curated protein pairings 

showed moderate to high structural similarity identification of 
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(mean = 0.52 ± 0.08). The RMSD computation yielded values 

of 3.2 ± 1.1 Å, which are acceptable for proteins with similar 

folds. Second, we tested SFA on the BAliBASE 3.0 

benchmark dataset, a protein alignment gold standard, 

achieving a Sum-of-Pairs Score of 89.2%, exhibiting 

competitive alignment quality. Third, functional conservation 

analysis confirmed against the experimentally established 

crystal structure (PDB ID: 2QDJ) showed 87% preservation of 

known active sites with 94% accuracy in identifying key 

domains in the RB1 protein. These multi-faceted validation 

methods show that the SFA scoring technique captures 

biologically significant spatial configurations while being 

computationally efficient, making it relevant to protein 

alignment applications. 

Figure 2. ProAlignX basic building blocks 

Table 3. Comparative evaluation of the performance of the SFA algorithm for the RB1 gene [3] in comparison to existing 

methods 

Algorithm Time Complexity Space Complexity Accuracy Sensitivity Specificity Precision F1 Score 

SFA O(m × n) O(k) 0.981 0.984 0.978 0.981 0.982 

BLAT [17] O(m ×  n) O(m  ×  n) 0.979 0.982 0.976 0.979 0.980 

PSI-BLAST [9] O(m2 × n) O(m2  ×  n) 0.978 0.981 0.975 0.978 0.979 

HMMER [18] O(m × n) O(m  ×  n) 0.977 0.980 0.974 0.977 0.978 

TMHMM [19] O(m × n) O(m  ×  n) 0.976 0.979 0.973 0.976 0.977 

Pfam [20] O(m  ×  n) O(m  ×  n) 0.975 0.978 0.972 0.975 0.976 

According to the data presented in the Table 3, it can be 

observed that the SFA algorithm demonstrates a notable 

enhancement in terms of space complexity when compared to 

pre-existing methodologies. This improvement is attributed to 

the utilisation of a sparse matrix representation. The time 

complexity of the SFA method remains O(m × n) over the 

entirety of the alignment process, encompassing the traceback 

step, in terms of time complexity. Nevertheless, the algorithm 

gains an advantage from the utilisation of the sparse matrix 

representation to efficiently populate the alignment matrix. As 

a result, the time complexity for this specific step is reduced to 

O(k). 

The SFA technique enhances space complexity through the 

utilisation of a sparse matrix. However, it is crucial to 

acknowledge that the time complexity of the entire alignment 

process is mostly determined by the traceback step, which 

requires O(m + n) time. In addition to the aforementioned 

parameters, it is imperative to take into account other aspects 

such as the precision, quality of alignment, and efficacy on 

certain datasets, in order to make a comprehensive comparison 

between the SFA algorithm and other contemporary protein 

sequence alignment algorithms. Overall, the incorporation of 

structure-based fingerprints in the SFA algorithm improves 

alignment accuracy, aids in the identification of evolutionary 

relationships, facilitates the analysis of functional 

implications, and adds robustness to the alignment process, 

making it a valuable advantage for the algorithm.  

3.3 Alignment accuracy 

Figure 3. Graphical representation of the classifier 

performance-evaluation comparison for the RB1 gene 

Our evaluation demonstrates that the SFA algorithm 
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consistently outperforms existing methods in terms of 

alignment accuracy. The structure-based fingerprints 

calculated by the SFA algorithm capture crucial structural 

information encoded in protein sequences, leading to more 

accurate alignment results Figure 3. Across a diverse set of 

protein sequences, the SFA algorithm exhibited significantly 

higher alignment accuracy compared to conventional 

sequence alignment methods, with an average improvement of 

18% in alignment scores. Statistical t-tests confirmed the 

significance of these improvements (p < 0.05). The evaluation 

metrics revealed an average accuracy of 28.12% for the SFA 

algorithm, surpassing the accuracy achieved by other state-of-

the-art methods (mean accuracy: 10.87%). 

The standard alignment conditions where protein pairs have 

limited full-length similarity and alignment matrices are sparse 

(where k represents the number of non-zero entries), the SFA 

algorithm has O(k) space complexity. However, worst-case 

theoretical bounds must be considered. In very identical 

sequences >80% identity, proteins with substantial repeated 

sections, or low-complexity domains, the sparse matrix 

becomes almost or entirely dense, causing k to approach mn. 

Under these worst-case scenarios, space complexity is O(mn), 

like standard alignment techniques. This theoretical analysis 

shows that SFA optimizes performance for common 

alignment scenarios rather than changing worst-case 

complexity bounds, resulting in significant practical efficiency 

gains for most real-world protein alignments. 

3.4 Computational efficiency 

In addition to its superior accuracy, the SFA algorithm also 

excels in terms of computational efficiency. The fingerprint-

based approach employed by SFA reduces the computational 

complexity typically associated with sequence alignment 

algorithms, enabling faster and more scalable computations. 

Our experiments reveal that the SFA algorithm achieves 

alignments in considerably less time compared to traditional 

alignment methods, with an average speed up of 4.2×. The 

reduced computational time makes the SFA algorithm suitable 

for analysing large-scale protein sequence datasets and 

improves the overall efficiency of sequence alignment tasks. 

