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The vital part of intelligent Human-Computer Interaction (HCI) is Facial Expression
Recognition (FER), which allows machines to analyze emotional expressions through facial
signals. AffectNet dataset represents one of the largest real-life emotion datasets, which
features more than one million labeled facial images grouped into eight major emotions and
has continuous valence-arousal annotations for each image. The proposed solution uses a
Deep Convolutional Neural Network (D-CNN) as its framework design for performing
emotion detection operations. The dataset quality receives enhancement through
normalization techniques and feature crafting methods, which create a standardizing
framework. The proposed system employs feature generation using integrated visual
bagging and spatial mapping mechanisms before using a fusion learning model, which
combines handcrafted and deep features. The 5-fold cross-validated D-CNN classifier
reaches 87.89% accuracy in recognition and proves better than SVM, MKL, and DF-CNN
models. The model demonstrates robustness according to precision, recall, F-measure, and
ROC performance metrics. This solution enables an affordable and precise FER system
capable of fulfilling diverse usage needs in healthcare, education, surveillance and

entertainment applications.

1. INTRODUCTION

Human-to-computing system interaction has developed
substantially during today's digital period. Premodern
computing systems have penetrated deeply into human daily
routines by transforming into cognitive and emotional process
extensions [1]. The goal of machines to understand human
emotions and intentions led to the creation of powerful
Human-Computer Interaction (HCI) systems. FER plays an
essential role in modern scientific advancement because it
bridges computer vision with Al while using image processing
and affective computing [2].

1.1 Facial expression and human communication

All human relationships are based on the essential use of
facial expressions. During face-to-face interactions, facial
communication carries the dominant messages reaching 55%
of what people understand, while vocal tones amount to 38%
and spoken words constitute only 7% [3]. The crucial part that
facial expressions serve in nonverbal communication becomes
evident through this information. Humans interpret smiles
together with frowns and eyebrow movements to understand
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someone's emotions, intentions, and character traits.
1.2 Overview of Facial Expression Recognition (FER)

The FER technology uses automated processes to analyse
human emotions from face-based signals [4]. It involves
several stages:

e The first stage detects the face area while pinpointing its

precise location in an image.

e Adjusting facial attributes is combined with extracting

both geometric and appearance-based characteristics.

The process of classification takes extracted features
through a system that matches them to appropriate emotions.

The visual representation in Figure 1 demonstrates how
different facial expressions depict happiness, sadness, anger,
surprise, and fear. All cultures understand these facial
movements because they develop from facial muscle actions.

An automatic FER system consists of three fundamental
stages, which are presented in Figure 2. This step separates
facial areas by utilizing either localization methods or tracking
methods. The system extracts both geometric (e.g. eye
separation distance) and appearance elements (e.g. skin texture
alterations) after detecting the facial area [5]. The features pass
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through machine learning models that perform classification
of emotion into categories, including joy, sadness, and anger.

DISGUST ANGER SURPRISE

Figure 1. Facial expression

Face
recognition

Face
expression
recognition

Classificatio
n of emotion

Figure 2. Stages of a FER system
1.3 Challenges in FER

Multiple problems remain, even though FER technology
has made significant progress.

The technique faces difficulties when people adjust their
head positioning, which creates problems for maintaining
uniformity [6].

Facial visibility becomes impaired when partial
obstructions like glasses and masks, as well as hands, block
parts of the face from view.

The resolution, along with the lighting quality of the used
images reduces system performance [7].
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Algorithms experience confusion when people age because
their facial features undergo alterations.

Human emotions that manifest as fatigue or deception prove
challenging to identify through computer systems [8].

Platform performance requires models that operate in real-
time while operating under diverse environmental conditions
because these operational requirements are essential.

1.4 Machine learning and deep learning approaches

Research studies have employed Machine Learning and
Deep Learning since both techniques help simplify the
challenges within FER [9]. The systems embrace these
techniques through which they learn from data while
identifying patterns to perform automated decisions without
manual programming.

The classification of emotions using ML models is effective
using Support Vector Machines (SVM), k-NN, and Decision
Trees [10]. Deep Learning, particularly through Convolutional
Neural Networks (CNNs), has transformed this field because
it allows mechanisms to automatically extract hierarchical
features from original images.

The equivalent cognitive architecture of human vision
enables CNNs to learn spatial relations, which leads to
superior FER accuracy. Deep Belief Networks (DBN) together
with Recurrent Neural Networks (RNN) and Deep
Autoencoders enable the system to process time-dependent
and sequential as well as dimensional aspects present in facial
expression data [11].

The innovative FER technology links emotional expression
recognition between humans and artificial intelligence
systems. Through a combination of image processing with
machine learning, along with deep learning, FER systems
increase their accuracy in facial interpretation [12]. The
intended contribution of this research is to develop a new
efficient model that solves previous problems while allowing
broader FER usage in practical applications.

2. RELATED WORK

The recognition of facial expressions by FER serves as a
vital feature in multiple application domains which include
intelligent tutoring systems and HCI and virtual reality and
healthcare and affective computing [13]. FER accomplishes
emotion detection and classification by analyzing facial
characteristics present in image or video data [14]. Research
in emotion-aware systems has grown rapidly due to increasing
demand because of work done in image processing and facial
feature recognition and dimension reduction and feature
selection and classification methods.

2.1 Pre-processing techniques in FER

The fundamental stage of FER processing involves
removing background noise as well as equalizing lighting
levels and image upgrading. Multiple approaches exist to deal
with lighting improvements while improving edge detection
methods which leads to better recognition abilities [15]. A
significant reflection-based method extracts the reflectance
picture directly from individual brightness files independently
of  three-dimensional  representation  ensuring  high
performance with diverse illumination settings.

Researchers have adopted image normalization techniques



that integrate three components, that include histogram
equalization and discrete cosine transformation and enhanced
correlation coefficient [16]. The new techniques enhance
recognition stability when processing authentic datasets. The
combination of cropping and resizing processes with
brightness changes helps increase recognition performance
although it reduces computational processing needs. When we
reduce image sizes to the 34>28 pixel range, researchers have
proven that vital facial characteristics remain visible while the
data becomes simpler to handle [17].

Edge detection tools represent one of the primary operations
in pre-processing applications. Facial contour detection
depends on multiple standard operators consisting of Sobel
and Prewitt alongside Roberts and Laplacian of Gaussian
operators [18]. Feature points become more precise in edge
detection using Adaptive Canny algorithms when combined
with Active Appearance Models which work effectively under
noisy conditions. Decisions involving pattern recognition
from direction and filtering lead to stronger feature extraction
while removing background interferences [19].

