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The vital part of intelligent Human-Computer Interaction (HCI) is Facial Expression 

Recognition (FER), which allows machines to analyze emotional expressions through facial 

signals. AffectNet dataset represents one of the largest real-life emotion datasets, which 

features more than one million labeled facial images grouped into eight major emotions and 

has continuous valence-arousal annotations for each image. The proposed solution uses a 

Deep Convolutional Neural Network (D-CNN) as its framework design for performing 

emotion detection operations. The dataset quality receives enhancement through 

normalization techniques and feature crafting methods, which create a standardizing 

framework. The proposed system employs feature generation using integrated visual 

bagging and spatial mapping mechanisms before using a fusion learning model, which 

combines handcrafted and deep features. The 5-fold cross-validated D-CNN classifier 

reaches 87.89% accuracy in recognition and proves better than SVM, MKL, and DF-CNN 

models. The model demonstrates robustness according to precision, recall, F-measure, and 

ROC performance metrics. This solution enables an affordable and precise FER system 

capable of fulfilling diverse usage needs in healthcare, education, surveillance and 

entertainment applications. 
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1. INTRODUCTION

Human-to-computing system interaction has developed 

substantially during today's digital period. Premodern 

computing systems have penetrated deeply into human daily 

routines by transforming into cognitive and emotional process 

extensions [1]. The goal of machines to understand human 

emotions and intentions led to the creation of powerful 

Human-Computer Interaction (HCI) systems. FER plays an 

essential role in modern scientific advancement because it 

bridges computer vision with AI while using image processing 

and affective computing [2]. 

1.1 Facial expression and human communication 

All human relationships are based on the essential use of 

facial expressions. During face-to-face interactions, facial 

communication carries the dominant messages reaching 55% 

of what people understand, while vocal tones amount to 38% 

and spoken words constitute only 7% [3]. The crucial part that 

facial expressions serve in nonverbal communication becomes 

evident through this information. Humans interpret smiles 

together with frowns and eyebrow movements to understand 

someone's emotions, intentions, and character traits. 

1.2 Overview of Facial Expression Recognition (FER) 

The FER technology uses automated processes to analyse 

human emotions from face-based signals [4]. It involves 

several stages: 

• The first stage detects the face area while pinpointing its

precise location in an image.

• Adjusting facial attributes is combined with extracting

both geometric and appearance-based characteristics.

The process of classification takes extracted features 

through a system that matches them to appropriate emotions. 

The visual representation in Figure 1 demonstrates how 

different facial expressions depict happiness, sadness, anger, 

surprise, and fear. All cultures understand these facial 

movements because they develop from facial muscle actions. 

An automatic FER system consists of three fundamental 

stages, which are presented in Figure 2. This step separates 

facial areas by utilizing either localization methods or tracking 

methods. The system extracts both geometric (e.g. eye 

separation distance) and appearance elements (e.g. skin texture 

alterations) after detecting the facial area [5]. The features pass 
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through machine learning models that perform classification 

of emotion into categories, including joy, sadness, and anger. 

 

 
 

Figure 1. Facial expression 

 

 
 

Figure 2. Stages of a FER system 

 

1.3 Challenges in FER 

 

Multiple problems remain, even though FER technology 

has made significant progress. 

The technique faces difficulties when people adjust their 

head positioning, which creates problems for maintaining 

uniformity [6]. 

Facial visibility becomes impaired when partial 

obstructions like glasses and masks, as well as hands, block 

parts of the face from view. 

The resolution, along with the lighting quality of the used 

images reduces system performance [7]. 

Algorithms experience confusion when people age because 

their facial features undergo alterations. 

Human emotions that manifest as fatigue or deception prove 

challenging to identify through computer systems [8]. 

Platform performance requires models that operate in real-

time while operating under diverse environmental conditions 

because these operational requirements are essential. 

 

1.4 Machine learning and deep learning approaches 

 

Research studies have employed Machine Learning and 

Deep Learning since both techniques help simplify the 

challenges within FER [9]. The systems embrace these 

techniques through which they learn from data while 

identifying patterns to perform automated decisions without 

manual programming. 

The classification of emotions using ML models is effective 

using Support Vector Machines (SVM), k-NN, and Decision 

Trees [10]. Deep Learning, particularly through Convolutional 

Neural Networks (CNNs), has transformed this field because 

it allows mechanisms to automatically extract hierarchical 

features from original images. 

The equivalent cognitive architecture of human vision 

enables CNNs to learn spatial relations, which leads to 

superior FER accuracy. Deep Belief Networks (DBN) together 

with Recurrent Neural Networks (RNN) and Deep 

Autoencoders enable the system to process time-dependent 

and sequential as well as dimensional aspects present in facial 

expression data [11]. 

The innovative FER technology links emotional expression 

recognition between humans and artificial intelligence 

systems. Through a combination of image processing with 

machine learning, along with deep learning, FER systems 

increase their accuracy in facial interpretation [12]. The 

intended contribution of this research is to develop a new 

efficient model that solves previous problems while allowing 

broader FER usage in practical applications. 

 

 

2. RELATED WORK 
 

The recognition of facial expressions by FER serves as a 

vital feature in multiple application domains which include 

intelligent tutoring systems and HCI and virtual reality and 

healthcare and affective computing [13]. FER accomplishes 

emotion detection and classification by analyzing facial 

characteristics present in image or video data [14]. Research 

in emotion-aware systems has grown rapidly due to increasing 

demand because of work done in image processing and facial 

feature recognition and dimension reduction and feature 

selection and classification methods. 

 

2.1 Pre-processing techniques in FER 

 

The fundamental stage of FER processing involves 

removing background noise as well as equalizing lighting 

levels and image upgrading. Multiple approaches exist to deal 

with lighting improvements while improving edge detection 

methods which leads to better recognition abilities [15]. A 

significant reflection-based method extracts the reflectance 

picture directly from individual brightness files independently 

of three-dimensional representation ensuring high 

performance with diverse illumination settings. 

Researchers have adopted image normalization techniques 
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that integrate three components, that include histogram 

equalization and discrete cosine transformation and enhanced 

correlation coefficient [16]. The new techniques enhance 

recognition stability when processing authentic datasets. The 

combination of cropping and resizing processes with 

brightness changes helps increase recognition performance 

although it reduces computational processing needs. When we 

reduce image sizes to the 34×28 pixel range, researchers have 

proven that vital facial characteristics remain visible while the 

data becomes simpler to handle [17]. 

Edge detection tools represent one of the primary operations 

in pre-processing applications. Facial contour detection 

depends on multiple standard operators consisting of Sobel 

and Prewitt alongside Roberts and Laplacian of Gaussian 

operators [18]. Feature points become more precise in edge 

detection using Adaptive Canny algorithms when combined 

with Active Appearance Models which work effectively under 

noisy conditions. Decisions involving pattern recognition 

from direction and filtering lead to stronger feature extraction 

while removing background interferences [19]. 

 

2.2 Feature extraction and dimensionality reduction 

 

The vital second process of FER extracts fundamental 

visual indicators by identifying various features like eye 

movements alongside lip curvatures and eyebrow positions. 

Multiple algorithms use Local Binary Patterns (LBP) to 

generate textural encodings that maintain their results despite 

gray-scale transformation monotonicity [20]. Modern research 

in the field has introduced the variants Compound LBP 

(CLBP), Local Directional Patterns (LDP), and LDP with 

variance (LDPv), which achieve effective extraction of spatial 

along with textural expression information. 

The Scale-Invariant Feature Transform (SIFT) descriptors 

showcase exceptional performance when dealing with 

transformations in scale along with rotations. Researchers 

have integrated CNNs with these features successfully to 

achieve better results with scarce training samples [21]. 