3.5 Visualization of alignment results 

To facilitate the interpretation and analysis of alignment 

results, we have developed intuitive visualization techniques 

as part of the SFA algorithm. These visualizations offer 

insightful representations of the aligned protein sequences, 

highlighting key regions of similarity as shown in Figure 4. 

Sequence logos provide a compact graphical summary of the 

conserved residues across aligned sequences, while heatmaps 

depict the residue-wise similarity scores Figure 5. These 

visualizations enable researchers to gain a comprehensive 

understanding of the aligned sequences and extract valuable 

biological insights. 

ProAlignX also calculates the consensus sequence based on 

the alignment results depicts in Figure 6. The consensus 

sequence represents the most likely amino acid at each 

position, taking into account the aligned sequences' 

similarities and differences. This information can provide 

insights into the evolutionary relationships and functional 

properties of the aligned protein sequences. For this example, 

the consensus sequence generated by ProAlignX is shown in 

Figure 7. 

Figure 4. Results of ProAlignX analysis of the RB1 gene's retinoblastoma cancer associated protein sequences of chromosome 

13 
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(a) Heatmap

(b) Sequence alignment

Figure 5. Analysis of RB1 gene [3] retinoblastoma 

associated protein sequence of the chromosome location 13; 

gene length 2787 nucleotides and protein length 928 aa; gene 

ID -5925 UniProt ID-P06400 using SFA algorithm 

3.6 Study limitations and future work 

While the SFA algorithm performs well in the present study, 

certain drawbacks must be noted. The experimental validation 

began with the RB1 gene dataset, which covers only a small 

portion of protein structural diversity. Validation on a single 

gene family can't demonstrate generalizability throughout the 

protein universe's many folds, topologies, and evolutionary 

lineages. Comprehensive validation using curated structure 

classification databases like CATH (Class, Architecture, 

Topology, Homology) and SCOP (Structural Classification of 

Proteins) will enable systematic testing across all major fold 

classes, sequence lengths, and evolutionary distances to 

overcome this limitation. 

Second, the current study does not include head-to-head 

benchmarking with advanced structure-aware alignment tools 

like FATCAT and TM-align. Although our comparison with 

widely used sequence-based methods is competitive, complete 

benchmarking against the whole range of modern structure-

specific tools is necessary to define SFA's standing in the 

algorithmic field. Standard structural alignment criteria 

including TM-scores, RMSD, and coverage across varied 

benchmark datasets will be used for systematic evaluation. 

Third, Euclidean distance was our main measure for 

structural fingerprint comparison due to its computing 

efficiency and bioinformatics application for high-

dimensional feature spaces. Alternative measures like RMSD, 

the gold standard for direct 3D structural superposition and 

cosine similarity which emphasizes directional correlations 

provide complementary perspectives [21]. Future studies will 

evaluate these distance measurements to determine if hybrid 

or alternative approaches increase alignment accuracy in 

specific scenarios. 

The current validation focused on alignment accuracy 

measurements, but comprehensive examination of SFA's 

performance in downstream biological applications, 

particularly functional annotation and phylogenetic inference 

is vital. Functional annotation applications may benefit from 

the 87% preservation of functionally critical active sites and 

94% accuracy in identifying critical domains, but 

comprehensive validation requires curated databases like 

Gene Ontology and enzyme classifications, phylogenetic tree 

construction, and reference phylogenies [22]. 

Finally, our benchmarks show computational efficiency for 

pairwise alignments, but whole-proteome or meta-genomic 

analysis with millions of sequences need scalability testing. 

Large-scale benchmarking will assess runtime, memory use, 

and throughput as dataset size scales and compare them to 

high-throughput alignment methods using identical 

computational resources. 

(a) Alignment heatmap

(b) Sequence alignment

Figure 6. Analysis of the 215 proteinalbumin sequences: 

Isoform CRAq and isoform CRAp using SFA algorithm 
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Figure 7. Results of ProAlignX analysis of the RB1 gene's Retinoblastoma cancer associated protein sequence on chromosome 

13 

4. CONCLUSIONS

The algorithm for aligning protein sequences, known as 

SFA, as introduced in this study, signifies a notable 

progression in the field. By integrating sequence-based and 

structure-based methodologies, the SFA technique 

demonstrates superior performance compared to current 

methods, resulting in improved alignment precision. The 

utilization of the structure-based fingerprint scoring system 

enables SFA to effectively encompass both local similarities 

and global structural features. Furthermore, the utilization of 

an effective sparse matrix representation enhances processing 

efficiency while maintaining accuracy. 

The efficacy of SFA in examining evolutionary 

connections, revealing functional consequences, and detecting 

probable protein mutations is established through the 

assessment of various protein datasets. The findings 

underscore the potential of SFA to make significant 

contributions to a range of bioinformatics applications, such as 

protein structure prediction and function annotation. The 

utilization of SFA facilitates the integration of sequence-based 

and structure-based methods for protein alignment, hence 

providing novel perspectives on protein functionality, 

evolutionary patterns, and intermolecular interactions. The 

promising potential of ProAlignX lies in its robust 

performance and extensive range of applications, which 

provide it a valuable instrument for furthering our 

comprehension of protein biology and expediting scientific 

breakthroughs within the realm of bioinformatics.  
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