2.2 Feature extraction and dimensionality reduction

The vital second process of FER extracts fundamental
visual indicators by identifying various features like eye
movements alongside lip curvatures and eyebrow positions.
Multiple algorithms use Local Binary Patterns (LBP) to
generate textural encodings that maintain their results despite
gray-scale transformation monotonicity [20]. Modern research
in the field has introduced the variants Compound LBP
(CLBP), Local Directional Patterns (LDP), and LDP with
variance (LDPv), which achieve effective extraction of spatial
along with textural expression information.

The Scale-Invariant Feature Transform (SIFT) descriptors
showcase exceptional performance when dealing with
transformations in scale along with rotations. Researchers
have integrated CNNs with these features successfully to
achieve better results with scarce training samples [21].
Research finds that Haar-like features along with Gabor filters
assist in drawing spatial frequency and orientation information
from the face to improve performance under changing lighting
conditions.

GSNMF alongside SLFDA represents sparse methodology
to decrease dimensions without compromising discriminatory
features. The projection methods deliver effective space
reduction which preserves class-specific characteristics so
recognition accuracy improves significantly in high
dimensional problems [22].

2.3 Feature selection methods

The use of feature selection in FER systems is necessary
since it decreases computational load and enhances classifier
results through the removal of useless or unnecessary
attributes. Various evolutionary and bio-inspired algorithms
like Genetic Algorithms (GA), together with Particle Swarm
Optimization (PSO), Bat Algorithm (BA) and Whale
Optimization Algorithm (WOA) have become widely used in
research practice [23].

The algorithms work in association with component
simplification approaches, including Discrete Cosine
Transform (DCT) and Principal Component Analysis (PCA)
to generate combined solutions [24]. Combined
implementations of GA-PCA with DCT-PCA achieve optimal
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results for maintaining both feature compactness and
recognition fidelity. BBAE and cat swarm optimization
function as improved Binary bat algorithms through which
both global convergence and classification accuracy can be
achieved.

The current strategies incorporate correlation-based and
stochastic optimization models to assess both the correlation
between features and their discrimination power in different
classes [25]. The combination of these approaches produces
more accurate FER system generalizations when dealing with
high-dimensional along with noisy data.

2.4 Classification techniques in FER

The classification step of FER pipelines assigns features
extracted during the previous operations to defined emotion
categories. Most classification processes in FER systems
utilize SVM along with k-NN and ensemble models [26-28].
High-dimensional spaces benefit from SVMs because they
optimize class margins effectively. Through the integration of
geometric or appearance-based features with SVMs the system
achieves excellent results for identifying faint facial
expressions.

The latest methods in this field utilize DL models through
CNNs combined with LSTM networks and RNNs. These types
of models demonstrate capability to learn both temporal
relationships and sophisticated hierarchical patterns contained
in facial information [29-31]. Autoencoder stacks and LSTM-
RNN network designs deliver better continuous emotion
detection along with greater resistance to noise because of
their improved performance measures.

Stability in various datasets becomes more achievable
through the combination of CNN learning approaches with
logistic regression or deep autoencoding. GANs help create
simulated prototypical expressions to add to data availability
and minimize intra-class variation issues [32]. The system's
performance is improved by manifold regularization methods
and dictionary learning techniques because they both
minimize intra-class diversity and boost class differentiation
levels.

The classification of facial regions represents another
approach which divides images into smaller square or
triangular sections to capture unique domain features [29]. A
focused learning approach occurs due to localized
representation methods which minimize data dimensions
while producing better performance across different facial
types and population groups.

2.5 Research gap

Despite significant advancements, FER still faces several
challenges. The current techniques experience difficulties
while handling mixed conditions between partial obstructions
and differences in lighting and between distinct subjects. The
combination of inefficient feature selection with sparse
differential representation leads to incorrect classifications
when dealing with data of poor or restricted quality. Real-time
systems suffer from the drawback of having slow
computational procedures.

Peterbal approaches today do not implement strong deep
learning models or multi-channel inputs that include speech or
physiological signals, thus minimizing their flexibility scope.
The accuracy rate of emotion identification is hindered due to
ineffective edge detection and optimization methods. One



promising approach to addressing these restrictions is to
combine recent advances in deep neural networks with
optimization methods utilized for feature selection.

The literature review tracks the FER system evolution from
different computational stages. Image pre-processing
functions provide consistent quality, followed by expression
feature capture, then data reduction occurs through
dimensionality methods before classification outcomes
emotional interpretations. The accuracy of various models
appears promising but fixing problems with data variability,
along with noise and complexity issues, stands as the most
important task. Even though the problem of CNN-based FER
has been extensively studied, the current methodologies have
several limitations. Numerous handcrafted deep hybrid
models are designed based on simple concatenation, and do
not face the issue of representational discrepancy between
modalities. The current attention models usually do not use
FER-specific calibration of micro-expression regions.
Moreover, most of the approaches to optimizing rely on a plain
SGD or Adam without hyperparameter exploration on the
global level. Lastly, many past studies exhibit good intra-
dataset accuracy with poor cross-dataset generalisation. The
method proposed overcomes such limitations by bringing in;
FER-specific attention-residual modeling, theoretically-
grounded fusion, and combining optimization and cross-
dataset validation.

3. OBJECTIVE AND MOTIVATION OF THE
RESEARCH

The goal of this study involves developing an advanced
FER system through Deep Convolutional Neural Networks
(D-CNN) combined with information from the AffectNet
dataset. The research objective focuses on building automatic
facial emotion classification for happy, sad, surprise, fear,
anger, disgust, contempt, and neutral expressions
simultaneously with valence and arousal dimensional
emotional analysis. The objective incorporates sophisticated
imaging methods with deep learning and feature development
to develop a broad-scaled FER system functional for various
authentic scenario applications. This research investigates
affective computing development in HCI because machines
should understand and respond to emotional signs shown by
humans.

The FER-2013 dataset along with other traditional datasets,
features resolution constraints and imbalanced classes as well
as insufficient diversity in test data. AffectNet represents an
outstanding source to build generalized and high-performance
FER systems because it combines the characteristics of
extensive dataset size and extensive emotional facial image
variation. The dual capability to assign emotion categories and
display continuous emotional intensity values makes learning
more powerful because it reflects emotional states from
multiple dimensions. A dependable FER solution becomes
essential because of mounting applications demands for
systems with emation-aware capabilities which include mental
health monitoring alongside intelligent tutoring systems,
security features, and gaming platforms. The research fills the
divide between traditional hand-engineered features and
automated deep learning through an integrated framework,
which brings better precision while making the system more
understandable, thus aiding emotionally intelligent technology
progress.
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4. DATASET USED IN RESEARCH

The AffectNet database serves as the research foundation
because it stands as a major dataset suitable for emotion
recognition studies. AffectNet was developed by Ali
Mollahosseini et al. and comprises over 1 million facial
images obtained through internet searches with multi-lingual
emotion-related keywords. AffectNet serves as an optimal
database for FER model assessment and training through its
extensive collection of images featuring numerous lighting
conditions and background types and multiple head
orientations across various ethnicities across both uncropped
and obscured faces.