Research finds that Haar-like features along with Gabor filters 

assist in drawing spatial frequency and orientation information 

from the face to improve performance under changing lighting 

conditions. 

GSNMF alongside SLFDA represents sparse methodology 

to decrease dimensions without compromising discriminatory 

features. The projection methods deliver effective space 

reduction which preserves class-specific characteristics so 

recognition accuracy improves significantly in high 

dimensional problems [22].  

 

2.3 Feature selection methods 

 

The use of feature selection in FER systems is necessary 

since it decreases computational load and enhances classifier 

results through the removal of useless or unnecessary 

attributes. Various evolutionary and bio-inspired algorithms 

like Genetic Algorithms (GA), together with Particle Swarm 

Optimization (PSO), Bat Algorithm (BA) and Whale 

Optimization Algorithm (WOA) have become widely used in 

research practice [23]. 

The algorithms work in association with component 

simplification approaches, including Discrete Cosine 

Transform (DCT) and Principal Component Analysis (PCA) 

to generate combined solutions [24]. Combined 

implementations of GA-PCA with DCT-PCA achieve optimal 

results for maintaining both feature compactness and 

recognition fidelity. BBAE and cat swarm optimization 

function as improved Binary bat algorithms through which 

both global convergence and classification accuracy can be 

achieved. 

The current strategies incorporate correlation-based and 

stochastic optimization models to assess both the correlation 

between features and their discrimination power in different 

classes [25]. The combination of these approaches produces 

more accurate FER system generalizations when dealing with 

high-dimensional along with noisy data. 

 

2.4 Classification techniques in FER 

 

The classification step of FER pipelines assigns features 

extracted during the previous operations to defined emotion 

categories. Most classification processes in FER systems 

utilize SVM along with k-NN and ensemble models [26-28]. 

High-dimensional spaces benefit from SVMs because they 

optimize class margins effectively. Through the integration of 

geometric or appearance-based features with SVMs the system 

achieves excellent results for identifying faint facial 

expressions. 

The latest methods in this field utilize DL models through 

CNNs combined with LSTM networks and RNNs. These types 

of models demonstrate capability to learn both temporal 

relationships and sophisticated hierarchical patterns contained 

in facial information [29-31]. Autoencoder stacks and LSTM-

RNN network designs deliver better continuous emotion 

detection along with greater resistance to noise because of 

their improved performance measures. 

Stability in various datasets becomes more achievable 

through the combination of CNN learning approaches with 

logistic regression or deep autoencoding. GANs help create 

simulated prototypical expressions to add to data availability 

and minimize intra-class variation issues [32]. The system's 

performance is improved by manifold regularization methods 

and dictionary learning techniques because they both 

minimize intra-class diversity and boost class differentiation 

levels. 

The classification of facial regions represents another 

approach which divides images into smaller square or 

triangular sections to capture unique domain features [29]. A 

focused learning approach occurs due to localized 

representation methods which minimize data dimensions 

while producing better performance across different facial 

types and population groups. 

 

2.5 Research gap 

 

Despite significant advancements, FER still faces several 

challenges. The current techniques experience difficulties 

while handling mixed conditions between partial obstructions 

and differences in lighting and between distinct subjects. The 

combination of inefficient feature selection with sparse 

differential representation leads to incorrect classifications 

when dealing with data of poor or restricted quality. Real-time 

systems suffer from the drawback of having slow 

computational procedures. 

Peterbal approaches today do not implement strong deep 

learning models or multi-channel inputs that include speech or 

physiological signals, thus minimizing their flexibility scope. 

The accuracy rate of emotion identification is hindered due to 

ineffective edge detection and optimization methods. One 
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promising approach to addressing these restrictions is to 

combine recent advances in deep neural networks with 

optimization methods utilized for feature selection. 

The literature review tracks the FER system evolution from 

different computational stages. Image pre-processing 

functions provide consistent quality, followed by expression 

feature capture, then data reduction occurs through 

dimensionality methods before classification outcomes 

emotional interpretations. The accuracy of various models 

appears promising but fixing problems with data variability, 

along with noise and complexity issues, stands as the most 

important task. Even though the problem of CNN-based FER 

has been extensively studied, the current methodologies have 

several limitations. Numerous handcrafted deep hybrid 

models are designed based on simple concatenation, and do 

not face the issue of representational discrepancy between 

modalities. The current attention models usually do not use 

FER-specific calibration of micro-expression regions. 

Moreover, most of the approaches to optimizing rely on a plain 

SGD or Adam without hyperparameter exploration on the 

global level. Lastly, many past studies exhibit good intra-

dataset accuracy with poor cross-dataset generalisation. The 

method proposed overcomes such limitations by bringing in; 

FER-specific attention-residual modeling, theoretically-

grounded fusion, and combining optimization and cross-

dataset validation. 
 

 

3. OBJECTIVE AND MOTIVATION OF THE 

RESEARCH 
 

The goal of this study involves developing an advanced 

FER system through Deep Convolutional Neural Networks 

(D-CNN) combined with information from the AffectNet 

dataset. The research objective focuses on building automatic 

facial emotion classification for happy, sad, surprise, fear, 

anger, disgust, contempt, and neutral expressions 

simultaneously with valence and arousal dimensional 

emotional analysis. The objective incorporates sophisticated 

imaging methods with deep learning and feature development 

to develop a broad-scaled FER system functional for various 

authentic scenario applications. This research investigates 

affective computing development in HCI because machines 

should understand and respond to emotional signs shown by 

humans.  

The FER-2013 dataset along with other traditional datasets, 

features resolution constraints and imbalanced classes as well 

as insufficient diversity in test data. AffectNet represents an 

outstanding source to build generalized and high-performance 

FER systems because it combines the characteristics of 

extensive dataset size and extensive emotional facial image 

variation. The dual capability to assign emotion categories and 

display continuous emotional intensity values makes learning 

more powerful because it reflects emotional states from 

multiple dimensions. A dependable FER solution becomes 

essential because of mounting applications demands for 

systems with emotion-aware capabilities which include mental 

health monitoring alongside intelligent tutoring systems, 

security features, and gaming platforms. The research fills the 

divide between traditional hand-engineered features and 

automated deep learning through an integrated framework, 

which brings better precision while making the system more 

understandable, thus aiding emotionally intelligent technology 

progress. 

 

4. DATASET USED IN RESEARCH 

 

The AffectNet database serves as the research foundation 

because it stands as a major dataset suitable for emotion 

recognition studies. AffectNet was developed by Ali 

Mollahosseini et al. and comprises over 1 million facial 

images obtained through internet searches with multi-lingual 

emotion-related keywords. AffectNet serves as an optimal 

database for FER model assessment and training through its 

extensive collection of images featuring numerous lighting 

conditions and background types and multiple head 

orientations across various ethnicities across both uncropped 

and obscured faces. 

Every image in AffectNet contains two types of labels: 

categorical emotional categories along with dimensional 

values. The categorical annotations consist of eight main 

emotion classifications which include happy, sad, angry, 

fearful, surprised, disgusted, contempt and neutral. When 

analysing face images, manual annotations accounted for 

450,000 images to measure their valence range from -1 to +1 

while quantifying arousal levels from -1 to +1. Researchers 

can perform holistic psychological investigations of emotional 

expression due to two distinct labelling systems built into this 

dataset. 

The AffectNet platform provides boxes that contain facial 

coordinates together with landmark points, which allows 

automated face detection and coordinate alignment in 

preprocessing operations. Multiple high-quality annotations 

along with the extensive dataset size render AffectNet a more 

effective tool than both FER-2013 and CK+. This research 

applies normalization and histogram equalization and custom 

features extraction techniques to pre-process the inputted 

dataset prior to D-CNN application. The model achieves 

enhanced generalization capability through its exposure to the 

diverse real-world characteristics that exist in the AffectNet 

database. AffectNet enables the study to achieve robust 

performance along with practical application for emotion-

aware systems running in real-life conditions, such as 

healthcare security functions and educational environments. 

 

 

5. PROPOSED WORK AND NOVEL ARCHITECTURE 

 

An FER system has been proposed which incorporates D-

CNN technology that merges both crafted and learned 

features. A system architecture exists to detect the emotions of 

humans through facial images obtained from the AffectNet 

dataset. The methodology includes four essential steps which 

start with preprocessing followed by combined handcrafted 

and deep feature extraction after that comes D-CNN training 

before emotional category classification can take place. The 

model requires every phase for successful enhancement in 

detecting facial emotions precisely in actual environments. 

 

5.1 Methodological novelty of the proposed framework 

 

The suggested FER model includes a number of 

methodological novelties, which cannot be reduced to simple 

feature extraction and deep learning hybrid approach (Figure 

3). To begin with, the usability of a task-specific Attention-

Enhanced residual block (AERB) that is attuned to subtle 

micro-expressions on emotion-relevant sub-regions of the 

face, like eye corners, lip curvature, and nasolabial folds, is 

presented. In contrast to traditional residual and squeeze-and-
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excitation units, the residual learning, channel-wise excitation, 

and spatially aware global average-pooling concept is jointly 

taught in a single hinge computational unit and optimized to 

operate best with FER under changes in pose, undergoing 

occlusion and the imbalance of illumination.  

 

 
 

Figure 3. Flow diagram of the proposed approach 

 

Second, we suggest a shared space of merging the 

handcrafted and deep features with a norm-controlled hybrid 

space. Rather than the naïve concatenation, both streams are 

L2-normalized in order to lessen the scale discrepancy, 

dominant bias, and inter-feature redundancy. This formulation 

produces a semi-orthogonal representational space to maintain 

complementary information and enhance the discriminative 

separation amongst classes of emotions.  

Third, a two-step PSO-Adam optimization method, 

whereby Particle Swarm Optimization is conducted, and initial 

global hyperparameter optimization, and then Adam carries 

out local gradient optimization is introduced. This mixed 

approach is more to do with convergence stability and 

robustness in training on large imbalanced emotion datasets, 

e.g., AffectNet. Lastly, focal loss, labeling smoothing and 

cross-entropy are cohesively trained upon the pipeline of the 

training type to combat the problem of sample imbalance, 

overconfidence, and noisy annotation. All these contributions 

render the proposed approach unlike the current handcrafted-

deep hybrid and attention-based FER systems. 

 

5.2 Preprocessing phase 

 

A D-CNN model requires proper feature extraction and 

classification accuracy during facial image processing in its 

preprocessing phase. The integration of AffectNet database 

images into the model requires normalization steps because 

these images present various real-world complexities 

including lighting effects and facial pose, expression intensity 

and occlusions. 

The detection and cropping of faces represent the initial 

process in image preprocessing steps. AffectNet contains pre-

processed images along with facial bounding boxes but extra 

validation through facial landmark detectors verifies the 

accurate region location of the faces. The cropping technique 

allows experts to separate facial features from backgrounds 

which decreases unwanted background noise and enables the 

model to focus on important traits. 

Geometric normalization follows spatial normalization of 

images to create standard dimensions. The dimensions of all 

facial pictures receive a fixed resize to 128×128 pixels through 

bilinear interpolation. The uniformity of input dimensions is 

necessary for CNN architecture therefore this process ensures 

it. The mathematical formula that represents the geometric 

transformation appears as follows: 

 

[
𝑎′

𝑏′

1

] = [
𝑆𝑎 0 0
0 𝑆𝑏 0
0 0 1

] [
𝑥
𝑦
1
] (1) 

 

The model incorporates two scale factors named Sa and Sb 

for horizontal and vertical adjustment of image size in addition 

to pixel coordinates noted by (a′,b′). 

The next process applies histogram equalization to achieve 

better contrast through pixel intensity distribution throughout 

the grayscale spectrum. The procedure holds essential value 

for photographs that display non-uniform light distribution or 

shadowed areas. The equalization process identifies 𝑃𝑟(𝑟𝑖) 
distribution probabilities for each level then transforms the 

image through a cumulative distribution function. The 

enhanced contrast facilitates better feature extraction in the 

subsequent stages. 

A conversion into grayscale occurs to achieve consistency 

while minimizing computational requirements. The model can 

concentrate better on facial structural and textural elements 

because conversion to gray-scale removes the need for color 

information during FER tasks. 

During training the model applies data augmentation 

methods which include rotation along with flipping and 

scaling and cropping to synthesize various head poses and 

expressions. Vertical expansions in networks through the D-

CNN increase both practical application strength while 

decreasing results-specific problems. 

Since preprocessing transforms variable real-world 

AffectNet images into standardized clean and informative 

inputs the process creates a strong basis for efficient emotion 

recognition methods. 

The MTCNN detector is used to detect faces and 68-point 

landmark extraction with Dlib CNN-based shape predictor is 

then used. The faces are meanwhile cropped to a 128 × 128 

pixel and then upsized by bilinear interpolation. To normalize 

the error in the illumination balance, opting of CLAHE (clip 

limit = 2.0, tile size = 8 × 8) is used to provide histogram 

equalisation. Normalization is the process in which the 

intensity of pixels is converted to the [0, 1] range. Data 

augmentation during training comprises random rotations 

(±15), horizontal flipping (=0.5) and random zooming (±10%) 

and random cropping. All preprocessing settings have been 

reported.  
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5.3 Feature extraction 

 

The proposed FER system requires feature extraction as its 

main component which takes meaningful patterns from 

processed images to achieve emotional state distinction. This 

study uses a combined method that integrates features created 

manually from visual bagging techniques and deep features 

obtained from D-CNN convolutional layers. The combination 

of both schools enables the system to benefit from their 

superior characteristics which boosts the classification 

precision. 

 

5.3.1 Handcrafted feature extraction 

The process begins with extracting dense descriptors 

through Scale-Invariant Feature Transform (SIFT) from image 

regions which have been partitioned spatially. The descriptors 

functioning at the local level detect gradient along with 

textural information that helps recognize delicate muscle 

activities in facial expressions. Visual word modeling 

functions to achieve efficient representation of these 

characteristics. K-means clustering enables the formation of 

visual word descriptors from input data. The conversion of 

each image results in a crafted feature vector through visual 

word occurrence histogram generation. The method generates 

a solid description of local textures while disregarding the 

spatial arrangement of features. 

 

5.3.2 Deep feature extraction via D-CNN 

The D-CNN automatically generates deep features from 

consecutively layered convolutional and pool layers with 

activation blocks. The convolutional layers apply filters that 

detect patterns starting from edge recognition and continuing 

to facial characteristics of higher complexity. Each layer 

produces its output according to the following calculation: 

 

𝑦𝑗
𝑙 = 𝜃(∑ 𝑊𝑖,𝑗

𝑁𝑗
𝑙−1

𝑖=1

∗ 𝑥𝑖
𝑙−1 + 𝑏𝑗

𝑙) (2) 

 

The activation function produces sparse representations 

while simultaneously solving training problems with gradient 

vanishment. Both spatial dimension reduction and focus on 

significant features occur with the application of max-pooling. 