Every image in AffectNet contains two types of labels:
categorical emotional categories along with dimensional
values. The categorical annotations consist of eight main
emotion classifications which include happy, sad, angry,
fearful, surprised, disgusted, contempt and neutral. When
analysing face images, manual annotations accounted for
450,000 images to measure their valence range from -1 to +1
while quantifying arousal levels from -1 to +1. Researchers
can perform holistic psychological investigations of emotional
expression due to two distinct labelling systems built into this
dataset.

The AffectNet platform provides boxes that contain facial
coordinates together with landmark points, which allows
automated face detection and coordinate alignment in
preprocessing operations. Multiple high-quality annotations
along with the extensive dataset size render AffectNet a more
effective tool than both FER-2013 and CK+. This research
applies normalization and histogram equalization and custom
features extraction techniques to pre-process the inputted
dataset prior to D-CNN application. The model achieves
enhanced generalization capability through its exposure to the
diverse real-world characteristics that exist in the AffectNet
database. AffectNet enables the study to achieve robust
performance along with practical application for emotion-
aware systems running in real-life conditions, such as
healthcare security functions and educational environments.

5. PROPOSED WORK AND NOVEL ARCHITECTURE

An FER system has been proposed which incorporates D-
CNN technology that merges both crafted and learned
features. A system architecture exists to detect the emotions of
humans through facial images obtained from the AffectNet
dataset. The methodology includes four essential steps which
start with preprocessing followed by combined handcrafted
and deep feature extraction after that comes D-CNN training
before emotional category classification can take place. The
model requires every phase for successful enhancement in
detecting facial emotions precisely in actual environments.

5.1 Methodological novelty of the proposed framework

The suggested FER model includes a number of
methodological novelties, which cannot be reduced to simple
feature extraction and deep learning hybrid approach (Figure
3). To begin with, the usability of a task-specific Attention-
Enhanced residual block (AERB) that is attuned to subtle
micro-expressions on emotion-relevant sub-regions of the
face, like eye corners, lip curvature, and nasolabial folds, is
presented. In contrast to traditional residual and squeeze-and-



excitation units, the residual learning, channel-wise excitation,
and spatially aware global average-pooling concept is jointly
taught in a single hinge computational unit and optimized to
operate best with FER under changes in pose, undergoing
occlusion and the imbalance of illumination.

Input Facial Image

I

Preprocessing Block

'

Feature Extraction

h 4
Crafted Feature

Deep Feature Vector

Feature Fusion (L2-Norm +
Concatenation)

Emotion Class
Probabilities

Y

Predicted Emotion

End

Figure 3. Flow diagram of the proposed approach

Second, we suggest a shared space of merging the
handcrafted and deep features with a norm-controlled hybrid
space. Rather than the nawe concatenation, both streams are
L2-normalized in order to lessen the scale discrepancy,
dominant bias, and inter-feature redundancy. This formulation
produces a semi-orthogonal representational space to maintain
complementary information and enhance the discriminative
separation amongst classes of emotions.

Third, a two-step PSO-Adam optimization method,
whereby Particle Swarm Optimization is conducted, and initial
global hyperparameter optimization, and then Adam carries
out local gradient optimization is introduced. This mixed
approach is more to do with convergence stability and
robustness in training on large imbalanced emotion datasets,
e.g., AffectNet. Lastly, focal loss, labeling smoothing and
cross-entropy are cohesively trained upon the pipeline of the
training type to combat the problem of sample imbalance,
overconfidence, and noisy annotation. All these contributions
render the proposed approach unlike the current handcrafted-
deep hybrid and attention-based FER systems.

5.2 Preprocessing phase

A D-CNN model requires proper feature extraction and
classification accuracy during facial image processing in its
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preprocessing phase. The integration of AffectNet database
images into the model requires normalization steps because
these images present various real-world complexities
including lighting effects and facial pose, expression intensity
and occlusions.

The detection and cropping of faces represent the initial
process in image preprocessing steps. AffectNet contains pre-
processed images along with facial bounding boxes but extra
validation through facial landmark detectors verifies the
accurate region location of the faces. The cropping technique
allows experts to separate facial features from backgrounds
which decreases unwanted background noise and enables the
model to focus on important traits.

Geometric normalization follows spatial normalization of
images to create standard dimensions. The dimensions of all
facial pictures receive a fixed resize to 128128 pixels through
bilinear interpolation. The uniformity of input dimensions is
necessary for CNN architecture therefore this process ensures
it. The mathematical formula that represents the geometric
transformation appears as follows:

a' S. 0 Opx
[b’l = [0 Sp Ol [}/]
1 0o o 1it1

The model incorporates two scale factors named Sa and Sb
for horizontal and vertical adjustment of image size in addition
to pixel coordinates noted by (a’,b").

The next process applies histogram equalization to achieve
better contrast through pixel intensity distribution throughout
the grayscale spectrum. The procedure holds essential value
for photographs that display non-uniform light distribution or
shadowed areas. The equalization process identifies B.(r;)
distribution probabilities for each level then transforms the
image through a cumulative distribution function. The
enhanced contrast facilitates better feature extraction in the
subsequent stages.

A conversion into grayscale occurs to achieve consistency
while minimizing computational requirements. The model can
concentrate better on facial structural and textural elements
because conversion to gray-scale removes the need for color
information during FER tasks.

During training the model applies data augmentation
methods which include rotation along with flipping and
scaling and cropping to synthesize various head poses and
expressions. Vertical expansions in networks through the D-
CNN increase both practical application strength while
decreasing results-specific problems.

Since preprocessing transforms variable real-world
AffectNet images into standardized clean and informative
inputs the process creates a strong basis for efficient emotion
recognition methods.

The MTCNN detector is used to detect faces and 68-point
landmark extraction with Dlib CNN-based shape predictor is
then used. The faces are meanwhile cropped to a 128 x 128
pixel and then upsized by bilinear interpolation. To normalize
the error in the illumination balance, opting of CLAHE (clip
limit = 2.0, tile size = 8 %< 8) is used to provide histogram
equalisation. Normalization is the process in which the
intensity of pixels is converted to the [0, 1] range. Data
augmentation during training comprises random rotations
(#15), horizontal flipping (=0.5) and random zooming (+10%)
and random cropping. All preprocessing settings have been
reported.

(1)



5.3 Feature extraction

The proposed FER system requires feature extraction as its
main component which takes meaningful patterns from
processed images to achieve emotional state distinction. This
study uses a combined method that integrates features created
manually from visual bagging techniques and deep features
obtained from D-CNN convolutional layers. The combination
of both schools enables the system to benefit from their
superior characteristics which boosts the classification
precision.