 

𝑦𝑗
𝑙 = 𝜃(𝛽𝑗

𝑙 ⋅ down(𝑦𝑗
𝑙−1) + 𝑏𝑗

𝑙) (3) 

 

where, 𝑥𝑖
𝑙−1  = input from the previous layer, 𝑊𝑖,𝑗  = 

convolution kernel, 𝑏𝑗
𝑙  = bias, 𝜃(𝑥) = max(0, 𝑥)  = ReLU 

activation function, down(⋅)  = pooling function, and 𝛽𝑗
𝑙  = 

scaling parameter. 

To reinforce the discriminatory learning and retain the 

hierarchical feature relevancy, an Attention-Enhanced 

Residual Block (AERB) is integrated into the D-CNN. 

Emotional regions activation is optimized by this structure to 

allow the model to give preference to significant spatial 

variations in the form of the eye corners or lips deformation 

and ignore the noise in the background.  

The residual mapping of AERB is expressed 

mathematically as:  

 

𝐹𝑜𝑢𝑡 = 𝜎(𝑊2 ⋅ 𝛿(𝑊1 ⋅ GAP(𝐹𝑖𝑛))) ⊙ 𝐹𝑖𝑛 + 𝐹𝑖𝑛 (4) 
 

where, 𝐹𝑖𝑛  is the input feature map, GAP(⋅)  denotes Global 

Average Pooling, 𝛿  represents ReLU activation, σ  is the 

sigmoid function that generates channel-wise attention 

weights, ⊙ signifies element-wise multiplication, 𝑊1 and 𝑊2 

are learnable transformation weights. 

This attention-residual fusion system combines a local fine-

grained and global semantic features and features more 

accurate emotion specific localization with the performance of 

different light and pose conditions. 

 

5.3.3 Network architecture specification 

The suggested approach D-CNN architecture has two fully 

connected layers and a final softmax classifier as well as four 

convolutional stages. The architectural parameters that are 

summarized in Table 1 are filter size, stride, padding, output 

dimensionality, and the type of activation. 

 

Table 1. Summary of architectural parameters 

 

Layer 
Kernel 

Size 
Filters Stride Output Dim Activation 

Conv1 3×3 32 1 128×128×32 ReLU 

Conv2 3×3 64 1 64×64×64 
ReLU → 

MaxPool 

AERB1 — 64 — 64×64×64 
ReLU + 

Sigmoid 

Conv3 3×3 128 1 32×32×128 
ReLU → 

MaxPool 

AERB2 — 128 — 32×32×128 
ReLU + 

Sigmoid 

Conv4 3×3 256 1 16×16×256 ReLU 

FC1 — — — 512 ReLU 

FC2 — — — 256 ReLU 

Softmax — — — 8 Softmax 

 

Let X denote the input tensor. Channel descriptor is done in 

global average pooling:  

 

𝑧𝑐 =
1

𝐻𝑊
∑∑𝑋𝑐(𝑖, 𝑗)

𝑊

𝑗=1

𝐻

𝑖=1

 (5) 

 

These features are fed through a slim MLP:  

 

𝑠 = 𝜎(𝑧𝑊2𝛿(𝑊1𝑧)) (6) 

 

The recalibrated output is:  

 

𝑌 = 𝑋 ⊙ 𝑠 + 𝑋 (7) 

 

The model increases channel-wise significance whilst 

maintaining spatial originality.  

 

5.3.4 Feature fusion 

The final set of features intended for classification contains 

elements from both handcrafted and deep features. Each 

component is L2-normalized before fusion: 

 

𝑓fused =
𝑓crafted

∥ 𝑓crafted ∥2
∥

𝑓deep

∥ 𝑓deep ∥2
 (8) 

 

The D-CNN classifier uses this combined representation as 

it contains detailed texture information together with semantic 

meaning when processing images in the AffectNet dataset.
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5.4 Feature fusion and learning 

 

To overcome the semantic and numerical differences 

between handcrafted SIFT-BoVW features and deep 

convolutional features, the authors proposed a theoretically-

founded fusion model as opposed to a naive concatenation 

system. The deep features reflect high-level semantic 

responses, whilst the handcrafted descriptor space has 

histogram-based frequency distributions. Direct concatenation 

consequently brings about scale imbalance and inter-modal 

redundancy.  

In an attempt to alleviate these problems, the two feature 

vectors are individually put under an L2 normalization, which 

converts them into a Euclidean space that is scale invariant:  

 

𝑓𝑖 =
𝑓𝑖

‖𝑓𝑖‖2
 (9) 

 

The normalization guarantees an equal magnitude of 

modalities and avoids the possibility of dominance bias. After 

that, the normalized handcrafted and deep vectors are joined 

to obtain a semi-orthogonal fused representation, which 

produces better inter-class separability since it preserves 

mutually complementary structural and semantic 

representations. The classifier takes this representation as 

input, and thus the classifier can be much more robust to intra-

class variation. In the updated version, comparative ablation 

results validate the assumption that the evaluated L2-regulated 

fusion is superior to uncensored concatenation and weighted 

fusion references.  

 

5.4.1 Learning and classification 

The neural layer accepts the fused feature vector for 

mapping between dimensions through non-linear operations. 

A softmax layer in the final stage carries out classification by 

delivering probabilities for the predefined emotion classes. 

 

𝑃(𝑦 = 𝑐 ∣ x) =
𝑒𝑥𝑝(𝑤𝑐

⊤𝑥)

∑ 𝑒𝑥𝑝𝐾
𝑘=1 (𝑤𝑘

⊤𝑥)
 (10) 

 

The Adam optimizer is used to replace regular SGD in 

model training to fasten the converging process and reduce 

oscillations in the gradient. Adam is an adaptive learning rate 

adjustment of each parameter based on first and second 

moment approximations of the gradients:  

 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡̂ + 𝜖
𝑚𝑡̂ (11) 

 

where, 𝜂  represents the learning rate, 𝑚𝑡̂  and 𝑣𝑡̂  are bias-

corrected gradient mean and gradient variance, and the 

ufficient epsilon eliminates division by zero.  

The AffectNet dataset is also imbalanced (e.g., there are 

more happy faces than disgust faces), so the solution to this 

problem is a Focal Loss, rather than a standard cross-entropy 

loss:  

 

𝐿𝑓𝑜𝑐𝑎𝑙 = −∑(1 − 𝑝𝑖)
𝛾𝑦𝑖𝑙𝑜𝑔⁡(𝑝𝑖)

𝑖

 (12) 

 

where, prediction probability 𝑝𝑖  being the probability for class 

i, 𝑦𝑖  being the actual label, and γ (usually 2) being a regulator 

of how much emphasis is laid on hard to classify samples.  

This loss dynamically down-weights easy examples and 

focuses on the hard ones to enable the model to be able to 

classify examples with balance of emotion. 

SGD operates with a cross-entropy loss function to train the 

model. 

 

ℒ = −∑𝑦𝑖

𝑁

𝑖=1

log(𝑦̂𝑖) (13) 

 

where, 𝑤𝑐 = weight vector for class 𝑐, 𝑥 = ffused, and 𝐾 = no 

of emotion classes, 𝑦𝑖  = true class label, and 𝑦̂𝑖  = predicted 

probability.  

The fused feature vector fused advances through the fully 

connected neural layer that performs non-linear 

transformation to classify predictions along predefined 

emotion classes. 

 

Algorithm 1:  

Emotion Recognition with D-CNN and AffectNet 

Input: Image set X, labels Y 

Output: Predicted emotions 𝑌̂ 

Step 1. The set of images X should undergo normalization 

and equalization for all elements. 

Step 2. The system extracts handcrafted features by 

applying the combination of bagging with visual 

word modelling techniques. 

Step 3. The algorithm derives deep characteristics from 

convolutional layer computation. 

Step 4. Normalize and concatenate features 

Step 5. The D-CNN requires fused features while using 

SGD for training. 