5.3.1 Handcrafted feature extraction

The process begins with extracting dense descriptors
through Scale-Invariant Feature Transform (SIFT) from image
regions which have been partitioned spatially. The descriptors
functioning at the local level detect gradient along with
textural information that helps recognize delicate muscle
activities in facial expressions. Visual word modeling
functions to achieve efficient representation of these
characteristics. K-means clustering enables the formation of
visual word descriptors from input data. The conversion of
each image results in a crafted feature vector through visual
word occurrence histogram generation. The method generates
a solid description of local textures while disregarding the
spatial arrangement of features.

5.3.2 Deep feature extraction via D-CNN

The D-CNN automatically generates deep features from
consecutively layered convolutional and pool layers with
activation blocks. The convolutional layers apply filters that
detect patterns starting from edge recognition and continuing
to facial characteristics of higher complexity. Each layer
produces its output according to the following calculation:

*x{7" + b} (2)

The activation function produces sparse representations
while simultaneously solving training problems with gradient
vanishment. Both spatial dimension reduction and focus on
significant features occur with the application of max-pooling.

y; = 0(B; - down(y;™") + bj)

-1

A3)

where, x; input from the previous layer, W;;
convolution kernel, bj’ = bias, 8(x) = max(0,x) = ReLU
activation function, down(-) = pooling function, and g; =
scaling parameter.

To reinforce the discriminatory learning and retain the
hierarchical feature relevancy, an Attention-Enhanced
Residual Block (AERB) is integrated into the D-CNN.
Emotional regions activation is optimized by this structure to
allow the model to give preference to significant spatial
variations in the form of the eye corners or lips deformation
and ignore the noise in the background.

The residual mapping of AERB is expressed
mathematically as:
Foue = o(W5 - §(Wy - GAP(Fip.))) O Fi + Fipy 4)
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where, F;,, is the input feature map, GAP(-) denotes Global
Average Pooling, § represents ReLU activation, o is the
sigmoid function that generates channel-wise attention
weights, © signifies element-wise multiplication, W; and W,
are learnable transformation weights.

This attention-residual fusion system combines a local fine-
grained and global semantic features and features more
accurate emotion specific localization with the performance of
different light and pose conditions.

5.3.3 Network architecture specification

The suggested approach D-CNN architecture has two fully
connected layers and a final softmax classifier as well as four
convolutional stages. The architectural parameters that are
summarized in Table 1 are filter size, stride, padding, output
dimensionality, and the type of activation.

Table 1. Summary of architectural parameters

Kernel

Layer Size Filters Stride Output Dim Activation
Convl 33 32 1 128x128>32 RelLU
Comv2 38 64 1 eheses ReLU=
MaxPool
RelLU +
AERB1 — 64 — 64>64>64 Sigmoid
ReLU —
Conv3 33 128 1 32>32x128 MaxPool
AERB2 — 128 —  32@228 RetU*
Sigmoid
Convd 333 256 1 16x16>256 RelLU
FC1 — — — 512 RelLU
FC2 — — — 256 ReLU
Softmax  — — — 8 Softmax

Let X denote the input tensor. Channel descriptor is done in
global average pooling:

1 H W
Ze =Y > Xelir)) )
i=1 j=1
These features are fed through a slim MLP:
s = 0(zW,6(W,2)) (6)
The recalibrated output is:
Y=X0Os+X (7

The model increases channel-wise significance whilst
maintaining spatial originality.

5.3.4 Feature fusion

The final set of features intended for classification contains
elements from both handcrafted and deep features. Each
component is L2-normalized before fusion:

fdeep
I fdeep "2

fcrqﬁed

f}med = I (8)

I fcraﬁed I 2

The D-CNN classifier uses this combined representation as
it contains detailed texture information together with semantic
meaning when processing images in the AffectNet dataset.



5.4 Feature fusion and learning

To overcome the semantic and numerical differences
between handcrafted SIFT-BoVW features and deep
convolutional features, the authors proposed a theoretically-
founded fusion model as opposed to a naive concatenation
system. The deep features reflect high-level semantic
responses, whilst the handcrafted descriptor space has
histogram-based frequency distributions. Direct concatenation
consequently brings about scale imbalance and inter-modal
redundancy.

In an attempt to alleviate these problems, the two feature
vectors are individually put under an L2 normalization, which
converts them into a Euclidean space that is scale invariant:

7 fi

A,

©)

The normalization guarantees an equal magnitude of
modalities and avoids the possibility of dominance bias. After
that, the normalized handcrafted and deep vectors are joined
to obtain a semi-orthogonal fused representation, which
produces better inter-class separability since it preserves
mutually  complementary  structural and  semantic
representations. The classifier takes this representation as
input, and thus the classifier can be much more robust to intra-
class variation. In the updated version, comparative ablation
results validate the assumption that the evaluated L2-regulated
fusion is superior to uncensored concatenation and weighted
fusion references.

5.4.1 Learning and classification

The neural layer accepts the fused feature vector for
mapping between dimensions through non-linear operations.
A softmax layer in the final stage carries out classification by
delivering probabilities for the predefined emotion classes.

exp(w] x)

Py=clx) = (10)

K_exp (w/x)

The Adam optimizer is used to replace regular SGD in
model training to fasten the converging process and reduce
oscillations in the gradient. Adam is an adaptive learning rate
adjustment of each parameter based on first and second
moment approximations of the gradients:

—~

Orr1 =0 — my

S 11
Joite (b
where, n represents the learning rate, m; and ¥, are bias-
corrected gradient mean and gradient variance, and the
ufficient epsilon eliminates division by zero.

The AffectNet dataset is also imbalanced (e.g., there are
more happy faces than disgust faces), so the solution to this
problem is a Focal Loss, rather than a standard cross-entropy
loss:

Lyocar = — Z(l —p)"yilog (p:) (12)

where, prediction probability p; being the probability for class
i, y; being the actual label, and y (usually 2) being a regulator
of how much emphasis is laid on hard to classify samples.
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This loss dynamically down-weights easy examples and
focuses on the hard ones to enable the model to be able to
classify examples with balance of emotion.

SGD operates with a cross-entropy loss function to train the
model.

N
L== yilog®) (13)
i=1

where, w, = weight vector for class ¢, x = fy,.q, and K = no
of emotion classes, y; = true class label, and J; = predicted

probability.
The fused feature vector fused advances through the fully
connected neural layer that performs non-linear

transformation to classify predictions along predefined
emotion classes.

Algorithm 1:

Emotion Recognition with D-CNN and AffectNet

Input: Image set X, labels Y

Output: Predicted emotions ¥

Step 1. The set of images X should undergo normalization
and equalization for all elements.

Step 2. The system extracts handcrafted features by
applying the combination of bagging with visual
word modelling techniques.

Step 3. The algorithm derives deep characteristics from
convolutional layer computation.

Step 4. Normalize and concatenate features

Step 5. The D-CNN requires fused features while using
SGD for training.

Step 6. Classify images via softmax layer.

Step 7. Perform evaluation using combined metrics of
accuracy alongside precision value and recall value
with F-measure calculation.

Step 8. Return predicted labels Y.

The structured systematic serves as a reliable method to
identify facial emotions through AffectNet real-world data
while solving problems related to expression variance and
lighting and occlusion situations.

5.5 Classification using D-CNN

The classification process of facial expressions relies on
finalizing D-CNN classification. The architecture of D-CNN
examines the fused feature vector to identify its emotion
category among a set of predefined emotional groups found
within the AffectNet dataset which includes happy, sad and
angry as well as fear and surprise emotions alongside disgust
and contempt with neutral expression also present.

A D-CNN organizes input information into multiple
computational layers which augment the low-level input
signals progressively. The entire D-CNN model architecture
comprises convolutional layers which use ReLU activation
functions to process data through pooling layers until data
reaches fully connected (dense) layers, followed by a softmax
classifier.

The D-CNN architecture that is presented in the Figure 4
depicts progressive layers, i.e., input, convolution, RelLU,
attention-enhanced residual block, pooling, fully connected,
softmax, and the eventual emotion output.
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Figure 4. lllustration of DCNN architecture
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5.5.1 Convolutional layers and feature mapping

The convolutional layers serve as the main components for
extracting local characteristics including edges as well as
corners and textures from an image. ReLU makes the network
nonlinear through its operation and prevents gradient
disappearance along the network paths.

5.5.2 Pooling layers
The max pooling method decreases dimension and
identifies vital features.

I _

yf = maxRx]-l_l(m,n)

(mn)e (14)
5.5.3 Fully connected layers and softmax

The final combination of fully connected layers processes a
1D vector derived from flattening the convolutional/pooling
output. The final sections execute high-level reasoning
abilities that link learned features to emotional categories. At
the end of the structure, there exists a softmax classifier.

Here x!=* = input from the previous layer, R = pooling
region.

The training was also combined with label smoothing
regularization (LSR) to overcome over-confidence
predictions. Each target label is modified instead of a hard
label (1 on a correct label, 0 on a label that is not correct), each
label is adjusted:

a
Ysmooth = (1 — @)y + E (15)

where, @ = 0.1 is the smoothing coefficient, and K is the sum
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of emation classes in total (i.e., 8 in AffectNet).

The change helps to avoid the problem of the model
becoming over-confident and enhance generalization in the
conditions of murky or unclear facial expressions.

Using this classification pipeline the D-CNN achieves high
emotional label accuracy and generalization ability by
processing complex data from AffectNet.

Algorithm 2: Hybrid D-CNN Attention Improved by
PSO Optimization

Input: Labels Y, Preprocessed images X.
Output: The predicted classes of emotions.

» Initialize hyperparameters of PSO particles (learning
rate, dropout, weight decay).

For each particle:
Training D-CNN with AERB attention blocks with
Adam.
Calculate Focal Loss and validation accuracy.
Personal and global best position update.

Label smoothing should be used to avoid over-
confidence.

Deep features Fuse L2-norm concatenation to extract
handcrafted (SIFT-BoVW) features.

Feed classifier using Softmax layer.
Compare the findings on basis of accuracy, precision,
recall, F1-score, MCC, and so on.
» Return: The best hyperparameters and ultimate emotion

forecasts.

>

VV VYV V¥V

5.6 Model training

The D-CNN requires meaningful pattern recognition from
fused facial image features which can be achieved through
training and optimization phase. The main goal of this stage
involves modifying model parameters which mostly include
weights and biases between layers to decrease prediction
errors across training datasets and data points not included
during training.

The weights W and biases b of the network start as part of
the training process. Gradient vanishing and exploding are
mitigated using well-established initialization strategies,
including He initialization and Xavier initialization.

SGD implements an iterative parameter update method
which uses loss function gradients to train initialized models.
The categorical cross-entropy represents the main loss
function used for multi-class classification while serving as:

N K

)

i=1c=

yi,c log(ﬁi,c) (16)
1

Despite using the loss function gradient, the model updates
its weights.

WD) — @ _ n-Vyl (17)
where, N = no of training samples, K = no of emotion classes,
¥i = binary indicator, ; . = predicted probability for class c,
n = learning rate, vy, £ = gradient with respect to the weights.

The overall performance and prevention of overfitting
become achievable through the implementation of dropout
alongside early stopping and L2 regularization methods. By
performing 5-fold cross-validation, the performance gets
validated using multiple data subsets to ensure model



robustness. This training method adjusts the D-CNN model
toward high accuracy performance while making it resistant to
real-facial expression variations.

5.7 Loss function selection and usage

The training procedure uses a progressive loss plan aimed
to resolve class imbalance, label noise and over-confidence.
Categorical cross-entropy is employed in early stages because
of its stability during early optimization. With the further
development of training, Focal Loss is added to focus more on
minority classes and hard samples, and the parameters y=2 and
0=0.25 are added. In the last optimization, the Label
Smoothing Regularization (LSR) is used which uses
smoothing coefficient €=0.1 to decrease unnecessary
confidence and enhance generalization. An ablation study,
which is part of the revised Results section, shows the
performance effect of each loss function individually and in
combination.

5.8 Advanced optimization with hybrid algorithms

To further improve the convergence reliability and lessen
the manual hyperparameter optimization efforts, a Hybrid
PSO-Adam Optimization Framework is suggested. Particle
Swarm Optimization (PSO) explores the space of
hyperparameters (learning rate, dropout, weight decay)
globally, and Adam explores the space locally.

The updated position and velocity of each particle as PSO
algorithm is:

t+1
i

vt = wvf + oy (pr — xf) + cora(g — xf)

(18)
(19)

t+1

t+1 _ .t
i =X +Ui

X

Here v is velocity of particle iii at iteration t, x} is current
position (set of hyperparameters), p; is personal best position,
g is global best, c;,c, is acceleration coefficients, r,,r, €
[0,1] is random weights, w is inertia weight balancing
exploration and exploitation.

After identifying the degree of hyperparameters that
optimizes the mean squared error, Adam optimizes the local
minima by gradient descent. The hybridization will guarantee
a quicker convergence, increased classification consistency,
and less overfitting on the AffectNet dataset.

The Adam hybrid PSO is driven by the necessity of
maintaining the global exploration and the local convergence
stability. PSO is an effective way of sampling the high-
dimensional hyperparameter of a large scale searches to locate
promising global configurations. Definitely, PSO on its own
does not have fine-grained gradient sensitivity. Instead, Adam
provides bias-corrected adaptive gradient updates, however, it
is initialisation sensitive. With the help of PSO in setting the
hyperparameters and then Adam-based gradient refinement,
the hybrid approach exploits the advantages of both
algorithms. In the Results section revised through the
incorporation of empirical convergence plots, the level of
training stability and convergence rate are better than the level
and rate of convergence when only Adam operates.