Step 6. Classify images via softmax layer. 

Step 7. Perform evaluation using combined metrics of 

accuracy alongside precision value and recall value 

with F-measure calculation. 

Step 8. Return predicted labels 𝑌̂. 

 

The structured systematic serves as a reliable method to 

identify facial emotions through AffectNet real-world data 

while solving problems related to expression variance and 

lighting and occlusion situations. 

 

5.5 Classification using D-CNN 

 

The classification process of facial expressions relies on 

finalizing D-CNN classification. The architecture of D-CNN 

examines the fused feature vector to identify its emotion 

category among a set of predefined emotional groups found 

within the AffectNet dataset which includes happy, sad and 

angry as well as fear and surprise emotions alongside disgust 

and contempt with neutral expression also present. 

A D-CNN organizes input information into multiple 

computational layers which augment the low-level input 

signals progressively. The entire D-CNN model architecture 

comprises convolutional layers which use ReLU activation 

functions to process data through pooling layers until data 

reaches fully connected (dense) layers, followed by a softmax 

classifier. 

The D-CNN architecture that is presented in the Figure 4 

depicts progressive layers, i.e., input, convolution, ReLU, 

attention-enhanced residual block, pooling, fully connected, 

softmax, and the eventual emotion output.
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Figure 4. Illustration of DCNN architecture 

 

5.5.1 Convolutional layers and feature mapping 

The convolutional layers serve as the main components for 

extracting local characteristics including edges as well as 

corners and textures from an image. ReLU makes the network 

nonlinear through its operation and prevents gradient 

disappearance along the network paths. 

 

5.5.2 Pooling layers 

The max pooling method decreases dimension and 

identifies vital features. 

 

𝑦𝑗
𝑙 = max

(𝑚,𝑛)∈𝑅
𝑥𝑗
𝑙−1(𝑚, 𝑛) (14) 

 

5.5.3 Fully connected layers and softmax 

The final combination of fully connected layers processes a 

1D vector derived from flattening the convolutional/pooling 

output. The final sections execute high-level reasoning 

abilities that link learned features to emotional categories. At 

the end of the structure, there exists a softmax classifier. 

Here 𝑥𝑖
𝑙−1  = input from the previous layer, 𝑅  = pooling 

region.  

The training was also combined with label smoothing 

regularization (LSR) to overcome over-confidence 

predictions. Each target label is modified instead of a hard 

label (1 on a correct label, 0 on a label that is not correct), each 

label is adjusted:  

 

𝑦𝑠𝑚𝑜𝑜𝑡ℎ = (1 − 𝛼)𝑦 +
𝛼

𝐾
 (15) 

 

where, 𝛼 = 0.1 is the smoothing coefficient, and K is the sum 

of emotion classes in total (i.e., 8 in AffectNet).  

The change helps to avoid the problem of the model 

becoming over-confident and enhance generalization in the 

conditions of murky or unclear facial expressions. 

Using this classification pipeline the D-CNN achieves high 

emotional label accuracy and generalization ability by 

processing complex data from AffectNet. 

 

Algorithm 2: Hybrid D-CNN Attention Improved by 

PSO Optimization 

Input: Labels Y, Preprocessed images X.  

Output: The predicted classes of emotions.  

➢ Initialize hyperparameters of PSO particles (learning 

rate, dropout, weight decay). 

➢  For each particle:  

Training D-CNN with AERB attention blocks with 

Adam.  

Calculate Focal Loss and validation accuracy.  

Personal and global best position update.  

➢ Label smoothing should be used to avoid over-

confidence.  

➢ Deep features Fuse L2-norm concatenation to extract 

handcrafted (SIFT-BoVW) features.  

➢ Feed classifier using Softmax layer.  

➢ Compare the findings on basis of accuracy, precision, 

recall, F1-score, MCC, and so on. 

➢ Return: The best hyperparameters and ultimate emotion 

forecasts. 

 

5.6 Model training 

 

The D-CNN requires meaningful pattern recognition from 

fused facial image features which can be achieved through 

training and optimization phase. The main goal of this stage 

involves modifying model parameters which mostly include 

weights and biases between layers to decrease prediction 

errors across training datasets and data points not included 

during training. 

The weights W and biases b of the network start as part of 

the training process. Gradient vanishing and exploding are 

mitigated using well-established initialization strategies, 

including He initialization and Xavier initialization. 

SGD implements an iterative parameter update method 

which uses loss function gradients to train initialized models. 

The categorical cross-entropy represents the main loss 

function used for multi-class classification while serving as: 

 

ℒ = −∑∑𝑦𝑖,𝑐

𝐾

𝑐=1

𝑁

𝑖=1

log(𝑦̂𝑖,𝑐) (16) 

 

Despite using the loss function gradient, the model updates 

its weights. 

 

𝑊(𝑡+1) = 𝑊(𝑡) − 𝜂 ⋅ 𝛻𝑊ℒ (17) 

 

where, 𝑁 = no of training samples, 𝐾 = no of emotion classes, 

𝑦𝑖,𝑐 = binary indicator, 𝑦̂𝑖,𝑐 = predicted probability for class 𝑐, 

𝜂 = learning rate, 𝛻𝑊ℒ = gradient with respect to the weights. 

The overall performance and prevention of overfitting 

become achievable through the implementation of dropout 

alongside early stopping and L2 regularization methods. By 

performing 5-fold cross-validation, the performance gets 

validated using multiple data subsets to ensure model 
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robustness. This training method adjusts the D-CNN model 

toward high accuracy performance while making it resistant to 

real-facial expression variations. 

 

5.7 Loss function selection and usage 

 

The training procedure uses a progressive loss plan aimed 

to resolve class imbalance, label noise and over-confidence. 

Categorical cross-entropy is employed in early stages because 

of its stability during early optimization. With the further 

development of training, Focal Loss is added to focus more on 

minority classes and hard samples, and the parameters γ=2 and 

α=0.25 are added. In the last optimization, the Label 

Smoothing Regularization (LSR) is used which uses 

smoothing coefficient ϵ=0.1 to decrease unnecessary 

confidence and enhance generalization. An ablation study, 

which is part of the revised Results section, shows the 

performance effect of each loss function individually and in 

combination. 

 

5.8 Advanced optimization with hybrid algorithms 

 

To further improve the convergence reliability and lessen 

the manual hyperparameter optimization efforts, a Hybrid 

PSO-Adam Optimization Framework is suggested. Particle 

Swarm Optimization (PSO) explores the space of 

hyperparameters (learning rate, dropout, weight decay) 

globally, and Adam explores the space locally. 

The updated position and velocity of each particle as PSO 

algorithm is: 

 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔 − 𝑥𝑖

𝑡) (18) 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (19) 

 

Here 𝑣𝑖
𝑡  is velocity of particle iii at iteration t, 𝑥𝑖

𝑡 is current 

position (set of hyperparameters), 𝑝𝑖  is personal best position, 

g  is global best, 𝑐1, 𝑐2  is acceleration coefficients, 𝑟1, 𝑟2 ∈
[0, 1]  is random weights, ω  is inertia weight balancing 

exploration and exploitation. 

After identifying the degree of hyperparameters that 

optimizes the mean squared error, Adam optimizes the local 

minima by gradient descent. The hybridization will guarantee 

a quicker convergence, increased classification consistency, 

and less overfitting on the AffectNet dataset. 