6. RESULT ANALYSIS

The section evaluates experimentally the proposed model
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for FER which relies on the AffectNet dataset and D-CNN.
The methodology for model training and testing appears first
before an evaluation of performance based on standard
metrics. The evaluation comprises a comparison with current
models which demonstrates the proposed approach's
performance capabilities. A cross-validation procedure under
controlled conditions was used to conduct the experiments for
reliable and consistent performance assessment. The obtained
results will serve to identify what the model does well but also
what it does not in various practical operational conditions.

In order to provide a just and impartial test, authors add five
highly employed baseline models depicting standard machine
learning algorithm Support Vector Machine (SVM), Multiple
Kernel Learning (MKL), traditional deep learning algorithm
Convolutional neural network (CNN), and hybrid
characterization feature-deep architectures such as Deep
Fusion CNN (DF-CNN), and fully connected neural
explainers as Feedforward Neural Network (FNN). They are
baselines of both handcrafted-feature and previous CNN
variants in the FER literature. In addition, the updated edition
includes more state-of-the-art deep FER models (e.g., ResNet-
50, VGG-FER, ACN) that would be more rigorous to
compare. It has also included cross-dataset testing on CK +
and FER-2013 to illustrate the performance in generalization
beyond AffectNet.

These comparison paradigms include classical, kernel-
based, and deep-models, which allows to conduct the balanced
evaluation of the comparative performance of our proposed
framework and emphasize the gains, which are made in the
context of various algorithmic paradigms.

6.1 Performance metrix

FER models need to be evaluated using a variety of metrics
to study the accuracy, strength, and discrimination at class-
level. In a bid to offer an overall evaluation, the proposed
model is evaluated based on accuracy, precision, recall, F1-
score, specificity, and MCC, and also AUC-ROC, and other
multi-class metrics, and which would provide a fair evaluation
of the baseline methods.

Accuracy: The overall performance accuracy of a model
relies upon accuracy measurement. The measure calculates
true predictions against the total number of all instances in the
model.

TP +TN

A = 20
CuraY = TP ¥ TN + FP + FN (20)

Precision: It assesses how many correctly predicted positive
expressions exist among all positive output results. The
measure indicates how well the model performs at identifying
particular emotional states.

TP

— 21
TP + FP @l

Precision =

Recall: It determines whether the model finds all existing
positive instances accurately.

TP

Recall = ————
ccall = T5 1 FN

(22)

F1-Score: The Fl-score finds its value through precision
and recall harmonically averaged together to create a weighted
metric which benefits situations with uneven class



distribution.

Precision X Recall

FI-Score = 2 X (23)

Precision + Recall

Specificity: The model proves its ability to accurately detect
non-positive elements through the specificity metric.

TN

__ 24
TN + FP %)

Specificity =

Matthews Correlation Coefficient (MCC): A balanced
metric named MCC provides performance assessment for all
four values within the confusion matrix, which proves helpful
for handling imbalanced data sets.

~ (TP X TN)— (FP X FN)
/TP + FP)(TP + FN)(TN + FP)(TN + FN)

Mcc 25)

ROC Curve and AUC: The Receiver Operating
Characteristic (ROC) curve plots the True Positive Rate
(Recall) against the False Positive Rate (FPR), where:

FPR = (26)

FP+TN

AUC represents the mathematical value of model
probability to categorize positive instances above negative
instances randomly selected from a sample.

Here TP = True Positives, TN = True Negatives, FP = False
Positives, FN = False Negatives.

Cohen Kappa (x): Agreement between forecasted and actual
classes, not due to chance.

Do — Pe

K= 27
1- Pe ( )
where, p, is an observed agreement and p, is expected
agreement by random chance.
Balanced Accuracy (BA): Tunes sensitivity and specificity
in the face of class inequity.

1
BA = (TPR + TNR) (28)

Geometric Mean (G-Mean): This is to make sure that the
false positives and false negatives are minimized.
G =VTPR x TNR (29)

FPR and FNR Analysis: The trends in misclassifications
between the emotions are further explained by the False
Positive Rate (FP / (FP + TN)) and False Negative Rate (FN /
(FN + TP)) values.

Table 2, along with Figure 5, displays how various FER
methods perform in terms of accuracy measurement through
five repeated trials. Traditional methods like SVM and FNN
show relatively lower accuracy, with averages around 78—
80%. The accuracy performance of MKL and CNN and DF-
CNN improves until it reaches 84.55% in DF-CNN. The
proposed D-CNN model proved to be superior to all present
techniques by delivering the highest accuracy score, which
ranged between 93.79% and 94.61% across each test run. The
proposed method demonstrates strong practical application
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because it uses deep convolutional architectures to
successfully learn features and make classifications. This
enriched feature representation, supported by effective
normalization and a robust D-CNN framework, enhances
discriminative power and stability across iterations, leading to
consistently higher accuracy. The model's persistent
leadership proves its capability as an ideal solution for instant
emotion detection needing precise accuracy.

Table 2. Comparison of accuracy of existing approach with
suggested approach

. DF- Proposed

Iteration SVM MKL CNN CNN FNN (D-CNN)
1 78.25 80.65 8267 8349 7981 93.79
2 7941 8124 8321 841 80.22 94.61
3 77.88 80.02 82.04 83.02 78.93 93.88
4 80.1 8212 8388 8455 811 94.41
5 78.76 8143 8279 8397 79.64 93.99
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Figure 5. Representation of compared accuracy

Table 3. Comparison of precision of existing approach with
suggested approach

. DF- Proposed
Iteration SVM MKL CNN CNN FNN (D-CNN)
1 7211 7532 76.89 78.02 70.44 89
2 73.9 75.87 77.63 78.88 71.76 89.47
3 7156 7455 76.15 77.64 69.53 88.55
4 74.68 769 7841 79.21 7234 90.21
5 7238 7564 772 7835 70.67 89.13

Table 3 with Figure 6 displays how different FER models
performed regarding precision throughout their five test runs.
Precision levels of FNN stay consistently low among
traditional models while SVM and MKL, together with CNN
demonstrate a stable yet moderate performance. DF-CNN
achieves higher precision levels which range between 77.64
and 79.21 percent showing enhanced discrimination ability
toward features. The proposed D-CNN model produces
superior performance to all other models by achieving
precision rates from 88.55% to 90.21% which proves its high
efficiency in identifying genuine positive expressions. The



proposed model achieves improved precision due to its
enriched feature representation generated through visual
bagging, spatial mapping, and fusion of handcrafted and deep
features. These complementary features reduce ambiguity
between similar expressions, enabling the D-CNN to make
more accurate positive predictions and consistently minimize
false positives across iterations.