The Adam hybrid PSO is driven by the necessity of 

maintaining the global exploration and the local convergence 

stability. PSO is an effective way of sampling the high-

dimensional hyperparameter of a large scale searches to locate 

promising global configurations. Definitely, PSO on its own 

does not have fine-grained gradient sensitivity. Instead, Adam 

provides bias-corrected adaptive gradient updates, however, it 

is initialisation sensitive. With the help of PSO in setting the 

hyperparameters and then Adam-based gradient refinement, 

the hybrid approach exploits the advantages of both 

algorithms. In the Results section revised through the 

incorporation of empirical convergence plots, the level of 

training stability and convergence rate are better than the level 

and rate of convergence when only Adam operates.  

 
 
6. RESULT ANALYSIS 

 

The section evaluates experimentally the proposed model 

for FER which relies on the AffectNet dataset and D-CNN. 

The methodology for model training and testing appears first 

before an evaluation of performance based on standard 

metrics. The evaluation comprises a comparison with current 

models which demonstrates the proposed approach's 

performance capabilities. A cross-validation procedure under 

controlled conditions was used to conduct the experiments for 

reliable and consistent performance assessment. The obtained 

results will serve to identify what the model does well but also 

what it does not in various practical operational conditions. 

In order to provide a just and impartial test, authors add five 

highly employed baseline models depicting standard machine 

learning algorithm Support Vector Machine (SVM), Multiple 

Kernel Learning (MKL), traditional deep learning algorithm 

Convolutional neural network (CNN), and hybrid 

characterization feature-deep architectures such as Deep 

Fusion CNN (DF-CNN), and fully connected neural 

explainers as Feedforward Neural Network (FNN). They are 

baselines of both handcrafted-feature and previous CNN 

variants in the FER literature. In addition, the updated edition 

includes more state-of-the-art deep FER models (e.g., ResNet-

50, VGG-FER, ACN) that would be more rigorous to 

compare. It has also included cross-dataset testing on CK + 

and FER-2013 to illustrate the performance in generalization 

beyond AffectNet. 

These comparison paradigms include classical, kernel-

based, and deep-models, which allows to conduct the balanced 

evaluation of the comparative performance of our proposed 

framework and emphasize the gains, which are made in the 

context of various algorithmic paradigms. 

 

6.1 Performance metrix 

 

FER models need to be evaluated using a variety of metrics 

to study the accuracy, strength, and discrimination at class-

level. In a bid to offer an overall evaluation, the proposed 

model is evaluated based on accuracy, precision, recall, F1-

score, specificity, and MCC, and also AUC-ROC, and other 

multi-class metrics, and which would provide a fair evaluation 

of the baseline methods. 

Accuracy: The overall performance accuracy of a model 

relies upon accuracy measurement. The measure calculates 

true predictions against the total number of all instances in the 

model. 
 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (20) 

 

Precision: It assesses how many correctly predicted positive 

expressions exist among all positive output results. The 

measure indicates how well the model performs at identifying 

particular emotional states. 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (21) 

 

Recall: It determines whether the model finds all existing 

positive instances accurately. 

 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (22) 

 

F1-Score: The F1-score finds its value through precision 

and recall harmonically averaged together to create a weighted 

metric which benefits situations with uneven class 
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distribution. 

 

F1-Score = 2 ×
Precision × Recall

Precision + Recall
 (23) 

 

Specificity: The model proves its ability to accurately detect 

non-positive elements through the specificity metric. 

 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (24) 

 

Matthews Correlation Coefficient (MCC): A balanced 

metric named MCC provides performance assessment for all 

four values within the confusion matrix, which proves helpful 

for handling imbalanced data sets. 

 

MCC =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (25) 

 

ROC Curve and AUC: The Receiver Operating 

Characteristic (ROC) curve plots the True Positive Rate 

(Recall) against the False Positive Rate (FPR), where:  

 

FPR =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (26) 

 

AUC represents the mathematical value of model 

probability to categorize positive instances above negative 

instances randomly selected from a sample. 

Here TP = True Positives, TN = True Negatives, FP = False 

Positives, FN = False Negatives. 

Cohen Kappa (κ): Agreement between forecasted and actual 

classes, not due to chance. 

 

𝜅 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

 (27) 

 

where, 𝑝𝑜  is an observed agreement and 𝑝𝑒  is expected 

agreement by random chance. 

Balanced Accuracy (BA): Tunes sensitivity and specificity 

in the face of class inequity. 

 

𝐵𝐴 =
1

2
(𝑇𝑃𝑅 + 𝑇𝑁𝑅) (28) 

 

Geometric Mean (G-Mean): This is to make sure that the 

false positives and false negatives are minimized. 

 

𝐺 = √𝑇𝑃𝑅 × 𝑇𝑁𝑅 (29) 

 

FPR and FNR Analysis: The trends in misclassifications 

between the emotions are further explained by the False 

Positive Rate (FP / (FP + TN)) and False Negative Rate (FN / 

(FN + TP)) values. 

Table 2, along with Figure 5, displays how various FER 

methods perform in terms of accuracy measurement through 

five repeated trials. Traditional methods like SVM and FNN 

show relatively lower accuracy, with averages around 78–

80%. The accuracy performance of MKL and CNN and DF-

CNN improves until it reaches 84.55% in DF-CNN. The 

proposed D-CNN model proved to be superior to all present 

techniques by delivering the highest accuracy score, which 

ranged between 93.79% and 94.61% across each test run. The 

proposed method demonstrates strong practical application 

because it uses deep convolutional architectures to 

successfully learn features and make classifications. This 

enriched feature representation, supported by effective 

normalization and a robust D-CNN framework, enhances 

discriminative power and stability across iterations, leading to 

consistently higher accuracy. The model's persistent 

leadership proves its capability as an ideal solution for instant 

emotion detection needing precise accuracy.  

 

Table 2. Comparison of accuracy of existing approach with 

suggested approach 

 

Iteration SVM MKL CNN 
DF-

CNN 
FNN 

Proposed  

(D-CNN) 

1 78.25 80.65 82.67 83.49 79.81 93.79 

2 79.41 81.24 83.21 84.1 80.22 94.61 

3 77.88 80.02 82.04 83.02 78.93 93.88 

4 80.1 82.12 83.88 84.55 81.1 94.41 

5 78.76 81.43 82.79 83.97 79.64 93.99 

 

 
 

Figure 5. Representation of compared accuracy 

 

Table 3. Comparison of precision of existing approach with 

suggested approach 

 

Iteration SVM MKL CNN 
DF-

CNN 
FNN 

Proposed 

(D-CNN) 

1 72.11 75.32 76.89 78.02 70.44 89 

2 73.9 75.87 77.63 78.88 71.76 89.47 

3 71.56 74.55 76.15 77.64 69.53 88.55 

4 74.68 76.9 78.41 79.21 72.34 90.21 

5 72.38 75.64 77.2 78.35 70.67 89.13 

 

Table 3 with Figure 6 displays how different FER models 

performed regarding precision throughout their five test runs. 

Precision levels of FNN stay consistently low among 

traditional models while SVM and MKL, together with CNN 

demonstrate a stable yet moderate performance. DF-CNN 

achieves higher precision levels which range between 77.64 

and 79.21 percent showing enhanced discrimination ability 

toward features. The proposed D-CNN model produces 

superior performance to all other models by achieving 

precision rates from 88.55% to 90.21% which proves its high 

efficiency in identifying genuine positive expressions. The 
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proposed model achieves improved precision due to its 

enriched feature representation generated through visual 

bagging, spatial mapping, and fusion of handcrafted and deep 

features. These complementary features reduce ambiguity 

between similar expressions, enabling the D-CNN to make 

more accurate positive predictions and consistently minimize 

false positives across iterations. 