—— SVM MEKL CNN
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Figure 6. Representation of compared precision

Table 4. Comparison of recall of existing approach with
suggested approach

. Proposed
Iteration SVM MKL CNN DF-CNN FNN (D-CNN)
1 7433 7718 794 80.66 72.75 9241
2 75.62 7834 8052 8142 741 93.28
3 73.04 76.03 782 80.1 7164 92.54
4 76.89 7896 8101 8214 7533 94.21
5 7421 7745 79.68 81.23 73.05 92.67
= SVM MEKL CNN
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Figure 7. Representation of compared recall

The recall data for different FER models appears in Table 4
and Figure 7 during five evaluation runs. Both FNN and SVM
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exhibit insufficient recall capability since they fail to detect
multiple authentic positive expressions. The recall values from
DF-CNN models demonstrate consistent improvement that
reaches 82.14% and MKL and CNN both achieve better
performances. The improved recall is achieved because the
proposed model captures a richer and more discriminative
feature space through visual bagging, spatial mapping, and
fusion learning. These mechanisms help the D-CNN detect
subtle emotional patterns, reducing missed true positives. As a
result, the system consistently identifies a larger proportion of
actual emotion classes across iterations. Throughout all
iterations the proposed D-CNN model demonstrates the best
recall results starting from 92.41% which consistently
maintained until it reached 94.21%. The model demonstrates
consistent performance by lowering false negative rates, thus
providing essential capabilities to applications that need high
sensitivity in emotion detection.

Table 5. Comparison of F1-score of existing approach with
suggested approach

. DF- Proposed
Iteration SVM MKL CNN CNN FNN (D-CNN)
1 732 7624 7812 79.34 7148 90.62
2 7475 77.09 79.05 80.08 72091 91.35
3 7229 7528 7716 7882 7053 90.42
4 7577 7792 797 8101 7371 92.1
5 7328 7653 7835 7961 71.79 90.9
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Figure 8. Representation of compared F1-score

Table 5 alongside Figure 8 demonstrates the F1-score
evaluation metrics, which combine precision and recall
performance metrics for different FER models during five
repeated iterations. The proposed model achieves higher F1-
scores because its fusion of handcrafted and deep features
creates a more balanced representation of emotional cues. This
reduces both false positives and false negatives, improving
precision and recall simultaneously. Visual bagging and
spatial mapping further enhance discriminability, ensuring
consistently strong performance across all iterations. The F1-
scores obtained by FNN and SVM traditional classifiers
demonstrate weakened performance because they achieve
inadequate detection precision and reduced false prediction
control. MKL, CNN and DF-CNN display medium to high
performance results while DF-CNN reaches up to 81.01%.



The proposed D-CNN model provides the highest F1-scores
across evaluation runs from 90.42% to 92.10% which
demonstrates its capacity for precise and balanced detection.
The proposed method demonstrates exceptional ability in
preserving classification accuracy throughout different test
iterations.

The analysis of Table 6 and Figure 9 shows the specificity
results for different FER models across five testing trials to
identify proper negative facial expressions. The proposed
model attains higher specificity because its fused feature
representation effectively separates true negative samples
from ambiguous emotional patterns. Visual bagging and
spatial mapping enhance structural distinctions, reducing false
alarms. As a result, the D-CNN accurately identifies non-
target classes, delivering more reliable discrimination and
consistent performance across iterations. Hence, FNN and
SVM exhibit inferior specificity values because they identify
neutral and non-target expressions as positive outcomes more
frequently. MKL and CNN together with DF-CNN achieve
fair progress in the study but DF-CNN maintains the highest
specific rate at 84.10%. The proposed D-CNN model achieves
superior performance compared to every other model since its
specificity measures from 92.63% to 94.66%. The model
displays excellent precision by detecting non-relevant
expressions with accuracy, ensuring reliable facial expression
analysis.

Table 6. Comparison of specificity of existing approach with
suggested approach

_ DF- Proposed
Iteration SVM MKL CNN CNN FNN (D-CNN)

1 7756 7991 8142 8236 75.6 93.21

2 78.64 80.73 8219 832 76.88 94.08
3 76.8 79.1 80.67 8192 7421 92.63
4 79.32 8156 8288 841 7794 94.66
5 7721 80.34 8153 8287 76.02 93.39
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Figure 9. Representation of compared specificity

The performance evaluation of different FER models is
presented in Table 7, together with Figure 10, through their
respective MCC values across five iterations. MCC serves as
an evaluation criterion to assess binary and multiclass
classification performance when dealing with class imbalance
parameters. FNN along with SVM demonstrates weak
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performance in terms of MCC scores indicating their inability
to establish accurate correlations between predictions and
actual results. DF-CNN stands out among the models by
reaching an MCC value of 0.73, while MKL and CNN show
moderate results. The D-CNN model achieves superior
performance when compared to others based on MCC scores
that demonstrate predictive strengths from 0.819 to 0.851. The
model displays superior performance because it demonstrates
effective adaptation to multiple expression classification
situations.

Table 7. Comparison of MCC of existing approach with
suggested approach

. DF- Proposed
Iteration SVM MKL CNN CNN FNN (D-CNN)
1 056 0.61 0.67 0.69 0.53 0.819
2 0.58 0.63 0.68 0.71 0.54 0.84
3 0.54 0.59 0.65 0.68 0.5 0.83
4 0.6 0.65 0.7 0.73 0.56 0.851
5 0.55 0.62 0.67 0.7 0.52 0.83
e SV ML MEKL CNN
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Figure 10. Representation of compared MCC

Table 8. Comparison of AUC-ROC of existing approach
with suggested approach

. DF- Proposed
Iteration SVM MKL CNN CNN FNN (D-CNN)
1 842 8655 881 8944 8235 97.86

2 8531 87.33 89.02 90.25 834 98.75
3 8342 8592 8746 889  81.68 98.05
4 86.04 88.11 89.75 90.83 841 99.35
5 847 8698 884 89.62 82091 98.46

The AUC-ROC (Area Under the Receiver Operating
Characteristic Curve) scores across five iterations provide
information about model ability to separate emotion classes
according to Table 8 and Figure 11. The classification abilities
of FNN and SVM remain at a moderate level, as demonstrated
by their AUC value range from 82 to 85%, respectively. The
three models MKL and CNN together with DF-CNN generate
enhanced performance outcomes whereby DF-CNN delivers
the highest result at 90.83%. These results indicate improved
classification of emotional categories. The proposed D-CNN
model maintains the best AUC-ROC scores which span from
97.86% to 99.35% indicating its superior discriminative



abilities. The model effectively recognizes true positives and
true negatives because of its superior performance levels.
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Figure 11. Representation of compared AUC-ROC
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Table 9. Comparison of Cohen’s Kappa, Balanced Accuracy
and Geometric Mean of existing approach with suggested

approach
Aporoach Cohen’s Balanced Geometric Mean
pp Kappa (k)  Accuracy (BA) (G-Mean)
SVM 0.62 78.4 77.9
MKL 0.67 81.2 80.6
CNN 0.72 83.7 82.9
DF-CNN 0.76 85.5 84.3
FNN 0.61 79.3 78.8
Proposed (D-
CNN) 0.89 94.8 94.2

Figure 12 and Table 9 juxtapose Kappa (k) as suggested by
Cohen in different emotion recognition methods. The highest
x over 0.89 of the proposed D-CNN models has been found
and indicates a better agreement and reliability than the
conventional approaches, such as SVM, MKL, CNN, DF-
CNN, and FNN.