 

 
 

Figure 6. Representation of compared precision 

 

Table 4. Comparison of recall of existing approach with 

suggested approach 

 

Iteration SVM MKL CNN DF-CNN FNN 
Proposed 

(D-CNN) 

1 74.33 77.18 79.4 80.66 72.75 92.41 

2 75.62 78.34 80.52 81.42 74.1 93.28 

3 73.04 76.03 78.2 80.1 71.64 92.54 

4 76.89 78.96 81.01 82.14 75.33 94.21 

5 74.21 77.45 79.68 81.23 73.05 92.67 

 

 
 

Figure 7. Representation of compared recall 

 

The recall data for different FER models appears in Table 4 

and Figure 7 during five evaluation runs. Both FNN and SVM 

exhibit insufficient recall capability since they fail to detect 

multiple authentic positive expressions. The recall values from 

DF-CNN models demonstrate consistent improvement that 

reaches 82.14% and MKL and CNN both achieve better 

performances. The improved recall is achieved because the 

proposed model captures a richer and more discriminative 

feature space through visual bagging, spatial mapping, and 

fusion learning. These mechanisms help the D-CNN detect 

subtle emotional patterns, reducing missed true positives. As a 

result, the system consistently identifies a larger proportion of 

actual emotion classes across iterations. Throughout all 

iterations the proposed D-CNN model demonstrates the best 

recall results starting from 92.41% which consistently 

maintained until it reached 94.21%. The model demonstrates 

consistent performance by lowering false negative rates, thus 

providing essential capabilities to applications that need high 

sensitivity in emotion detection. 

 

Table 5. Comparison of F1-score of existing approach with 

suggested approach 

 

Iteration SVM MKL CNN 
DF-

CNN 
FNN 

Proposed 

(D-CNN) 

1 73.2 76.24 78.12 79.34 71.48 90.62 

2 74.75 77.09 79.05 80.08 72.91 91.35 

3 72.29 75.28 77.16 78.82 70.53 90.42 

4 75.77 77.92 79.7 81.01 73.71 92.1 

5 73.28 76.53 78.35 79.61 71.79 90.9 

 

 
 

Figure 8. Representation of compared F1-score 

 

Table 5 alongside Figure 8 demonstrates the F1-score 

evaluation metrics, which combine precision and recall 

performance metrics for different FER models during five 

repeated iterations. The proposed model achieves higher F1-

scores because its fusion of handcrafted and deep features 

creates a more balanced representation of emotional cues. This 

reduces both false positives and false negatives, improving 

precision and recall simultaneously. Visual bagging and 

spatial mapping further enhance discriminability, ensuring 

consistently strong performance across all iterations. The F1-

scores obtained by FNN and SVM traditional classifiers 

demonstrate weakened performance because they achieve 

inadequate detection precision and reduced false prediction 

control. MKL, CNN and DF-CNN display medium to high 

performance results while DF-CNN reaches up to 81.01%. 
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The proposed D-CNN model provides the highest F1-scores 

across evaluation runs from 90.42% to 92.10% which 

demonstrates its capacity for precise and balanced detection. 

The proposed method demonstrates exceptional ability in 

preserving classification accuracy throughout different test 

iterations. 

The analysis of Table 6 and Figure 9 shows the specificity 

results for different FER models across five testing trials to 

identify proper negative facial expressions. The proposed 

model attains higher specificity because its fused feature 

representation effectively separates true negative samples 

from ambiguous emotional patterns. Visual bagging and 

spatial mapping enhance structural distinctions, reducing false 

alarms. As a result, the D-CNN accurately identifies non-

target classes, delivering more reliable discrimination and 

consistent performance across iterations. Hence, FNN and 

SVM exhibit inferior specificity values because they identify 

neutral and non-target expressions as positive outcomes more 

frequently. MKL and CNN together with DF-CNN achieve 

fair progress in the study but DF-CNN maintains the highest 

specific rate at 84.10%. The proposed D-CNN model achieves 

superior performance compared to every other model since its 

specificity measures from 92.63% to 94.66%. The model 

displays excellent precision by detecting non-relevant 

expressions with accuracy, ensuring reliable facial expression 

analysis. 

 

Table 6. Comparison of specificity of existing approach with 

suggested approach 

 

Iteration SVM MKL CNN 
DF-

CNN 
FNN 

Proposed 

(D-CNN) 

1 77.56 79.91 81.42 82.36 75.6 93.21 

2 78.64 80.73 82.19 83.2 76.88 94.08 

3 76.8 79.1 80.67 81.92 74.21 92.63 

4 79.32 81.56 82.88 84.1 77.94 94.66 

5 77.21 80.34 81.53 82.87 76.02 93.39 

 

 
 

Figure 9. Representation of compared specificity 

 

The performance evaluation of different FER models is 

presented in Table 7, together with Figure 10, through their 

respective MCC values across five iterations. MCC serves as 

an evaluation criterion to assess binary and multiclass 

classification performance when dealing with class imbalance 

parameters. FNN along with SVM demonstrates weak 

performance in terms of MCC scores indicating their inability 

to establish accurate correlations between predictions and 

actual results. DF-CNN stands out among the models by 

reaching an MCC value of 0.73, while MKL and CNN show 

moderate results. The D-CNN model achieves superior 

performance when compared to others based on MCC scores 

that demonstrate predictive strengths from 0.819 to 0.851. The 

model displays superior performance because it demonstrates 

effective adaptation to multiple expression classification 

situations. 

 

Table 7. Comparison of MCC of existing approach with 

suggested approach 

 

Iteration SVM MKL CNN 
DF-

CNN 
FNN 

Proposed 

(D-CNN) 

1 0.56 0.61 0.67 0.69 0.53 0.819 

2 0.58 0.63 0.68 0.71 0.54 0.84 

3 0.54 0.59 0.65 0.68 0.5 0.83 

4 0.6 0.65 0.7 0.73 0.56 0.851 

5 0.55 0.62 0.67 0.7 0.52 0.83 

 

 
 

Figure 10. Representation of compared MCC 

 

Table 8. Comparison of AUC-ROC of existing approach 

with suggested approach 

 

Iteration SVM MKL CNN 
DF-

CNN 
FNN 

Proposed 

(D-CNN) 

1 84.2 86.55 88.1 89.44 82.35 97.86 

2 85.31 87.33 89.02 90.25 83.4 98.75 

3 83.42 85.92 87.46 88.9 81.68 98.05 

4 86.04 88.11 89.75 90.83 84.1 99.35 

5 84.7 86.98 88.4 89.62 82.91 98.46 

 

The AUC-ROC (Area Under the Receiver Operating 

Characteristic Curve) scores across five iterations provide 

information about model ability to separate emotion classes 

according to Table 8 and Figure 11. The classification abilities 

of FNN and SVM remain at a moderate level, as demonstrated 

by their AUC value range from 82 to 85%, respectively. The 

three models MKL and CNN together with DF-CNN generate 

enhanced performance outcomes whereby DF-CNN delivers 

the highest result at 90.83%. These results indicate improved 

classification of emotional categories. The proposed D-CNN 

model maintains the best AUC-ROC scores which span from 

97.86% to 99.35% indicating its superior discriminative 
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abilities. The model effectively recognizes true positives and 

true negatives because of its superior performance levels. 

 

 
 

Figure 11. Representation of compared AUC-ROC 

 

 
 

Figure 12. Representation of compared Cohen’s Kappa 

 

Table 9. Comparison of Cohen’s Kappa, Balanced Accuracy 

and Geometric Mean of existing approach with suggested 

approach 

 

Approach 
Cohen’s 

Kappa (κ) 

Balanced 

Accuracy (BA) 

Geometric Mean 

(G-Mean) 

SVM 0.62 78.4 77.9 

MKL 0.67 81.2 80.6 

CNN 0.72 83.7 82.9 

DF-CNN 0.76 85.5 84.3 

FNN 0.61 79.3 78.8 

Proposed (D-

CNN) 
0.89 94.8 94.2 

 

Figure 12 and Table 9 juxtapose Kappa (k) as suggested by 

Cohen in different emotion recognition methods. The highest 

κ over 0.89 of the proposed D-CNN models has been found 

and indicates a better agreement and reliability than the 

conventional approaches, such as SVM, MKL, CNN, DF-

CNN, and FNN. 

The comparison of Balanced Accuracy (BA) and Geometric 

Mean (G-Mean) is provided in Table 9 and Figure 13 based on 

different face emotion recognition models. The proposed D-

CNN is characterized by the highest BA of 94.8% and G-Mean 

of 94.2, which proves to be a perfect balance of sensitivity and 

specificity. Conversely, the conventional methods like SVM, 

MKL, CNN, DF-CNN and FNN are scored relatively low with 

DF-CNN scoring better among the existing methods (85.5% 

BA, 84.3% G-Mean). This implies that the suggested D-CNN 

is more stable and robust in terms of its classification over 

class imbalance and varied facial expressions. 

 

 
 

Figure 13. Representation of compared Balanced Accuracy 

and Geometric Mean 

 

6.2 Computational complexity analysis 

 

In order to evaluate the practical viability of the proposed 

FER model, we evaluate both the complexity of the algorithms 

and empirical performance. The computational expense of the 

convolutional backbone is majorly taken over by 

convolutional layers which require: 

 

𝑂(𝐾2 ∙ 𝐶𝑖𝑛 ∙ 𝐶𝑜𝑢𝑡 ∙ 𝐻 ∙ 𝑊) (30) 

 

where, K is the size of the kernel, 𝐶𝑖𝑛, 𝐶𝑜𝑢𝑡 are input/output 

channels and H, W are spatial dimensions. Another O(C) 

global average pooling and channel recalibration overhead is 

also introduced by the AERB module, and is insignificant 

compared to convolutional cost. 

SIFT + BoVW feature extraction is a handcrafted method 

which works with the complexity: 

 

𝑂(𝑁𝑘𝑝 + 𝐷) (31) 

 

where, 𝑁𝑘𝑝 is the key point count distracted and D is the length 

of the descriptors. 

Normalization (L2 concatenation) Feature fusion Feature 

fusion: 

 

𝑂(𝑑ℎ + 𝑑𝑑) (32) 
 

where, 𝑑ℎ  and 𝑑𝑑  refer to handcrafted and deep feature 

dimensions. 

The optimization time of the PSO-Adam hybrid is 

determined by the fact that PSO conducts global search on 

O(P ∙ I) and Adam conducts an update of O(T) times/cycle. 
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In general, the suggested structure has moderate computing 

cost and supports high levels of discriminative capabilities that 

can be applied in the real-world implementation of the FER. 

To measure the actual efficacy of the suggested FER 

system, sometime measurements are tested: 

Training Time (TT) gives the average time taken to pass the 

training data showing the efficiency of optimization. 

Inference Time (IT) time it takes to process a single input 

image, which represents a real-time application. 

Throughput (TH) quantifies processing capacity in a 

system, which is significant with FER applications of high 

volume or high streams. 

The combination of these metrics can be verified to make 

the proposed FER framework not only accurate but 

computationally efficient and scalable. 

 

Table 10. Comparison of Training Time, Inference Time, 

and Throughput of existing approach with suggested 

approach 

 
Approach TT (S) TH (s) IT (ms) 

SVM 42.6 88 11.2 

MKL 39.8 96 10.4 

CNN 31.5 126 7.9 

DF-CNN 28.3 153 6.5 

FNN 45.7 79 12.6 

Proposed D-CNN 22.1 233 4.3 

 

 
 

Figure 14. Representation of compared Training Time and 

Throughput 

 

 
 

Figure 15. Representation of compared Inference Time 

The efficiency of training and throughput (samples 

processed per second) of various approaches to FER is 

compared in the Table 10 and Figure 14. Conventional 

approaches like SVM and FNN take a longer duration to train 

and to perform worse throughput because they are less parallel 

and poor in feature-learning. Deep learning based CNNs are 

more computationally efficient and DF-CNN performance is 

superior to other existing baselines. The D-CNN proposed is 

the best-performing one due to its low Training Time (22.1 s) 

and the highest throughput (233 samples/s), due to its 

optimized architecture and hybrid learning approach. 

The comparison of the inference-time in Figure 15 and 

Table 10 demonstrates that the results provided by the 

proposed D-CNN is the fastest (4.3 ms), and all existing 

models are more expensive. Its optimized architecture can 

detect emotions much faster in addition to being highly 

accurate. 

The presented D-CNN has significant performance 

outperformance to the current methods in both computational 

and recognition measures. Our model has the shortest possible 

Training Time (22.1s), which means that it converges faster 

than SVM, MKL, CNN, DF-CNN, and FNN. The best time of 

inference is recorded in the proposed architecture as well (4.3 

ms), which makes it possible to deploy it to real-time situations 

where quick emotion identification is critical. The throughput 

is notably larger (233 samples/s), which is over two times 

more than the optimum baseline, which proves the effective 

processing large-scale or streaming FER applications. In 

addition to computational improvements, the proposed model 

is always more accurate, more precise, has higher recall, F1-

score, specificity, MCC, as well as AUC-ROC, which proves 

strong and credible emotion classification. Generalization 

over diverse datasets is also enhanced by the addition of 

AERB optimization, optimal fusion and hybrid PSO 

optimization-Adam refinement. The combined benefits in the 

recognition quality and the computation efficiency obviously 

demonstrate that the presented D-CNN is a better and more 

viable FER solution than the current ones. 

 

 

7. CONCLUSION AND FUTURE SCOPE 

 

The research introduced an elaborate FER system through 

D-CNN modeling which used AffectNet database for training 

and evaluation purposes. The method unites state-of-the-art 

preprocessing techniques together with feature crafting 

methods and deep learning approaches for feature extraction 

which connect to an enhancement approach for representing 

facial expression data. The proposed model obtained superior 

results with extensive experimental testing proving it 

outperforms traditional SVM and MKL together with CNN as 

well as DF-CNN and FNN in accuracy and seven additional 

performance metrics including precision, recall and F1-score 

and specificity and MCC and AUC-ROC. The AffectNet 

database provided extensive annotation diversity which helped 

the D-CNN perform consistently in various real-life 

expression conditions. Numerous performance analysis tests 

demonstrate that the model exhibits consistent and reliable 

behavior when identifying emotions in facial expressions. 

Using handcrafted features together with deep features 

provides an effective approach which delivers complete 

information about local details and global semantic structures. 

The proposed model demonstrates effective functionality for 

emotion-aware applications within healthcare and education 
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fields together with security systems and HCI domains. 

Attention-based residual learning, PSO-Adam hybrid 

optimization and sophisticated loss regularization have given 

the proposed D-CNN framework a lot of power in the 

generalization and convergence stability of the model, which 

makes it an advanced solution to facial emotion analysis in the 

real-world scenario. The research would benefit from future 

development when integrating real-time FER through 

optimized lightweight D-CNN models designed for edge 

computing systems. The recognition of emotion in continuous 

interactions can be bolstered through the combination of video 

sequences with recurrent LSTM systems that handle temporal 

developments. By adding speech and physiological signals to 

the model at present the ability to develop comprehensive 

affective computing systems would expand further. Cross-

cultural dataset training of the model would enhance its 

responsiveness to different population groups. A key solution 

to address trust issues in emotion-based systems would be 

through the implementation of explainable AI (XAI) methods 

that would make these systems more transparent. 
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