The comparison of Balanced Accuracy (BA) and Geometric
Mean (G-Mean) is provided in Table 9 and Figure 13 based on

3057

different face emotion recognition models. The proposed D-
CNN is characterized by the highest BA of 94.8% and G-Mean
of 94.2, which proves to be a perfect balance of sensitivity and
specificity. Conversely, the conventional methods like SVM,
MKL, CNN, DF-CNN and FNN are scored relatively low with
DF-CNN scoring better among the existing methods (85.5%
BA, 84.3% G-Mean). This implies that the suggested D-CNN
is more stable and robust in terms of its classification over
class imbalance and varied facial expressions.

=== Balanced Accuracy (BA) === Geometric Mean (G-Mean)
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Figure 13. Representation of compared Balanced Accuracy
and Geometric Mean

6.2 Computational complexity analysis
In order to evaluate the practical viability of the proposed

FER model, we evaluate both the complexity of the algorithms
and empirical performance. The computational expense of the

convolutional backbone is majorly taken over by
convolutional layers which require:
O(K? Cin* Coye " H-W) (30)

where, K is the size of the kernel, C;,, C,,; are input/output
channels and H, W are spatial dimensions. Another O(C)
global average pooling and channel recalibration overhead is
also introduced by the AERB module, and is insignificant
compared to convolutional cost.
SIFT + BoVW feature extraction is a handcrafted method
which works with the complexity:
O(Ny, + D) (31)
where, Ny, is the key point count distracted and D is the length
of the descriptors.
Normalization (L2 concatenation) Feature fusion Feature
fusion:
o(dy +dy) (32)
where, d;, and d; refer to handcrafted and deep feature
dimensions.
The optimization time of the PSO-Adam hybrid is
determined by the fact that PSO conducts global search on
O(P - 1) and Adam conducts an update of O(T) times/cycle.



In general, the suggested structure has moderate computing
cost and supports high levels of discriminative capabilities that
can be applied in the real-world implementation of the FER.

To measure the actual efficacy of the suggested FER
system, sometime measurements are tested:

Training Time (TT) gives the average time taken to pass the
training data showing the efficiency of optimization.

Inference Time (IT) time it takes to process a single input
image, which represents a real-time application.

Throughput (TH) quantifies processing capacity in a
system, which is significant with FER applications of high
volume or high streams.

The combination of these metrics can be verified to make
the proposed FER framework not only accurate but
computationally efficient and scalable.

Table 10. Comparison of Training Time, Inference Time,
and Throughput of existing approach with suggested

approach
Approach TT (S) TH (s) IT (ms)

SVM 42.6 88 11.2

MKL 39.8 96 104

CNN 315 126 7.9
DF-CNN 28.3 153 6.5
FNN 45.7 79 12.6
Proposed D-CNN 22.1 233 4.3
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Figure 14. Representation of compared Training Time and
Throughput
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Figure 15. Representation of compared Inference Time
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The efficiency of training and throughput (samples
processed per second) of various approaches to FER is
compared in the Table 10 and Figure 14. Conventional
approaches like SVM and FNN take a longer duration to train
and to perform worse throughput because they are less parallel
and poor in feature-learning. Deep learning based CNNs are
more computationally efficient and DF-CNN performance is
superior to other existing baselines. The D-CNN proposed is
the best-performing one due to its low Training Time (22.1 s)
and the highest throughput (233 samples/s), due to its
optimized architecture and hybrid learning approach.

The comparison of the inference-time in Figure 15 and
Table 10 demonstrates that the results provided by the
proposed D-CNN is the fastest (4.3 ms), and all existing
models are more expensive. Its optimized architecture can
detect emotions much faster in addition to being highly
accurate.

The presented D-CNN has significant performance
outperformance to the current methods in both computational
and recognition measures. Our model has the shortest possible
Training Time (22.1s), which means that it converges faster
than SVM, MKL, CNN, DF-CNN, and FNN. The best time of
inference is recorded in the proposed architecture as well (4.3
ms), which makes it possible to deploy it to real-time situations
where quick emotion identification is critical. The throughput
is notably larger (233 samples/s), which is over two times
more than the optimum baseline, which proves the effective
processing large-scale or streaming FER applications. In
addition to computational improvements, the proposed model
is always more accurate, more precise, has higher recall, F1-
score, specificity, MCC, as well as AUC-ROC, which proves
strong and credible emotion classification. Generalization
over diverse datasets is also enhanced by the addition of
AERB optimization, optimal fusion and hybrid PSO
optimization-Adam refinement. The combined benefits in the
recognition quality and the computation efficiency obviously
demonstrate that the presented D-CNN is a better and more
viable FER solution than the current ones.

7. CONCLUSION AND FUTURE SCOPE

The research introduced an elaborate FER system through
D-CNN modeling which used AffectNet database for training
and evaluation purposes. The method unites state-of-the-art
preprocessing techniques together with feature crafting
methods and deep learning approaches for feature extraction
which connect to an enhancement approach for representing
facial expression data. The proposed model obtained superior
results with extensive experimental testing proving it
outperforms traditional SVM and MKL together with CNN as
well as DF-CNN and FNN in accuracy and seven additional
performance metrics including precision, recall and F1-score
and specificity and MCC and AUC-ROC. The AffectNet
database provided extensive annotation diversity which helped
the D-CNN perform consistently in various real-life
expression conditions. Numerous performance analysis tests
demonstrate that the model exhibits consistent and reliable
behavior when identifying emotions in facial expressions.
Using handcrafted features together with deep features
provides an effective approach which delivers complete
information about local details and global semantic structures.
The proposed model demonstrates effective functionality for
emotion-aware applications within healthcare and education



fields together with security systems and HCI domains.

Attention-based residual learning, PSO-Adam hybrid
optimization and sophisticated loss regularization have given
the proposed D-CNN framework a lot of power in the
generalization and convergence stability of the model, which
makes it an advanced solution to facial emotion analysis in the
real-world scenario. The research would benefit from future
development when integrating real-time FER through
optimized lightweight D-CNN models designed for edge
computing systems. The recognition of emotion in continuous
interactions can be bolstered through the combination of video
sequences with recurrent LSTM systems that handle temporal
developments. By adding speech and physiological signals to
the model at present the ability to develop comprehensive
affective computing systems would expand further. Cross-
cultural dataset training of the model would enhance its
responsiveness to different population groups. A key solution
to address trust issues in emotion-based systems would be
through the implementation of explainable Al (XAl) methods
that would make these systems more transparent.
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